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Abstract. Recent microscopy imaging techniques allow to precisely an-
alyze cell morphology in 3D image data. The vast amount of image data
renders manual investigations a challenging or even infeasible task and
varying image quality limits the applicability of automated methods.
The resulting lack of annotated data not only impedes the successful
training procedure of machine learning approaches, but also complicates
the comparability of publicly available methods. This can be compen-
sated by image synthesis approaches, which require an exact modeling of
the underlying cellular structures. The spherical structure of cells in the
3D space can be realistically modeled with spherical harmonics, which
offer a way to directly constrain segmentations to represent seamless
spherical shapes. This work proposes how this representation of spher-
ical objects can be utilized to model and to predict cellular structures
in 3D microscopy image data. We incorporate those descriptors into an
image synthesis pipeline to generate synthetic 3D image data that can
be utilized to replace manually obtained ground truth annotations for
training of automated segmentation approaches. Segmentations obtained
with fully-synthetic data are shown to be similar to segmentations ob-
tained with manually annotated data. Moreover, we propose a network
architecture, which is designed to predict spherical harmonic coefficients
to obtain immanently shape-constrained segmentations and compare the
results to the results obtained by established methods used in the field.

Keywords: 3D Cell Analysis, Spherical Harmonics, Annotation-Free,
Shape-Constrained

1 Introduction

The continuous development of microscopy imaging techniques, allows to better
understand developmental processes at the cellular level. Particularly 3D imag-
ing techniques provide powerful insights, but create vast amounts of data that
have to be analyzed. Thus, manual investigations are a tedious or even infeasible
task. The amount of annotation effort even increases, when considering densely
packed scenes as in the case of 3D confocal microscopy images of fluorescently
labeled cell membranes used for detailed morphological analysis. Precise manual
segmentation of this complex membrane network is often additionally compli-
cated by low image quality and proximity of cells. To this end, automated cell
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segmentation has been addressed with different machine learning-based algo-
rithms.
Recent techniques to perform cell instance segmentation in 3D microscopy im-
age data range from pixel-wise classification methods to direct shape predic-
tions. Methods working in a pixel-wise manner use convolutional neural net-
works as pre-processing step [9] or post-processing step [20] to improve classical
watershed-based segmentation or perform segmentations with region proposal
networks [24]. Those techniques are reported to accurately distinguish separate
cell instances, but the generated segmentations are still prone to having frag-
mented or unnatural shapes. To circumvent this problem of noisy segmentations,
shapes can be partly constrained by directly predicting global shape representa-
tions, as done in [21], rather than performing segmentation on the pixel-level.
However, all machine learning-based approaches need annotated data for train-
ing. Although efforts have been made to reduce the amount of training data
needed to perform accurate cell segmentation [11, 24], there still is a high demand
of data when it comes to generalizing algorithms. But even with small amounts
of annotations needed, the manual effort remains expensive. Consequently, data
synthesis approaches became more popular, which range from physically inspired
simulations of cell dynamics [17] to deep learning-based synthesis [22]. Deep
learning-based synthesis of microscopy images showing cell membranes instead
of nuclei, has recently been shown to work for 2D images [8].

Fig. 1: Maximum intensity projection of a 3D microscopy image (left) and a 3D
volume rendering of an instance label mask (right) of A. thaliana from the public
data set published in [23].

Although previous approaches present techniques to avoid noisy segmenta-
tions and generate synthetic microscopy image data, they still need many param-
eters or do not work for large image data that has to be divided into patches.
In this work, we propose how spherical harmonic descriptors [16] can be in-
corporated into different parts of deep learning-based approaches for synthesis
and segmentation of cells in 3D microscopy image data. These descriptors have
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been shown to be suitable for a meaningful representation of 3D shapes [5, 6],
which suggests an incorporation into current deep-learning approaches. Demon-
strations are made on the example of fluorescently labeled cell membranes in A.
thaliana [23], whose dense cell populations are challenging to segment (Fig. 1).
The proposed work demonstrates, (1) how large 3D microscopy image data can
be synthesized in a patch-based manner by incorporating positional information
and by tweaking patch merging. Furthermore, we introduce (2) a parameter-
efficient way to describe and immanently constrain 3D object shapes, which can
be used for prediction as well as generation of cell shapes. The resulting pipeline
(3) allows performing cell instance segmentation without the need of any manual
annotations, while still being on a par with the results obtained with manually
annotated ground truth data.

2 Method

The proposed pipeline can be divided into two parts, first the image synthesis
and second the cell segmentation. For both parts spherical harmonic (SH) [16]
basis functions are employed to describe the spherical shape of a whole specimen
as well as the shape of individual cells. Using SH, every spherical shape S can
be decomposed using R different basis functions Yj weighted by scalars cj . An
individual spherical shape is defined by

S =

R∑
j=1

cj · Yj , (1)

where

Yj = Y ml (θ, φ) =

√
2l + 1

4π
· (l −m)!

(l +m)!
· Pml (cos θ)ei·m·φ. (2)

Here, Pml (cos θ) describes the Legendre polynomials of degree m and order l,
with l ≥ 0 and −l ≤ m ≤ l, while higher orders encode the higher frequency
components of the sphere. Consequently, the first coefficient, i.e., the first basis
function represents a perfect sphere. For each order l we use all available degrees
m, which allows to calculate the total number of basis functions up to order l by

R = 1 + l +

l∑
i=0

2i. (3)

Thus, for each of our approaches we fix the order l and describe a spherical shape
by determining the weights cj for each corresponding spherical harmonic Yj , with
j ∈ (0, R). Parameters θ and φ denote the spherical angular coordinates and
their quantity determines how detailed each shape can be represented. Instead
of sampling those angular orientations from a fixed uniform grid, we select them
following the concept of electrostatic repulsion [13]. This ensures an optimal
sampling of each shape given a fixed number of orientations.

In the following we explain how this representation of spherical shapes can
be used to synthesize and to predict the shape of cellular structures in 3D mi-
croscopy images.
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2.1 Patch-based Synthesis of Microscopy Images

For the generation of microscopy images of fluorescently labeled cell membranes,
we follow a top-down approach, which extends the work done in [8] to work for
3D data and starts by generating annotations first and proceeds with generat-
ing the corresponding simulated microscopy images. This offers the advantage
to constrain the morphology of the generated images by the generated masks
and results in the creation of a data set with error-free annotations, indepen-
dent from image quality. As shown in [8], the generation of realistic annotations
is essential to leverage the generation of realistic synthetic data sets, that al-
low annotation-free training of segmentation approaches. In order to adjust the
proposed synthesis pipeline to work for 3D images and in order to create more
realistic annotations, extensive adaptions have to be made.

Foreground Generation For the determination of foreground regions, which
delineate the specimens shape, spherical harmonics are utilized. Since the ob-
jects of interest of the considered data set [23] are spherically shaped (Fig. 1),
an exponentially decreasing power spectrum of spherical coefficients are a good
approximation to create realistic foreground regions. To model various shape
alterations, each coefficient is initialized by a random value drawn from a stan-
dard normal distribution and weighted by the exponentially decreasing power
spectrum for each harmonic degree m, which leads to a description of harmonic
coefficients by the following formula:

cml = w(l,m) · e−γm, (4)

with w(l,m) constituting the random initialization assigned to the coefficient for
degree m and order l. γ controls the smoothness of the resulting shape, whose
effect is shown in Figure 2.

(a) γ = 0.5 (b) γ = 2 (c) γ = 8

Fig. 2: Overview of possible spherical shapes initialized with harmonic coefficients
generated by Equation 4 for different values of γ. Colors indicate the positive
(red) or negative (blue) deviation from a perfect sphere.

Cell Generation Within the foreground region, random points are placed fol-
lowing a uniform distribution to indicate cell centroids. To prevent areas of
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(a) (b) (c) (d) (e) (f)

(b1) (b2)

Fig. 3: Qualitative 2D illustration of the 3D data generation pipeline, showing
the foreground generation with random cell centroid placement (a), Voronoi-like
tessellation (b) and morphological enhancement (c). Initially straight membranes
(b1) are bent to imitate more natural shapes (b2). The generated membrane
mesh and positional information (d) are utilized for the GAN-based (e) patch-
wise translation to the image space (f, top). The final color-coded multi-instance
segmentation (f, bottom) is directly obtained from the generated mask (c).

unnaturally low or high density of cells, an k-means clustering using a k ob-
tained from real cell density refines the positions of cells and reduces the overall
cell count to ncells (Fig. 3, a). Each voxel within the foreground region is then
assigned to the closest cell centroid, which creates separate cell instances as a
Voronoi tessellation (Fig. 3, b). Since the resulting segments show unnaturally
straight edges (Fig. 3, b1), an additional weighting is applied to the distance
calculation, which is adapted from [3] and bends the planes between different
segments (Fig. 3, b2). A random weight ri drawn from a standard uniform dis-
tribution is assigned to centroid i and changes the distance calculation of each
voxel x to cell centroid xi to

di(x) =
||x− xi||2

ri
. (5)

To further enhance the outer shape of the foreground region and simulate cell
bumps, morphological opening is applied as a final step of the mask generation
(Fig. 3, c). Note that the opening operation is constrained to the outer layer of
the foreground region to prevent inner holes from being created. In principle,
the generation of single cell instances within the foreground region can also
be done utilizing SH, similar to the foreground generation. However, due to
the seamless membrane mesh in the considered data set, we rely on a tweaked
Voronoi tessellation concept.

Image Translation For translation of the generated membrane mask into a
realistic microscopy image, the cycleGAN approach from [8] is replaced by a plain
GAN approach (Fig. 3, e) [10], which was observed to generate images of identical
quality. As generator network a slightly modified U-Net architecture [7] is used
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and a PatchGAN [12] acts as a discriminator. Those slight modifications of the
U-Net affect the transposed convolution layers within the decoder part, since
checkerboard artifacts were observed in the generated images. These artifacts are
eliminated by replacing all transposed convolutions by the pixel-shuffle technique
[1], which proposes to perform low-resolution convolutions first, followed by a
periodic shuffling of the resulting convolution outputs to assemble the higher
resolution.

Due to the size of the 3D data, images can no longer be processed as a
whole and have to be divided into patches. In the patch-based processing of
images, global illumination characteristics, such as depth-dependent fluorescence
intensity degradation, are almost completely neglected by the generator network.
This leads to illumination artifacts in the resulting full-size image, which highly
impede the quality of the generated data. To compensate for this, positional
information are supplied as additional channels to the input of the generator
network. This positional information is encoded as two distance maps, encoding
the distance from the specimen’s outer boundary to the specimen’s center and
to the background region, respectively (Fig. 3, d).

When merging patches back to a full-size image (Fig. 3, f), intensity inconsis-
tencies were observed at patch transitions. Those inconsistencies are prevented
by incorporating a 3D variant of the weighted fading technique proposed in [2],
which uses a distance weighted overlapping of patches. The weight of a pixel at
position x = (x, y, z)T within the patch is calculated by

w =
1

n
·min(|x− xc|, |y − yc|, |z − zc|), (6)

with (xc, yc, zc)
T denoting the patch center and n being a normalization fac-

tor calculated from overlap and patch size to preserve the intensity range after
merging. The complete pipeline is illustrated in Figure 3.

2.2 Shape-Constrained Cell Segmentation

Pixel-wise segmentation approaches like the watershed algorithm are often prone
to generating fragmented or noisy segmentations (Fig. 4), which deteriorates
the accuracy of morphological quantification for biological assessments. Instead

Fig. 4: 2D crops of possible fragmented cell instances obtained from the method
proposed in [9].

of following a pixel-level approach, one could consider to sample the shape of
objects, which allows to easily regularize the predicted shapes to be connected.
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However, the more complex object shapes become, the more sampling points are
needed for an accurate representation. The number of necessary sample points
easily exceeds multiple hundred, which is even more significant in the 3D space.
To reduce the number of required points, the location of sampling points could
be optimized or a compressed encoded representation could be used. For the 3D
space, spherical harmonics serve as such a compressed and parameter-efficient
encoding for star-convex volumes. To this end, we demonstrate how deep neural
networks can be adapted to predict the position and the shape encoding of
objects.

To transform between volumetric pixel-wise segmentations and spherical har-
monic representations with a minimum loss of information, the segmentation is
initially oversampled by considering 5000 angular orientations (θ, φ). From the
obtained sampling points, the harmonic coefficients can be accurately calcu-
lated. To reverse the encoding to a pixel-wise segmentation, we again use the
same sampling pattern and subsequently apply a Delaunay triangulation.
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Fig. 5: Illustration of the shape prediction network, which comprises a shared
encoder part [4] splitting into three different head modules (blue) for prediction
of detection confidence, position regression and shape encoding, respectively.
The main building block is presented by the VoxRes module (orange) [4]. Each
convolution block performs 3D convolutions, bn expresses batch-normalization
and Swish [18] is implemented as activation function.

The proposed network is inspired by the work done in [19] and [14] and fol-
lows the principle of a one-shot detector. The architecture comprises a residual-
based encoder part, which splits into separate heads for prediction of detection
confidence, position regression and shape encoding (Fig. 5). The main building
block is given by the VoxRes module, proposed in [4]. Considering, that the
encoder part of the network down-samples the image into a smaller representa-
tion, each voxel of the encoder output represents an area in the original image,
which can thus be thought of as a division into a grid. In each grid segment
the prediction of ndet objects is allowed, each of them being constituted by the
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parameter tuple (p, δx, δy, δz, c1, c2, ..., cR), with p indicating the detection con-
fidence, (δx, δy, δz) denoting the positional offset within the grid segment and
c1...R representing the spherical coefficients. Each of those three compartments is
predicted by an individual head module and concatenated to a tuple afterwards.
The positional offsets (δx, δy, δz) range between 0 and 1 to indicate to which re-
gion of the segment the detection should be shifted. Thus, each detected center
position is bounded to a specific segment with the center of a segment given by
(0.5, 0.5, 0.5), whereas the detected shape can exceed the segment boundaries.
The number of the overall required output channels is determined by the num-
ber of allowed detections per grid segment ndet and the number of coefficients
R, which results in a total of (4 + R) · ndet outputs for each segment. For pre-
diction of confidence and position regression, a sigmoid activation function is
used to generate the final output. Values for spherical coefficients, however, are
not bounded, to which end no final activation function was applied and the raw
output of the last convolution generates the final output.

During training, each head is assigned a different loss function, which are ulti-
mately combined to form the whole training criterion. The confidence prediction
is evaluated using a mean squared logarithmic error (MSLE) and a weighting
function to compensate for class imbalances, as done in [9]. Predictions of posi-
tions and harmonic coefficients are assessed using a masked L1 loss. Segments
not containing any cells in the ground truth mask do not contribute to the calcu-
lation of the positional loss and the shape loss. Those segments only contribute
to the confidence loss, since positions and shape descriptors are undefined.

Although we follow a grid-based detection, which limits the number of pre-
dictions per region, there still are redundant detections that have to be merged
by a sequence of steps. Initially, the confidence of each prediction is weighted by
the positional distance to the patch borders to account for possible truncated
shape predictions at patch borders. The weight is degraded towards the patch
border by a tangens hyperbolicus as stated in the following equation:

wconf = tanh

(
min(xpred, s− xpred)

s
· α
)
, (7)

with xpred denoting the predicted position within the patch, s denoting the
patch size and constant α controlling the steepness of the weight decay towards
the patch border. To reduce computational effort, redundancy of predictions
is reduced within each patch by the application of hierarchical agglomerative
clustering, using Ward’s linkage method. A distance threshold dcluster identifies,
which detections should be ultimately merged to form clusters. Since this step
is only applied to remove unambiguous redundancies, the threshold dcluster is
chosen to be small compared to the cell sizes. The resulting position and shape
of each cluster are calculated from a weighted average among each prediction
within the clusters. The weight is determined by the corresponding predicted
confidences, i.e., the higher the confidence, the more influence on the resulting
position and shape. All detections within a cluster are discarded afterwards and
only the cluster average is kept. After all patches are concatenated to form the
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full-size image, a non-maximum-suppression (NMS) is applied to remove objects
whose overlap exceeds a threshold toverlap. For calculation of the overlap the
intersection over union (IoU) is typically used, which, however, does not take
the different sizes of objects into account. This potentially leads to small IoU
values even if a small object lies almost completely within a larger object, as
depicted in Fig. 6 (a). To this end, the overlap is set in relation to the volume
of the smallest object, which is referred to as intersection over smallest volume
(IoSV) in the following. Furthermore, the exact pixel-wise calculation of the
overlap is computationally heavy and infeasible if many overlaps in a 3D image
have to be calculated. Therefore, the overlap is approximated by averaging the
overlaps of the minimum enclosing (Fig. 6, b) and maximum enclosed spheres
(Fig. 6, c) of both segmentations, respectively [21]. The intersection I of partially

(a) Intersection (b) Enclosing (c) Enclosed

Fig. 6: 2D representation of the intersection of two spherical objects (a). The
overlap is approximated by averaging the intersections of the corresponding min-
imum enclosing (b) and maximum enclosed (c) spheres [21].

overlapping spheres can be efficiently calculated from the distance d between the
centroids of both spheres and their radii r1 and r2:

I =
π

12d
(r1 + r2 − d)2(d2 + 2d(r1 + r2) − 3(r1 − r2)2). (8)

3 Experiments and Results

For the evaluation of the proposed pipeline, three assessments were made. First,
the quality and plausibility of generated images were evaluated by compari-
son to the original data. With different experiments, the influences of the label
generation and the domain translation were assessed individually. Second, the
segmentation accuracy of the proposed network was determined and compared
to the results obtained by other methods used in the field. As a third assessment,
the applicability of the generated data as a training set was demonstrated.

All experiments were carried out using the publicly available data set from
[23], comprising 125 3D images showing fluorescently labeled cell membranes
of Arabidopsis thaliana and corresponding manually corrected watershed-based
instance segmentations. Segmentation of fluorescently labeled membranes is a
problem present in many biological screens, with Arabidopsis being one of the
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most commonly used plant model organism. Moreover, animal models like mouse,
zebrafish or fruit fly exhibit similar signal patterns and shapes that can be mod-
eled with the proposed methods alike, i.e., the proposed method is extendable
to these models as well.

3.1 Quality of the Generated Images

The data generation pipeline has two sources of potential impairments, namely
the label generation and the translation from the label space into the image
space. To determine the individual influences of both parts on the quality of the
generated data, two additional data sets were generated:

– A manually corrected data set [23].
– A semi-synthetic data set by translating manually annotated masks to the

image domain using the GAN approach described in Section 2.1.
– A fully-synthetic data set by generating masks as proposed in Section 2.1

and creating corresponding synthetic images utilizing the GAN.

Note that, for both synthetic cases the training of the generative networks was
carried out with unpaired data, which allowed to use the semi-synthetic images
to solely measure the impairments contributed by the domain translation.

For the initialization of spherical harmonic coefficients with Equation 4, γ
has been empirically set to 6 to best fit the shape of the real foreground regions.
The number of randomly placed cells ncells was adapted to roughly match the
real density of cells within the foreground region, which was determined to be
one cell per 20 × 20 × 20 pixel region. Translation of the generated masks to
the image domain was done in a patch-based manner, utilizing a patch-size of
128× 128× 128 pixel.

To assess the quality of the generated semi-synthetic images (16-bit), the
structural similarity (SSIM), the zero-normalized correlation coefficient (ZNCC),
the peak signal-to-noise ratio (PSNR) and the normalized root-mean-squared-
error (NRMSE) are measured. Quality of generated data is still hard to measure
by statictical metrics and not feasible in case of an unpaired setup, like for the
fully-synthetic data set. Instead, since the synthesis is performed to create data
sets that can be used as a training set, we show how well the fully-synthetic data
can be used to train the proposed pipeline and carry out different experiments
to show to which extend they can be used as a replacement for real data (see
Section 3.3). Obtained metrics for the semi-synthetic data set are shown in Table
1 and qualitative results for all data sets are illustrated in Fig. 7.

SSIM ZNCC PSNR NRMSE

0.77 ± 0.05 0.70 ± 0.07 23.97 ± 1.93 1.11 ± 4.64

Table 1: Evaluation metrics calculated for the semi-synthetic images generated
from manual annotations.
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Fig. 7: Exemplary data from the original data set (top), the semi-synthetic data
set (middle) and the fully-synthetic data set (bottom). For those data sets, 3D
renderings of the color-coded instance masks (far left), maximum intensity pro-
jections of the 3D images (middle left), slices from the yz-plane (middle right)
and slices from the xz-plane (far right) are displayed.

3.2 Segmentation Accuracy

For cell shape prediction, the harmonic order l and, thereby, the number of
harmonic coefficients R has to be chosen, which also defines how precise high-
frequency information can be represented. Therefore, the shape encoding is lossy
and naturally lowers the maximum segmentation scores that can be obtained. To
measure to which extend the number of descriptors impedes the accuracy, the
IoU between manual instance segmentations and corresponding reconstructed
segmentations was computed using different quantities of harmonic coefficients.
Outcomes have been aggregated over a total of 5000 individual cell instances
and resulted in the scores shown in Figure 8 (left).

Segmentation results obtained by the proposed network were compared to
the results obtained with two other methods established in the field, namely
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Fig. 8: Aggregated IoU over a total of 5000 individual cells, utilizing different
quantities of harmonic coefficients (left) and aggregated accuracy of each con-
sidered instance segmentation algorithm (right). IoU thresholds range from 0.05
to 0.95 and determine, which cells were correctly segmented to formulate the
overall accuracy.

a convolutional neural network (CNN) enhanced watershed segmentation [9]
and a U-Net-based detection network, which encodes cell shapes by Fibonacci
lattices [21]. For the proposed pipeline, we empirically decided to allow ndet = 2
detections per segment and use R = [25, 49, 81] harmonic coefficients for different
experiments, which resulted in a total of [58, 106, 170] output parameters per
segment. Furthermore, the distance threshold dcluster to form initial clusters
was set to a Euclidean distance of 10 pixel and the NMS threshold was set
to toverlap = 0.3. Utilizing manually annotated data, the IoU was calculated
as a metric to measure which cells were correctly segmented. For different IoU
thresholds, the number of true (TP) and false (FP) predictions and the number
of missed cells (FN) could be determined, which led to a formulation of an overall
accuracy by

acc =
TP

TP + FP + FN
. (9)

The accuracy curves for each algorithm are plotted in Figure 8 (right) and qual-
itative results are illustrated in Figure 9.

Fig. 9: Instance segmentation masks showing the manually annotated ground
truth [23] (left), CNN+watershed results [9] (middle left), Fibonacci lattice pre-
dictions [21] (middle right) and the SH predictions using 81 coefficients (right).
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3.3 Annotation-Free Training

To evaluate how well the simulated data can be utilized as a training set and
how well it can substitute manual annotated data, different experiments were
performed. In addition to training and testing on manually annotated data, the
proposed pipeline and the approach from [9] were trained on synthetic data and
evaluated on manually annotated data. Furthermore the pipeline was trained on
manual ground truth data and tested on simulated data. As a metric the same
formulation as described in Section 3.2 was applied, which led to the accuracy
curves plotted in Figure 10.
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Fig. 10: Segmentation accuracy of the proposed pipeline, using different
train/test constellations of simulated and manually annotated data.

4 Discussion

Obtained results for the structural quality of the semi-synthetic data (Table 1
and Fig. 7, middle row) indicated, that after translation into the image domain,
positions of membranes remained colocalized, as also shown by the relatively
high SSIM and ZNCC values. By introducing a positional encoding, the gen-
erator network was able to consider global illumination characteristics, which
are accountable for the largest intensity deviations between real data and simu-
lated data, leading to poor PSNR and NRMSE scores. These resulting intensity
differences impaired the obtained similarity measurements, but did not neces-
sarily lead to poor synthesized images and rather imitated the strong position-
dependent variations in the data. Since the global intensity deviations and the
areas exhibiting low intensity and low contrast are most challenging for segmen-
tation approaches, the availability of these characteristics in a fully-annotated
data set is of high value for other organisms with sparse or no annotations avail-
able. This claim is supported by the experimental outcomes, when replacing
manually annotated data sets with fully synthesized data sets (Fig. 10). The
outcomes of these different experiments show that the generation pipeline can
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be used to diminish the need of manual annotations for acquisition of training
data, with a trade-off of a minor loss in precision, considering that no manual
interactions are required.

Modelling shapes with SH comes with a trade-off between a shape-constraint,
parameter-efficient description of 3D shapes and a loss of high-frequency compo-
nents of the shape, as shown in Figure 8. This loss of high-frequency segmentation
components can be directly observed, when comparing to the results obtained
with a watershed-based approach. However, for morphological assessments of
cell shapes, consistent and realistic segmentations are important, which makes
the shape-constrained encodings a good alternative. Also note, that the ground
truth was constructed by manually correcting segmentations obtained from a
watershed-based algorithm [23], leading to a bias of the reported segmentation
results obtained with the CNN+watershed method. The same trade-off could
be shown in [21] for Fibonacci latices and is visible in Figure 8 (right). Within
the examined quantity range of harmonic coefficients, only modest changes in
segmentation accuracy could be observed, which shows the advantage of SH over
Fibonacci lattices. Since cells are naturally represented by spherical shapes and
one single SH descriptor can already represent a perfectly spherical object, 25
descriptors are sufficient to represent 3D cell shapes. Furthermore, the encoded
representation directly provides information about the rough size of objects (first
coefficient), the roughness of the objects surface (distribution of coefficient val-
ues) and it can be used as a feature vector describing the cell.

5 Conclusion

This work proposed how spherical harmonic coefficients can be incorporated into
different parts of 3D microscopy image data processing approaches. Modelling
entire specimen with SH coefficients provided an efficient way to generate various
parametrized 3D shapes for data generation. By modelling membrane structures
and enhancing morphological details, a tweaked image synthesis pipeline gener-
ated data, which in turn can be used to dispense manual annotation efforts for
training data acquisition. Using a CNN to predict the harmonic shape represen-
tation of single cell instances has been shown to produce segmentation results
that can be represented by only a small amount of descriptors. This represen-
tation prevents the prediction of unnaturally degenerated segmentations, bene-
fiting biological assessments by only a small accuracy trade-off. In general, SH
serve as an efficient and promising alternative for incorporating natural shape
constraints into deep learning-based segmentation and synthesis approaches. Fu-
ture work includes the extension of the parametrized shape generation, to en-
able the synthesis of arbitrary kinds of specimens and to further enhance the
membrane morphology and cell size distribution to better match biological con-
straints. Furthermore, segmentation results could be improved by incorporating
spherical convolutions [15] into the shape prediction head of the network or by
using the SH predictions as enhanced seeds for watershed-based segmentation
to retain both, the shape-contraints and the high-frequency shape information.
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