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ABSTRACT

Vision Transformers have achieved impressive performance in many vision tasks.
While the token mixer or attention block has been studied in great detail, much
less research has been devoted to the channel mixer or feature mixing block
(FFN or MLP), which accounts for a significant portion of the model parame-
ters and computation. In this work, we show that the dense MLP connections
can be replaced with a block diagonal MLP structure that supports larger expan-
sion ratios by splitting MLP features into groups. To improve the feature clus-
ters formed by this structure we propose the use of a lightweight, parameter-free,
channel covariance attention (CCA) mechanism as a parallel branch during train-
ing. This enables gradual feature mixing across channel groups during training
whose contribution decays to zero as the training progresses to convergence. As a
result, the CCA block can be discarded during inference, enabling enhanced per-
formance at no additional computational cost. The resulting Scalable CHannEl
MixEr (SCHEME) can be plugged into any ViT architecture to obtain a gamut
of models with different trade-offs between complexity and performance by con-
trolling the block diagonal MLP structure. This is shown by the introduction of
a new family of SCHEMEformer models. Experiments on image classification,
object detection, and semantic segmentation, with different ViT backbones, con-
sistently demonstrate substantial accuracy gains over existing designs, especially
for lower complexity regimes. The SCHEMEformer family is shown to establish
new Pareto frontiers for accuracy vs FLOPS, accuracy vs model size, and accuracy
vs throughput, especially for fast transformers of small size.

1 INTRODUCTION
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Figure 1: Comparison of the proposed SCHEMEformer family, derived from the Metaformer-PPAA-S12 model
(52) with higher expansion ratios in the MLP blocks, and many SOTA transformers from the literature. The
SCHEMEFormer family establishes a new Pareto frontier (optimal trade-off) for a) accuracy vs. FLOPs, b)
accuracy vs model size, and c) accuracy vs, throughput. SCHEMEformer models are particularly effective
for the design of fast transformers (throughput between 75 and 150 images/s) with small model size.See 5 for
zoomed version.

Vision Transformers (ViTs) (11; 26; 42; 25) are now ubiquitous in computer vision. They decom-
pose an image into a set of patches which are fed as tokens to a transformer model (41) of two
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main components: a spatial attention module, which reweighs each token according to its similar-
ity to the other tokens extracted from the image, enabling information fusion across large spatial
distances, and a channel mixer that combines the feature channels extracted from all patches using
a multi-layer perceptron (MLP or FFN). A bottleneck of this model is the quadratic complexity of
the attention mechanism on the number of patches. Numerous ViT variants have been proposed to
address the problem, using improved attention mechanisms or hybrid architectures that replace at-
tention or combine it with convolutions. Much less research has been devoted to the channel mixer.
Most models simply adopt the two-layer MLP block of (41), where channels are first expanded by a
specified expansion ratio and then compressed to the original dimension. This is somewhat surpris-
ing since the mixer is critical for good transformer performance. For example, it is known that 1)
pure attention, without MLPs or residual connections, collapses doubly exponentially to a rank one
matrix (10), 2) training fails to converge without residual connections or MLP (52), and 3) replacing
MLPs with more attention blocks (both spatial and channel attention) of equivalent computational
complexity lowers the transformer accuracy (8). All these observations indicate that the channel
mixer is an indispensable ViT component.

In this work, quantify how much the channel mixer module contributes to ViT performance and
investigate how to improve the trade-off between complexity and accuracy of the ViT model. We
show that enhanced design of the channel mixer can lead to significant improvements in transformer
performance by introducing a novel Scalable CHannEl MixEr (SCHEME) that enables the design
of models with larger expansion ratios. SCHEME is a generic channel mixer that can be plugged
into existing ViT variants to obtain effective scaled-down or scaled-up model versions. We replace
the channel mixer of a state of the art architecture (SOTA) for low-complexity transformers, the
MetaFormer-PPAA-S12 (52), with SCHEME to obtain a new family of SCHEMEformer models
with improved accuracy/complexity trade-off. This is illustrated in Figure 1, where the SCHEME-
former family is demonstrated to establish new Pareto frontiers for accuracy vs FLOPS, accuracy vs
model size, and accuracy vs throughput, showing that SCHEME allows fine control over all these
variables, while guaranteeing SOTA performance. These properties are shown to hold for image
classification, object detection and semantic segmentation tasks, as well as for different architec-
tures, such as T2T-ViT (54), CoAtNet (5), Swin Transformer (25), CSWin (9) and DaViT (8).

To develop SCHEME, we start by studying the impact of the mixer channel expansion. Trans-
former performance is shown to increase with expansion ration until it saturates for an expansion
ratio beyond 8. However, because mixer (MLP) complexity also increases with the dimension of the
intermediate representation, naive channel scaling with expansion ratios larger than 4 causes an ex-
plosion of parameters and computation, leading to models of large complexity and prone to overfit.
To achieve a better trade-off between dimensionality and computation, we leverage recent findings
about the increased hardware efficiency of mixers with block diagonal structure (1; 6). These group
the input and output feature vectors of a layer into disjoint subsets and perform matrix multipli-
cations only within each group, as illustrated in Figure 2. We denote the resulting MLP block as
Block Diagonal MLP (BD-MLP). Despite the lack of feature mixing across groups, we find that
a transformer model equipped with the BD-MLP and a larger expansion ratio (to match both the
parameter count and computation) achieves comparable or slightly higher accuracy than a baseline
with dense MLP. This suggests that the lower accuracy of the block diagonal operations is offset by
the gains of larger expansion ratios. Further analyzing the features learned by the different groups
of the BD-MLP, we observe that they form feature clusters of similar ability to discriminate the tar-
get classes. To learn better feature clusters, we seek a mechanism capable of restoring inter-group
feature communication during training without increasing parameters. For this, we propose a chan-
nel attention branch that reweighs the input features of the BD-MLP according to their covariance
matrix, as illustrated in Figure 2. This attention mechanism is denoted as the channel covariance
attention (CCA) block. The re-weighted features are then fused with the BD-MLP output by means
of a weighted residual addition with learned weights (α, 1− α).

As shown in Figure 2, SCHEME combines the sparse block diagonal structure of the BD-MLP, and
the parameter-free CCA attention module, to implement a channel mixer extremely efficient in terms
of parameters. Ablations of the evolution of the fusion weight 1−α learned in the CCA branch (see
Fig. 2) over training show that it gradually decays to zero during training. This happens consistently
across all layers of the model and across model architectures. Hence, while the CCA is important
for the formation of good feature clusters during training, it can be removed at inference without any
loss, as illustrated in Table 3 and Figure 2. As a result, the model accuracy improves over simply
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Figure 2: Proposed SCHEME channel mixer. The channel mixer of the standard transformer consists of two
MLP layers, performing dimensionality expansion and reduction by a factor of E. SCHEME uses a combi-
nation of a block diagonal MLP (BD-MLP), which reduces the complexity of the MLP layers by using block
diagonal weights, and a channel covariance attention (CCA) mechanism that enables communication across
feature groups through feature-based attention. This, however, is only needed for training. The weights 1− α
decay to zero upon training convergence and CCA can be discarded during inference, as shown on the right.
Experiments show that CCA helps learn better feature clusters, but is not needed once these are formed.

using the BD-MLP mixer, but inference complexity does not. This leads to an extremely efficient
inference setup, both in terms of parameters and FLOPs. Overall, the paper makes the following
contributions,

• a study of the channel mixer of ViT MLPs, showing that dense feature mixing can be
replaced by sparse feature mixing of higher internal feature dimensionality for improved
accuracy, without increased complexity.

• the SCHEME module, which combines 1) a BD-MLP to enable internal feature representa-
tions of larger dimensionality than previous MLP blocks, and 2) CCA to enable the learning
of these representations without cost at inference.

• various models that combine SCHEME with previous transformer architectures to achieve
SOTA trade-offs between accuracy and model size, FLOPS, or throughput, such as the
SCHEMEformer of Figure 1. This is shown particularly effective for the design of fast
transformers with small model size, of interest for edge devices, robotics, and low-power
applications.

• Experiments on image classification, object detection, and semantic segmentation, showing
consistent gains in accuracy for fixed computation and size.

2 RELATED WORK

Vision Transformers: Vision transformers advanced the SOTA in several vision tasks since (26; 11)
successfully applied the transformer-based self-attention NLP model of (41) to image generation
and classification tasks. These models rely on a spatial attention mechanism, based on the matrix of
dot-products between features extracted from image patches. This has quadratic complexity in the
number of patches and is quite intensive. Most follow up work (15; 33; 53; 38; 34; 46; 35; 54; 55; 40)
improved the spatial attention mechanism of ViT. DeiT (35) and subsequent works (36; 37) intro-
duced a distillation token to distill information, typically from a CNN teacher, without large amounts
of data or compute. PvT (42) proposed a progressive shrinking pyramid architecture with spatial-
reduction attention that scales ViTs for dense prediction tasks beyond image classification. Swin
transformers (25) introduced a hierarchical shifted window attention mechanism, which reduces the
complexity to linear with respect to the number of windows. HaloNet (40) proposed two extensions
for local ViTs (27) with blocked local attention and relaxed translational equivariance for scaling
ViTs. A more extensive review of ViTs is given in (24). Recently, several works have shown that
spatial attention is not the critical ViT feature. Some works improved performance by relying on
hybrid architectures, which augment or replace ViT layers with convolutions (45; 39). Efficient
transformer designs, for edge devices, frequently sacrifice spatial attention to achieve better trade-
offs between FLOPs and accuracy (2; 21). Other works have questioned the need for spatial attention
altogether. Metaformer (52) argued that the fundamental trait of ViT is the mixing of information
across patches, showing that competitive results can be obtained by simply replacing attention with
pooling or identity operations. Similarly, (23) showed that spatial attention is not critical for vision
transformers by proposing a spatial-gating MLP of comparable performance to ViT (11). DaViT (8)
showed that spatial attention is helpful by reusing its design for channel attention, building a cascade
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Ratio FLOPs Top-1 Acc
Model (E) (G) (%)
Metaformer∗ 8 4.14 81.6 (+0.6)
Metaformer∗ 6 3.35 81.8 (+0.8)
Metaformer (52) 4 2.55 81.0 (+0.0)
Metaformer∗ 2 1.77 78.9 (-2.1)
Metaformer∗ 1 1.33 76.0 (-5.0)
Metaformer-S18∗ 1 2.51 78.3 (-2.7)
Table 1: MetaFormer-S12 (52)
ImageNet-1K validation accu-
racy vs MLP expansion ratio (E).
∗: results by author code.

SCHEME
44-e8 12-e8

S12 P (M) 12 21
S12 F (G) 1.8 3.3
S24 P (M) 21 40
S24 F (G) 3.3 6.5
S36 P (M) 55 59
S36 F (G) 8.0 9.6

Table 2: SCHEME param-
eters (P) and FLOPs (F).
44-e8 (12-e8) downscales
(upscale) the MetaFormer
model.

CCA Params FLOPs Top-1 Acc
SCHEME Used (M) (G) (%)
44-e8-S12 ✓ 11.83 2.16 79.74
44-e8-S12 11.83 1.77 79.72
12-e8-S24 ✓ 40.0 7.3 82.80
12-e8-S24 40.0 6.5 82.76
CoatNet-44-e8 ✓ 17.80 3.83 80.70
CoatNet-44-e8 17.80 3.42 80.68
Swin-12-e8-T ✓ 36.93 7.00 81.69
Swin-12-e8-T 36.93 5.89 81.69

Table 3: Impact of removing CCA
branch during inference.

of alternating spatial and channel attention blocks. While this improves performance, it increases
the complexity of the transformer block, resulting in a model with many parameters and potentially
redundant channel mixer operations. Despite all this work on ViT architectures, little emphasis has
been devoted to the channel mixer module (MLP) that follows attention. This is surprising because
the mixer dominates both the parameter count and complexity (FLOPs) of the standard transformer
block. (22; 53) modify the MLP block to mimic the inverted residual block of the MobileNetV2
(29), by adding a depthwise convolution. This improved performance but increases parameter and
computation costs. Switch Transformer (13) replaces the FFN with a sparse mixture of experts (32)
that dynamically routes the input tokens. This design allows scaling models to large sizes using
higher number of experts but is not effective for ViTs. XCiT (12) employs a cross-covariance at-
tention (XCA) operator, which can be seen as a ”transposed” version of self-attention that operates
across feature channels. The architecture of XCiT is composed of three primary components: the
core XCA operation, a local patch interaction (LPI) module, and a feedforward network (FFN). The
XCA mechanism computes the covariance operation across different head groups, akin to multi-head
attention. In this work, we extend this concept by proposing a Cross-Covariance Channel Attention
(CCA) operation to facilitate feature mixing across different channel groups. Unlike XCiT, which
uses ”heads” for interaction and projection matrices for queries, keys and values, CCA leverages
the full feature set to compute covariance without any projections, ensuring a more comprehensive
representation of inter-feature interactions. In this work, we propose an efficient and generic channel
mixer module (BD-MLP and CCA) that improves both the parameter and computational efficiency
of the transformer and allows for flexible scaling of ViTs.

3 THE SCHEME MODULE

Figure 2 depicts the proposed SCHEME module for feature mixing in ViTs. As shown on the left,
the standard channel mixer consists of two MLP layers, which expand the dimensionality of the
input features and then reduce it to the original size. Let x ∈ Rd×N be the matrix containing the
N d-dimensional input feature vectors extracted from N image patches. The mixer computes an
intermediate representation z ∈ REd×N and an output representation y ∈ Rd×N according to

z = σ(W1x+ b11
T
N ) (1)

y = W2z+ b21
T
N (2)

where W1 ∈ REd×d,W2 ∈ Rd×Ed,b1 ∈ REd,b2 ∈ Rd, 1N is the N -dimensional vector con-
taining ones as all entries, σ(.) is the activation function (typically GELU), and E is an expansion
factor, typically 4.

Table 1 details the impact of the mixer on overall transformer performance by evaluating the role
of the expansion factor E on the performance of Metaformer-PPAA-S12 (52) (Pooling, Pooling,
Attention, Attention) architecture on ImageNet-1K. Classification accuracy increases from 76.0 to
81.8%, as E ranges from 1 to 6, decreasing for E = 8, which suggests overfitting. The table
also shows that these gains are not trivial. The S18 model, which has no expansion (E = 1) but
more transformer layers and complexity comparable to that of the S12 model with E = 4, has an
accuracy 2.7 points lower than the latter. In summary, for a given computation budget, it is beneficial
to trade off transformer depth for dimensionality expansion in the channel mixer. This shows that
this expansion is a critical component of the transformer architecture. On the other hand, naively
scaling E beyond 6 severely increases parameters and computation, leading to models that over-fit
and are impractical for many applications.
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3.1 SCALABLE CHANNEL MIXER (SCHEME)

Block Diagonal MLP (BD-MLP): Block diagonal matrices have been previously used to efficiently
approximate dense matrices (1; 6). In CNNs, group channel operations are frequently used to design
lightweight mobile models with improved accuracy-computation trade-off (19; 3; 29). This consists
of splitting the feature vectors of (1)-(2) into disjoint groups, e.g. x into a set of g1 disjoint features
{xk}g1k=1 where xk ∈ Rd/g1×N , and y into a set {yk}g2k=1 where yk ∈ REd/g2×N . As illustrated in
Figure 2, the MLPs of (1)-(2) are then implemented independently for each group, according to

zk = σ(W1,kxk + b1,k1
T
N ) (3)

yk = W2,kzk + b2,k1
T
N (4)

where W1,k ∈ REd/g1×N/g1 ,W2,k ∈ Rd/g2×Ed/g2 ,b1 ∈ REd/g1 ,b2 ∈ Rd/g2 and z is decom-
posed into a set {zk}Gk=1 where zk ∈ REd/G×N , with G = g1 in (3) and G = g2 in (4). Since
the complexity of (3) is g21 times smaller than that of (1) and there are g1 groups, the complexity
of the first MLP is 1/g1 times that of standard MLP. Similarly, the complexity of the second MLP
is 1/g2 times that of the standard MLP. Hence, a transformer equipped with the BD-MLP and ex-
pansion factor 2g1g2

g1+g2
E has identical complexity to a standard transformer of factor E. For example,

when g1 = g2 = g this allows growing the expansion factor by a factor of g without computational
increase.

Channel Covariance Attention (CCA): While the introduction of groups enables accuracy gains
due to the increased expansion factor by 2g1g2

g1+g2
, it results in sub-optimal features. This is because

the features in the different groups of (3)-(4) are processed independently, i.e. there is no inter-group
feature fusion. This reduces the efficiency of the BD-MLP. To enable feature mixing between all
feature channels and thus induce the formation of better feature clusters, we introduce a covariance
attention mechanism in a parallel branch, as illustrated in Figure 2. The input features are first
transposed to obtain the d × d covariance matrix1 xxT . This is then used to re-weigh the input
features by their covariance with other feature channels, using

CCA(x) = softmax
(
xxT

τ

)
x (5)

where the softmax operation is applied across the matrix rows and τ is a smoothing factor. The
output of the channel mixer block is the weighted summation of the BD-MLP and CCA branches

yout = αy + (1− α)CCA(x), (6)

where α is a mixing weight learned across all samples. Various other design choices are discussed
in Section 4.2.

CCA as a Regularizer: The introduction of a parameter free attention branch and a learnable weight
α allows the model to form better feature clusters during training and gradually decay the contri-
bution from CCA branch once the feature clusters are formed. This can be seen in Figure 3, which
plots the value of the learned mixing weight 1−α as a function of training epochs on ImageNet-1K,
for all transformer layers. These plots are typical of the behavior we observed with all transformer
backbones and architectures we considered. Clearly, 1 − α starts with high to intermediate values,
indicating that information flows through both branches of the mixer, but decays to 1 − α ≈ 0
as training converges. Hence, as shown in Table 3, there is no degradation if the CCA branch is
removed during inference. This eliminates a substantial amount of computation during inference,
leading to the the training and inference setup of Figure 2, where CCA is not used at inference.

We explain this behavior by conjecturing that the downside of the computational efficiency of the
BD-MLP is a more difficult learning problem, due to the independent processing of channel groups.
This creates symmetries in the cost function, e.g. the order of the feature groups is not important, and
requires a feature clustering operation that is likely to produce more local minima. The CCA branch
helps to smooth out this cost function during training, while the feature groups are not established,
by allowing inter-group communication. However, once the right feature groupings are found, CCA

1Since the features are normalized before the mixer, i.e centered such that x1N = 0, xxT is the covariance
matrix of features x.
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is no longer needed, and a simple BD-MLP mixer has no loss of performance over the standard MLP.
Note that the operation of (5) is basically a projection of x into canonical subspaces of features that
are correlated in the input image. This is likely to be informative to guide the group formation, but
less useful when the features are already clustered. While this hypothesis is not trivial to test, since
(5) varies from example to example, we confirmed that using CCA during training enhances class
separability, which likely reduces overfitting for large expansion ratios. See the section 4.2 for more
details.

Computational Complexity: The complexity of the BD-MLP block is controlled by the group
numbers g1, g2 and the expansion factor E, with a total cost O(Ed2/g1 + Ed2/g2), where d is
the channel dimension. The computational cost of CCA is O(Nd2) where N is the number of
tokens. Since CCA is not used during inference, it only adds to the computations during training.
The SCHEME framework provides a systematic way to control the trade-off of transformer width
vs depth, by controlling the block size and expansion hyperparameters.

3.2 THE SCHEMEFORMER FAMILY

The proposed SCHEME module enables efficient control of model complexity via the mixer hy-
perparameters g1, g2, and E. Table 1 shows that naively scaling down the ViT model by simply
reducing E causes a significant accuracy loss. The SCHEME module allows much more effective
control of the accuracy/complexity trade-off, producing models of better performance for a fixed
computational budget. This is demonstrated by the introduction of a new family of models, denoted
as SCHEMEformer, obtained by replacing the channel mixer of the Metaformer-PPAA (52) archi-
tecture with the SCHEME module. Two such configurations are shown in Table 2 where the naming
follows the convention {model-name}-{g1g2}-e{E} where the model name is skipped for brevity.

4 EXPERIMENTAL RESULTS

4.1 COMPARISONS TO THE STATE OF THE ART

Image Classification: Image classification is evaluated on Imagenet-1K, without using extra data.
We report the results with single crop top-1 accuracy at 224× 224 input resolution. We evaluate the
SCHEMEformer family of models based on the Metaformer-PPAA-S12 (52) obtained by replacing
the MLP of the latter with the SCHEME module. Refer to Appendix for implementation details.

We start by evaluating how this improves the trade-off between model accuracy and complexity.
As discussed in Section 3.1, when g1 = g2, a SCHEME transformer of expansion factor gE has
identical complexity to a standard transformer of expansion factor E. Hence, for fixed FLOPS,
SCHEME allows an increase of the expansion factor by g. Figure 4 a) compares the performance
of the Metaformer-PPAA-S12 with expansion ratios E ∈ {1, 2, 4, 8} to comparable variants of the
SCHEMEformer-PPAA-S12, with SCHEME mixers of either g = 2 (green curve) or g = 4 (blue
curve) groups. The SCHEMEformer models have a better trade-off between accuracy and FLOPS,
achieving higher accuracies for all complexity levels. Among these, the one with more feature
groups (g = 4) has the best performance. While SCHEMEformer gains are observed for all FLOP
levels, they are larger for lower complexity models. This makes SCHEME particularly attractive for
the design of low complexity transformers, e.g. for edge devices or equivalent applications.
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Model #Params FLOPs Thru Top-1 Acc
(M) (G) (im/s) (%)

gMLP-Ti (23) 6 1.4 - 72.3
ViT-L/16 (11) 307 63.6 37 76.1
Meta-11-e2-S12 (52) 12 1.8 133 78.9
MogaNet-T (20) 5 1.10 44 79.0
XCiT-T24 (12) 12 2.3 - 79.4
ViT-B/16 (11) 86 17.6 112 79.7
SCHEME-44-S12 12 1.77 133 79.7
S2-MLP-deep (51) 51 10.5 - 80.7
Meta-S12 (52) 17 2.6 87 81.0
Swin-Tiny (25) 29 4.5 100 81.3
T2T-ViT t-14 (54) 22 6.1 70 81.7
DeiT-B (35) 86 17.5 114 81.8
ViL-Small (56) 25 5.1 - 82.0
SCHEME-12-S12 21 3.35 130 82.0
Focal-Tiny (50) 29 4.9 29 82.2
CPVT-Base (4) 88 17.6 - 82.3
DaViT-Tiny (8) 23.0 4.3 61 82.8
CSWin-Tiny (9) 23.0 4.3 20 82.8
SCHEME-12-S24 40 6.47 69 82.8
XCiT-L24 (12) 189 36.1 - 82.9
Swin-Small (25) 50 8.7 31 83.0
ViL-Base (56) 56 13.4 - 83.2
CSWin-Small (9) 35 6.9 11 83.6
SCHEME-12-S36 58 9.58 38 84.0

Table 4: Image Classification on ImageNet-1K. Comparison
with SOTA ViTs grouped by accuracy. Proposed SCHEME
models use expansion ratio 8. SCHEMEformer family has
higher throughput and accuracy than SOTA models.

Backbone #P F mIoU
(M) (G) (%)

Semantic FPN
ResNet-18(16) 16 32.2 32.9
PVT-Tiny(42) 17 33.2 35.7
ResNet-50(16) 29 45.6 36.7
PoolFormer-S12(52) 16 30.9 37.2
ResNet-101(16) 48 65.1 38.8
ResNeXt-101-32x4d(49) 47 64.7 39.7
PVT-Small(42) 28 44.5 39.8
XCiT-T12/8(12) 8.4 - 39.9
PoolFormer-S24(52) 23 39.3 40.3
SCHEMEformer-44-S12 15.5 34.3 40.9
PVT-Medium(42) 48 61.0 41.6
PoolFormer-S36(52) 35 47.5 42.0
PVT-Large(42) 65 79.6 42.1
PoolFormer-M36(52) 60 67.6 42.4
SCHEMEformer-44-S24 24.8 45.7 42.5

UperNet

Swin-Tiny (25) 60 945 44.5
PVT-Large (43) 65 318 44.8
Focal-Tiny (50) 62 998 45.8
XCiT-S12/16 (12) 52 – 45.9
DaViT-Tiny (8) 60 940 46.3
SCHEME-DaViT-12-Tiny 68 969 47.1

Table 5: Semantic Segmentation results
on ADE20K. FLOPs calculated at 512 ×
512 resolution for Semantic FPN and
1024×1024 input resolution for UperNet.

We next compare the SCHEMEformer family against the SOTA transformers in the literature. This is
not an easy comparison, since models vary in size, FLOPS, and throughput. Because it is difficult to
make any of these variables exactly the same for two different architectures, the comparison is only
possible in terms of how the different architectures trade-off accuracy for any of the other factors.
For a given pair of variables, e.g. FLOPS vs accuracy, the model is said to be on the Pareto frontier
of the two variables if it achieves the best trade-off between the two. Table 4 presents a comparison
of the SCHEMEformer family against various SOTA transformers in the literature. Each section
of the table compares a SCHEMEformer model to a group of SOTA transformers of equivalent
size or complexity. Note that, in each section, the remaining models have both lower throughput
and accuracy than the SCHEMEformer model. In many cases they also have more parameters
and FLOPs. Figure 1 provides a broader visualization of how SCHEME models establish Pareto
frontiers for accuracy vs FLOPS, accuracy vs throughput, and accuracy vs model size (parameters).
Figure 1 a) illustrates the trade-off between accuracy and FLOPS of many SOTA transformers. The
dashed line connects the SCHEMEformer model results, summarizing the accuracy-FLOPs trade-
off of the family. It can be seen that the SCHEME models lie on the Pareto frontier for these
two objectives. This illustrates the fine control that SCHEME allows over the accuracy/complexity
trade-off of transformer models. Figure 1 b) presents a similar comparison for model sizes. Like for
FLOPS, the SCHEME models lie on the Pareto frontier for accuracy vs model size. In fact the two
plots are quite similar, showing that in general there is a good correlation between model size and
FLOPS.

This is not the case for throughput, which for transformers is known to not necessarily correlate
with FLOPS, due to GPU parallelism. For example, Table 4 shows that, CSWin models have lower
throughput despite having lower FLOPs while ViT has higher throughput despite having higher
FLOPs. SCHEMEformer controls this trade-off by controlling the expansion ratio and block diag-
onal structure, which enables higher FLOPs utilization for a given throughput (14). We compute
throughput on a NVIDIA-Titan-X GPU with a batch size of 1 with input size 224x224 averaged
over 1000 runs. While comparisons could be made for larger batch sizes, we consider the setting for
live/streaming applications, where speed is most critical. In these applications, the concern is usually
inference throughput, which requires batch size of 1. Figure 1 c) illustrates the trade-off between
accuracy and throughput of various models, including very fast ResNet models of low accuracy. It
can bee seen that the SCHEMEformer again achieves the best trade-off between these two variables,
thus lying on the Pareto frontier for accuracy vs throughput. Its performance is particularly dominant
in the range of throughputs between 75 and 150 images/sec, where it significantly outperforms the
other methods. These results demonstrate how the SCHEME module endows transformer designers
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RetinaNet 1× #Par T AP AP50 AP75 APS APM APL

PoolFormer-S12(52) 21.7 13.1 36.2 56.2 38.2 20.8 39.1 48.0
ResNet-50(16) 37.7 15.7 36.3 55.3 38.6 19.3 40.0 48.8
SCHEME-44-e8-S12 21 6.1 38.3 58.0 40.4 21.0 41.4 52.3
PoolFormer-S24(52) 31.1 8.9 38.9 59.7 41.3 23.3 42.1 51.8
ResNet-101(16) 56.7 12.1 38.5 57.8 41.2 21.4 42.6 51.1
SCHEME-44-e8-S24 31 3.5 38.8 58.7 41.2 22.5 41.5 53.5
DAT-T (47) 38 - 42.8 64.4 45.2 28.0 45.8 57.8
CrossFormer-S (44) 41 - 44.4 55.3 38.6 19.3 40.0 48.8
DaViT-Tiny (8) 39 8.2 44.0 65.6 47.3 29.6 47.9 57.3
SCHEME-DaViT 47 7.8 44.7 66.2 48.3 30.0 48.8 57.2
Mask R-CNN 1× #Par T AP b AP b

50 AP b
75 APm APm

50 APm
75

PoolFormer-S12(52) 31.6 9.9 37.3 59.0 40.1 34.6 55.8 36.9
ResNet-50(16) 44.2 15.4 38.0 58.6 41.4 34.4 55.1 36.7
SCHEME-44-e8-S12 31 6.0 39.8 61.9 42.9 37.1 59.2 39.4
PoolFormer-S24(52) 41.0 7.9 40.1 62.2 43.4 37.0 59.1 39.6
ResNet-101(16) 63.2 12.1 40.4 61.1 44.2 36.4 57.7 38.8
SCHEME-44-e8-S24 41 3.4 40.9 62.5 44.6 37.8 59.7 40.4
DAT-T (47) 48 - 44.4 67.6 48.5 40.4 64.2 43.1
CrossFormer-S (44) 50 - 45.4 68.0 49.7 41.4 64.8 44.6
DaViT-Tiny (8) 48 7.8 45.0 68.1 49.4 41.1 64.9 44.2
SCHEME-DaViT 57 7.4 45.9 68.3 50.2 41.5 65.4 44.3

Table 6: COCO-17 Object Detection and Instance Segmentation. All
backbones pretrained on ImageNet-1K (1x learning schedule). (AP b,
APm): (bounding box AP, mask AP). T : throughput (images/sec).

Model BDM CCA Acc (%)

Baseline 78.9
44-e8-S12 ✓ 79.1
44-e8-S12 ✓ ✓ 79.7

Table 7: Contribution of BD-
MLP and CCA branches in
SCHEME.

Module #Par FLOPs T Top-1
(M) (G) (img/s) Acc (%)

Shuffle 11.83 1.77 108 79.1
SE 11.98 1.77 86 79.3

Conv 13.31 1.97 95 79.6
DyCCA 11.90 1.83 75 79.6

CCA 11.83 1.77 133 79.7
Table 8: Alternative feature at-
tention designs in SCHEME.

CCA G1 G2 G3 G4 Ensemble
(%) (%) (%) (%) (%)
51.1 54.3 55.4 54.7 73.2

✓ 47.6 50.0 49.2 55.1 73.8
Table 9: Ablation study on
the formation of feature clusters
in the BD-MLP branch of the
SCHEME module.

with the ability to produce multiple models at different points of the Pareto frontiers of accuracy vs
model size, FLOPS, or throughput.

SCHEME with other ViTs: Figure 4 shows the Accuracy-Throughput curves for various SCHEME
models obtained by replacing the MLP blocks of popular ViT architectures. It shows that SCHEME
improves the accuracy for a fixed throughput, the throughput for a fixed accuracy, or both. The gains
can be substantial, e.g. about 1% accuracy gain (constant throughput) for the fastest transformer
or speed gains of up to 20% at constant accuracy. This shows that SCHEME benefits various ViT
backbones, not just the MetaFormer.

Semantic Segmentation: Table 5 compares the semantic segmentation performance of two
SCHEMEformer models using the semantic FPN framework (18) to various SOTA models of sim-
ilar complexity, on ADE20K. Since we do not not have access to the throughput of most models,
we report only parameter sizes and FLOPS. In each section of the table, the remaining models have
comparable or larger FLOPs and model size but lower accuracy than the corresponding SCHEME-
former. For example, SCHEMEformer-44-e8-S12 achieves 40.9% mIoU, which is 5.2/3.7 points
higher than the PvT-Tiny/PoolFormer-S12, which both have comparable size and FLOPs. Similarly,
the S24 model outperforms PoolFormer-M36 using only 41% of its parameters. To demonstrate the
applicability of SCHEME to larger models, we also present a comparison of the SCHEME version
of the DaViT-Tiny using the UperNet framework (48). While the DaViT-Tiny is already the best
model in the table, the use of the SCHEME mixer improves its performance by an additional 0.8
points.

Object Detection: Table 6 compares SCHEMEformer models to models of similar complexity
on the COCO-17 object detection and instance segmentation benchmark, for both Retinanet and
Mask-RCNN detection heads. Again, the SCHEMEformer models outperform most other models
of the same or smaller size. The only exception is the PoolFormer-S24, which slightly outperforms
(0.1 points) the comparable SCHEME-former-44-S24, for the RetinaNet head. However, with the
stronger Mask R-CNN head, the SCHEMEformer-44-S24 beats the PoolFormer-S24 by 0.8 points.
For the top performing models in the bottom third of each section of Table 6, SCHEME-DaViT-Tiny
improves over DaViT-Tiny by an additional 0.7% and 0.9%, for RetinaNet and MaskRCNN heads
respectively, while maintaining a comparable throughput.

4.2 ABLATION STUDIES

Contribution of BD-MLP and CCA branch: Table 7 shows an ablation of the contribution of the
BD-MLP and CCA branches. Starting from the Metaformer-PPAA-11-e2-S12, with expansion ratio
E = 2 and dense MLP, we replace the channel mixer by SCHEME to obtain the SCHEMEformer-
PPAA-44-e8-S12 (g1 = g2 = 4 and E = 8), which maintains the number of parameters and FLOPs
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constant. The SCHEME model with only BD-MLP improves on the baseline by 0.2%. The addition
of the CCA branch provides an additional gain of 0.6%, showing the gains of better feature clusters.
Since CCA is not used at inference, its gains are free in terms of additional parameters/FLOPs.

Regularizing effect of CCA: Fig. 3 shows the evolution of the weight 1 − α of the CCA branch
in (6) during training. While initially large, it gradually decays to zero as training progresses. This
holds for all network layers. Hence, CCA can be discarded at inference. Fig. 1 in supplementary
plots the weights 1− α upon training convergence, for the family of SCHEMEformer-PPAA-44-e8
models, confirming that the weights are indeed very close to zero across all layers.

Effect of large expansion ratios: The left of Figure 4 shows the effect of simultaneously increasing
the expansion ratio E and adjusting groups to realize different models of similar size and complexity.
All models are based on the Metaformer-PPAA-S12. For fixed parameters/FLOPs, SCHEMEformer
models achieve a gain of 1.0% to 1.4% over the baseline by increasing E from 1 to 4. The gains
increase with larger expansions and saturate at larger FLOPs. This shows that higher internal feature
dimensions are important for obtaining better accuracy with smaller ViT models.

Alternative designs of Channel Mixer: We investigate whether alternative choices to the CCA
branch could accomplish this goal more effectively. Table 8 compares models that replace CCA
with other feature mixing operations: the channel shuffling operation of ShuffleNet (57), a squeeze
and excitation (17) network (SENet), a single layer of convolution, and a dynamic version of CCA
(DyCCA), where the weight α of (6) is predicted dynamically, using GCT attention (28). CCA
obtains the best result. While CCA is computationally heavier than some of these alternatives, it is
not needed at inference, as shown in Table 3. This is not true for the alternatives, which produce
much more balanced weights α after training convergence, and cannot be discarded at inference
without performance drop. We conjecture that, because the alternatives have learnable parameters,
the network learns to use them to extract complementary features, which must be used at inference.

Feature Clustering: We conjectured above that CCA helps training because it facilitates feature
clustering into naturally independent groups that do not require inter-group communication. We
tested this hypothesis by studying the intermediate feature vectors vl (obtained after max-pooling
the features y of (4)) extracted from four randomly selected layers l of two ImageNet pretrained
models, trained with and without CCA. We split the features into the 4 groups used in the model
vl,g, g ∈ {1, . . . 4} and concatenated the features of all layers in the same group. This produced
four vectors ug = concat({vl,g}l) containing the features of each group g extracted throughout
the network. A linear classifier was then learned over each vector ug . Table 9 shows the top-1
accuracy per feature group and model. To evaluate whether groups learn different class clusters,
we also average the outputs from the four group classifiers to obtain the final accuracy. Without
CCA, i.e. no group communication during training, the network produces feature groups individu-
ally more predictive of the image class, but less predictive when combined. This suggests that there
is redundancy between the features of the different groups. By introducing inter-group communi-
cation, CCA enables the groups to learn more diverse features, that complement each other. Fig. 3
shows the class separability of the intermediate features y of (4) of a randomly chosen layer of the
SCHEMEformer-PPAA-44-e8-S12. Class separability was measured as in (30), with a final value
obtained by averaging the class separability across all classes. The model trained with CCA has
higher class separability than that without it. This confirms that CCA is helpful in forming feature
clusters that increase class separability during training. Conversely, we tested if CCA is helpful
when channel shuffling is inserted in between the two mixer MLP layers, which destroys the group
structure. This variant of the SCHEMEformer-PPAA-44-e8-S12 model achieved an accuracy of
79.1% for both training with and without CCA (Table 7, row 2). This shows that CCA is not help-
ful when feature groups are mixed. Similarly, CCA did not provide any gains when applied to the
standard MLP branch with full feature mixing. These results suggest that CCA indeed helps to form
the independent feature clusters needed to achieve the computational efficiency of channel groups
without performance degradation. Table 9 shows that, despite the higher accuracy of the individual
group features of the model trained without CCA, the model trained with CCA has 0.6% higher
ensemble accuracy.
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5 LIMITATION AND CONCLUSION

Although SCHEME module improves the accuracy-throughput curves of popular ViTs, it incurs a
slight overhead in memory (see appendix section A.3.2) during training due to the channel attention
operation which limits the batch size on smaller GPUs. However, Figure 3 shows that the contri-
bution of the CCA branch becomes negligible after 150 epochs. Therefore, the CCA branch can be
removed beyond this point, significantly reducing the training overhead.
In this work, we proposed the SCHEME module for improving the performance of ViTs. SCHEME
leverages a block diagonal feature mixing structure to enable MLPs with larger expansion ratios, a
property that is shown to improve transformer performance, without increase of model parameters
or computation. It uses a weighted fusion of a BD-MLP branch, which abstracts existing MLPs with
block diagonal structure, and a parameter-free CCA branch that helps to cluster features into groups
during training. The CCA branch was shown to improve training but not be needed at inference.
Experiments showed that it indeed improves the class separability of the internal feature representa-
tion of the BD-MLP branch, helping create feature clusters that are informative of the image class.
The standard transformer MLP was replaced with the SCHEME module to obtain a new family of
SCHEMEformer models with improved performance for classification, detection, and segmentation,
for fixed parameters and FLOPs with favorable latency. SCHEME was shown to be effective for var-
ious ViT architectures and to provide a flexible way to scale models, always outperforming models
with smaller MLP expansion ratios having the same complexity.
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A APPENDIX

A.1 CODE RELEASE

Code and trained models will be released upon acceptance of the paper.

A.2 IMPLEMENTATION DETAILS

A.2.1 HYPERPARAMETER SETTINGS

Table 11 shows the detailed hyperparameter settings of the family of SCHEMEformer models re-
ported in the main paper.

A.3 ABLATION STUDIES

A.3.1 PLOT OF THE LEARNED 1− α WEIGHTS IN THE SCHEME MODULE FOR
SCHEMEFORMER MODELS

The learned weights 1−α for the SCHEMEformer model family are shown in Fig. 8. Interestingly,
the learned weights coarsely approximate the shape of a gaussian distribution. The learned weights
reach a peak value in the middle layers of the network and drop to zero for all the other layers. The
middle of the network typically corresponds to the initial few layers of the third stage of the model
that contains the maximum number of transformer blocks for all the models shown in Fig. 8. We
conjecture that the weights for these layers have not fully converged and that feature mixing can still
be useful for these layers and so training for more epochs will allow the 1−α weights of these layers
to converge to zero. To test this hypothesis, we trained the SCHEMEformer-PPAA-12-e8-S12 model
for an additional 200 epochs beyond the standard 300 epochs and observed that the peak value of
the 1 − α weights decreased further by 0.11 as compared to the model trained for 300 epochs and
the accuracy improved by 0.4%. The weight norm (of all layers) decreased from 0.18 for 300 epoch
model to 0.05 for 500 epoch model. This confirms our hypothesis and training SCHEMEformer
models for larger epochs can further improve the accuracy.

A.3.2 TRAINING OVERHEAD OF CCA

Table 12 compares the training GPU memory and throughput for SCHEME mixer with and without
using CCA. CCA improves the accuracy by 0.6% with only a slight increase in the GPU mem-
ory (+12.5%) and training time (+16.7%). Further, CCA is not needed during inference thereby
providing gains for ”free” without additional computational cost at inference.

A.3.3 TRAINING FOR LONGER EPOCHS

Table 13 shows the comparison of training for longer epochs for SCHEMEformer with the base-
line Metaformer model. We train for an additional 200 epochs from the standard 300 epochs.
SCHEMEformer-PPAA-44-e8-S12 trained for 300 epochs even outperforms the baseline model
trained for 500 epochs. On continuing the training from 300 to 500 epochs, SCHEMEformer con-
tinues to improve the performance without saturation suggesting that it is beneficial to train with
CCA for longer epochs. 300 to 500 epochs is a much larger increase of training time (67%) than the
16.7% increase in training time required by SCHEME mixer (see Table 12).

A.3.4 IMPACT OF REMOVING CCA AT INFERENCE

Table 14 shows the impact of removing CCA at inference, for various backbones. While the number
of FLOPS decreases, the top-1 accuracy changes very little (≈ 0.02 difference). Hence, there is
no advantage in using CCA at inference. This is unlike training, where the use of CCA makes a
non-negligible difference, as shown in Table 6 of the main paper.

Table 15 and 16 show the results of removing CCA at inference for object detection and semantic
segmentation models, respectively. For both tasks, the results are identical to the model using CCA
showing that the CCA also generalizes to downstream tasks.
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A.3.5 CCA

In the main paper, feature groups across different layers of the model was used to demonstrate the
learning of feature clusters by CCA. Here, the feature from the final layer of the model is only
considered. Table 18 shows the top-1 accuracy per feature group and model. The average of the
outputs from the four group classifiers is reported in the final column of the table. The effect is more
pronounced when using a single layer feature with +1.09% accuracy difference between the model
with and without CCA. This further reinforces that by introducing inter-group communication, CCA
enables the groups to learn more diverse sets of features, that complement each other.

A.3.6 LARGER EXPANSION RATIOS

Table 17 shows additional results of using larger expansion ratios with SCHEME mixer (illustrated
in Fig. 3 of the main paper) for the same number of parameters and FLOPs using the Metaformer-
PPAA-S12 baseline model. We observe that SCHEMEformer-PPAA consistently outperforms the
baseline for larger expansions ratios with larger gains at lower FLOPs. The performance saturates
as the model size and FLOPs increases.

A.4 QUALITATIVE ANALYSIS

A.4.1 GRAD-CAM (31) VISUALIZATION

Fig. 9 shows the results of class activation maps for SCHEMEformer-PPAA-44-e8-S12 model for
a few examples from the validation set of ImageNet-1K dataset. The stronger heatmap responses
around the salient features of an object (e.g., body of a bird, cat) shows that the model ignores the
background and attends to more discriminative spatial regions. Fig. 9 also shows the qualitative
comparison with a few existing methods such as ResNet-50, DeiT-S, Poolformer etc. of similar
complexity. It demonstrates that SCHEMEformer-PPAA-44-e8-S12 attends to the complete object
class and less spurious features showing that it is better than the competing methods.

A.4.2 ATTENTION VISUALIZATION

Figure 10 shows the results of attention maps with and without CCA on Imagenet dataset. We find
that there are differences in attention between using or not using CCA. CCA increases the tendency
of the model to attend to the regions where the class is present, which is denoted by green ellipses.
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Figure 5: [Zoomed version] Comparison of the proposed SCHEMEformer family, derived from the
Metaformer-PPAA-S12 model (52) with higher expansion ratios in the MLP blocks, and many SOTA trans-
formers from the literature. The SCHEMEFormer family establishes a new Pareto frontier (optimal trade-off)
for a) accuracy vs. FLOPs, b) accuracy vs model size, and c) accuracy vs, throughput. SCHEMEformer mod-
els are particularly effective for the design of fast transformers (throughput between 75 and 150 images/s) with
small model size.
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of ImageNet-1K validation set) for model trained
with and without CCA.
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Figure 7: [Zoomed version] SCHEME tradeoffs.
Top: Accuracy vs FLOPs of various SCHEME
models with different MLP configurations. Bot-
tom: SCHEME mixer improves accuracy for fixed
throughput or vice-versa for various popular ViT ar-
chitectures.

Model #Par (M) FLOPs (G) T (img/s) Acc (%)
ViT-Base (11) 86 17.6 112 79.7
SCHEME-ViT-12-e8-Base 77.1 15.5 130 79.9
DeiT-Tiny (35) 6 1.3 117 74.5
SCHEME-DeiT-12-e8-Tiny 7.5 1.6 117 76.0
Poolformer-S12 12.0 1.8 166 77.2
SCHEME-Poolformer-12-e8-S12 16.7 2.6 171 78.5
Metaformer-S12 12.0 1.8 133 78.9
SCHEMEformer-PPAA-12-e8-S12 11.8 1.8 133 79.7
CAformer-S12 25 4.20 74 82.9
SCHEME-CAformer-12-e8-S12 23.9 3.60 80 82.9
CoAtNet-0 25.0 4.2 88 81.6
SCHEME-CoAtNet-12-e8-0 24.0 4.1 110 81.6
CSWin-Tiny 23.0 4.3 20 82.8
SCHEME-CSWin-12-e8-Tiny 29.1 5.6 21 83.2
DaViT-Tiny 23.0 4.3 61 82.8
SCHEME-DaViT-12-e8-Tiny 37.0 6.6 62 83.0
T2T-ViT-14 21.5 6.1 70 81.7
SCHEME-T2T-ViT-12-e8-14 27.7 8.1 71 82.1
BiFormer-Tiny(58) 13 2.2 57 81.4
SCHEME-BiFormer-12-e3-Tiny 11.5 1.9 59 81.4

Table 10: Comparison with state-of-the-art ViT models on the ImageNet-1K dataset. The SCHEME module
enhances the accuracy of existing ViTs while maintaining or achieving higher throughput.
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Table 11: Hyperparameter Settings for the family of SCHEMEformer models trained on ImageNet-1K dataset.

Model
SCHEMEformer-PPAA-44-e8 SCHEMEformer-PPAA-12-e8 SCHEME-CAformer
S12 S24 S36 S12 S24 S36 44-e8-S18 12-e8-S12

Peak drop rate of stoch. depth dr 0.1 0.2 0.4 0.1 0.2 0.4 0.15 0.15
LayerScale initialization ϵ 10−5 10−5 10−6 10−5 10−5 10−6 10−5 10−5

Data augmentation AutoAugment
Repeated Augmentation off
Input resolution 224
Epochs 300
Hidden dropout 0
GELU dropout 0
Classification dropout 0
Random erasing prob 0.25
EMA decay 0
Cutmix α 1.0
Mixup α 0.8
Cutmix-Mixup switch prob 0.5
Label smoothing 0.1
Batch size used in the paper 1024
Learning rate decay cosine
Weight decay 0.05
Gradient clipping None
Warmup epochs 5 20
Relation between peak learning rate and batch size lr = batch size

1024 × e−3 lr = batch size
1024 × 8 × e−3

Optimizer AdamW LAMB
Adam ϵ 1e−8 None
Adam (β1, β2) (0.9, 0.999) None

(a) SCHEMEformer-44-e8-S12 (b) SCHEMEformer-44-e8-S24 (c) SCHEMEformer-44-e8-S36
(d) SCHEME-CoAtNet-44-e8-
Tiny

(e) SCHEMEformer-12-e8-S12 (f) SCHEMEformer-12-e8-S24 (g) SCHEMEformer-12-e8-S36 (h) SCHEME-Swin-12-e8-Tiny

Figure 8: Plot of the learned weight (1-α) values across different layers of a network for the family of
SCHEMEformer models. The weights reach a peak value near the middle of the network. We demonstrate
that these peak weights are not yet converged and training the network for more epochs decays these weights
to zero while also improving the accuracy. For example, training the SCHEMEformer-PPAA-12-e8-S12 model
for 200 additional epochs reduced the weight norm of the vector of 1 − α weights from 0.18 to 0.05 showing
that these weights gradually approach zero as the training progresses while improving the accuracy further by
0.4%.

Table 12: Training Overhead of CCA. CCA adds only a small overhead in GPU memory and training time.
CCA #Par Train FLOPs Val Acc GPU Mem. Train Throughput

Model (M)↓ (G)↓ (%) ↑ (G) ↓ (iters/s) ↑
SCHEMEformer-PPAA-44-e8-S12 11.8 1.77 79.1 8 215
SCHEMEformer-PPAA-44-e8-S12 ✓ 11.8 2.16 79.7 9 180

Table 13: Ablation study of longer training for SCHEMEformer-PPAA-44-e8-S12.
Model #P (M) FLOPs (G) Throughput (img/s) 300-Acc (%) 500-Acc (%)
Metaformer-11-e2-S12 (Baseline) 11.8 1.77 133 78.9 79.6
SCHEMEformer-44-e8-S12 11.8 1.77 133 79.7 80.1
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Table 14: Impact of removing CCA branch during inference.
CCA #Params FLOPs Top-1 Acc

Model Used (M) (G) (%)
SCHEMEformer-PPAA-44-e8-S12 ✓ 11.83 2.16 79.74
SCHEMEformer-PPAA-44-e8-S12 11.83 1.77 79.72
SCHEMEformer-PPAA-12-e8-S24 ✓ 40.0 7.3 82.80
SCHEMEformer-PPAA-12-e8-S24 40.0 6.5 82.76
SCHEMEformer-PPAA-12-e8-S36 ✓ 58.8 10.8 84.00
SCHEMEformer-PPAA-12-e8-S36 58.8 9.6 83.95
SCHEME-CoatNet-44-e8-0 ✓ 17.80 3.83 80.70
SCHEME-CoatNet-44-e8-0 17.80 3.42 80.68
SCHEME-Swin-12-e8-T ✓ 36.93 7.00 81.69
SCHEME-Swin-12-e8-T 36.93 5.89 81.69

Table 15: Ablation study of removing CCA for COCO-17 Object Detection and
Instance Segmentation. Removing CCA at inference does not impact the AP val-
ues as they are identical to the model using CCA at inference. AP b and APm

denote bounding box AP and mask AP, respectively. Backbone models denote
SCHEMEformer-PPAA-44-e8- variants.

Backbone CCA RetinaNet 1× Mask R-CNN 1×
Used #P AP AP b

50 AP b
75 AP b

S APM APL #P AP b AP b
50 AP b

75 APm APm
50 APm

75

S12 ✓ 21 38.3 58.0 40.4 21.0 41.4 52.3 31 39.8 61.9 42.9 24.1 53.0 42.3
S12 21 38.3 58.0 40.4 21.0 41.4 52.3 31 39.8 61.9 42.9 24.1 53.0 42.3
S24 ✓ 31 38.8 58.7 41.2 22.5 41.5 53.5 41 40.9 62.5 44.6 24.6 55.6 43.8
S24 31 38.8 58.7 41.2 22.5 41.5 53.5 41 40.9 62.5 44.6 24.6 55.6 43.8

Table 16: Ablation
study of removing CCA
for Semantic Segmenta-
tion results on ADE20K
validation dataset.

CCA Semantic FPN
#Par FLOPs mIoU (%)

✓ 15.5 36.4 40.9
15.5 34.3 40.9

✓ 24.8 49.8 42.5
24.8 45.7 42.5

Table 17: Ablation study on the effect of larger expansion ratios in BD-MLP block of SCHEME on ImageNet-
1K validation dataset.

#Par FLOPs Top-1
Model (M) (G) Acc (%)
Metaformer-PPAA-11-e1-S12 9.6 1.37 76.0
SCHEMEformer-PPAA-22-e2-S12 9.6 1.37 77.0
SCHEMEformer-PPAA-44-e4-S12 9.6 1.37 77.4
SCHEMEformer-PPAA-66-e6-S12 10.0 1.45 77.9
Metaformer-PPAA-11-e2-S12 11.8 1.77 78.9
SCHEMEformer-PPAA-22-e4-S12 11.8 1.77 79.4
SCHEMEformer-PPAA-44-e8-S12 11.8 1.77 79.7
SCHEMEformer-PPAA-33-e6-S12 12.5 1.87 79.8
SCHEMEformer-PPAA-22-e6-S12 14.1 2.16 80.4
Metaformer-PPAA-11-e4-S12 16.5 2.56 81.0
SCHEMEformer-PPAA-22-e8-S12 16.5 2.56 81.1
SCHEMEformer-PPAA-44-e16-S12 16.5 2.56 81.2

Table 18: Ablation study on the formation of feature clusters in the BD-MLP branch of the SCHEME mod-
ule. We train a linear classifier on top of the four feature groups extracted from the final MLP mixer of the
transformer block of the network. The model trained with CCA forms feature clusters that learn diverse and
complementary set of features that can obtain 1% higher validation accuracy than the model trained without
CCA.

CCA Group1 Group2 Group3 Group4 Ensemble
Model (%) (%) (%) (%) (%)
SCHEMEformer-44-e8-S12 29.63 37.59 37.57 35.89 73.95
SCHEMEformer-44-e8-S12 ✓ 27.89 37.64 30.02 37.67 75.04
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Figure 9: GRAD-CAM (31) visualization for a few validation samples on ImageNet-1K dataset for
SCHEMEformer-PPAA-44-e8-S12 model and comparison with other competing methods.
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Figure 10: Visualization of last layer attention maps of the SCHEMEformer-PPAA-44-e8-S12 model with and
without CCA on Imagenet validation dataset images. The ellipses identify the region of the object in the target
class. Since the SCHEMEformer model does not have class tokens, the attention maps are not necessarily
interpretable. The spikes in the attention maps are also common in attention visualizations and can be avoided
by using registers (7).
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