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ABSTRACT

Artificial intelligence (AI) continues to transform industries and research at an
accelerated pace, bringing forth numerous challenges related to transparency and
accountability in AI-driven decision-making. Decision-makers and stakeholders
require not only a clear understanding of how these systems generate predictions
but also assurance that these processes are conducted ethically and responsibly.
These challenges highlight a critical need for effective tools to evaluate and enhance
the interpretability of AI models. To address this gap, we propose a new set of
explainer-agnostic metrics aimed at evaluating the interpretability of AI models
in the context of specific explainers. By focusing on global and local feature
importance, as well as surrogate models, our metrics capture key elements such as
feature stability, fluctuations in prediction behavior, and contrasts in feature rele-
vance across conditional subsets. By quantifying these complex dynamics as clear
scalar measures, we offer a structured framework for assessing model transparency,
fairness, and robustness. We demonstrate the practical utility of our approach
through case studies on a set of benchmark datasets, revealing deeper insights into
model interpretability that facilitate more informed decision-making among AI
developers and stakeholders. Ultimately, our work aims to foster AI systems that
are not only technically reliable but also transparent, fair, and accountable, thereby
advancing the development of ethical AI practices.

1 INTRODUCTION

Despite the remarkable recent evolution in prediction performance by artificial intelligence (AI)
models, they are often deemed as “black boxes”, i.e. models whose prediction mechanisms cannot be
understood simply from their parameters. An explainable or interpretable algorithm is one for which
the rules guiding its prediction decisions can be questioned and explained in a way that is intelligible
to humans. Specifically, interpretability regards the ability to extract causal knowledge about the
world from a model, and explainability pertains to the capability to articulate precisely how a complex
model arrived at specific predictions, detailing its mechanics. Understanding AI models’ behavior is
essential for explaining predictions to support decision-making, debugging unexpected behaviors
(contributing to improving model accuracy), refining modeling and data mining processes, verifying
that model behavior is reasonable and fair, and effectively presenting predictions to stakeholders.

The main goal of explainable artificial intelligence (XAI) encompasses several critical objectives Ali
et al. (2023). Firstly, XAI aims to empower individuals by enabling them to make informed decisions,
mitigating the potential harms of fully autonomous decision-making systems. Secondly, it seeks
to enhance decision-making by providing transparent information about the outputs of AI models,
facilitating well-informed choices. Thirdly, XAI identifies and addresses vulnerabilities that could
compromise machine learning-based systems, bolstering their resilience. Lastly, Lastly, it endeavors
to boost user confidence in AI systems by promoting transparency and fostering a clear understanding
of the decisions made by these models.

The literature offers various approaches to assessing explainability methods. Quantitative metrics
often evaluate whether these methods meet specific quality and reliability criteria (Bodria et al.,
2023). Common metrics include fidelity—how well the explanation aligns with the underlying model
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(Guidotti et al., 2018), stability—whether similar inputs yield consistent explanations (Alvarez Melis
& Jaakkola, 2018), faithfulness—how accurately the explanation reflects the true behavior of the
model (Alvarez Melis & Jaakkola, 2018), monotonicity—whether more of a certain feature leads
to a stronger explanation (Luss et al., 2021), and complexity—how easily the explanation can be
understood. Qualitative assessments are similarly varied and are categorized into functionally-
founded, application-grounded, and human-grounded, each offering different perspectives on the
utility and interpretability of the explainability method.

However, most existing approaches are tied to specific explainability frameworks or model architec-
tures, which limits their generalizability and usefulness in varied deployment scenarios. To address
these challenges, this study introduces a novel set of explainer-agnostic metrics that can evaluate the
outputs of any XAI method used for classification or regression tasks. These metrics encapsulate
the behavior of explanations into a singular, concise representation, making them highly applicable
in automated systems that monitor the trade-off between model accuracy and explainability. By
quantifying this balance, the proposed metrics help assess both the transparency and risk associated
with AI models in deployed environments.

Our main contributions are:

• Explainer-Agnostic Metrics: We propose a set of explainer-agnostic metrics designed to
evaluate the outputs of any explainer, making them applicable across various model types
and settings.

• Consistent Feature Evaluation: Our metrics capture fundamental behaviors of the expla-
nations, providing a consistent framework for evaluating the feature importance of any
explainer in deployment scenarios, ensuring uniformity across models and explainers.

• Publicly Available Tools: All metrics and benchmark datasets are made publicly available
via a Python library, providing the community with tools to implement and further develop
these methods.

The paper is organized as follows: Section 2 presents our proposed methods for explainable AI
at local and global levels; Section 3 discusses a set of applications for these methods; and finally,
Section 4 outlines our main findings and potential directions for future research.

2 PROPOSED EXPLAINER-AGNOSTIC METRICS

The proposed metrics are model-agnostic and explainer-agnostic, meaning they can be applied to
any type of model without requiring access to the model’s internal structure or parameter estimates.
These metrics only require the predictions ŷ from a trained model f and the explanations of any
explainer E applied in f . Additionally, our methods extend existing concepts in explainable AI (XAI),
including (i) permutation feature importance, (ii) partial dependence plots, and (iii) surrogate models.
By summarizing explainer outputs into a single value, proposed metrics provide a concise measure
that captures essential behaviors of the explanations, enabling a consistent evaluation of model’s
explainations across different settings.

Figure 1 illustrates a simplified framework for explainer-agnostic metrics. Given a set of features
X and a target vector Y , both the black-box model f and its surrogate f̂ serve as inputs to the
explainer E . The nature of E can vary, but we assume three possible types of outputs: (1) local feature
importance focuses on understanding the contribution of features in the predictions of each instance;
(2) global importance provides insights into the overall model by indicating how much each feature
contributes to the model’s predictions across the entire dataset. The (3) surrogate importance involves
approximating the complex model with a simpler, interpretable model (the surrogate model f̂ ).

Following, we describe the explainer-agnostic metrics proposed.

2.1 METRICS BASED ON GLOBAL FEATURE IMPORTANCE

2.1.1 FEATURE IMPORTANCE SPREAD

This metric evaluates the feature importance distribution using a divergence measure. Consider a
uniform distribution of feature importance U = {f̄ , f̄ , . . . , f̄}, where f̄ = 1/|F |, indicating that
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Figure 1: A simplified representation of explainer-agnostic metrics framework

all features are equally relevant. Such a distribution often suggests that understanding the model’s
decision-making process may be more complex, as it implies equal contributions from many features.

To quantify the deviation from this uniformity, we apply the Jensen-Shannon Divergence (JS), denoted
as SD. Unlike the Kullback-Leibler Divergence (DKL), JS is symmetric and bounded between 0
and 1, making it a more interpretable measure of dissimilarity. A SD value close to 0 indicates that
the feature importance distribution is near-uniform, implying that all features contribute similarly,
making it harder to discern the key driving factors in the model. On the other hand, a higher SD value
(closer to 1) indicates that feature importance is concentrated on a few features, which simplifies
model interpretation by highlighting the most influential features.
Definition 2.1 (feature importance divergence). Let P a normalized feature importance distribution,
U a uniform distribution, and M = 1

2 (P + U). The feature importance spread is defined by

SD(F ) =

F∑
j=1

1

2
DKL(Pj∥Mj) +

1

2
DKL(U∥Mj) (1)

2.1.2 α-FEATURE IMPORTANCE

The α-Feature Importance metric measures the smallest subset of features needed to represent at least
α of the model’s total feature importance.
Definition 2.2 (α-Feature Importance). Let fj represent the importance of the j-th feature, and F be
the total number of features. The α-Feature Importance metric, FIα(F ), is the proportion of features
required to capture at least α of the total importance:

FIα(F ) =
min

{
k |

∑k
j=1 f(j) ≥ α ·

∑F
j=1 f(j)

}
F

(2)

where f(j) are the ordered feature importances (from highest to lowest). α is the fraction of total
importance you want to capture (e.g., α = 0.8 for 80%). FIα(F ) ranges from 0 to 1, indicating the
proportion of features needed. A low FIα(F ) means a small number of features explain most of the
model’s behavior. Conversely, a high FIα(F ) means that many features are necessary to explain the
model.

2.1.3 FLUCTUATION RATIO

The Fluctuation Ratio (FR) quantifies the oscillatory behavior present in Partial Dependence Plots
(PDPs), providing a measure of the stability and interpretability of the relationship between individual
features and a model’s predictions. PDPs show how the predicted outcome changes with a feature
while keeping all other features averaged out. However, fluctuations in PDPs can indicate unstable or
complex relationships between the feature and the target variable, which may hinder interpretability.
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Definition 2.3 (fluctuation ratio). Given a trained model f and feature x, the partial dependence
function PD(x) = EX−x

[f(x,X−x)] is the expected prediction f(x,X−x), keeping the feature
x fixed and averaging over all possible combinations of the other features X−x. To compute the
fluctuation ratio (FR):

∆PDi = PD(xi+1)− PD(xi) and Di = sign(∆PDi) (3)

FR =
1

n

n−2∑
i=1

I(Di ̸= Di+1) (4)

where ∆PDi represents the discrete derivative of the partial dependence function at point i, and
Di is the sign of this derivative, indicating whether the curve is rising (Di > 0) or falling (Di < 0)
at point i. The fluctuation ratio (FR) measures how often the curve changes direction by counting
how many times consecutive signs of the slope (Di) differ. I is a boolean operator that returns 1 if
there is a change in direction (Di ̸= Di+1), and 0 otherwise. A higher FR indicates more frequent
oscillations in the PDP, which suggests a less stable and potentially less interpretable relationship
between the feature and the prediction.

2.1.4 RANK ALIGNMENT

The Rank Alignment metric assesses the consistency of feature importance rankings between the
overall dataset and specific subsets. It measures how well the top-ranked features from the entire
dataset align with those from conditional subsets, such as different predicted classes in classification
tasks or output quartiles in regression tasks.
Definition 2.4 (rank alignment). Let Fα be the top α proportion of features based on their importance
in the overall dataset, Fg

α be the set of top α proportion of features for group g, and G be the total
number of groups. The Rank Alignment score is the average Jaccard similarities across all groups:

RA =
1

G

G∑
g=1

|Fα ∩ Fg
α|

|Fα ∪ Fg
α|

(5)

A Rank Alignment score close to 1 indicates high consistency in feature importance rankings across
groups, while a lower score suggests variations that may signal bias, instability, or group-specific
behaviors.

2.2 METRICS BASED ON LOCAL FEATURE IMPORTANCE

2.2.1 POSITION CONSISTENCY

The Position Consistency metric evaluates how consistent the feature importance rankings are across
different instances in the dataset. It measures the degree to which each feature maintains a consistent
rank of importance when assessed at the local (instance-specific) level.
Definition 2.5 (position consistency). For each instance i, the vector of local feature importances
fi ∈ Rd is converted into a ranking ri ∈ Nd, where rij = rank(fij). In this case, rij represents the
rank of feature j in sample i, with lower ranks corresponding to higher importance. Next, for each
feature j, the rank stability is calculated based on the ranks it holds across all iterations. First, the
most frequent rank rfreq among iterations is determined. Then the actual deviation (D) of the feature’s
ranks from this most frequent rank and the maximum possible deviation (maxD) are computed as
follows:

Dj =

M∑
i=1

|rij − rfreq,j | and maxDj = M × (max
i

rij −min
i

rij) (6)

The position consistency of feature j is then calculated as: The position consistency Cj for feature j
and the overall stability is for all features IV are calculated as:
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PC =
1

d

d∑
j=1

Cj where Cj = 1− Dj

maxDj
(7)

2.3 IMPORTANCE VARIABILITY

The Importance Variability (IV ) metric measures the extent to which the importance values of each
feature vary across different instances in the dataset. It provides insight into how stable the importance
of each feature is when assessed locally.
Definition 2.6 (importance variability). For each feature j, the mean importance across the samples
is calculated µj = 1

M

∑M
i=1 fij where fij is the importance of feature j in sample i, and M is the

number of samples. The sample variance of the feature’s importances is given by Vj .

Vj =
1

M

M∑
i=1

(fij − µj)
2 and Vmax,j =

(fmax,j − fmin,j)
2

4
, (8)

Otherwise, the stability Sj for feature j and the overall stability is for all features IV are calculated
as:

IV =
1

d

d∑
j=1

Sj where Sj = 1− Vj

Vmax,j
(9)

2.4 METRICS BASED ON SURROGATE MODELS

Surrogate models are interpretable models that approximate the behavior of complex black-box
models, allowing for interpretability in tasks such as feature importance analysis. These models are
especially valuable in Explainable AI (XAI) because they enable the decomposition of predictions
into understandable components. To ensure reliability in model interpretation, it is essential to
evaluate the stability of the features and their importances across different samples.

Feature and importance stability assess how consistently surrogate models rely on specific features or
feature rankings when subjected to data variations (e.g., bootstrapping). High stability implies that
the surrogate model provides robust explanations that do not fluctuate significantly with changes in
data, which is critical for trustworthiness in model interpretability.

2.4.1 SURROGATE PERFORMANCE

Surrogate performance metrics are based on a simple surrogate model, typically a decision tree
with a maximum depth of 3. This model is chosen for its interpretability and ease of visualization.
The objective of this analysis is to quantify the discrepancy between the predictions of the original
complex model and the surrogate model, using two key metrics: surrogate accuracy and accuracy
difference.
Definition 2.7 (Surrogate Performance). Let y represent the true target values, ypred the predicted
values from the original model, and ysurrogate the predicted values from the surrogate model. Let
L denote an accuracy measure, such as classification accuracy or another appropriate metric. The
surrogate accuracy (SGA) and accuracy difference (SGD) are defined as follows:

• Surrogate Accuracy (SGA): The accuracy of the surrogate model compared to the original
model’s predictions:

SGA = L(ypred, ysurrogate).

This metric reflects how well the surrogate model replicates the predictions of the original
model.

• Accuracy Difference (SGD): The difference in accuracy between the original model and
the surrogate model, defined as:

SGD = L(y, ypred)− L(y, ysurrogate).

5
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This metric measures the performance loss when using the surrogate model instead of the
original model.

A lower value of SGD indicates that the surrogate model closely approximates the original model,
whereas a higher value indicates a larger discrepancy between the two models. SGA quantifies
how well the surrogate captures the behavior of the original model, while SGD reveals the trade-off
between interpretability (using the surrogate) and accuracy (compared to the original model).

2.4.2 SURROGATE FEATURE STABILITY

Surrogate feature stability refers to the consistency of the features used to construct the decision tree
across multiple bootstrap samples. This metric evaluates whether the surrogate model repeatedly
selects the same features when exposed to slightly different versions of the data. Inconsistent feature
selection may indicate that the surrogate model’s explanations are not reliable.

Definition 2.8 (feature stability score). The feature stability score, SGf , is defined as the average
Jaccard similarity between the sets of features selected in the original dataset and in bootstrap samples:

SGf =
1

B

B∑
i=1

|F0 ∩ Fi|
|F0 ∪ Fi|

(10)

where F0 is the set of features selected by the decision tree on the original dataset, Fi is the set of
features selected in the i-th bootstrap sample, and B is the number of bootstrap samples. This score
quantifies how consistently the decision tree uses the same set of features for construction, with
values closer to 1 indicating high stability.

3 EXPERIMENTS

This section provides a detailed account of the experimental setup and presents the results derived
from the application of explainability metrics to various machine learning models across standard
benchmark datasets. The analysis is structured around two case studies: the first investigates
the Adult dataset, while the second focuses on the US-Crime dataset. These case studies are
designed to illustrate the effectiveness of the proposed explainability metrics in both classification
and regression tasks. A comprehensive description of the datasets, model configurations, and
explainability techniques employed is provided in the Appendix B.

3.1 CASE STUDY 1: ADULT DATASET

For the classification task, we employed the Adult Dataset considering training four classification
models: Random Forest (RF), XGBoost (XGB), Logistic Regression (LR), and a Multi-Layer
Perceptron (MLP).

3.1.1 GLOBAL FEATURE IMPORTANCE

The analysis of Global Feature Importance metrics alpha score reveals that the majority of the models
concentrate feature importance on approximately 13% of the total features, as measured by the alpha
score. An exception is the MLP model, which distributes its importance across roughly 30% of the
features. Moreover, XGB exhibits the highest spread divergence, indicating a stronger concentration
of importance in a few key features compared to other models.

Additionally, the fluctuation ratio, a metric that quantifies the complexity of the relationship between
features and predictions, is more pronounced in models with higher non-linear behavior, such as RF,
XGB, and MLP. Conversely, LR, being a linear model, has the lowest fluctuation ratio close to 0,
signifying that its predictions are more straightforward and interpretable (see Appendix ??). Among
non-linear models, XGB shows the highest degree of fluctuation, followed by RF, reflecting the
increased complexity of these models. Figure 4 visualizes the top feature importances (in blue) along
with their fluctuation ratios. This visualization allows us to assess not only the importance of a feature
for decision-making but also the complexity of its relationship with the target prediction. Another
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noteworthy observation is the alignment of feature importance across predicted labels, particularly
within the alpha range (α = 0.8). In this regard, Random Forest (RF) shows the highest alignment of
features that contribute to both label 0 and label 1 predictions, demonstrating consistent feature usage.
As shown in Appendix 6, Random Forest maintains the top three most important features consistently
across all subsets, providing better alignment compared to other models.

Figure 2: Feature Importance and Fluctuation Ratio for the ML model trained on the Adult Dataset.

3.1.2 LOCAL FEATURE IMPORTANCE

For Local Feature Importance, extracted from SHAP explainer, the ranking of its features across all
samples are showed in Figure 3. The x-axis represents feature rankings, while the y-axis corresponds
to the samples used to compute the local feature importances. The upper half of the graph displays
samples with label 0, and the lower half represents samples with label 1. Some models exhibit changes
in feature importance rankings between labels, and the Position Consistency metric quantifies how
stable these rankings are across different subsets. For instance, the MLP model demonstrated the
highest consistency in feature rankings, while XGBoost showed the lowest. The upper part of the
figure illustrates this Position Consistency metric.

Figure 3: Feature Importance Contrast between samples grouped by labels for the ML model trained
on the Adult Dataset. The upper half of the graph displays samples with label 0, and the lower half
represents samples with label 1

3.1.3 SURROGATE METRICS

The surrogate model analysis reveals that the Random Forest (RF) model shows the largest deviation
from its surrogate, with an accuracy difference of 0.1876. This indicates that the surrogate struggles
to accurately mimic the original model’s predictions. When using decision trees, several metrics can
help interpret the model’s complexity, such as tree depth, number of features, and the number of
rules. The reliability of these metrics, along with surrogate performance metrics, can be evaluated by
assessing the stability of feature selection during the surrogate’s creation.

The surrogate feature stability metric provides insight into this, indicating, for example, that in our
results, the surrogate used for MLP showed the highest feature stability (0.3543), while Logistic
Regression (LR) had the lowest (0.1939). Based on the Jaccard index used to calculate this metric, it
can be interpreted that, on average, 35% of the features were consistently used across all surrogate
models for MLP, while only 19% were used consistently for LR.

7
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Table 1: Results XAI metrics for models trained on Adult Dataset

Metrics RF XGB LR MLP REF

Efficacy
Accuracy 0.852 0.874 0.850 0.839 1
F1-Score 0.671 0.718 0.659 0.636 1

Global Feature Importance
Spread Divergence 0.6689 0.7189 0.6902 0.5231 1
Alpha Score 0.1649 0.1134 0.1443 0.3093 0
Fluctation Ratio 0.0855 0.1743 0.0002 0.0070 0
Rank Alignment 0.8889 0.5000 0.3913 0.5000 1
Local Feature Importance
Position Consistency 0.843 0.826 0.840 0.863 1
Importance Stability 0.942 0.944 0.934 0.893 1

Surrogate
Accuracy Difference 0.1876 0.0836 0.0410 0.0792 0
Surrogate Accuracy 0.8123 0.8734 0.8872 0.8573 1
Surrogate Feature Stability 0.3030 0.2444 0.1939 0.3543 1

3.2 CASE STUDY 2: US-CRIME DATASET

For the regression task, we employed the US-Crime Dataset to train and evaluate four models:
Random Forest (RF), Bayesian Ridge Regression (BR), Logistic Regression (LR), and Multi-Layer
Perceptron (MLP). In terms of efficacy, the Bayesian Ridge model achieved the lowest mean squared
error (MSE) at 0.0186, closely followed by Logistic Regression and Random Forest with MSEs of
0.0190 and 0.0198 respectively. The MLP model showed relatively poorer performance with the
highest MSE at 0.0248.

3.3 GLOBAL FEATURE IMPORTANCE

The analysis of global feature importance reveals interesting patterns in how different models utilize
features. MLP shows the highest spread divergence at 0.7628, significantly higher than other models,
indicating it relies heavily on a small subset of features. In contrast, Logistic Regression has the lowest
spread divergence at 0.3292, suggesting more balanced feature utilization across the dataset. When
examining the complexity of feature relationships, Random Forest exhibits the highest fluctuation
ratio at 0.2625, indicating complex, non-linear relationships between features and predictions. Both
Bayesian Ridge and Logistic Regression show zero fluctuation, reflecting their linear nature, while
MLP has a minimal ratio of 0.0047.

For consistency across prediction ranges, Logistic Regression demonstrates the highest rank alignment
at 0.7778, suggesting consistent feature importance rankings regardless of the predicted value.
Bayesian Ridge shows the lowest alignment at 0.3256, indicating that it uses different features
depending on the prediction value. This variance in feature utilization across models highlights the
different approaches each algorithm takes to the regression task.
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Figure 4: Feature Importance and Fluctuation Ratio for the ML model trained on the US-Crime
Dataset.
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Figure 5: Feature Importance Contrast between labels for the ML model trained on the US-Crime
Dataset.

Table 2: Results XAI metrics for models trained on US-Crime Dataset

Metrics RF BR LR MLP REF

Efficacy
MSE 0.0198 0.0186 0.0190 0.0248 0

Global Feature Importance
Spread Divergence 0.4041 0.4087 0.3292 0.7628 1
Fluctuation Ratio 0.2625 0.0000 0.0000 0.0047 0
Rank Alignment 0.6757 0.3256 0.7778 0.5769 1
Local Feature Importance
Position Consistency 0.7941 0.8188 0.8353 0.7586 0
Importance Stability 0.9972 0.9944 0.9825 0.9847 0

Surrogate
Surrogate MSE 0.0047 0.0016 0.0024 0.0083 0
MSE Difference -0.0075 -0.0020 -0.0024 -0.0092 0
Features Stability 1.0000 0.9980 0.9960 0.9980 1
Feature Importance Stability 0.2117 0.9956 0.9854 0.9772 1

3.3.1 LOCAL FEATURE IMPORTANCE

The local feature importance analysis provides insights into how models behave at the individual sam-
ple level. Logistic Regression leads with the highest position consistency at 0.8353, indicating stable
feature rankings across different samples. MLP shows the lowest consistency at 0.7586, suggesting
more variable feature utilization across samples. Notably, all models demonstrate remarkably high
importance stability (above 0.98), with Random Forest showing the highest at 0.9972. This suggests
that while the ranking of features might change, the relative importance of features remains highly
consistent across different samples for all models.

3.3.2 SURROGATE METRICS

The surrogate model analysis offers additional insights into model complexity and interpretability.
Bayesian Ridge achieves the lowest surrogate MSE at 0.0016, indicating that its behavior is the easiest
to approximate with a simpler model. MLP has the highest surrogate MSE at 0.0083, suggesting
more complex decision-making patterns. Intriguingly, all models show negative MSE differences,
indicating that surrogate models perform better than the original models - an unusual result that
might warrant further investigation. In terms of surrogate feature importance stability, Bayesian
Ridge, Logistic Regression, and MLP all show very high values above 0.97, while Random Forest
has a notably low metric of 0.2117. This suggests that Random Forest’s decision-making process is
significantly more complex and harder to approximate with an interpretable model.

4 CONCLUSION

The increasing focus on transparency in AI systems has highlighted the trade-off between accuracy
and explainability in machine learning models. This paper introduces a new set of explainability
metrics aimed at capturing global and local feature importance. These metrics offer a structured
way to understand model complexity without the need for extensive graphical analysis of feature
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importance, providing a more systematic and interpretable framework for evaluating AI models. It is
crucial to note that these metrics are explainer-agnostic, being applied for any explainability method.

As for future research, we plan on exploring the statistical properties of the metrics proposed,
potentially creating inference tools for model selection and model auditing based on these tools.
While the scope of the article focused on constructing model-agnostic metrics to evaluate model
predictions, future studies may explore the development of metrics for methods focused on inner
interpretability.
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A LITERATURE AND TECHNICAL BACKGROUND

The literature in explainable methods for AI models has been gaining prominence as AI models
proliferate in virtually all areas of society (such as predicting hypertension (Elshawi et al., 2019),
healthcare ElShawi et al. (2020), COVID-19 diagnosis Buckmann et al. (2022), economics and
finance Thimoteo et al. (2022)). In this section, we discuss some of the XAI methods and forms to
categorize them based on their proprieties. The discussion is far from being exhaustive, given how
effervescent this field is, but the goal of this section is to help the reader understand our proposed
XAI metrics and how they relate to the rest of the literature.

In this way, we can attribute a prominent role to metrics in achieving these objectives. Unlike other
strategies that may lead to misleading interpretations of their outcomes, well-defined metrics tend to
efficiently elucidate issues and enhance risk management in sensitive processes. Moreover, the use of
metrics facilitates comparisons between different sets of results, making it effective, for instance, in
hypothesis validation. Several factors, however, complicate the definition of metrics. In the case of
XAI, the absence of a ground truth for explainability adds a layer of complexity to the comparison of
different strategies, as pointed out by Zhou et al. (2021). In this context, potential strategies involve
considering aspects such as fidelity, unambiguity, and overlap, as discussed by Lakkaraju et al. (2017).
The existing literature introduces various methods for evaluating explainability techniques Mothilal
et al. (2021). Mothilal et al. (2021) presents a framework that unifies strategies centred around feature
attribution and counterfactual generation. In contrast, other studies propose explainability metrics
grounded in algorithmic stability Fel et al. (2022); Khaire & Dhanalakshmi (2022); Nogueira et al.
(2018). However, it is essential to clarify that our objective is not to evaluate the explainability
methods themselves. Instead, our focus is on providing insights based on the importance attributed to
features by different models. In doing so, we aim to facilitate comparisons of explanations across
models.

We can define at least three categories of metrics with an emphasis on the explainability of results
generated for AI models: (i) subjective, (ii) objective, and (iii) computational. The subjective metrics
are employed when evaluating aspects that elicit subjective responses from users. This type of metric
may be based on trust, understanding, and satisfaction, as proposed in Hoffman et al. (2018). The
objective metrics are those related to observed aspects, for example, in users performing a particular
task. They can be measures of time for the execution of the task or accuracy. Schmidt & Biessmann
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(2019) seeks to objectively measure the quality of explainability methods and shows that quick and
highly accurate decisions represent a good understanding of explainability. Narayanan et al. (2018)
evaluate explainability results based on subjective (satisfaction) and objective (response time and
accuracy) metrics. Furthermore, computational metrics are derived from mathematical indicators that
assess the quality of explanations generated by an XAI method. Since these metrics are based on
specific equations, user intervention is not necessary for obtaining them, making this type of metric
suitable for automated systems.

A.1 COMPUTATIONAL METRICS FOR EVALUATING XAI OUTPUTS

With the growing use of explainability methods for machine learning models, there is also an increase
in studies that seek to evaluate the results based on feature importance or feature-attribution. Works
investigating computational metrics may aim to construct metrics that assess methods based on their
desired properties, such as fidelity, stability, comprehensibility, representativity, and consistency. Fel
& Vigouroux (2020) focuses on constructing metrics that address representativity and consistency.
The work proposed by Nguyen & Martı́nez (2020) suggests a set of metrics that also rely on certain
properties, and in the case of evaluating feature-attribution methods, the metrics (monotonicity and
non-sensitivity) seek to assess how faithful the methods are. On the other hand, other strategies
evaluate feature-attribution methods based on different factors. Rong et al. (2022) proposes an
information-theoretic strategy to evaluate feature-attribution methods.

A.2 RELEVANT APPROACHES IN XAI METHODS

The permutation feature importance was first introduced by Fisher et al. (2019). The work proposed by
Fisher et al. (2019) constructs a model-agnostic method for machine learning predictions. Intuitively,
if altering the values of certain features results in a considerable change in the AI model error,
this feature is considered to be important. Alternatively, features are deemed unimportant if the
AI model error remains unchanged after altering its values. Permutation feature importance is a
powerful tool because its interpretation is intuitive and it can be applied to any model – i.e. it is an
easy-to-understand global XAI method. In addition, it does not require retraining the model, nor
knowing its estimates and nor its modus operandi. On the other hand, there is no consensus in the
literature about whether a training or test set should be used to compute the feature’s importance.

Another explainability method is the partial dependence curve. A machine learning model f is often
a function of a multitude of features x, which makes it infeasible to plot the estimated model in
a high-dimensional space. Instead, the partial dependence curve, can be used to assess how the
predicted outcome of a model f behaves as a function of values of a particular selected feature xs,
after averaging f over the values of all other features xA. Intuitively, the partial dependence curve
can be interpreted as the expected/average model response as a function of the input feature of interest
Pedregosa et al. (2011). This helps with model explainability since it makes it possible to assess
whether the relationship between the outcome and a feature is linear, and/or monotonic, or more
complex. For example, if applied to a linear regression, the partial dependence plot always shows
a linear relationship. The estimation assumes that features are not correlated. The violation of this
assumption indicates that the averages calculated for the partial dependence may include data points
that are implausible.

The relationship between features and the outcome of an AI model is often too complex to be easily
summarized in black-box models. On the other hand, there are models where explainability is
straightforward, such as linear regression or relatively small decision trees. It turns out that one could
use the latter simpler models – also referred to as surrogate models – to approximate a complex
black-box model, often locally (i.e. for a subset of observations), and reap the explainability properties
of the approximating model. In other words, for a subset of observations, it is possible that a simple
and explainable model can approximate reasonably well complex predictions made by a complex
model, and, in turn, offer a straightforward connection between features and output in the prediction
process. This surrogate model approximation can be implemented by fitting a simple explainable
model to a dataset corresponding to the same features used to train the complex AI model, while
using the outcome generated by the AI model, as opposed to using the observed outcome.

The additive feature attribution methods are also well-defined in literature, with many applications
Li (2022); Man & Chan (2021); Feng et al. (2021); Meng et al. (2020); Parsa et al. (2020); Nohara
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et al. (2022); Rodrı́guez-Pérez & Bajorath (2020); Alabi et al. (2023); Gabbay et al. (2021); Magesh
et al. (2020). As described by Lundberg & Lee (2017), this class of methods have an explanation
model there is a linear function of binary variables. Several models follow this additive feature
attribution definition. The local interpretable model-agnostic explanations (LIME) proposed by
Ribeiro et al. (2016) focuses on providing explanations for any classifier (or regressor) at the local
level. As an additive feature attribution method, it aims to explain why a particular prediction was
made for a specific instance. The purpose of the Shapley additive explanations (SHAP) method
introduced by Lundberg & Lee (2017), uses Shapley values Shapley et al. (1953) to compute feature
attribution. Taking as input a set function v : 2n → R, we can define the Shapley value ϕi(v) for
a specific variable i as your contribution to the payoff through the weighted average of all possible
combinations.

B EXPERIMENTS SETUP

B.1 DATASETS

Classification For the classification task, we employ the Adult dataset Becker & Kohavi (1996),
which is designed to predict whether an individual’s income exceeds $50,000 per year based on
demographic and work-related attributes. This dataset includes 14 features, such as ’age’, ’workclass’,
’education’, ’marital-status’, ’occupation’, ’relationship’, ’race’, ’sex’, ’capital-gain’, ’capital-loss’,
’hours-per-week’, and ’native-country’. It contains 48,842 records, each representing an individual
with associated feature values.

Certain variables in the dataset require clarification. For instance, ”fnlwgt” (final weight) is a
continuous variable that indicates the number of people in the population represented by each record.
Similarly, ”education-num” quantifies the total years of education as a continuous counterpart to
the categorical ”education” variable. The ”relationship” variable defines the individual’s role within
their household (e.g., ’husband’, ’not-in-family’), while ”capital-gain” and ”capital-loss” capture
additional income derived from investments, separate from wages.

The target variable is binary, where 0 represents individuals with income less than $50,000 and 1
represents those earning more. The objective of the model is to identify patterns in the features that
reliably predict whether an individual’s income surpasses this threshold. Before modeling, we handle
common data preprocessing steps, such as encoding categorical variables and addressing missing
values, to ensure robust model performance.

Regression For the regression task, we employ the United States Crime dataset (Redmond &
Baveja, 2002). The dataset is an extensive and multifaceted collection of data that provides critical
insights into the patterns and prevalence of crime across various communities within the United
States. This comprehensive dataset combines socio-economic information from the 1990 US Census,
law enforcement data from the 1990 US Law Enforcement Management and Administrative Statistics
(LEMAS) survey, and detailed crime reports from the 1995 FBI Uniform Crime Reporting (UCR)
program. By integrating these diverse data sources, the dataset offers a holistic view of the factors
influencing crime and the efficacy of law enforcement responses.

The dataset includes many variables to allow for testing algorithms that select or learn weights
for attributes. In total, the dataset contains 1993 instances and 101 attributes. However, attributes
unrelated to crime were excluded. Variables were selected if there was any plausible connection
to crime (N=122), along with the target attribute, Violent Crimes Per Population (total number of
violent crimes per 100K population). The dataset comprises community-related variables, such
as the percentage of the population considered urban and median family income, as well as law
enforcement-related variables, such as the per capita number of police officers and the percentage of
officers assigned to drug units.

B.2 MODELS AND PARAMETERS

Classification models The models used in Case Study 1 were Random Forest (RF), XGBoost
(XGB), Logistic Regression (LR), and a Multi-Layer Perceptron (MLP). The MLP architecture
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consisted of two hidden layers with 200 and 100 neurons using the hyperbolic tangent (tanh) activation
function.

Regression models The models used in Case Study 2 were Random Forest (RF), Bayesian Ridge
(BR), Linear Regression (LR), and a Multi-Layer Perceptron (MLP). MLP architecture is consisted of
two hidden layers with 300 and 200 neurons using the hyperbolic tangent (tanh) activation function.
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C CASE STUDY 1: ADDITIONAL RESULTS

C.1 GLOBAL FEATURE IMPORTANCE

Figure 6: Feature Importance Comparison: Global importance versus class-specific importances for
labels 0 and 1 in a machine learning model trained on the Adult Dataset.
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Figure 7: Partial Dependence Plot for Random Forest Model: Displaying the mean, standard deviation,
and the 15 curves with the highest fluctuation.

Figure 8: Fluctuation Ratio Distribution for the Most Important Features in the Random Forest Model:
Analyzing the variation in feature importances.

Figure 9: Partial Dependence Plot for XGBoost Model: Displaying the mean, standard deviation, and
the 15 curves with the highest fluctuation.

Figure 10: Fluctuation Ratio Distribution for the Most Important Features in the XGBoost Model:
Analyzing the variation in feature importances.

D CASE STUDY 2: ADDITIONAL RESULTS

D.1 GLOBAL FEATURE IMPORTANCE
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Figure 11: Partial Dependence Plot for Logistic Regression Model: Displaying the mean, standard
deviation, and the 15 curves with the highest fluctuation.

Figure 12: Fluctuation Ratio Distribution for the Most Important Features in the Logistic Regression
Model: Analyzing the variation in feature importances.

Figure 13: Partial Dependence Plot for Multi Layer Perceptron Model: Displaying the mean, standard
deviation, and the 15 curves with the highest fluctuation.

Figure 14: Fluctuation Ratio Distribution for the Most Important Features in the Multi Layer
Perceptron Model: Analyzing the variation in feature importances.
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Figure 15: Feature Importance Contrast between labels for ML model trained on adult dataset
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Figure 16: Feature Importance Comparison (top-10): Global importance versus class-specific impor-
tances for labels 0 and 1 in a machine learning model trained on the US-Crime Dataset.

Figure 17: Partial Dependence Plot for Random Forest Model: Displaying the mean, standard
deviation, and the 15 curves with the highest fluctuation for US-Crime Dataset.

Figure 18: Fluctuation Ratio Distribution for the Most Important Features in the Random Forest
Model: Analyzing the variation in feature importance for US-Crime Dataset.
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Figure 19: Partial Dependence Plot for Bayesian Ridge Model: Displaying the mean, standard
deviation, and the 15 curves with the highest fluctuation for US-Crime Dataset.

Figure 20: Fluctuation Ratio Distribution for the Most Important Features in the Bayesian Ridge:
Analyzing the variation in feature importance for US-Crime Dataset.

Figure 21: Partial Dependence Plot for Linear Regression Model: Displaying the mean, standard
deviation, and the 15 curves with the highest fluctuation for US-Crime Dataset.

Figure 22: Fluctuation Ratio Distribution for the Most Important Features in the Linear Regression
Model: Analyzing the variation in feature importance for US-Crime Dataset.
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Figure 23: Partial Dependence Plot for Multi Layer Perceptron Model: Displaying the mean, standard
deviation, and the 15 curves with the highest fluctuation for US-Crime Dataset.

Figure 24: Fluctuation Ratio Distribution for the Most Important Features in the Multi-Layer
Perceptron Model: Analyzing the variation in feature importance for US-Crime Dataset.

Figure 25: Feature Importance Contrast between labels for ML model trained on US-Crime dataset
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