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ABSTRACT

Dataset distillation aims to synthesize compact yet informative datasets that allow
models trained on them to achieve performance comparable to training on the full
dataset. While this approach has shown promising results for image data, extending
dataset distillation methods to video data has proven challenging and often leads
to suboptimal performance. In this work, we first identify the core challenge in
video set distillation as the substantial increase in learnable parameters introduced
by the temporal dimension of video, which complicates optimization and hinders
convergence. To address this issue, we observe that a single frame is often sufficient
to capture the discriminative semantics of a video. Leveraging this insight, we
propose Single-Frame Video set Distillation (SFVD), a framework that distills
videos into highly informative frames for each class. Our method focuses on distill-
ing videos into highly informative frames for each class for effective optimization
during distillation, a framework that distills videos into highly informative frames
for each class. Using differentiable interpolation, these frames are transformed into
video sequences and matched with the original dataset, while updates are restricted
to the frames themselves for improved optimization efficiency. To further incor-
porate temporal information, the distilled frames are combined with sampled real
videos from real videos during the matching process through a temporal reshaping
network. Extensive experiments on multiple benchmarks demonstrate that SFVD
substantially outperforms prior methods, achieving improvements of up to 5.3% on
MiniUCF, thereby offering a more effective solution for video dataset distillation.

1 INTRODUCTION

Dataset distillation (DD) (Wang et al., 2018; Zhao et al., 2020; Zhao & Bilen, 2021; Cazenavette
et al., 2022; Guo et al., 2023; Cui et al., 2023; Du et al., 2023; Zhao & Bilen, 2023; Wang et al.,
2022; Shang et al., 2023; Yin et al., 2023; Su et al., 2024; Wang et al., 2025; Zhao et al., 2025) aims
to distill a large dataset into a condensed informative synthetic dataset, so that the model trained
on it could have a similar performance as the original dataset. This small, information-rich dataset
drastically reduces training time and computational costs, significantly lowers storage requirements,
enables rapid prototyping and hyperparameter tuning (Poyser & Breckon, 2024), and can facilitate
easier data analysis and potentially even privacy-preserving data sharing (Yang et al., 2024). While
recent works (Cui et al., 2023; Guo et al., 2023; Su et al., 2024; Gu et al., 2024) have made significant
progress on image dataset distillation tasks, the application of dataset distillation for video datasets
remains relatively underexplored.

Videos extend images into the temporal domain, capturing not only spatial information in each frame
but also motion and temporal dynamics over time. Furthermore, video recognition plays a crucial role
in enabling machine learning models to understand the world, as it allows them to capture not only
static appearances but also the evolving temporal patterns that characterize real-world phenomena.
Recently, several studies have investigated video dataset distillation (Wang et al., 2024), but current
approaches remain primarily empirical and still exhibit suboptimal performance.

In this paper, we argue that a fundamental challenge hindering effective video dataset distillation
arises from the substantial increase in learnable parameters within synthetic datasets, which is caused
by the added temporal dimensionality of video data compared to images. As illustrated in Figure 1(a),
in image dataset distillation, each synthetic image is represented as a learnable tensor that is iteratively
updated throughout the distillation process. In Figure 1(b), a straightforward extension of image
distillation methods to video data results in treating each synthetic video as a fully learnable tensor.
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a) image set distillation b) video set distillation c) proposed method

Learnable synthetic data

Interpolated dataOriginal data

distill

distill distill

Figure 1: Image and video dataset distillation
parameter spaces. (a) In image DD, each image
in the distilled dataset is a synthesized learnable
image that is updated throughout the distillation
process. (b) When image distillation is directly
extended to video datasets, all frames within
each synthetic video are learnable. (c) Our pro-
posed method constrains learnability to a single
frame per synthetic video, thereby reducing the
parameter space for effective optimization.
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Figure 2: Comparison between dataset distil-
lation baseline and SFVD. We implement the
SOTA image dataset distillation method (Guo
et al., 2023) directly on the video dataset
UCF101 (Soomro et al., 2012). Orange line indi-
cates the evaluation performance of the baseline
during the distillation process. We can observe
that it requires more iterations to converge and
achieves suboptimal performance, whereas the
proposed SFVD (blue line) converges quickly.

However, since a video inherently contains far more pixels than an image, this direct extension leads
to an explosive growth of the parameter space. Such a heavy-parameter optimization makes it difficult
for distillation algorithms to converge effectively (Nakkiran et al., 2021) and to comprehensively
capture the complex information distribution of the original video dataset within a condensed dataset.
As illustrated in Figure 2, the direct application of image dataset distillation method (Guo et al., 2023)
to video dataset encounters difficulties in convergence and yields suboptimal performance.

To address the above challenge, we build directly on our preliminary observation that a single frame
can capture a substantial portion of the semantic content of a video. Motivated by this finding,
we propose the Single-Frame Video set Distillation (SFVD) framework. We depart from directly
matching synthetic videos with the original dataset and instead propose to match synthetic images
with real videos. Specifically, we represent each video by a single frame, which is subsequently
interpolated into a video sequence and match with the original dataset, while only updating the
parameters within the frame. This design substantially reduces the optimization burden while
enabling effective video dataset distillation. As illustrated in Figure 1(c), rather than synthesizing
entire video sequences, the goal of SFVD is to distill a small set of highly representative frames. This
design substantially reduces the learnable parameter space during the distillation process, thereby
enabling more effective and stable optimization.

To further further incorporating temporal dynamics, we integrate the distilled frames with sampled
original videos as temporal cues and employ a Temporal Reshaping Network (TRN) to fuse them
into a combined representation. We then apply training trajectory matching (Cazenavette et al.,
2022) with the original dataset, where the distilled frames act as informative priors that guide
parameter updates, ensuring robust initialization and faster convergence toward high-quality distilled
video representations. We conduct extensive evaluations on four widely used video benchmarks:
UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011) for human action recognition,
Kinetics (Carreira & Zisserman, 2017) for large-scale video understanding, and Something-Something
V2 (Goyal et al., 2017) for fine-grained temporal reasoning. Across all datasets and evaluation settings,
our method consistently surpasses existing approaches by a substantial margin. On the Mini-UCF
benchmark, our approach achieves substantial improvements, outperforming state-of-the-art methods
by 4.5% in absolute accuracy for IPC=1 and by up to 5.3% for IPC=5.

Our main contributions can be summarized as follows:

• We identify and analyze the significantly increased number of learnable parameters of the synthetic
videos as a critical issue for video set distillation, impeding convergence and information capture.

• We propose a novel Single-Frame Video set Distillation (SFVD) framework in which a single
frame can be interpolated into a video, matched with the original dataset, while only updating
the parameters within the frame. Additionally, we integrate temporal information alongside the
distilled frames, creating a comprehensive representation.
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• We demonstrate through extensive experiments on various benchmark datasets that our proposed
SFVD significantly outperforms existing methods, validating the effectiveness of our approach.

2 RELATED WORK

Dataset Distillation. Dataset distillation (Wang et al., 2018) aims to compress a large dataset into
a much smaller synthetic dataset while preserving the essential information required for effective
model training. It has been widely applied to tasks such as network architecture search (Elsken
et al., 2019), federated learning (Li et al., 2020), and continual learning (Zenke et al., 2017). A
foundational approach in dataset distillation is performance matching, where the objective is to ensure
that models trained on the distilled dataset achieve comparable test performance to those trained
on the original dataset. A major class of dataset distillation methods is gradient matching (Zhao
et al., 2020; Zhao & Bilen, 2021), where the key idea is that models trained on synthetic data
should produce similar gradients as those trained on the original dataset. Building upon gradient
matching, trajectory matching (Cazenavette et al., 2022; Du et al., 2023; Guo et al., 2023) further
refines this idea by aligning the model’s parameter updates across training epochs, rather than just the
overall gradients. Besides gradient and trajectory matching, other approaches include distribution
matching (Zhao & Bilen, 2023), which focuses on aligning the feature distributions between synthetic
and real datasets, and feature matching and label matching, which align feature representations and
label distributions, respectively. These methods provide complementary perspectives on capturing
and preserving information during dataset distillation.

Recently, to enable distillation at larger scales, decoupled optimization methods (Yin et al., 2023;
Shao et al., 2024) have been proposed. These approaches separate matching into computationally
efficient stages, reducing memory and time complexity. Another emerging direction leverages
generative models, where a generator is trained to capture the underlying data distribution and
sample synthetic instances accordingly. In addition to image datasets, there has been progress in
distilling other modalities, including image-text datasets (Wu et al., 2023; Xu et al., 2024), sequential
datasets (Zhang et al., 2025), medical datasets (Li et al., 2024), and video datasets (Wang et al., 2024).
For video dataset distillation, the prior work (Wang et al., 2024) have mainly focused on empirical
studies, but a thorough analysis of why image dataset distillation methods often fail on video data
remains lacking. In this paper, we first identify the unique challenges in video dataset distillation. We
then present our key observations on video model training dynamics. Based on these insights, we
propose a novel method SFVD, as detailed in Section 3.

Video Recognition. Video classification has been extensively studied, and a wide range of archi-
tectures have been proposed to handle the spatial and temporal complexities of video data. Early
approaches are based on 2D ConvNets, which is used for spatial feature extraction and a recurrent
module, such as an LSTM or GRU (Donahue et al., 2015; Yue-Hei Ng et al., 2015), is stacked on
top to model temporal dynamics across frames. To more effectively capture spatiotemporal features
jointly, 3D ConvNets (Tran et al., 2015; Carreira & Zisserman, 2017; Feichtenhofer et al., 2019) were
introduced. Hybrid architectures decompose 3D convolutions into spatial and temporal operations, as
in P3D (Qiu et al., 2017), S3D (Xie et al., 2018), and R(2+1)D (Tran et al., 2018). More recently,
transformer-based architectures have achieved strong performance on video tasks. Models like
ViViT (Arnab et al., 2021) and Video Swin Transformer (Liu et al., 2022) adapt vision transformer
structures to spatiotemporal input, while MViT (Multiscale Vision Transformer) (Fan et al., 2021)
introduces a hierarchical structure for multi-scale temporal modeling. In this paper, following prior
work on video dataset distillation (Wang et al., 2024), we primarily adopt C3D for evaluation, and
additionally employ CNN+GRU/LSTM for cross-architecture validation.

3 METHODS

3.1 PROBLEM FORMULATION

The problem of Video Dataset Distillation is formulated as follows: given a large, real video dataset
T = {xi, yi}|T |

i=1, where xi ∈ Rf,c,h,w, video set distillation aims to generate a synthetic dataset
S = {x̂i, ŷi}|S|

i=1, where |S| ≪ |T | , so that the model ϕθ trained on synthetic dataset S has the
similar performance on the original dataset T . It is worthy noting that x̂i is not strictly constrained to
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Figure 3: Illustration of the preliminary experimental setup. The n frames selected from an
original video are processed by an interpolation method g(·) to generate a new video sequence
maintaining the original temporal length f . When n = 1, the single frame is randomly sampled. For
n ≥ 2, frames are sampled uniformly over the temporal extent of the video.

x̂i ∈ Rf,c,h,w, provided the preprocessing g(·) yields g(x̂i) ∈ Rf,c,h,w. Typical dataset distillation
methods (Liu & Du, 2025) use the following formula to optimize S:

S∗ = argmin
S

Eθ(0)∼Θ[l (T ; θ∗S)], (1)

where θ∗S = argmin
θ

l(S; θ) is the optimal parameters trained on S, l(·; θ) represents the loss func-

tion. Θ is the initial parameter distribution. If we are using a trajectory matching strategy (Cazenavette
et al., 2022), the formulation of video set distillation could be written as:

S∗ = argmin
S

Eθ(0)∼Θ

T∑
t=0

D
(
θ
(t)
S , θ

(t)
T

)
, (2)

where D(·, ·) calculates the distance between the parameter trained on synthetic dataset θS and
original dataset θT at step t. T is the trajectory length.

3.2 OBSERVATION

We first reveal the primary challenge of the video set distillation against the image dataset. Then
we introduce the designed preliminary experiments and illustrate how the observations from the
preliminary experiment results can help with the video set distillation.

Challenge of video dataset distillation. The principal challenge inherent in video dataset distillation
comes from the significantly increased number of learnable parameters of the synthetic videos
compared to that of synthetic images in image dataset distillation. Reviewing the dataset distillation on
image dataset, backpropagation operates on a synthetic dataset S = {x̂i, ŷi}|S|

i=1, where x̂i ∈ Rc,h,w.
However, for video set distillation, the back propagation takes effects on a synthetic video dataset
S = {x̂i, ŷi}|S|

i=1, where x̂i ∈ Rf,c,h,w, with f denoting the number of frames. Because of this
additional dimension f , the number of learnable parameters for each sample x̂i increases substantially
compared to image dataset distillation. This enlarged parameter space makes trajectory matching,
which directly performs pixel-wise updates on the synthetic dataset, considerably more difficult to
optimize and less stable. As a result, directly applying image dataset distillation methods (Cazenavette
et al., 2022; Zhao & Bilen, 2023; Guo et al., 2023) often leads to convergence issues and ultimately
yields suboptimal performance in the video domain, as empirically demonstrated in Figure 2.

Frame information observation. In light of the aforementioned challenges in video set distillation,
identifying and prioritizing the distillation of the most salient information becomes crucial. The
temporal dimension in video dataset distillation often contains redundant or less critical informa-
tion for discriminative learning tasks. Building on previous research (Zhu et al., 2018), we first
hypothesize that the core semantic content necessary for model training might be preserved even
with a significantly reduced set of frames. This hypothesis motivates an investigation into the effi-
cacy of learning from video sequences constructed by interpolating frames, as a potential avenue
to mitigate the challenges posed by high-dimensional video inputs. To explore this, we designed
preliminary experiments to quantify the information a model can acquire from such sparsely sampled
representations.

In our experimental setup, for each original video, we sampled n frames with the sampling strategy
shown in Figure 3. These n frames are subsequently processed by an interpolation method, denoted
g(·), to generate a new video sequence with the original temporal length f . This procedure results in
an interpolated dataset I = {(g(x̃i), ỹi)}|T |

i=1, where x̃i ∈ Rn×c×h×w represents the set of n sampled
frames for the i-th video. A model is then trained on the dataset I and its performance is evaluated on
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the original dataset T . The results of this evaluation are depicted in Figure 4. With videos interpolated
from single frames, the model could already achieve 88% performance of the model trained on the
entire 16-frame video dataset. However, the number of pixels in the dataset I is only about 6% of
the original dataset. These findings indicate that even when a video is reconstructed from a single
randomly sampled frame, a substantial portion of the information essential to the discriminative
objective can be captured by the model, while drastically reducing the pixel data processed.

This observation is essential in dataset distillation, as the majority of the dataset distillation meth-
ods (Cazenavette et al., 2022; Zhao & Bilen, 2023; Cui et al., 2023; Guo et al., 2023; Wang et al.,
2024) directly updates the synthetic dataset pixel-wisely, and reducing the number of pixels is equal
to reducing the number of learnable parameters during distillation process.

3.3 SINGLE-FRAME VIDEO SET DISTILLATION

1.8M 3.8M 5.6M
number of pixels

Figure 4: Evaluation results on interpolated
datasets. With substantially fewer pixels, single-
frame interpolated data retains major discrimitive
information comparable to full video datasets.

As discussed in Section 3.2, traditional dataset
distillation approaches that synthesize complete
video sequences suffer from an exceptionally
large parameter space, making the optimization
particularly challenging. An alternative solution
involves leveraging single static frames. Prior
work (Wang et al., 2024) attempted to match
training gradients using static frames but yielded
suboptimal outcomes. We posit that a fundamen-
tal limitation of such static-frame methods is
an objective mismatch. Optimizing a synthetic
dataset composed of static images SI to derive
optimal parameters θ∗SI

for an image-centric
model ϕ̂θ, does not inherently guarantee that
these frames will be optimal for training a target
video model ϕθ to achieve its optimal parameters on the original video dataset T . As illustrated
conceptually in Figure 5 (a), the model architectures and the nature of the data (static vs. dynamic)
differ, creating an inconsistency. This discrepancy means that directly optimizing static frames fails
to ensure their effective generalization when used to train video models.

Instead of matching between single images, we propose Single-Frame Video set Distillation (SFVD)
to match videos with images. This is directly inspired by preliminary observations in Section 3.2,
which demonstrate that substantial video classification performance can be preserved when models
are trained on video sequences generated via differentiable interpolation g(·) from a single frame,
which is l(T ; θ∗T ) ≈ l(T ; θ∗I). This finding suggests that a single frame is capable for conveying
essential discriminative information. SFVD operationalizes this insight. The synthetic dataset in
SFVD, denoted S = {(g(x̂i), ŷi)}|S|

i=1, comprises learnable frames x̂i ∈ Rc,h,w and differentiable
interpolation method g(·). The optimization objective aims to align the training dynamics induced by
these interpolated synthetic videos with those of a target dataset. In this way, the Equation 1 becomes

S∗ = argmin
S

Eθ(0)∼Θ[l (I; θ∗S)]. (3)

Using I as a computationally more tractable target for trajectory matching, we adapt the trajectory
matching objective from Equation 2 as follows:

S∗ = argmin
S

Eθ(0)∼Θ

T∑
t=0

D
(
θ
(t)
S , θ

(t)
I

)
. (4)

Explicitly, the objective becomes:

S∗ = argmin
S

Eθ(0)∼Θ

T∑
t=0

D
(
θ
(t)

{(g(x̂i),ŷi)}|S|
i=1

, θ
(t)

{(g(x̃i),ỹi)}|T |
i=1

)
. (5)

The above formulation means that by optimizing synthetic frames with I using the same interpolation
method, SFVD ensures that the synthetic data is directly optimized for its intended use in training

5
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Figure 5: Comparison of Video Dataset Distillation Strategies. (a) Matching static single frames
can lead to performance degradation due to the inherent objective mismatch between optimizing
for static images and evaluating on video models. (b) Distilling entire synthetic videos, while
conceptually direct, faces significant optimization challenges owing to the large parameter space
involved of the synthetic dataset, as discussed in Section 3.2. (c) The proposed Single-Frame Video
set Distillation (SFVD) framework optimizes a set of frames, which are subsequently interpolated
into videos during the distillation process. For integration of temporal information (SFVD-T), a
temporal reshaping network (TRN) is then employed to transform the intergrate the distilled frames
and video samples, followed by trajectory matching with the original videos.

video models, overcoming the limitations of the method (Wang et al., 2024) focusing solely on frame
matching. Additionally, SFVD significantly reduces the parameter space compared to traditional
distillation methods, thus facilitating stable convergence. In summary, SFVD provides an efficient
and effective approach to video dataset distillation by leveraging differentiable interpolation to
bridge the representational gap between the single frame and the video data, thereby mitigating the
aforementioned challenge in video set distillation.

3.4 INTEGRATING TEMPORAL INFORMATION

While distilled static frames can effectively capture significant semantic information from videos, the
temporal information is also crucial for comprehensive video understanding. Full video sequences
contain rich temporal cues but may be computationally expensive or contain redundancies. Therefore,
a critical challenge arises: how to synergistically combine the information density of distilled static
representations with the essential temporal context derived from video sequences? This section
introduces a methodology to achieve this integration.

Let S = {g(x̂i), ŷi}|S|
i=1 denote the distilled dataset by SFVD through matching with the interpolated

dataset I. We further incorporate temporal dynamics using the workflow as shown in Figure 5 (c).
Specifically, we sampled |S| videos from the original dataset, and for each instance, both g(x̂i)
and the corresponding video vi are provided as input to a Temporal Reshaping Network (TRN) to
obtained the fused representation {zi}|S|

i=1, where zi ∈ Rf,c,h,w. The TRN fuses the distilled frame
g(x̂i) and its corresponding video vi by channel-wise concatenation, followed by encoding:

zi = M(g(x̂i)⊕c vi) , (6)

where ⊕c denotes concatenation along the channel dimension.

We adopt a trajectory matching objective. Let θ∗t+M denote the parameters of a target model after M
optimization steps on the original video dataset, starting from an initial parameter state θ∗t . Let θ̂t+N

denote the parameters of a model trained for N steps using the fused representations zi, starting from
the same initial state θ̂t = θ∗t . The objective is to minimize the discrepancy between these parameter

6
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Table 1: Comparison with SOTA methods on various datasets. Top-1 accuracy is reported for
MiniUCF and HMDB51 dataset. Top-5 accuracy is reported for kinetics-400 and SSv2 dataset.
Underlined values indicate the second best results, while bold values represent the overall best result.

Dataset MiniUCF HMDB51 Kinetics-400 SSv2
IPC 1 5 1 5 1 5 1 5

Full Dataset 57.2±0.1 28.6±0.7 34.6±0.5 29.0±0.6

Coreset
Selection

Random 9.9±0.8 22.9±1.1 4.6±0.5 6.6±0.7 3.0±0.1 5.6±0.0 3.3±0.1 3.9±0.1
Herding (Welling, 2009) 12.7±1.6 25.8±0.3 3.8±0.2 8.5±0.4 - - - -

K-Center (Sener & Savarese, 2017) 11.5±0.7 23.0±1.3 3.1±0.1 5.2±0.3 - - - -

Dataset
Distillation

DM (Zhao & Bilen, 2023) 15.3±1.1 25.7±0.2 6.1±0.2 8.0±0.2 6.3±0.0 9.1±0.9 3.6±0.0 4.1±0.0
MTT (Cazenavette et al., 2022) 19.0±0.1 28.4±0.7 6.6±0.5 8.4±0.6 3.8±0.2 9.1±0.3 3.9±0.1 6.3±0.3

FRePo (Zhou et al., 2022) 20.3±0.5 30.2±1.7 7.2±0.8 9.6±0.7 - - - -
DATM (Guo et al., 2023) 14.6±0.3 24.9±1.1 - - - - - -

Static-VDSD (Wang et al., 2024) 13.7±1.1 24.7±0.5 5.1±0.9 7.8±0.4 4.6±0.2 6.6±0.2 3.9±0.1 4.1±0.0
DM+VDSD (Wang et al., 2024) 17.5±0.1 27.2±0.4 6.0±0.4 8.2±0.1 6.3±0.2 7.0±0.1 4.0±0.1 3.8±0.1

MTT+VDSD (Wang et al., 2024) 23.3±0.6 28.3±0.0 6.5±0.1 8.9±0.6 6.3±0.1 11.5±0.5 5.5±0.1 8.3±0.2
FRePo+VDSD (Wang et al., 2024) 22.0±1.0 31.2±0.7 8.6±0.5 10.3±0.6 - - - -

SFVD (ours) 27.5±0.7 34.2±0.3 9.7±0.3 13.4±1.0 10.4±0.4 15.4±0.7 8.0±0.5 10.9±0.3
SFVD-T 27.8±0.2 36.5±1.2 10.9±0.6 15.6±0.5 11.4±0.2 16.2±0.6 8.3±1.1 11.7±0.1

trajectories, formalized by the loss function:

L =
||θ̂t+N − θ∗t+M ||22
||θ̂∗t − θ∗t+M ||22

, (7)

where the parameters θ̂ are updated iteratively via gradient descent for n = 0, 1, · · · , N − 1:

θ̂t+n+1 = θ̂t+n − α∇l(zi, ŷi); θ̂t+n), (8)
where l(·) represents the cross-entropy loss, and α is the learning rate. Crucially, during this
optimization phase, the distilled representations x̂i are treated as fixed inputs. In contrast, the
parameters within the TRM M and potentially any parameters involved in the processing of the video
segments vi are learnable. This allows the temporal integration mechanism to adapt and optimize the
fusion process to effectively mimic the training trajectories on the original dataset.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Our evaluation methodology aligns with prior research (Wang et al., 2024), employing the
UCF101 (Soomro et al., 2012), HMDB51 (Kuehne et al., 2011), Kinetics-400 (Carreira & Zis-
serman, 2017), and Something-Something V2 (Goyal et al., 2017) datasets. UCF101 contains 13,320
videos distributed across 101 action categories, whereas HMDB51 includes 6,849 videos categorized
into 51 classes. Kinetics (Carreira & Zisserman, 2017) is a comprehensive collection of video clips
spanning 400 / 600 / 700 human action classes. Something-Something v. 2 (SSv2) (Goyal et al.,
2017) focuses on 174 motion-intensive classes. For the UCF101 and HMDB51 datasets, we report
top-1 classification accuracy. In line with (Wang et al., 2024), we also utilize MiniUCF, a subset of
UCF101 that includes its 50 most prevalent classes. For the SSv2 and Kinetics-400 datasets, our
reported metric is top-5 classification accuracy.

4.2 IMPLEMENTATION DETAILS

Following previous work (Wang et al., 2024), the videos of MiniUCF and HMDB51 are sampled to
16 frames, with a sampling interval of 4 frames dynamically. Each frame is cropped and resized to
112×112. For Kinetics-400 and SSv2, the video are sampled to 8 frames and the frames are cropped
to 64×64. For SFVD interpolation, the synthetic frames are duplicated 16 times on MiniUCF and
HMDB51, 8 times on Kinetics-400 and Something-Something V2. When the number of required
frames is greater than one, the subsequent interpolation was performed consistently with the proce-
dures outlined in Figure 3. Since HMDB51, SSv2, and Kinetics are highly class-imbalanced datasets,
we oversample the less frequent samples within these datasets (Zhao et al., 2024). Hyperparameters
are detailed in Appendix A.

4.3 MAIN RESULTS

Compare with SOTA methods. We compared our method with state-of-the-art image and video
distillation techniques, as well as coreset selection methods, on four widely used video datasets:
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Figure 6: Visualization of the distilled dataset. We visualized 3 samples of the distilled datasets of
MiniUCF with IPC=5. For simplicity we only show 8 frames of the samples. The exhibited samples
from up to down are from “IceDancing”, “Basketball”, and “PommelHorse”.

MiniUCF, HMDB51, Kinetics-400, and Something-Something V2. As shown in Table 1, our SFVD
method outperforms all existing approaches on the MiniUCF dataset, even without using temporal
information. This is attributed to our method’s more constrained parameter updating space, which
helps capture discriminative features more effectively. SFVD is also highly storage-efficient, requiring
only one image per instance (IPC).Furthermore, the integration of temporal information (SFVD-T)
leads to an even better performance of the distilled dataset. We found that SFVD performs especially
well with smaller IPC values, and similar performance characteristics and advantages of our methods
were also observed on the HMDB51 dataset.

For larger video datasets such as Kinetics-400 and Something-Something V2, our proposed method
also demonstrates leading performance. These more extensive and complex datasets often pose
significant challenges for distillation techniques due to their increased diversity in actions, scenes,
and temporal dynamics. Despite these challenges, our approach effectively identifies and preserves
crucial semantic information, resulting in a distilled dataset that maintains a high level of accuracy.
This indicates the robustness and scalability of our method, showcasing its capability to handle
the increased complexity and data volume inherent in larger-scale video analysis tasks, while still
achieving superior results compared to the existing methods.

Table 2: Cross-architecture evaluation. Experi-
ments are conducted on the MiniUCF dataset with
one image per class (IPC = 1).

Method Evaluation Model
ConvNet3D CNN+GRU CNN+LSTM

Random 9.9±0.8 6.2±0.8 6.5±0.3
DM 15.3±1.1 9.9±0.7 9.2±0.3
MTT 19.0±0.1 8.4±0.5 7.3±0.4
DM+VDSD 17.5±0.1 12.0±0.7 10.3±0.2
MTT+VDSD 23.3±0.6 14.8±0.1 13.4±0.2
ours 27.8±0.2 19.3±0.5 18.4±0.4

Cross architecture evaluation. Besides Con-
vNet3D, CNN+GRU (Donahue et al., 2015)
and CNN+LSTM (Yue-Hei Ng et al., 2015)
model architectures are commonly used for
video recognition. Therefore, following the set-
ting of the previous work (Wang et al., 2024),
we conduct the cross-architecture experiments
as shown in Table 2. As indicated in the table,
our method also shows a better architecture gen-
eralization of the distilled dataset.

4.4 ABLATION STUDIES

Ablation Analysis of Proposed Components.
To verify the individual contribution of each component in our method, we conducted a compre-
hensive ablation study. The empirical results, detailed in Table 3, demonstrate that using the SFVD
module alone significantly improves performance over the baseline (Guo et al., 2023), indicating its
effectiveness in capturing essential visual patterns even without temporal cues. Furthermore, when
the integration of temporal information is involved, we observe a further enhancement in performance,
suggesting that temporal dynamics play a complementary role in enhancing representation quality.
The consistent gains across multiple evaluation metrics confirm that both components contribute
meaningfully to the effectiveness of our approach.

Impact of Varying the Number of Distilled Frames. In an extension of our investigation into the
distillation process, we explored alternative configurations to the single-frame distillation approach.
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Table 3: Component ablation.

Method IPC=1 IPC=5

DATM 14.6±0.3 24.9±1.1
SFVD 27.5±0.7 34.2±0.3

SFVD-T 27.8±0.2 36.5±1.2

Table 4: # frames selection.

# frames IPC=1 IPC=5

1 27.5±0.7 34.2±0.3
2 26.8±0.6 32.8±0.4
3 23.4±1.8 30.3±0.6

Table 5: Soft-label influence.

Softlabel IPC=5 ∆ Acc.

VDSD-S 14.4±1.9 13.9↓
SFVD-S 34.2±0.8 4.1↑

SFVD-TS 26.5±0.8 10.0↓

Specifically, experiments were designed to evaluate the effects of distilling video sequences into a
varying number of representative frames (1, 2, and 3). The subsequent interpolation was performed
consistently with the procedures outlined in Figure 3. The quantitative evaluation outcomes are
presented in Table 4. As the number of frames targeted for distillation increases, there is a corre-
sponding degradation in overall performance. This empirical finding aligns with and substantiates
the concerns articulated in Section 3. Specifically, an increase in the number of distilled frames
leads to a significant expansion in the parameter space of the distillation model. This expansion can
complicate the optimization landscape, potentially preventing the distillation process from achieving
robust convergence and leading to suboptimal performance.

Investigation of Soft Label Integration. Recognizing the significant emphasis placed on the utility
of soft labels within recent dataset distillation works (Guo et al., 2023; Sun et al., 2024; Yin et al.,
2023; Qin et al., 2024; Su et al., 2024; Shao et al., 2024), we conducted a series of experiments
to evaluate their integration with our proposed methodology. For this investigation, the soft labels
employed were derived directly from model logits, rather than utilizing more elaborate soft labels
generated through complex knowledge distillation (KD) techniques (Sun et al., 2024; Yin et al., 2023;
Shao et al., 2024).

The results are presented in Table 5. Notably, our proposed SFVD framework demonstrated effective
compatibility with soft labels, maintaining or enhancing its performance. In contrast, both the baseline
VDSD method (Wang et al., 2024) and our temporally-aware SFVD-T variant exhibited a decline
in performance when soft labels were introduced. This divergence in outcomes is hypothesized to
stem from the increased complexity introduced by a larger number of learnable parameters during
the distillation phase, particularly for VDSD and SFVD-T in conjunction with soft labels. An over-
parameterized distillation process can lead to optimization challenges and instability. Consequently,
to ensure robust convergence and facilitate the reliable determination of optimal parameters for
temporal reshaping and video sample selection, hard labels were selected for the primary experiments,
prioritizing stability and consistent results in those contexts.

4.5 QUALITATIVE RESULTS

To observe the temporal changes in the distilled videos, we sampled frames from the videos obtained
using different methods and visualized their inter-frame differences. We show three samples in
Figure 6 and more in the Appendix C. Although visually abstract, we can still conclude that the
distilled videos contain information from more than a single video and indeed exhibit temporal
variations. These variations suggest that the distilled videos are not static repetitions but carry
meaningful transitions over time, capturing diverse motion patterns that contribute to effective video
model training. This validates the effectiveness of the proposed method in preserving temporal
information within the distilled dataset.

5 CONCLUSION

In this paper, we confronted the critical challenge of a drastically increased number of parameters
in video dataset distillation. We introduced the novel Single-Frame Video set Distillation (SFVD)
framework, premised on the insight that individual frames often contain substantial discriminative
information. SFVD initially distills highly representative frames, reducing synthetic data dimen-
sionality and simplifying optimization. Subsequently, it integrates essential temporal information
using a Temporal Reshaping Network (TRN) that fuses these distilled frames with video samples,
and then matches with the original video features. Extensive experiments confirmed that SFVD
significantly outperforms existing methods, validating our strategy of first tackling dimensionality
and then incorporating temporal information. This research underscores a successful approach to
the unique challenges of video data, offering a path towards more efficient and effective distilled
video datasets and scalable training for video recognition models, while opening avenues for future
exploration in advanced temporal modeling and broader task applications.
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ETHICS STATEMENT

We have carefully reviewed and adhered to the ICLR Code of Ethics. Our work focuses on video
dataset distillation and relies solely on publicly available benchmark datasets (UCF101, HMDB51,
Kinetics-400, and Something-Something V2). These datasets are widely used in the research
community, and we follow their respective licenses and intended uses. No private, sensitive, or
personally identifiable information is included. We also acknowledge possible broader impacts,
including risks of information loss, security vulnerabilities, or intellectual property concerns, as noted
in Appendix B. We encourage responsible use of our method and datasets in alignment with ethical
AI development practices.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility of our results. Details of dataset prepro-
cessing, model architectures, training schedules, and hyperparameters are provided in Section 4 and
Appendix A of the paper. All datasets used are publicly accessible, and our evaluation protocols
are consistent with prior work to ensure comparability. We will release our implementation and
instructions for reproducing all experiments in an anonymized repository with the submission, and
will make the code and supplementary materials publicly available upon acceptance.
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Vivit: A video vision transformer. In ICCV, 2021.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In CVPR, 2017.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In CVPR, 2022.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k
with constant memory. In ICML. PMLR, 2023.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In CVPR, 2015.

Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the accumu-
lated trajectory error to improve dataset distillation. In CVPR, 2023.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Journal
of Machine Learning Research, 2019.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In ICCV, 2021.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In ICCV, 2019.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The”
something something” video database for learning and evaluating visual common sense. In ICCV,
2017.

Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, and
Yiran Chen. Efficient dataset distillation via minimax diffusion. In CVPR, 2024.

Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless
dataset distillation via difficulty-aligned trajectory matching. arXiv preprint arXiv:2310.05773,
2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a
large video database for human motion recognition. In ICCV. IEEE, 2011.

Muyang Li, Can Cui, Quan Liu, Ruining Deng, Tianyuan Yao, Marilyn Lionts, and Yuankai Huo.
Dataset distillation in medical imaging: A feasibility study. arXiv preprint arXiv:2407.14429,
2024.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 2020.

Ping Liu and Jiawei Du. The evolution of dataset distillation: Toward scalable and generalizable
solutions. arXiv preprint arXiv:2502.05673, 2025.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer. In CVPR, 2022.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory
and Experiment, 2021.

Matt Poyser and Toby P Breckon. Neural architecture search: A contemporary literature review for
computer vision applications. Pattern Recognition, 147:110052, 2024.

Tian Qin, Zhiwei Deng, and David Alvarez-Melis. A label is worth a thousand images in dataset
distillation. arXiv preprint arXiv:2406.10485, 2024.

Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation with pseudo-3d
residual networks. In ICCV, 2017.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Yuzhang Shang, Zhihang Yuan, and Yan Yan. Mim4dd: Mutual information maximization for dataset
distillation. In NeurIPS, 2023.

Shitong Shao, Zeyuan Yin, Muxin Zhou, Xindong Zhang, and Zhiqiang Shen. Generalized large-scale
data condensation via various backbone and statistical matching. In CVPR, 2024.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Duo Su, Junjie Hou, Weizhi Gao, Yingjie Tian, and Bowen Tang. Dˆ 4: Dataset distillation via
disentangled diffusion model. In CVPR, 2024.

Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity and realism of distilled dataset: An
efficient dataset distillation paradigm. In CVPR, 2024.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning spa-
tiotemporal features with 3d convolutional networks. In ICCV, 2015.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
look at spatiotemporal convolutions for action recognition. In CVPR, 2018.

Haoxuan Wang, Zhenghao Zhao, Junyi Wu, Yuzhang Shang, Gaowen Liu, and Yan Yan. Cao2:
Rectifying inconsistencies in diffusion-based dataset distillation, 2025. URL https://arxiv.
org/abs/2506.22637.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. In CVPR,
2022.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

11

https://arxiv.org/abs/2506.22637
https://arxiv.org/abs/2506.22637


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziyu Wang, Yue Xu, Cewu Lu, and Yong-Lu Li. Dancing with still images: video distillation via
static-dynamic disentanglement. In CVPR, 2024.

Max Welling. Herding dynamical weights to learn. In ICML, 2009.

Xindi Wu, Byron Zhang, Zhiwei Deng, and Olga Russakovsky. Vision-language dataset distillation.
arXiv preprint arXiv:2308.07545, 2023.

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal
feature learning: Speed-accuracy trade-offs in video classification. In ECCV, 2018.

Yue Xu, Zhilin Lin, Yusong Qiu, Cewu Lu, and Yong-Lu Li. Low-rank similarity mining for
multimodal dataset distillation. arXiv preprint arXiv:2406.03793, 2024.

William Yang, Ye Zhu, Zhiwei Deng, and Olga Russakovsky. What is dataset distillation learning?
arXiv preprint arXiv:2406.04284, 2024.

Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at
imagenet scale from a new perspective. In NeurIPS, 2023.

Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat Monga,
and George Toderici. Beyond short snippets: Deep networks for video classification. In CVPR,
2015.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML. PMLR, 2017.

Jiaqing Zhang, Mingjia Yin, Hao Wang, Yawen Li, Yuyang Ye, Xingyu Lou, Junping Du, and Enhong
Chen. Td3: Tucker decomposition based dataset distillation method for sequential recommendation.
In Proceedings of the ACM on Web Conference 2025, 2025.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In ICML.
PMLR, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In WACV, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv preprint arXiv:2006.05929, 2020.

Zhenghao Zhao, Haoxuan Wang, Yuzhang Shang, Kai Wang, and Yan Yan. Distilling long-tailed
datasets. arXiv preprint arXiv:2408.14506, 2024.

Zhenghao Zhao, Haoxuan Wang, Junyi Wu, Yuzhang Shang, Gaowen Liu, and Yan Yan. Efficient
multimodal dataset distillation via generative models, 2025. URL https://arxiv.org/abs/
2509.15472.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
sion. In NeurIPS, 2022.

Chen Zhu, Xiao Tan, Feng Zhou, Xiao Liu, Kaiyu Yue, Errui Ding, and Yi Ma. Fine-grained video
categorization with redundancy reduction attention. In ECCV, 2018.

12

https://arxiv.org/abs/2509.15472
https://arxiv.org/abs/2509.15472


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

We report the most important hyperparameters in the SFVD distillation in Table 6, where lr img
stands for the learning rate to update the synthetic frames, lr y denotes the learning rate for the
soft-label optimizer, lr lr represents the learning rate for adaptive lr, batch syn indicates the
number of synthetic frames to match at each iteration, and syn steps is the steps of training
trajectories of the synthetic dataset to match expert trajectories.

Table 6: Hyperparameters for SFVD on video datasets.

Dataset IPC lr img lr y lr lr batch syn syn steps

miniUCF 1 1000 10 1× 10−5 50 40
5 1000 10 1× 10−5 50 80

HMDB51 1 1000 10 1× 10−5 51 40
5 1000 10 1× 10−5 51 80

Kinetics 1 1000 10 1× 10−5 32 40
5 1000 10 1× 10−5 32 40

SSv2 1 1000 10 1× 10−5 32 40
5 1000 10 1× 10−5 32 40

B LIMITATIONS AND BROADER IMPACTS

Video dataset distillation is currently in its early stages. While image dataset distillation methods
have achieved nearly lossless performance on small datasets (Guo et al., 2023), our approach to video
set distillation still shows a performance gap compared to using the full dataset.

Our work presents a mixed bag of societal impacts. On the positive side, it enhances resource
efficiency, accelerates AI development, improves accessibility, and can strengthen data privacy. On
the other hand, it carries risks such as losing information, introducing security vulnerabilities, and
complicating intellectual property rights. Balancing these benefits and challenges is essential to
harness the technology’s potential responsibly and ethically.

C MORE QUALITATIVE RESULTS

Figure 7: Qualitative results of the distilled dataset. From top to bottom, the classes depicted are
“BalanceBeam”, “BaseballPitch”, “Bowling”, and “PlayingViolin.”
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D USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we made limited use of large language models (LLMs) as general-purpose
assistive tools. Specifically, LLMs were employed for (i) improving the clarity and conciseness of En-
glish writing, including grammar correction and refinement of paragraph structure, and (ii) generating
alternative phrasings to enhance readability. Importantly, all technical ideas, experimental designs,
theoretical insights, and substantive claims presented in this work were conceived, implemented, and
validated entirely by the authors.

LLMs were not used to generate novel research ideas, conduct experiments, or produce results. The
authors take full responsibility for the content of this submission, including any sections drafted with
the assistance of LLMs. All content has been carefully reviewed to ensure accuracy, originality, and
compliance with the ICLR Code of Ethics.
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