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ABSTRACT

Vision Transformers attain state-of-the-art performance in diverse vision tasks
thanks to their scalable and long-range dependencies modeling. Meanwhile,
CNNs are still practical and efficient in many industry scenarios, thanks to their
inductive biases and mature tiny architectures. Thus it is a challenging yet inter-
esting problem to study the Knowledge Distillation (KD) of these two different
architectures. In particular, how to transfer global information from Vision Trans-
formers to tiny CNNs. We point out that many current CNN distillation meth-
ods are ineffective in the Vision Transformers distillation scenario, which implies
that distilling global information is not easy due to the architecture gaps. We
develop an encoder-decoder representation distillation framework, namely Low
Rank Representation Approximation (LRRA), to address the problem. The key
insight of LRRA is that the global information modeling can be seen as finding
the most important bases and corresponding codes. This process can be solved
by matrix decomposition. Specifically, the student representation is encoded to
a low-rank latent representation and used to approximate the teacher representa-
tion. The most distinguishable knowledge, i.e., global information, is distilled
via the low-rank representation approximation. The proposed method offers a po-
tential closed-form solution without introducing extra learnable parameters and
hand-crafted engineering. We benchmark 11 KD methods to demonstrate the use-
fulness of our approach. Extensive ablation studies validate the necessity of the
low-rank structure.

1 INTRODUCTION

As a general foundation model architecture, transformers have achieved state-of-the-art performance
in many research fields such as language, vision, and multimodal (Devlin et al., 2019; Brown et al.,
2020; Liu et al., 2021; Bao et al., 2021; Wang et al., 2022; He et al., 2022), thanks to their strong
modeling of long-range dependencies and the scalability of handling massive datasets. Though
transformers have achieved huge success, their high complexity is the bottleneck for deploying them
in industrial scenarios. The self-attention mechanism requires quadratic complexity, i.e., O(n2d),
with the sequence length n the dimension d, which makes both training and deployment costly when
the sequence length is large.

On the contrary, Convolutional Neural Networks (CNNs) are practical and efficient in many industry
scenarios. One of the most important inductive biases of CNNs is translation equivalence, which
is useful in many visual tasks because of its equivariant representations. In addition, CNNs are
deployment friendly as most of them consist of small kernels. There exist many mature tiny CNN
backbones (e.g., MobileNet (Sandler et al., 2018), ShuffleNet (Zhang et al., 2018)) which have
proven to be practical in real applications. However, CNNs are also well known for their poor
modeling of global information (Wang et al., 2018; Raghu et al., 2021; Park & Kim, 2022).

From these perspectives, it is interesting to study Knowledge Distillation (KD) between these two
architectures. Previous works such as Deit (Touvron et al., 2021) also show the potential of knowl-
edge distillation between these two architectures. It adopts a simple logit-level distillation from a
large CNN model to a pure ViT model such that the ViT model does not need a large labeled dataset
to complement inductive bias. Inversely, our work focuses on transferring global information from
vision transformers to CNNs. Except for distillation via logits, we aim to distill vision transformers
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Figure 1: Three types of architecture gaps between Transformers and CNNs. (a) Transformers are
practical in dealing with long-sequential data but suffer from high complexity. Thus they downsam-
ple the image into a relatively small size at the first stage compared with CNNs (e.g., mobilenetv2
(mv2) (Sandler et al., 2018).). (b) Local vision transformers such as SwinTransformer adopt a
spindle-shaped bottleneck design, while some CNN architectures such as ResNet (He et al., 2016)
apply a pyramid-shaped bottleneck. (c) Many advanced architectures such as ConvNext (Liu et al.,
2022) and SwinTransformer (Liu et al., 2021) add more blocks in stage3.

at the representation level. One reason is that the representation contains informative knowledge
as their dimensions exhibit complex interdependencies (Tian et al., 2020). Another attractive moti-
vation is that some foundation models which are trained in a self-supervised manner (Devlin et al.,
2019; Bao et al., 2021; He et al., 2022) may not contain a classification head to produce logits. Thus,
representation is the most general target for distillation since it does not rely on the tasks and model
structures.

Since we give more attention to results in compact CNNs, KD methods that distill knowledge to
CNNs are our main competitors. Nevertheless, current KD methods could be more effective in vi-
sion transformer distillation scenarios. Subsequently, many carefully designed KD methods can not
achieve comparable results to some pioneer works, such as the vanilla KD (Hinton et al., 2015),
FitNet (Romero et al., 2014). We conjure the architecture gaps as the main reason that induces
the negative transfer of these KD methods. As shown in Fig. 1, some classical vision transform-
ers, such as SwinTransformer (Liu et al., 2021) show different architecture designs compared with
those in CNNs. Except for self-attention and convolution, some designs, including downsampling
strategy, bottleneck design, and stage configurations, are worth noticing. For example, SwinTrans-
former downsamples the image into a smaller size, i.e., 56×56 at the first stage. The difference in
downsampling strategies may induce extra information loss because students’ outputs have to be
downsampled into the same size to match the teacher.

We propose an encoder-decoder representation distillation structure to address the issue. We seek to
design an encoder-decoder structure to “translate” the student to teacher, thus bypassing the negative
transfer due to the existing huge architecture gaps.

Since transformers contain rich global correlations, designing an attention-based projection module
seems like a potential solution for CNNs to attain more global information. However, this approach
may involve (1) designing a sophisticated attention-based projection module and (2) heavy hyper-
parameters tuning. Motivated by the insights that the attention module can be replaced by matrix
decomposition (Li et al., 2019; Geng et al., 2021), from which global information modeling can be
seen as finding a dictionary and corresponding code, we model knowledge distillation as a low-rank
approximation problem and solve it via matrix decomposition. The motivation of representation
decomposition is not trivial. The success of logit-level KD (Hinton et al., 2015) is based on the as-
sumption that rich logit-level relationships can complement the one-hot supervised signal. Therefore
we can speculate that the representation, which is right before the logits output, is also correlated to
some extent, even though we hope all dimensions are independent. Then representations could be
decomposed as the linear combination of bases whose dimension is much lower than the original.
All in all, our approach first decomposes the student representation into a low-rank latent representa-
tion, then uses this latent representation to approximate the teacher representation. As both encoding
and decoding are down by matrix decomposition, the distillation process requires no extra learnable
projection module with less hand-crafted engineering.

In summary, our contributions are as follows:

2



Under review as a conference paper at ICLR 2023

• We show that many CNN KD methods are ineffective when regarding vision transformer
as a teacher due to the architecture gaps between Vision Transformers and CNNs.

• We present Low-Rank Representation Approximation (LRRA), which can be solved by
matrix decomposition and introduces a closed-form solution. This solution shows the po-
tential to model global information using matrix factorization rather than attention.

• Benchmarking 11 recent distillation methods on ImageNet100 (Deng et al., 2009; Wang
& Isola, 2020). Our method shows a competitive result without introducing any extra
learnable parameters.

2 RELATED WORK

Knowledge Distillation in CNN. As a model compression technique (Buciluǎ et al., 2006), knowl-
edge distillation aims to transfer the knowledge from a teacher model to a student model. In this
paper, we divide KD methods into two categories.

(1) No-parametric methods. Works in this line rely on something other than extra learnable projec-
tion parameters to map the student’s output to the teacher’s into the same size. The seminal work
KD (Hinton et al., 2015) measures the KL-divergence between teacher and student’s logits output.
SP (Tung & Mori, 2019) measures the pairwise Gram matrix, which aims to distill the sample cor-
relations from teacher to student. RKD (Park et al., 2019) introduces mutual relations that attempt
to transfer structure-wise relations. DKD (Zhao et al., 2022) decouples the logits-level KD into
positive and negative terms and implicitly uses target information to conduct hard pair mining on
knowledge distillation. One of the disadvantages of no-parametric KD methods is the information
loss when dealing with different dimension sizes, where different dimensions are usually averaged,
which somehow ruins the relationship and similarities.

(2) Distillation methods rely on extra training (projection) parameters. These works mainly focus on
distilling knowledge at the feature level. The straightforward way is using one MLP or Convolution
layer to map student to teacher into the same dimension. For example, FitNet (Romero et al., 2014)
leverages a convolution layer to map the student feature map and the teacher feature map into the
same size. CRD (Tian et al., 2020) uses projection heads, i.e., MLP layers on both student and
teacher, to map their representations into the same dimension. Often the dimensions are reduced
to a lower number to reduce the computational cost due to contrastive learning. MGD (Yang et al.,
2022) utilized two convolutions layers to recover teacher feature maps from the highly masked
student feature map. The multiple convolution layers are served as a decoder in an auto-regression
framework. Knowledge Review (Chen et al., 2021) formulates multiple layers to establish an FPN-
like distillation structure. Although these extra projection parameters induce more computational
complexity in the distillation framework, they are not a bad choice in most cases since the projection
layers soften the distillation objective, which partially prevents negative transfer. One important
motivation in our work is to explore a closed solution rather than a learnable projection head in a
distillation scenario.

Matrix Decomposition in modeling global information. Our work is highly motivated by the
recent progress in applying matrix decomposition in modeling global information. As a common
model compression technique, low-rank decomposition aims to decompose the kernel, i.e., the DNN
layer, into smaller kernels in both the training and inference stage. On the other hand, recent studies
also show that matrix decomposition has a strong global information modeling ability, even com-
pared with self-attention. EMANet (Li et al., 2019) introduces a matrix decomposition approach
that mimics attention’s modeling ability and is optimized via an alternating optimization approach.
Hamburger (Geng et al., 2021) further proposes a hamburger-like structure where the key ingredient
is a hand-designed matrix decomposition module to replace the attention module. These two meth-
ods show that a well-designed matrix decomposition module can behave similarly or even better
than an attention module. Even though both methods still need to learn some projection parameters,
like bases, and need a carefully designed initialization strategy. The key insight behind them is that
matrix decomposition induces low-rank structure, which is why self-attention has such a powerful
modeling ability. The softmax operation in the self-attention module induces the low-rank structure
naturally. Some recent studies on analyzing the role of self-attention (Tay et al., 2021) reveal that
even a random initialized matrix trained with a softmax operator can achieve a competitive result
compared with the self-attention module.
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3 METHODOLOGY

We focus on distilling Vision Transformers to CNNs without a painstaking hand-crafted design.
We define a batch of images X ∈ Rb×c×h×w as the input, S ∈ Rb×ps and T ∈ Rb×pt as the
representation of student and teacher networks, respectively. The latent representation Z ∈ Rb×pz

where the dimension size of pz is normally a much smaller number compared with ps and pt. In our
setting, b, c, h, w represent the batch-size, number of channels, height and weight, respectively. p is
the dimension size of the representation, and both student and teacher representations are the output
of the penultimate layer, which is the second last layer (i.e., before the classification head) of the
networks. Our distillation framework can be understood as an encoder-decoder structure, where in
encoder stage, we aim to learn a mapping function W1 : S → Z, and in decoder stage, we attempt
to recover Z to T by a linear transformation W2. Later we will show that W1 and W2 do not need
to be learnable in our framework.

Encoder-Decoder architecture design. We start by introducing our encoder-decoder architecture
design. We aim to provide the intuition of encoder-decoder design and why the latent representa-
tion Z is supposed to be low-rank. As shown in Fig. 2, our encoder-decoder framework can be
explained in an information bottleneck plane (Shwartz-Ziv & Tishby, 2017). Overall, the objective
of information bottleneck is:

Z
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(b) Our LRRA framework

S
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Figure 2: (a) Information bottleneck pipeline. X is the input image, Z is the latent representation,
and Y is the target label. The information bottleneck framework investigates the NN training pro-
cess though information plane analysis, where the NN training objective is to maximize I(Z;Y )
while minimizing the I(X;Z), I(·) denotes mutual information. (b) Our low-rank representation
framework follows the design rule of information bottleneck. Therefore we aim to learn a latent
representation Z that satisfies the minimal sufficient statistics, which is achieved by maximizing the
agreement of Z and T while extracting the most informative feature from S.

min{I(X;Z)− βI(Z;Y )} (1)
This objective (1) can be understood from image denoising or feature extracting perspective, in
which the most compact and sufficient features Z are learned by the tradeoff between compression
of input X and prediction of the target Y . The compression is often obtained by an NN model, e.g.,
CNN’s feature extraction. In the distillation scenario, our goal is to map S to a latent representation
Z with minimal information loss and maximize the agreement between Z and T . We often wish
the latent representation Z is as compact as possible. Thus the most valuable information is main-
tained (Yu et al., 2020). The information bottleneck plane quantifies the relevant information via
mutual information metric, which has some useful and important properties (Shwartz-Ziv & Tishby,
2017):
Theorem 1. For any latent variables S and T , their mutual information is invariance to any invert-
ible functions Φ and Ψ:

I(S;T ) = I(Φ(S); Ψ(T )). (2)

Theorem 1 show that if the whole system is invertible, then there’s no mutual information loss.
Theorem 2. Any representation variable, Z, characterized by encoder-decoder distributions,
P (Z|S) and P (T |Z), then the information path satisfies the following Data Processing Inequality
(DPI) chains:

I(S;T ) ≥ I(Z;T ). (3)

Theorem 2 implies that we can always achieve a better bound if we can guarantee the information
loss is constrained in the encoder part, i.e., S → Z.

Our distillation framework follows the design rule of the information bottleneck plane. The whole
pipeline is almost invertible, as we will show later. In encoder part, we use PCA (Pearson,
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1901; Wold et al., 1987) to compress student representation S into a low-rank latent representa-
tion Z thus the most distinguishable principal components are preserved with minimal information
loss (Linsker, 1988; Deco & Obradovic, 1996). In the decoder part, we obtain a closed solution
by some weak conditions to maximize the agreement between Z and T , which we will give more
details about later.

Encoder. In the encoder part, we can use different matrix decomposition algorithms such as
VQ (Gray & Neuhoff, 1998), CD (Dhillon & Modha, 2001) or NMF (Lee & Seung, 1999). In
this paper, we simply choose PCA (Pearson, 1901; Wold et al., 1987), an algorithm invented over
one hundred years, for its simplicity and concise. We can formulate the encoder as:

Ŵ1 = arg min
W1

∥∥S − SW1W
>
1

∥∥2 s.t.W>
1 W1 = Ipz , (4)

where pz is the selected PCA components, and W1 ∈ Rps×pz is the orthogonal projection matrix.
We can obtain the closed solution W1 = V where V is eigen-decompostion of S>S. The optimal z
dimensional plane is z principal components. One problem in PCA is that the dimensions are larger
than batch size in most cases. To address this issue, we adopt a memory bank strategy as in (Wu
et al., 2018; He et al., 2020). Then we can guarantee that the number of samples is always larger
than the size of the dimensions.

Decoder. In the decoder part, we aim to maximize the agreement between latent representa-
tion Z and teacher representation T . In the simplest case, we attempt to learn a linear trans-
formation W2 ∈ Rps×pt that obtains: T = ZW2. Then we can formulate our objective as
arg minW2

‖T −ZW2‖2F . Using a linear transformation to map representations of the student
and teacher into the same size is commonly seen in the distillation scenario (Romero et al., 2014).
On the other hand, in Self Supervised Learning (SSL) setting, we often need a W , that is, a pro-
jection head (Chen et al., 2020; Grill et al., 2020; Chen & He, 2021) as well, that mainly acts as a
buffer zone to prevent optimizing to trivial solutions. Recent study (Tian et al., 2021) shows that a
projection head does not need to be learnable, which highly motivates our study.

By assuming some constraints, we attempt to obtain a closed solution of W2. Often we hope W2 is
invertible because it guarantees the optimization stability and ensures the inverse mapping (Cortes
et al., 2012). However, it is not easy to make W2 invertible, even though to form it into a simple
linear transformation. We try to avoid using complicated solutions such as normalizing flow. Instead,
we consider orthogonality as a desirable constraint for W2. Now we assume Z has the same size as
T but with (pt − pz) zero padding. Then W2 is a full orthogonal matrix.
Lemma 3. All orthogonal matrices are invertible. If W is an orthogonal matrix, then:

W> = W−1. (5)
Lemma 4. All orthogonal matrices preserve dot product. For any random variables, u and v are
in the same dimension. If W is an orthogonal matrix, then:

u>v = (Wu)>(Wv). (6)
Lemma 5. All orthogonal matrices preserve vector lengths. For any random variables x. If W is
an orthogonal matrix, then:

‖Wx‖2 = ‖x‖2 . (7)

By Lemma 3, we can ensure that all orthogonal matrices are invertible, which is crucial, as discussed
previously. Lemma 4 and Lemma 5 are even more important because they show that geometry
structure is preserved with orthogonal transformation. Now we can formulate the problem as finding
an orthogonal transformation that produces the smallest error:

Ŵ2 = arg min
W2

‖T −ZW2‖2F s.t.W>
2 W2 = I. (8)

This problem is the classical Orthogonal Procrustes Problem and the corresponding solution can be
traced back to (Schönemann, 1966). We can obtain the solution by:

Ŵ2 = arg min
W2

‖T −ZW2‖2F s.t. W>
2 W2 = I.

= arg min
W2

tr (T −ZW2)>(T −ZW2)

= arg min
W2

‖T ‖2F + ‖Z‖2F − 2 tr (T>ZW2)).

(9)
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Practically, we adopt an alternating optimization strategy to obtain the solution, which means in
step one, we fix T and S and obtain W2, in step two, we fix W2 and update T and S. Overall,
we only need to consider S in the distillation setting. It is naturally suitable for the neural network
mini-batch training paradigm.

Then we only need to take tr (T>ZW2)) into consideration. The closed solution is W2 = UV >

where U and V are the Singular Value Decomposition (SVD) of Z>T . Then we can define the
decoder loss as:

Ldecoder = − tr (T>ZW2) = − tr (V ΣU>W2) = − tr (Σ). (10)

Discussion on decoder loss. Here we give more details and analysis on decoder loss. In the forward
step, we get both teacher and student representations, i.e., T and S, then Z is encoded by S.
W2 = UV > where UΣV > = ZT>. All the above can be treated as the forward process, and
nothing is learnable except the parameters of the student. In the backward step, since U is eliminated
as introduced, we only need to consider Σ and our objective is to maximize the Σ. We use −Σ as
decode loss and only optimize S, i.e., the CNN parameters of the student.

Assume T and Z have the same size, we can observe that:

Ldecoder = ‖T ‖2F + ‖Z‖2F − 2 tr (Σ)

≤ ‖T ‖2F + ‖Z‖2F − 2 tr (UΣV >)

= ‖T ‖2F + ‖Z‖2F − 2 tr (Z>T ) = ‖T −Z‖2F .
(11)

Then we can find that the proposed decoder loss is always a lower bound of MSE loss between T
and Z. It also implies that one MLP layer projection head may have a closed solution.

We also notice that previous NLP works (Hamilton et al., 2016; Smith et al., 2017) proposed a
similar solution to align word embeddings from different domains. It is a very interesting point as
we can regard different features of the same image extracted by CNNs and Vision Transformers as
a positive pair of features from different domains.

Our training loss is the combination of classification loss and distillation loss:

Ltotal = Lcls + λLdis, (12)

where Lcls is the cross entropy loss and λ is the trade-off parameters.

4 EXPERIMENTS

We evaluated LRRA by measuring classification accuracy on ImageNet100 with 11 KD methods.
We mainly focus on tiny efficient CNN backbones. Thus we ignore some new CNNs such as Con-
vNext and RepLKNet (Liu et al., 2022; Ding et al., 2022), which require some transformer training
tricks, as well as some deployment unfriendly modules such as large kernels. We experimented
with six commonly used tiny CNN architectures including MobileNetV2 (Sandler et al., 2018), Mo-
bileNetV3 (Howard et al., 2019), VGG8 (Simonyan & Zisserman, 2014), ResNet18 (He et al., 2016),
ShuffleNetV1 (Zhang et al., 2018) and ShuffleNetV2 (Ma et al., 2018). We use SwinTransformer-
Base (Liu et al., 2021) as our teacher model. We also provide ablation studies on the proposed
encoder-decoder design, showing that both encoder and decoder designs are necessary.

Datasets. We validate our algorithm mainly on two datasets. ImageNet1k (Deng et al., 2009) is
a widely used image classification dataset which contains over 1280k images with 1000 categories.
ImageNet100 is a subset of ImageNet which contains roughly 120k images. We followed the same
splitting rules used in (Wang & Isola, 2020). To our knowledge, few works study distilling vision
transformers to CNNs. Thus in this paper, we attempt to establish a new benchmark for this setting
with a middle-size dataset. Especially in the vision transformers distillation scenario, Cifar100
seems like an improper choice since its image size is only 32× 32.

Implementation details. Our implementation is mainly bulit on ConvNext (Liu et al., 2022) and
CRD (Tian et al., 2020). All methods follow the same training protocol with AdamW (Loshchilov
& Hutter, 2017) optimizer, warmup, and cosine decay learning strategy (Loshchilov & Hutter,
2016). Advanced augmentations such as mixup (Zhang et al., 2017), cutmix (Yun et al., 2019),
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Table 1: Top-1 accuracies of teacher and student networks on ImageNet100 of 11 KD methods.
We follow most implementations introduced in CRD (Tian et al., 2020) and use the open-source
code of other recent KD methods such as DKD (Zhao et al., 2022), MGD (Yang et al., 2022) and
Review (Chen et al., 2021). Since some methods are designed for the CNN KD scenario, we slightly
modified some hyper-parameters to obtain better results. Please refer to the appendix for more
training details and citations of other KD methods.

Teacher Swin Swin Swin Swin Swin Swin Avg.
Student MobileNetV2 MobileNetV3 VGG8 ResNet18 ShuffleNetV1 ShuffleNetV2 Avg.

Teacher 94.48% 94.48% 94.48% 94.48% 94.48% 94.48% 94.48%
Student 84.70% 86.44% 78.86% 85.24% 77.30% 79.52% 82.01%

KD 85.34% 86.82% 79.04% 85.54% 77.46% 79.86% 82.34%
DKD 84.90% 86.86% 78.70% 85.96% 78.30% 80.02% 82.45%
AT 82.92% 66.86% 76.90% 84.80% 74.92% 76.74% 77.19%
SP 83.82% 85.26% 74.30% 84.66% 74.16% 76.12% 79.71%

RKD 78.68% 85.06% 76.52% 85.24% 75.42% 77.48% 79.73%
PKT 84.32% 86.84% 76.82% 85.20% 76.96% 78.86% 81.50%

FitNet 84.70% 86.44% 78.86% 85.24% 77.30% 79.52% 82.01%
VID 85.02% 86.46% 78.94% 86.10% 77.92% 80.06% 82.42%

CRD† 85.44% 86.18% 79.16% 85.78% 74.72% 77.88% 81.52%
Review 84.36% 86.96% 78.90% 86.74% 78.62% 79.80% 82.56%
MGD 84.52% 85.48% 78.72% 85.62% 77.98% 79.62% 81.99%

LRRA 85.94% 87.33% 78.76% 86.12% 77.70% 79.90% 82.62%
LRRA+DKD 85.74% 87.42% 79.48% 86.18% 78.12% 80.14% 82.85%

Table 2: Training parameters comparison between different KD methods. We mainly compare
our approach with KD methods with extra training projection parameters because we observe these
methods gain a better result than the no-parametric methods. For all of these methods, Review (Chen
et al., 2021) obtains the most competitive results. However, it also costs almost triple times of the
training projection parameters, namely the ABF module in their paper. In comparison, our method
does not require any learnable projection parameters.

Teacher Swin Swin Swin Swin Swin Swin Avg.
Student MobileNetV2 MobileNetV3 VGG8 ResNet18 ShuffleNetV1 ShuffleNetV2 Avg.

Teacher 86.85M 86.85M 86.85M 86.85M 86.85M 86.85M 86.85M
Student 2.35M 4.33M 3.97M 11.22M 0.95M 1.36M 3.80M

FitNet +0.15M +0.19M +1.18M +0.59M +0.25M +0.12M +0.41M
VID +6.28M +5.98M +6.06M +5.72M +6.32M +5.49M +5.98M
CRD +0.30M +0.25M +0.20M +0.20M +0.50M +0.26M +0.24M

Review +9.56M +9.40M +9.35M +9.24M +9.54M +9.34M +9.40M
MGD +0.31M +0.32M +0.44M +0.33M +0.57M +0.42M +0.40M

LRRA 7 7 7 7 7 7 7

Table 3: Top-1 and Top-5 accuracies of student network ResNet18 on ImageNet validation set. We
use SwinTransformer-Base, released by the official repository, as the teacher network. For all KD
methods, we adopt the same training protocol.

Teacher Student Student† KD CRD MGD Review LRRA LRRA+DKD
Top-1 85.17% 69.76% 70.80% 70.68% 71.38% 70.93% 71.14% 71.46% 71.92%
Top-5 97.48% 89.08% 89.74% 90.23% 90.24% 89.78% 90.21% 90.14% 90.46%

autoaug (Cubuk et al., 2018) are applied based on timm (Wightman, 2019). All Imagenet100 bench-
marks are trained on 120 epochs. We adopted a strong training strategy to validate the effectiveness
of KD methods based on a stronger baseline. We observed that some methods, such as (Tian et al.,
2020; Chen et al., 2021), are unstable in our distillation setting. Thus we apply some modifications
to these methods, which we will discuss in the appendix. For most KD methods, we use the same
training hyperparameters introduced in (Tian et al., 2020) or corresponding open-source codebases.
For ImageNet1k, we directly use official pretrained weights of SwinTransformer (Liu et al., 2021).
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Table 4: Ablation study on different projection dimensions on the encoder.
Student 128 256 512 1024 2048 4096 8192 12288 Ours

MV2 84.7% 85.34% 85.18% 85.04% 85.10% 85.28% 85.34% 85.40% 85.38% 85.94%

Table 5: Ablation study on random masks on the encoder.
MobileV2 MobileV3 VGG8 ResNet18 ShuffleV1 ShuffleV2

Student-Acc 84.70% 86.44% 78.86% 85.24% 77.30% 79.52%
Mask-Acc 84.98% 86.70% 78.42% 85.28% 76.92% 78.74%
Ours-Acc 85.94% 87.33% 78.76% 85.88% 77.70% 79.90%

Table 6: Ablation study on the usefulness of encoder.
MobileV2 MobileV3 VGG8 ResNet18 ShuffleV1 ShuffleV2

Student-Acc 84.70% 86.44% 78.86% 85.24% 77.30% 79.52%
Decoder-Acc 84.82% 86.44% 78.66% 85.56% 76.84% 79.44%
Ours-Acc 85.94% 87.33% 78.76% 85.88% 77.70% 79.90%

Performance. Table 1 and Table 2 compare the top-1 accuracies and extra projection parameters of
different KD methods. For no-parametric KD methods, we notice that all methods’ results are suf-
fered from the architectures gap except logits-level KD methods, including DKD (Zhao et al., 2022)
and KD (Hinton et al., 2015). Among them, AT Zagoruyko & Komodakis (2016) is an attention-
based method that measures the similarities between features. SP Tung & Mori (2019) measures
the pairwise Gram matrix of the middle feature outputs. RKD Park et al. (2019) aligns the features
via mutual relations. They all suffer from the architecture gaps. For parametric KD methods, some
methods with heavy projection parameters, such as VID (Ahn et al., 2019) and Review (Chen et al.,
2021), achieve a competitive result, nevertheless, at the cost of almost double or even triple extra
trainable parameters. We also notice that Review (Chen et al., 2021) suffers from an unstable train-
ing process even though it finally obtained a pretty good result. Overall, our method achieves the
best performance on average without any extra training parameters. Our method is also comple-
ment to other logits-level method, such as DKD (Zhao et al., 2022). The combination of LRRA and
DKD attain a even better result. Table 4 compares the top-1 and top-5 accuracies on ImageNet1k.
Our method still achieves the best performance compared with other methods. † means the self-
implementation results.

Ablation studies. We conduct ablation studies both on the encoder and decoder. In the encoder, we
are interested in exploring the necessity and sensitivity of PCA with the following questions.

Firstly, we want to explore the effectiveness of PCA. Is it really useful, or a simple MLP layer can
replace it? A learnable MLP layer is almost invertible and flexible, which plays an important role in
self-supervised learning paradigm (Grill et al., 2020; Chen & He, 2021). As shown in Table 4, we
substitute PCA with an MLP layer. Interestingly, even though the projection size was up to 12288,
it did not improve the distillation result too much. The result implies that one MLP projection layer
may have a closed-form solution, which can be obtained by matrix decomposition.

On the other hand, LRRA introduces PCA to extract the most distinguishable features from original
representations. Can any forms of low-rank representation be used in distillation? To verify the hy-
pothesis, we randomly mask student representation into the same size as default PCA components.
The random mask module is inspired by (Yang et al., 2022) from which the masked pixels in rep-
resentation are directly set to zero. As shown in Table 5, a random mask may not be an effective
strategy in distillation, demonstrating the usefulness of PCA.

Do we need the encoder in our framework? We make an ablation study to validate the usefulness
of the encoder. As we can observe in Table 6, we abandon the encoder and directly use the decoder
for distillation. The whole distillation performance drops a lot without an encoder. We conjure a
potential reason is the curse of dimensionality. Since both student and teacher representations are in
high dimension, making the optimization process become more complex.
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Figure 3: Ablation study on different PCA components on encoder. (a) different pca components
on MobileNetV2. (b) different pca components on ShuffleNetV1.

Table 7: Ablation study on decoder
MobileV2 MobileV3 VGG8 ResNet18 ShuffleV1 ShuffleV2

Student-Acc 84.70% 86.44% 78.86% 85.24% 77.30% 79.52%
Proj-Acc 84.80% 86.46% 78.66% 85.18% 77.10% 79.32%
Ours-Acc 85.94% 87.33% 78.76% 85.88% 77.70% 79.90%

The choice of PCA components is a hyper-parameter in our distillation framework, and we also
show ablation results here. As we can see in Figure 3, large components do not contribute to the
performance. On the contrary, some medium or even small components, such as 64 or 88, achieve
strong performance. However, if we lower the components to a very small number, i.e., 32, it did
not perform well.

Finally, we want to explore the role of the decoder. Instead of using the previous closed-form
solution, we replace the decoder with a learnable projection to map the latent representation to the
teacher representation of the same size. As shown in Table 7, unlike using a projection on the
encoder, a projection on the decoder somehow hinders the performance, which shows the usefulness
of our decoder design.

5 DISCUSSION AND CONCLUSION

Currently, our study mainly focuses on representation-level distillation. Although representation-
level distillation is a more general solution, multi-stage feature distillation may perform better in
some cases. The combination of multi-stage features and low-rank structure distillation may bring
additional benefits. Meanwhile, a better matrix decomposition approach may exist in both encoder
and decoder parts. For instance, in the encoder part, we could use LDA Fisher (1936), another clas-
sical algorithm that leverages class information to reduce dimension, which may achieve a better
reduction result. Some “advanced” matrix decomposition algorithms such as Robust PCA Candès
et al. (2011) or NMF Lee & Seung (1999) all could possible achieve a better result. Another in-
teresting direction is to combine matrix decomposition with a learnable projection module as done
in Li et al. (2019); Geng et al. (2021).

This paper studies distilling knowledge from vision transformers to CNNs at the representation
level. We show that there exists an architecture gap between two different architectures such that
many current KD methods are ineffective in a vision transformers distillation scenario. Motivated
by the recent progress in applying matrix decomposition in modeling global information in vision
tasks, we formulate global information distillation as a low-rank approximation problem. The low-
frequency knowledge, i.e., global context knowledge of transformers, could be distilled in a low-
rank structure. Then we develop an encoder-decoder distillation framework which can be solved
by matrix decomposition. In the encoder stage, we compress the student representation into a low-
rank latent representation via PCA. In the decoder stage, we obtain a closed-form decomposition
solution by assuming transformation matrix is orthogonal. The whole distillation framework is
simple and neat without extra training parameters. We benchmark 11 KD methods on ImageNet100
to demonstrate the effectiveness of our approach. We hope this work can provide some interesting
findings in distillation from Vision Transformers to CNNs.
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6 APPENDIX

KD Methods Our approach compares to the following current state-of-the-art methods from the
literature:

1. Knowledge Distillation (KD) (Hinton et al., 2015)
2. Decoupled Knowledge Distillation (DKD) (Zhao et al., 2022)
3. Attention Transfer (AT) (Zagoruyko & Komodakis, 2016)
4. Similarity-Preserving Knowledge Distillation (SP) (Tung & Mori, 2019)
5. Relational Knowledge Distillation (RKD) (Park et al., 2019)
6. Learning deep representations with probabilistic knowledge transfer (PKT) (Passalis &

Tefas, 2018)
7. FitNets: Hints for thin deep nets (Romero et al., 2014)
8. Variational information distillation for knowledge transfer (VID) (Ahn et al., 2019)
9. Contrastive Representation Distillation (CRD) (Tian et al., 2020)

10. Distilling knowledge via knowledge review (Review) (Chen et al., 2021)
11. Masked Generative Distillation (MGD) (Yang et al., 2022)

Table of Notion

Table 8: Summary of notations in this paper
β A scalar.
x A vector.
X A matrix.
I(·) Mutula information
‖·‖F Frobenius norm

Proof of Lemma 3: The inverse of an orthogonal matrix is its transpose.

Proof. Let W be an n× n matrix:

W = [w1,w2, · · ·wn], (13)

where w1 is the i-th column vector, and we know that W>W = I where I is the identity matrix.
Then we have:

(W>W )i,j = w>
i wj =

{
1, i=j;
0, i 6=j.

(14)

Since the column vectors are orthogonal, then column vectors are linearly independent. We can
conclude that W is invertible. Also W>W is the exact description of the identity matrix. The
definition of W−1 is W−1W = I . We have:

(W>W )W−1 = W−1

= W>(WW−1)

= W>.

(15)

Then we prove Lemma 3.

Proof of Lemma 4: Orthogonal projection preserves the dot product

Proof.
u>v = (Wu)>(Wv)

= u>W>Wv

= u>v.

(16)

Then we prove the Lemma 4.

14



Under review as a conference paper at ICLR 2023

Proof of Lemma 5: Orthogonal projection preserves vector length

Proof.
‖Wx‖2 = (Wx)>Wx

= x>W>Wx

= x>(W>W )x

= x>x

= x · x
= ‖x‖2

(17)

Then we prove Lemma 5.

Proof of Equation (9)

Proof. We give the proof of closed-form solution of W2 in decoder. We have:

Ŵ2 = arg min
W2

‖T −ZW2‖2F
= arg min

W2

‖T −ZW2‖2F
= arg min

W2

tr (T −ZW2)>(T −ZW2)

= arg min
W2

tr (T>T ) + tr (W>
2 Z>ZW2)− 2 tr (T>ZW2)),

(18)

since W>
2 W = I , then according to the trace properties, we have:

tr (W>
2 Z>ZW2) = tr (W2W

>
2 Z>Z)

= tr (Z>Z).
(19)

Then we have:

Ŵ2 = arg min
W2

tr (T>T ) + tr (W>
2 Z>ZW2)− 2 tr (T>ZW2))

= arg min
W2

tr (T>T ) + tr (Z>Z)− 2 tr (T>ZW2)).
(20)

Since we fix T and S to obtain a closed solution W2, we only need to consider tr (T>ZW2)).

Ŵ2 = arg min
W2

− tr (T>ZW2))

= arg max
W2

tr (T>ZW2)),
(21)

we conduct svd decompostion on T>Z = UΣV >, then we have:

Ŵ2 = arg max
W2

tr (T>ZW2))

= arg max
W2

tr (UΣV >W2)

= arg max
W2

tr (ΣV >W2U).

(22)

Since Σ is a diagonal matrix where the diagonal are all singular values. Then the best solution is
making V >W2U = I as well. Then we have the solution, W2 = V U>. And our distillation
objective is to maximize tr (Σ).

Implementation details. We introduce details of KD methods’ training settings here. Based on the
basic settings introduced in the experiment, we mainly follow the official implementation of (Tian
et al., 2020) for the compared KD methods. We set batch size 512 with a learning rate of 4× 10−3

for VGG8 and batch size 1024with a learning rate of 8×10−3 for other student models to utilize the
GPU memory fully. Each model will extract a 5-stage feature for mapping and distillation. For the
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Table 9: Self-implementation results of CRD and MGD
Teacher Swin Swin Swin Swin Swin Swin Avg.
Student MobileNetV2 MobileNetV3 VGG8 ResNet18 ShuffleNetV1 ShuffleNetV2 Avg.

Teacher 94.48% 94.48% 94.48% 94.48% 94.48% 94.48% 94.48%
Student 84.70% 86.44% 78.86% 85.24% 77.30% 79.52% 82.01%

CRD 82.32% 70.56% 77.24% 84.16% 74.50% 77.02% 77.63%
CRD† 85.44% 86.18% 79.16% 85.78% 74.72% 77.88% 81.52%
MGD 84.52% 85.48% 78.72% 85.62% 77.98% 79.62% 81.99%
MGD† 84.48% 86.36% 78.38% 85.42% 77.68% 79.46% 81.96%

Table 10: Top-1 and Top-5 accuracies of student network MobileNetV2 on ImageNet validation
set. We use SwinTransformer-tiny, released by the official repository, as the teacher network. For
all KD methods, we adopt the same training protocol.

Teacher Student AT SP RKD FitNet CRD KD Ours

Top-1 80.90% 71.88% 71.73% 71.97% 71.00% 72.07% 71.93% 72.04% 72.20%
Top-5 96.04% 90.36% 90.49% 90.50% 89.92% 90.60% 90.72% 90.49% 90.56%

FitNet (Romero et al., 2014) implementation, kernel sizes are modified to align the downsample rate
and reduce computation complexity. In Review (Chen et al., 2021), we set the middle dimension
of all experiments to 256. In CRD (Tian et al., 2020), we notice that the original implementation is
ineffective in the vision transformer distillation scenario. We only use one encoder projection where
the student representation is mapped to teacher representation of the same size, i.e., 1024. We also
adopt the InfoNCE loss introduced in (Oord et al., 2018; He et al., 2019). The original results can be
found in Table 9. We also make some ablation studies on MGD (Yang et al., 2022) where we adopt
masked generative module on representation level. As shown in Table 9, both intermediate feature-
level and representation-level MGD do not obtain good results. Moreover, both of them perform
similarly. † means our self-implementation. We slightly change the training setting in ImageNet1k.
The optimizer AdamW is replaced with SGD, and the learning rate is set to 0.4 with an effective
batch size 1024. We also drop some strong augmentations such as auto-augmentations. Even so, our
baseline is still much stronger than the results in the original paper. All experiments are conducted
on 4 NVIDIA 3090 GPUs.

As shown in Table 6, we also compare our our ImageNet1K result on MobileNetV2. Our results
still achieve the best performance.

Visualization. We also use CKA introduced in (Kornblith et al., 2019; Raghu et al., 2021) to vi-
sualize the representation similarity of different architectures. As shown in Figure 4, we can find
that when we use ImageNet1K pretrained models provided by PyTorch. The ResNet18 performs
very similarly to ResNet50. However, the resent50 did not look similar to Vit-Base. However, after
distillation, the two different structures seem more positively correlated. The formulation of CKA
is:

CKA (K,L) =
HSIC (K,L)√

HSIC (K,K) HSIC (L,L)
, (23)

where HSIC is defined as:

HSICK,L) =
1

(n− 1)2
tr (KHLH). (24)

H is the centering matrix, K and L are student and teacher output, respectively. CKA is a tool to
measure representation similarities and has been widely used in measuring the similarities between
Vision transformers and CNNs Raghu et al. (2021). As shown in 4, we can find that when we use
ImageNet1K pretrained models provided by PyTorch. The ResNet18 performs very similarly to
ResNet50. However, the resent50 did not look similar to Vit-Base.

Discussion. More discussions are provided here. Firstly, we would like to discuss the effectiveness
of current CNN methods in Vision transformers distillation scenarios. Except for architecture gaps,
another possible reason that CNNs, especially tiny CNNs, are poor at capturing global features
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(a) (b) (c)

(d) (e)

Figure 4: Representation similarities comparison between different architecture. (a) The repre-
sentation similarity between ResNet18 and ResNet50 with ImageNet1K pretrained model. (b) The
representation similarity between ResNet50 and ViT-base with ImageNet1K pretrained model. (c)
The representation similarity between ViT-tiny and ViT-base with ImageNet1K pretrained model.
(d) The representation similarity between ResNet50 and SwinTransformer-base after distillation.
(e) The representation similarity between ResNet18 and ViT-base after distillation.

as it requires a large effective receptive field (Luo et al., 2016; Ding et al., 2022). Thus distilling
global information somehow crushes tiny CNNs’ training pattern because the path of capturing local
features is redundant and noisy. In contrast, the path of capturing global features is low-frequency.
A general idea to solve the problem is to modify the backbone of tiny CNNs, such as using large
kernel sizes, different normalizations, and fewer activations as introduced in ConvNext (Liu et al.,
2022). However, we tend to keep the original tiny CNNs’ architecture in the distillation scenario.
Then we propose an encoder-decoder representation distillation structure to address the issue.

We would also like to compare the performance differences between Vision Transformer distillation
and CNN distillation. As shown in Table 11 and Table 12, we can find that with different architec-
tures, previous KD methods mainly show their effectiveness in distilling CNNs to CNNs. Note that
we directly use the results from CRD (Tian et al., 2020). This comparison indicates that the tiny
CNNs are more difficult to learn global information than to capture other local information.
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Table 11: Top-1 accuracy of teacher and student networks on ImageNet100 of 11 KD methods with
a Vision Transformer teacher. † means self-implementation.

Teacher Swin Swin Swin Swin Swin Swin Avg.
Student MobileNetV2 MobileNetV3 VGG8 ResNet18 ShuffleNetV1 ShuffleNetV2 Acc.

Teacher 94.48% 94.48% 94.48% 94.48% 94.48% 94.48% 94.48%
Student 84.70% 86.44% 78.86% 85.24% 77.30% 79.52% 82.01%

KD 85.34% 86.82% 79.04% 85.54% 77.46% 79.86% 82.34%
DKD 84.90% 86.86% 78.70% 85.96% 78.30% 80.02% 82.45%
AT 82.92% 66.86% 76.90% 84.80% 74.92% 76.74% 77.19%
SP 83.82% 85.26% 74.30% 84.66% 74.16% 76.12% 79.71%
RKD 78.68% 85.06% 76.52% 85.24% 75.42% 77.48% 79.73%
PKT 84.32% 86.84% 76.82% 85.20% 76.96% 78.86% 81.50%

FitNet 84.70% 86.44% 78.86% 85.24% 77.30% 79.52% 82.01%
VID 85.02% 86.46% 78.94% 86.10% 77.92% 80.06% 82.42%
CRD 82.32% 70.56% 77.24% 84.16% 74.50% 77.02% 77.63%
CRD† 85.44% 86.18% 79.16% 85.78% 74.72% 77.88% 81.52%
Review 84.36% 86.96% 78.90% 86.74% 78.62% 79.80% 82.56%
MGD 84.52% 85.48% 78.72% 85.62% 77.98% 79.62% 81.99%

Table 12: Top-1 test accuracy of student networks on CIFAR100 of a number of distillation methods
with various CNN teachers.

Teacher VGG13 ResNet50 ResNet50 ResNet32x4 ResNet32x4 WRN-40-2 Avg.
Student MobileNetV2 MobileNetV2 VGG8 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1 Acc.

Teacher 74.64% 79.34% 79.34% 79.42% 79.42% 75.61% 77.96%
Student 64.6% 64.6% 70.36% 70.5 % 71.82% 70.5% 68.73%

KD 67.37% 67.35% 73.81% 74.07% 74.45% 74.83% 71.98%
FitNet 64.14% 63.16% 70.69% 73.59% 73.54% 73.73% 69.81%
AT 59.40% 58.58% 71.84% 71.73% 72.73% 73.32% 67.93%
SP 66.30% 68.08% 73.34% 73.48% 74.56% 74.52% 71.71%
CC 64.86% 65.43% 70.25% 71.14% 71.29% 71.38% 69.06%
VID 65.56% 67.57% 70.30% 73.38% 73.40% 73.61% 70.64%
RKD 64.52% 64.43% 71.50% 72.28% 73.21% 72.21% 69.69%
PKT 67.13% 66.52% 73.01% 74.10% 74.69% 73.89% 71.56%
AB 66.06% 67.20% 70.65% 73.55% 74.31% 73.34% 70.85%
FT 61.78% 60.99% 70.29% 71.75% 72.50% 72.03% 68.22%
NST 58.16% 64.96% 71.28% 74.12% 74.68% 74.89% 69.68%
CRD 69.73% 69.11% 74.30% 75.11% 75.65% 76.05% 73.33%
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