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Abstract— Joint pedestrian trajectory prediction has long
grappled with the inherent unpredictability of human behav-
iors. Recent works employing conditional diffusion models
in trajectory prediction have exhibited notable success. Nev-
ertheless, the heavy dependence on accurate historical data
results in their vulnerability to noise disturbances and data
incompleteness. To improve the robustness and reliability, we
introduce the Guided Full Trajectory Diffuser (GFTD), a novel
diffusion-based framework that translates prediction as the
inverse problem of spatial-temporal inpainting and models the
full joint trajectory distribution which includes both history
and the future. By learning from the full trajectory and
leveraging flexible posterior sampling methods, GFTD can
produce accurate predictions while improving the robustness
that can generalize to scenarios with noise perturbation or
incomplete historical data. Moreover, the pre-trained model
enables controllable generation without an additional train-
ing budget. Through rigorous experimental evaluation, GFTD
exhibits superior performance in joint trajectory prediction
with different data quality and in controllable generation
tasks. See more results at https://sites.google.com/
andrew.cmu.edu/posterior-sampling-prediction.

I. INTRODUCTION

Pedestrian trajectory prediction is crucial for human-robot
interaction systems such as autonomous driving, etc. The
goal is to predict future trajectories based on previous
pedestrian movements and environmental contexts. By ac-
curately predicting pedestrian trajectories, autonomous sys-
tems can plan their actions accordingly, ensuring safe and
efficient navigation in dynamic environments. However, the
unpredictable and complicated nature of human behaviors
makes this task challenging, especially with multiple agents
involved where their interactions need to be considered.

To simplify the problem, early works [1] [2] [3] [4]
focused on marginal pedestrian trajectory prediction, which
forecasts the trajectory for each pedestrian independently.
Such approaches require a downstream planning module
to perform safety checks for every combination of the
individual predictions. Even so, combination rollouts could
still produce unrealistic self-collisions and lead to failure
in challenging scenarios. As a result, joint pedestrian tra-
jectory prediction, which predicts consistent trajectories for
all agents together, has gained attention in the community.
[5] introduced a joint metrics term into supervision loss,
transforming the marginal predictor into a joint one. How-
ever, joint pedestrian trajectory prediction remains challeng-
ing since existing approaches heavily rely on accurate and
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complete historical data to incorporate temporal and social
dynamics. This dependence results in their vulnerability to
interference from noisy disturbances and incomplete data,
significantly threatening their effectiveness in real-world ap-
plications, such as sensors under adverse weather conditions.

To deal with the noises, previous research involved aug-
menting data with predefined noise and training models
on noisy datasets [6], and it can be further improved by
adversarial training procedures [7]. In addition, historical tra-
jectories from sensors could be incomplete. Previous studies
[8] [9] [10] [11] proposed to reconstruct incomplete data and
predict future trajectories during the training phase, requiring
a specifically designed model and well-established training
strategy. Such approaches optimized per-problem functions,
lacking adaptability to diverse tasks across various contexts.

Drawing inspiration from the diffusion model with its
remarkable capability of capturing the complicated distri-
bution, we propose a unified framework, named, Guided
Full Trajectory Diffuser (GFTD) for the joint pedestrian
trajectory prediction to better handle the disturbances and
incompleteness. GFTD represents the entire trajectory distri-
bution, both historical and future, with one diffusion model.
We formulate trajectory prediction and controllable genera-
tion as inverse problems and solve them through posterior
sampling techniques. Specifically, we sample in-distribution
full trajectories based on historical trajectories and priors
such as physical constraints and behavioral intentions. With-
out the necessity for explicit training to handle noisy and/or
incomplete inputs, GFTD enables robust prediction and con-
trollable generation—both achievable during the inference
time. In a nutshell, our proposed framework streamlines the
training process and offers adaptability to various scenarios at
inference, providing a solution that can address all challenges
without extra training requirements.

Our contributions can be summarized as follows:
(1) We introduce a novel permutation-invariant framework
for representing the joint distribution of full trajectories (both
historical and future), converting trajectory prediction and
controllable generation into a unified inverse problem.
(2) We utilize posterior sampling to solve the formulated
problem. With our approach, there is no need for specific
treatments during the training phase, as it can generalize to
various types of data imperfections solely at inference time
with one trained model.
(3) Extensive experiments demonstrate that our model not
only performs comparably in joint trajectory prediction but
also excels in controllable generation, particularly in scenar-
ios with noise injection and incomplete historical data.
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Fig. 1: Illustration of existing trajectory prediction framework and our guided full trajectory diffuser framework. (a) Multi-
agent trajectory prediction methods directly generate entire future trajectories through supervised learning. (b) Diffusion-
based Multi-agent trajectory prediction methods generate future trajectories step-by-step during the denoising process. (c) Our
method for multi-agent trajectory prediction incorporates history guidance within the diffusion framework. It predicts entire
trajectories and supports additional capabilities in a single model, including Noise-Robust Trajectory Prediction, Incomplete
Data Prediction, and Controllable Trajectory Generation.

II. RELATED WORK

A. Pedestrian Trajectory Prediction

Pedestrian trajectory prediction is crucial for many down-
stream tasks in autonomous driving, such as tracking [12] and
mapping [13]. This task involves forecasting the future move-
ment paths of pedestrians, given their historical movements
and the environment. However, it is challenging to predict
their motion because of the diverse and unpredictable nature
of human behaviors. To address this issue, two mainstream
paradigms have been developed. The supervised learning
approach [4] aims to minimize the differences between the
ground truth trajectories and the predictions using L2 loss,
etc. On the other hand, the generative learning approach
[1] formulates the prediction as a task of generating con-
ditional distributions of the future trajectory based on past
trajectories. Among various generative models, the diffusion
model [14] [15] has shown exceptional performance in
pedestrian trajectory prediction. Through a conditional re-
verse diffusion process, the diffusion model generates future
trajectory distributions from a standard Gaussian distribution,
which captures accurate and diverse predictions of future
trajectories.

B. Joint Trajectory Distribution Modelling

Recently, joint pedestrian trajectory prediction has gained
significant attention. Unlike marginal trajectory prediction,
which treats each pedestrian independently and can result in
self-colliding trajectories between agents, joint trajectory pre-
diction considers the interactions between future trajectories
of agents, leading to more consistent and feasible predic-
tions. [5] incorporates joint metrics as the training objective,
transforming the marginal trajectory predictor into a joint
trajectory predictor. In this paper, we propose Guided Full
Trajectory Diffuser (GTFD) for joint pedestrian trajectory

prediction, leveraging the strengths of diffusion models in
generating accurate and diverse future trajectory distributions
while considering the interactions between pedestrians.

C. Posterior Sampling for Inverse Problems

Posterior sampling is to infer the underlying distribution
conditioned on the measurements, given the unconditional
distribution. Previous works [16] [17] [18] have demon-
strated great performance in general inverse problems of
computer vision, such as image inpainting and denoising.
Recent work involves physical constraints [19], the reward
in reinforcement learning [20], behavior preference in traffic
simulation [21] [22] and bias in trajectory prediction [23],
extending a wide range of applications of posterior sampling.
In this paper, we gain the insight that, in the task of
trajectory prediction, historical trajectories can be regarded
as observation or measurement. As a result, we can unleash
the potential of posterior sampling in dealing with prediction
under uncertainty.

III. METHODS

In this section, we undertake a comprehensive exposition
of our novel multi-agent trajectory prediction framework,
conceptualizing the prediction task through spatial-temporal
inpainting. We first introduce preliminaries on diffusion mod-
els and problem definition. Subsequently, we explain how we
formulate our Guided Full Trajectory Diffuser (GFTD).

A. Preliminaries on Diffusion models

Diffusion models are a class of generative models that
operate on the principle of stochastic processes. They define
a forward diffusion process that corrupts data by progres-
sively introducing Gaussian noise. Conversely, in the reverse
process, diffusion models reconstruct data from noise by
iteratively reducing the Gaussian noise.
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Fig. 2: Architecture of our proposed GFTD framework.
During inference, GFTD samples from Gaussian noise, and
iteratively recover data with the denoise module εθ . It takes
in noisy latent node features xi

t and edge features e. After
MLP encoding, the edge is augmented by concatenating
the encoded node features and they are both sent into the
Processor which consists of stacked Graph Attention (GAT)
layers. We then map the nodes to the same dimensions as
xt and add residual connection, resulting in the predicted
intermediate noise εt . After each denoise step, we address
conditions through posterior sampling. Finally, the denoised
latent nodes x0 are converted to trajectory space.

According to Itô Stochastic Differential Equations (SDE)
[24], the forward data noising process is defined as the
following form:

dx = f (x, t)dt +g(t)dw. (1)

where x represents the data, w is the standard Wiener process,
f is the drift coefficient, g is the diffusion coefficient, t ∈
[0,T ] is the diffusion step.

The corresponding reverse SDE of Eq. (1) is defined as

dx = [ f (x, t)−g2(t)∇xlog pt(x)]dt +g(t)dw. (2)

where pt(x) is the probability density, and ∇xlog pt(x) is the
score function, which can be learned by a neural network
sθ (xt , t) with score matching. Here, xt denotes the interme-
diate noisy data x at denoise time t. The training objective
is defined as

Et{λ (t)Ex0Ext |x0 [∥sθ (xt , t)−∇xt log p(xt |x0)∥2
2]}. (3)

where λ (t) is a weighting function.
In this paper, we follow the implementation introduced

by Denoising Diffusion Probabilistic Models (DDPM) [25].
DDPM gradually add noise to the original data x according
to a variance schedule β1, β2,...,βT :

xt =
√

1−βtxt−1 +
√

β tε, t ∈ {1,2, ...,T} (4)

where ε ∼ N (0, I), x0 = x, xT ∼ N (0, I). During the train-
ing, DDPM tends to learn the added noise,

Eε,x0,t ∥ε − εθ (xt , t)∥2 . (5)

With the learned εθ (xt , t), the reverse diffusion process
gradually denoises standard Gaussian noise into the original
data distribution by

xt−1 =
1

√
αt

(xt −
βt√

1−α t
εθ (xt , t))+

√
βtε. (6)

where xT ∼ N (0, I), t from T to 1.

B. Problem Formulation

The objective of the multi-agent trajectory prediction
task is to use the observed history trajectories to jointly
predict future trajectories of all the agents in the scene.
We denote Pi

k as the positions of agent i at time step k,
i = 1, . . . ,Na. Joint history trajectory is c = {ci}Na

i=1, ci =
{Pi

−This+1,P
i
−This+2, . . . Pi

−1}. Joint current position is E =

{E i}Na
i=1, E i = Pi

0. Joint future trajectory is y = {yi}Na
i=1, yi =

{Pi
1, . . . ,P

i
Tf ut

}. The task is to generate the future trajectory
distribution p(y|E,c). However, the historical trajectory may
be incomplete and injected with noise caused by unexpected
conditions such as sensor failure and poor weather. We use
an elementwise mask to represent incomplete trajectory data
and model the injected noise as Gaussian noise.

C. Represent Full Trajectory Distribution with Diffusion

Previous diffusion-based work [14] [23] [26] formulated
prediction task as the diffusion process that conditioned on
history trajectories c and current position E to generate future
trajectory distribution p(y|E,c). Our key insight here is that
we can learn to generate full-length trajectories containing
both the past and the future and regard the prediction task
as an inverse problem of inpainting, which aims to infer and
complete the incomplete trajectory (e.g., the future) based
on observations (e.g., the past). We denote the generated
history trajectory as ĉi and the corresponding full-length
trajectory as xi = ĉi ∪ yi = {Pi

−This
, . . . ,Pi

−1,P
i
1, . . . ,P

i
Tf ut

}. We
train the DDPM by Eq. (5) where x = {xi}Na

i=1, and we
can generate full trajectory distribution p(x|E) by learned
εθ (xt , t,E) through Eq. (6).

D. Robust Prediction as Posterior Sampling

Prediction task is to obtain p(y|E,c) which is equiva-
lent to p(y,c|E,c) = p(x|E,c). Given learned full trajectory
p(x|E) through diffusion model and Bayes’ rule, we have
p(x|E,c) = p(c|x,E)p(x|E)/p(c). Thus, the score of the
posterior distribution can be calculated as:

∇xlog pt(x|E,c) = ∇xlog pt(x|E)+∇xlog pt(c|x,E). (7)

According to diffusion posterior sampling (DPS) [17], if
the condition or measurement has the form of a general
noisy inverse problem c = φ(x0)+n, where φ is an arbitrary
operator, and n ∼ N (0,σ2I) is the Gaussian noise, then
∇xlog pt(c|x,E) can be approximated as

∇xlog pt(c|x,E) =−λ∇xt ∥c−φ(x̂0(xt))∥2
2 =−λ∇xt L , (8)

where x̂0(xt) is the posterior mean of p(x0|xt):

x̂0(xt) =
1√
α t

(xt +(1−α t)εθ (xt , t,E)). (9)



Once the condition operator φ is known (i.e., φhis(x)
denotes historical portion of x), we can inject such condition
by iteratively adding the guidance term Eq. (8) to the
intermediate noisy data during the reverse diffusion process
so that we drag the sample to the direction that minimizes
the guidance loss L that reflects our preferences, which
would be having the generated history trajectories close to
the ground truth observation. Specific designs of L will
be elaborated in section IV. With the guidance gradient
restricted to a certain range, the generated noisy samples will
be lying in the data manifolds, thus avoiding generating out-
of-distribution samples. Even though this does not guarantee
the exact recovery of history trajectories and may result in
some degrees of ill-conditioned prediction, a properly guided
sample still achieves high prediction accuracy. We refer to
this characteristic as ”soft-conditioning” and will show such
a design greatly boosts robustness and adaptation abilities in
the following sections.

For conventional prediction tasks, we expect data to be
clean and complete and do not need to trade condition
correctness off for perturbation tolerance. To further enhance
performance on these tasks, we can strictly enforce history
conditions following RePaint[27]. This plug-and-play modi-
fication can be manually enabled. It introduces an additional
step that first compromises observed history trajectories to
the noise level t through the forward diffusion process Eq.
(4), then concatenates them with the corresponding future
parts of intermediate samples.

An implementation of the inference process in our pro-
posed framework is summarized in Algorithm 1.

Algorithm 1 Guided Full Trajectory Diffuser (GFTD)

Input: L (·, ·), φ(·), c, {ᾱt ,βt ,λt}T−1
t=0 ,

1: xT ∼ N (0, I)
2: for t = T −1, ...,1 do
3: ε ∼ N (0, I)
4: xt−1 =

1√
αt
(xt − βt√

1−αt
εθ (xt , t,E))+

√
βtε

5: x̂0 =
1√
ᾱt
(xt −

√
1− ᾱtεθ (xt , t,E))

6: g =−∇xt L (x̂0,c)
7: xt−1 = xt−1 +λtg
8: if RePaint and t > 0 then
9: ε ′ ∼ N (0, I)

10: ct−1 =
√

1−βt−1c0 +
√

β t−1ε

11: φhis(xt−1) = ct−1
12: end if
13: end for
14: y = φ f ut(x0)
Output: y

E. Trajectory Latent Representation

Inspired by the advances in image synthesis bought by
latent diffusion models [28] and the successful application
of low-rank latent representation in trajectory prediction [29]
[23], we further consider transforming the spatial-temporal
features of trajectory X i ∈ RT∗d into latent features xi ∈ Rk,

k ≪ T ∗ d through Principal Component Analysis (PCA).
This notation stands for the linear combination of the first
principal components. This simple but efficient transfor-
mation serves to mitigate the effects of noisy data, lead-
ing to more consistent and smoother predicted trajectories.
Meanwhile, the latent representation contains its geometry
and temporal characteristics, saving the need for additional
temporal encoder blocks.

IV. FRAMEWORK ARCHITECTURE

As we re-formulate the prediction task as trajectory in-
painting, our proposed framework requires a pre-trained
DDPM that models the joint distribution of full-length
trajectories that is not conditioned on history motion c.
Through iteratively adding posterior guidance −λ∇xt L dur-
ing inference time and extracting the future parts y from
generated trajectories x, we achieve the goal to sample future
trajectories conditioned on given histories. We argue that
our framework is model-agnostic that various reasonable
network designs of the denoising module are feasible for our
methodology. This section presents a specific implementation
of a lightweight denoising module. We will discuss our data
representation method, module architecture, and guidance
design in the following.

Data Representation. To achieve a rotation-invariant rep-
resentation of agent motion, for each agent in the scene,
we normalized their trajectory according to their current
positions and headings. Parallelly, we extract the spatial
relativity of agents under current frame by establishing a
graph representation, where node xi, i = 1, . . . ,Na stands for
agent motion and edge E i j, i, j = 1, . . . ,Na is characterized by
a 6D vector describing their relative position at the current
timestep: relative distance di j, direction vector ri j under
the reference frame of agent i, and relative heading vector
hi j = {θ i j,cosθ i j,sinθ i j}.

Denoise Module. Following the standard setting in DDPM,
we built a denoise module εθ (xt , t,E) that predicts the
intermediate noise level and denoise the intermediate sam-
ple xt by Eq. (6). For each scenario sample, xt =
[PCA(X1

t ), . . . ,PCA(XNa
t )] is the latent node features of agent

trajectories at diffusion step t. And E stands for the edge
information mentioned above, it serves as the only condition
of the diffusion model and is shared across all diffusion steps.

The core to εθ is a Graph Neural Network (GNN). As de-
picted in Fig. 2, each latent node feature xi

t is firstly concate-
nated with diffusion time embeddings and then mapped to
higher dimensions by a multi-layer perception (MLP). Since
node features do not contain global position information, we
need to further fuse the nodes with edge features so that we
can model the complex interaction. After MLP encoding, the
edge is augmented by concatenating with the encoded node

E i j
t = concat{E i j,xi

t}, (10)

and they are both sent into the Processor which consists of
stacked Graph Attention (GAT) [30] layers. Within each GAT
layer, nodes are augmented by shared linear transformation



parameterized by weight WWW . Then, we calculate the attention
score by

α
i j
t = so f tmax j(e

i j
t ) =

exp(ei j
t )

∑k∈Na exp(eik
t )

, (11)

and
ei j

t = LekyReLU(a(WWWni||WWWn j)), (12)

where a(·) linear transformation that maps a vector to a real
number. After acquiring interaction information, we map the
nodes to the same dimensions as xt , resulting in the predicted
intermediate noise εt .
Guided Generation. For trajectory prediction under the
description of the noisy inverse problem, the closed-form
dependency between the measurement and sample can be
formulated as

c = φ(X)+n. (13)

For the prediction task, c is the observed history trajectories,
φ is the operator that extracts history parts of trajectories
from full-length trajectories X , and n is the Gaussian noise
with adjustable variance based on how clear our history data
is. For the original prediction task, we consider the history
trajectories to be reliable and the noise level to be low.
Similar to the derivation in section C, we set our guidance
loss as

Lrec =
∥∥c−φ(X̂0(xt))

∥∥
2 , (14)

which is the reconstruction loss that measures how precisely
our generated trajectories fit the conditions. Inspired by [23],
we can ensure a more realistic generation by adding repeller
guidance that prevents the agents from colliding with each
other:

Lrep =
1

Na
∑
i, j,k

max{(1− 1
r

di j
k ),0}, (15)

where r is the repeller threshold and di j
k ∈RNa×Na×(Thist+Tf ut )

is the distance between agent i and j at timestep t. Practically,
the repeller loss serves as valuable prior knowledge.

V. EXPERIMENTS

In this section, we exhibit the capacity and flexibility of
our framework by adapting our model to four distinct tasks
without retraining: basic trajectory prediction, controllable
generation, prediction with noisy history, and prediction
with incomplete history. We present two versions of our
proposed framework: the foundational GFTD and its variant,
GFTD-RePaint, which is specialized for the basic trajectory
prediction task.

A. Experimental Setups

Datasets. We carried out all of our experiments on the
ETH/UCY [34] [35] dataset, a popular public pedestrian
trajectories forecasting benchmark. The dataset contains
pedestrian trajectories in bird’s eye view (BEV) from five
distinct scenarios (ETH, Hotel, Univ, Zara1, Zara2). We
follow the leave-one-out training/evaluation setup that was
used in the original S-GAN [31]. Specifically, we partitioned
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Trajectory

Predicted History
Trajectory

Predicted Future
Trajectory

Goal 
Point

Fig. 3: Qualitative visualization of controllable generation.
Red lines represent the ground truth trajectories. With the
given goal point and history, our model can generate goal-
oriented trajectories with considerable realism.

each dataset scene into sliding windows of length 20 steps
(8 seconds) at stride 1, with 8 history observation steps (3.2
seconds) followed by 12 prediction steps (4.8 seconds). We
then proceed to utilize all sequences containing at least one
pedestrian.

Metrics and Baselines. For scene-level joint prediction,
rather than using marginal metrics Average Displacement
Error (ADE) and Final Displacement Error (FDE), we follow
[5] to use joint metrics JADE/JFDE:

jointADE(Y,Y ∗) =
1

T N

K
min
k=1

N

∑
n=1

T

∑
t=1

∥∥st,n − s∗t,n
∥∥ , (16)

jointFDE(Y,Y ∗) =
1

T N

K
min
k=1

N

∑
n=1

∥∥sT,n − s∗T,n
∥∥ . (17)

The joint metrics emphasize the significance of modeling
the interactions between agents by introducing a constraint
for top-K evaluations: predictions must originate from the
same sample. This approach prevents the overestimation
of model performance and penalizes models that fail to
accurately simulate the realistic behaviors and motions of all
agents present in the scene. In the general prediction task,
we compared our model to the state-of-the-art models Joint
AgentFormer and Joint View Vertically proposed in [5], as
well as other famous baselines in pedestrian prediction: S-
GAN [31], PECNet[36], and MemoNet [33]. We compute
the best-of-20 JADE/JFDE considering the stochasticity of
generative prediction models.

Implementation Details. The implementation of the de-
noising module used in experiments contains a three-layer
GAT with a hidden size of 128. Additionally, each feed-
forward network is realized as a two-layer MLP equipped
with post-layer normalization and activated using the Mish



TABLE I: Trajectory Prediction Performance on ETH/UCY Dataset. The three best scores are marked by red, blue, and
green, respectively. † denotes Joint AgentFormer without the diverse sampler (DLow)

Method minJADE / JFDE (m), K=20 ↓

ETH(1.4) HOTEL(2.7) UNIV(25.7) ZARA1(3.3) ZARA2(5.9) ETH/UCY Avg.

S-GAN [31] 0.919 / 1.742 0.480 / 0.950 0.744 / 1.573 0.438 / 1.001 0.362 / 0.794 0.589 / 1.212
PECNet [32] 0.618 / 1.097 0.291 / 0.587 0.666 / 1.417 0.408 / 0.896 0.372 / 0.840 0.471 / 0.967
MemoNet[33] 0.499 / 0.859 0.222 / 0.416 0.686 / 1.466 0.349 / 0.723 0.385 / 0.864 0.428 / 0.866
Joint View Vertically [5] 0.652 / 0.839 0.186 / 0.309 0.523 / 1.091 0.331 / 0.634 0.267 / 0.547 0.392 / 0.684
Joint AgentFormer† [5] 0.543 / 0.883 0.211 / 0.377 0.596 / 1.247 0.309 / 0.612 0.282 / 0.584 0.388 / 0.741
Ours (GFTD) 0.505 / 0.873 0.174 / 0.297 0.649 / 1.305 0.340 / 0.667 0.308 / 0.620 0.395 / 0.752
Ours (GFTD + RePaint) 0.514 / 0.906 0.191 / 0.329 0.607 / 1.248 0.327 / 0.646 0.288 / 0.585 0.385 / 0.743

TABLE II: Controllable Generation Performance

Method minJADE / JFDE (m), K=20 ↓

ETH(1.4) HOTEL(2.7) UNIV(25.7) ZARA1(3.3) ZARA2(5.9) ETH/UCY Avg.

Baseline 0.505 / 0.873 0.174 / 0.297 0.649 / 1.305 0.340 / 0.667 0.308 / 0.620 0.395 / 0.752
Goal Point Guidance 0.224 / 0.064 0.069 / 0.033 0.280 / 0.394 0.103 / 0.035 0.094 / 0.032 0.154 / 0.112

activation function [37]. In addition, we observed that train-
ing our diffusion model on latent space by Eq. (5) can
be unstable and somehow inefficient. Thus, following [38],
we modified the DDPM training loss with the Min-SNR-γ
weighting strategy λ (t) = min{γ,SRN(t)}/SRN(t) to avoid
having the model putting too much attention on the final
steps of the denoising processing where the noise level is
low. We set the training batch size to 32 and we use the
Adam optimizer with an initial learning rate of 0.001. All
the training is conducted on one GTX-2080Ti GPU.

B. Trajectory Prediction and Controllable Generation

In the context of basic pedestrian trajectory prediction
tasks, we present two models within our Guided Trajec-
tory Diffusion (GFTD) framework: the GFTD model and
its augmented version, GFTD with RePaint. To assess
their efficacy, we conduct a quantitative evaluation, bench-
marking these models against the aforementioned baselines
with the ETH/UCY dataset. All models are fairly eval-
uated by joint metrics to ascertain their optimal scene-
level performance across 20 samplings. We directly used
the reported baseline performance under joint metrics from
[5]. We present the results in TABLE I. In specific for
Jonit AgentFormer, we use the pre-trained checkpoint for
joint prediction provided by their official GitHub reposi-
tory (https://github.com/ericaweng/joint-metrics-matter). For
a fair comparison, we did not apply the Dlow model for
performance enhancement. Our model exhibited relative
competitive performance, especially on the HOTEL dataset,
where our model outperformed all the baselines.

Controllable trajectory generation is another plausible ap-
plication of our framework. In addition to the fundamental
reconstruction loss Eq. (14), we can incorporate any desirable
objectives into the guidance term to control the sampling
process. For demonstration, we experimented with goal point
generation, i.e., given the ground truth history trajectories
and desired goal points g, we asked our model to generate

future trajectories that reach the goal points. The only modifi-
cation to adapt our pre-trained model to this particular task is
to add an attraction term that measures the L2-norm between
the endpoints of generated trajectories and goal points.

We evaluated generation quality through JADE, which
represents the realism of the generated scene, and JFDE,
which reflects goal-reaching accuracy. As shown in Fig 3, all
samples tend to accurately recover the demanded goal point
while the generated trajectories are smooth and realistic. The
variance of prediction samples tends to be large under cases
where the pedestrian performs a sudden turn. However, in
most cases, the model successfully covers the modality that
most resembles the ground truth. We also present quantitive
results in TABLE II, which showcases the effectiveness of
goal point guidance.

C. Prediction with Noisy History

To assess the robustness of our proposed method against
noisy input, we perturbed the observed history trajectories
by introducing random Gaussian noise n ∼ N (0,σ2I) of
varying standard deviation σ . Specifically, we introduced
two levels of perturbation: a slight level, characterized by
a standard Gaussian noise with a 0.05-meter σ , and a
heavy level, with a standard Gaussian noise with a 0.15-
meter σ . Subsequently, we compared the performance of our
model with the Joint AgentFormer baseline under identical
experimental conditions.

As shown in TABLE III, we observed that our model
performs better at heavy noise levels, providing trustwor-
thy prediction even if the data is highly corrupted. The
average JADE/JFDE performance of our method on 5
benchmarks is close to the baseline but only degenerated
by 46.58%/38.38% at the heavy level. By contrast, the
performance of the baseline method had degenerated by
57.08%/50.36% at heavy noise level. To reasonably state
that the guided posterior sampling accounted for the robust-
ness against noisy data, we further compared it with GFTD-



TABLE III: Prediction with Noisy Data

Noise Std Model minJADE / JFDE (m), K=20 ↓

ETH(1.4) HOTEL(2.7) UNIV(25.7) ZARA1(3.3) ZARA2(5.9) ETH/UCY Avg.

0.00 Joint AgentFormer [5] 0.543 / 0.883 0.211 / 0.377 0.596 / 1.247 0.309 / 0.612 0.282 / 0.584 0.388 / 0.741
Ours 0.505 / 0.873 0.174 / 0.297 0.649 / 1.305 0.340 / 0.667 0.308 / 0.620 0.395 / 0.752

0.05 Joint AgentFormer [5] 0.588 / 0.992 0.253 / 0.433 0.628 / 1.294 0.362 / 0.708 0.361 / 0.714 0.438 / 0.834
Ours 0.567 / 1.009 0.198 / 0.334 0.703 / 1.388 0.388 / 0.735 0.341 / 0.675 0.439 / 0.828

0.15 Joint AgentFormer [5] 0.765 / 1.287 0.458 / 0.762 0.834 / 1.642 0.649 / 1.254 0.736 / 1.312 0.688 / 1.254
Ours 0.636 / 1.076 0.283 / 0.463 0.872 / 1.661 0.633 / 1.137 0.469 / 0.869 0.579 / 1.041

TABLE IV: Prediction with Incomplete History Data

Missing ratio Model minJADE / JFDE (m), K=20 ↓

ETH(1.4) HOTEL(2.7) UNIV(25.7) ZARA1(3.3) ZARA2(5.9) ETH/UCY Avg.

25% Joint AgentFormer [5] 0.558 / 0.901 0.214 / 0.377 0.624 / 1.286 0.336 / 0.653 0.303 / 0.614 0.407 / 0.766
Ours 0.524 / 0.910 0.174 / 0.294 0.662 / 1.321 0.341 / 0.670 0.314 / 0.627 0.403 / 0.764

50% Joint AgentFormer [5] 0.619 / 1.022 0.219 / 0.378 0.662 / 1.343 0.374 / 0.721 0.327 / 0.649 0.440 / 0.823
Ours 0.511 / 0.897 0.176 / 0.302 0.676 / 1.348 0.347 / 0.677 0.321 / 0.642 0.406 / 0.773

75% Joint AgentFormer [5] 0.647 / 1.034 0.274 / 0.444 0.752 / 1.488 0.440 / 0.830 0.381 / 0.733 0.499 / 0.906
Ours 0.519 / 0.885 0.193 / 0.333 0.735 / 1.441 0.357 / 0.696 0.346 / 0.683 0.430 / 0.808

Fig. 4: JADE/JFDE performance comparison between GFDT
and GFDT+RePaint with noisy data input.

RePaint. GFTD-RePaint includes gradually replacing the
history part of the intermediate noisy sample by ground truth
history observation, thus ensuring the generated samples
were strictly conditioned on the noisy history data. The
experimental results in Fig. 4 show that despite having a near
performance to GFTD model under clean data conditions,
the GFTD-RePaint performs much worse on noisy data,
especially under heavy-level noise. It shows the superiority
of our proposed framework in noisy conditions rooted in the
design of ”soft conditioning”.

D. Prediction with Incomplete History

Due to obstacles or sensor failures, historical data may
occasionally contain unexpected missing frames. To evaluate
model robustness against incomplete data, we randomly se-
lect and mask 25%, 50%, and 75% of the historical trajectory
frames, while ensuring that the current frame is always
retained. With a known random mask, we only consider the
available historical frames when calculating the guidance

loss. We employ the same Joint AgentFormer model as
our baseline. To ensure a fair comparison, we generate an
attention mask for each AgentFormer sub-module based
on the known data mask and replace the masked frames
with zero values. For both models, we directly re-used the
same pre-trained versions as in the other two experiments.
As shown in TABLE IV, GFTD demonstrates competitive
performance under conditions of incomplete data. Even when
75% of the historical observations are missing, the average
JADE/JFDE performance only declines by 8.9% and 7.4%,
respectively, still surpassing S-GAN with complete data input
by a significant margin. In contrast, Joint AgentFormer fails
to produce plausible predictions under high missing data
rates.

VI. CONCLUSION & DISCUSSION

In this work, we present the Guided Full Trajectory
Diffuser, a novel framework for representing the joint distri-
bution of trajectories leveraging diffusion models, converting
trajectory prediction and controllable generation into a uni-
fied inverse problem. We formulate the prediction task as
spatial-temporal inpainting, a general noisy inverse problem
that can be solved through diffusion posterior sampling.
Under this framework, the generated trajectories are not
rigidly constrained by their historical observations; instead,
we gradually enforce such conditions by adjustable posterior
guidance. Such a unique design enables flexibility, resulting
in not only competitive performance in joint trajectory pre-
diction tasks but also generalizable to scenarios with noise
perturbation or incomplete historical data. Moreover, our
framework is compatible with plug-and-play modules and
various guidance methods, thus expandable to task-oriented
enhancements. However, we point out that our current im-



plementation only considers raw trajectories as guidance
reference, how to more efficiently exploit the interaction to
further improve guidance quality is a topic we will keep
working on.
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