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Abstract
Mutual information-based reinforcement learning
(RL) has been proposed as a promising framework
for retrieving complex skills autonomously with-
out a task-oriented reward function through mu-
tual information (MI) maximization or variational
empowerment. However, learning complex skills
is still challenging, due to the fact that the order of
training skills can largely affect sample efficiency.
Inspired by this, we recast variational empower-
ment as curriculum learning in goal-conditioned
RL with an intrinsic reward function, which we
name Variational Curriculum RL (VCRL). From
this perspective, we propose a novel approach to
unsupervised skill discovery based on information
theory, called Value Uncertainty Variational Cur-
riculum (VUVC). We prove that, under regularity
conditions, VUVC accelerates the increase of en-
tropy in the visited states compared to the uniform
curriculum. We validate the effectiveness of our
approach on complex navigation and robotic ma-
nipulation tasks in terms of sample efficiency and
state coverage speed. We also demonstrate that
the skills discovered by our method successfully
complete a real-world robot navigation task in a
zero-shot setup and that incorporating these skills
with a global planner further increases the perfor-
mance.

1. Introduction
Intelligent creatures are able to efficiently explore the envi-
ronments and learn useful skills in the absence of external
supervision. By utilizing these skills, they can quickly ac-
complish tasks when they are later faced with specific tasks.
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To scale a learning agent to the real-world, it is crucial to
achieve such ability of learning skills without supervision.
Recent studies on unsupervised RL suggest ways to alleviate
the need for human effort. Most of these approaches focus
on reducing the burden of designing objective functions by
incorporating intrinsic motivation objectives or leveraging
concepts from information theory. In this work, we fur-
ther reconcile with the need not only to manually engineer
objective functions but to craft the order of training skills.

Empowerment or MI-based RL (Klyubin et al., 2005; Salge
et al., 2014) has gained traction in recent years as a means
of unsupervised skill discovery due to its intuitive inter-
pretation and empirical successes (Eysenbach et al., 2019;
Sharma et al., 2019; Jabri et al., 2019). However, the com-
mon empowerment approach has been to either fix or pa-
rameterize the distribution of skills (Nair et al., 2018; Pong
et al., 2020; Campos et al., 2020). The efficiency of learning
skills with respect to the number of required training sam-
ples is rather limited when the agent learns complex skills
from a fixed skill distribution without an organized order.
The notion of curriculum studies the effectiveness of the
order of training skills. By selecting the order of appropriate
skills, a learning agent may achieve a variety of complex
skills (Florensa et al., 2018; Fang et al., 2019). However, it
is both necessary to define a set of tasks that can be used to
generate curriculum (Klink et al., 2020; Zhang et al., 2020)
and specify a form of reward functions (Racaniere et al.,
2019; Ren et al., 2019; Narvekar & Stone, 2019).

To rectify this issue, we interpret empowerment as a unify-
ing framework for curriculum learning in goal-conditioned
RL (GCRL). Recasting variational empowerment as curricu-
lum learning in GCRL with intrinsic reward function, inter-
estingly our Variational Curriculum RL (VCRL) framework
encapsulates most of the prior MI-based approaches (Nair
et al., 2018; Pong et al., 2020; Campos et al., 2020). In this
regard, we derive a new approach to information-theoretic
skill discovery, Value Uncertainty Variational Curriculum
(VUVC) that allows us to automatically generate curriculum
goals which maximize the expected information approxi-
mated as the uncertainty in predictions of an ensemble of
value functions. We analyze asymptotic behavior of the

Codes are available at github.com/seongun-kim/vcrl.
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Figure 1. An overview of our proposed method, VUVC, under the unifying framework for curriculum learning in goal-conditioned RL.
The value uncertainty proposes informative goals which would generate a stronger learning signal. The density estimate of potential
curriculum goals indicates the novelty of the goal to the learning agent. The density estimate model is derived from the discriminative
model, which is trained alongside the agent. This discriminative model provides intrinsic rewards to the agent. VUVC combines these
two measures to construct a goal generative model, promoting unsupervised exploration of the entire state space by the agent.

entropy of visited states and provide the reasons why our
method results in much faster coverage of the state space
compared to existing methods.

The main contributions of this paper can be summarized
as follows: (1) We provide the unifying framework VCRL
encapsulating most of the prior MI-based approaches. (2)
We propose VUVC, a value uncertainty based approach
to information-theoretic skill discovery, aimed at automat-
ically generating curricula for training skills and which is
supported by theoretical justification. (3) We show the ef-
fectiveness of our approach on complex navigation, robotic
manipulation in both configuration and image state space,
and real-world robotic navigation tasks and illustrate that
the skills discovered by our method can be further improved
by incorporating them with a global planner.

2. Background
2.1. Goal-Conditioned Reinforcement Learning

Goal-conditioned RL (Kaelbling, 1993) extends the stan-
dard RL framework to enable agents to accomplish a va-
riety of tasks. It solves the problem formulated as a goal-
conditioned Markov decision process (MDP) which is de-
fined as a tuple ⟨S,G,A, P,Rg, γ⟩, where S is the set
of states, G is the set of goals, A is the set of actions,
P : S × A × S → [0,+∞) is the transition probability,
Rg : S × A → R is the goal-conditioned reward function
and γ ∈ [0, 1] is the discount factor. The objective of GCRL
is to find the policy πθ(a|s, g) parameterized with θ where
s ∈ S, a ∈ A, g ∈ G and π : S × A × S → [0,+∞) that

maximizes the universal value function (Schaul et al., 2015):

θ ← argmax
θ

V πθ (s, g) ≜

E at∼πθ(at|st,g),
st+1∼P (st+1|st,at)

[ ∞∑
t=0

γtRg(st, at)
∣∣∣s0 = s

]
. (1)

2.2. Mutual Information and Empowerment

In the context of RL, MI maximization such as empower-
ment generally means maximizing the mutual information
between a function of states and a function of actions to
learn latent-conditioned policies π(a|s, z) where the latent
code z can be interpreted as a macro-action, skill or goal
(Eysenbach et al., 2019; Sharma et al., 2019). Empower-
ment maximizes the following MI objective:

I(s; z) = H(s)−H(s|z)
= H(z)−H(z|s)
= Ez∼p(z),s∼p(s|z) [log p(z|s)− log p(z)]

≥ Ez∼p(z),s∼p(s|z) [log qλ(z|s)− log p(z)] , (2)

whereH(·) is the Shannon entropy, p(z) is the prior distri-
bution, and qλ(z|s) represents the variational approximation
for intractable posterior p(z|s) parameterized with λ, often
called a discriminator (Eysenbach et al., 2019; Sharma et al.,
2019; Campos et al., 2020). This objective provides a way
to train a policy that guides agents to explore diverse states
by maximizingH(s) and makes the state s distinguishable
from the latent code z by minimizingH(s|z).
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Methods qλ(g|s) p(g)
Non-stationary

goal distribution

GCRL (w/ sparse reward) 1
Z exp(1− 2δgU[s±δg ]) ptarget(g) ✗

GCRL (w/ dense reward) N (s, σ2I) ptarget(g) ✗

EDL (Campos et al., 2020) N (µ(s), σ2I) pexplored(g) ✗

RIG (Nair et al., 2018) N (µ(s), σ2I) pvisitedt (g) ✓

Skew-Fit (Pong et al., 2020) N (µ(s), σ2I) ∝ pvisitedt (g)α ✓

VUVC (ours) N (µ(s), σ2I) ∝ U(g)pvisitedt (g)α ✓

Table 1. Variants of VCRL framework which encapsulate most of the prior MI-based methods, depending on the choice of a discriminator
qλ(g|s), a goal generative model p(g), and whether p(g) is stationary or not, where both qλ(g|s) and p(g) are components of the MI
objective. The discriminator determines the shape of goal-conditioned reward functions including sparse and dense shapes.

3. Variational Curriculum Reinforcement
Learning

To recast the aforementioned MI-based RL as VCRL, we
first present that general GCRL methods optimize empower-
ment objective by formulating a discriminator to represent
commonly used goal-conditioned reward functions. We
then expand this setting to a curriculum learning framework
with a goal generative model, which we name VCRL where
Table 1 summarizes variants of the VCRL framework.

Henceforth, we consider the latent code z in Equation 2 as
a goal g and assume the goal space matches the state space,
while VCRL framework is not limited to this assumption
and trivially extended by introducing a state abstraction
function (Ren et al., 2019). The objective now becomes
equivalent to that of a GCRL where the resulting policy
aims to reach g (Pong et al., 2020; Choi et al., 2021). Given
a policy πθ(a|s, g) and a discriminator qλ(g|s), an objective
of MI-based RL is to maximize a variational lower bound:

F(θ, λ) = E g∼p(g),
s∼ρπ(s|g)

[log qλ(g|s)− log p(g)], (3)

where ρπ(s|g) is a stationary state distribution induced by
the goal-conditioned policy π(a|s, g) (Gregor et al., 2016;
Campos et al., 2020). To solve this joint optimization prob-
lem, we iteratively fix one parameter and optimize the other
one at each training epoch i:

λ(i) ← argmax
λ

E g∼p(g),
s∼ρπθ(i−1) (s|g)

[log qλ(g|s)− log p(g)]

(4)

θ(i) ← argmax
θ

E g∼p(g),
s∼ρπθ (s|g)

[log qλ(i)(g|s)]. (5)

As described in the prior work (Warde-Farley et al., 2019;
Choi et al., 2021), it has been shown that Equation 5 which is
also called an intrinsic reward (Gregor et al., 2016), recovers
the objective of GCRL in Equation 1 with dense rewards.
By choosing a Gaussian distribution with mean s and fixed
variance σ2I for qλ(g|s) where I is the identity matrix,

this objective becomes a negative l2 distance between s
and g. Similarly, one can show that the intrinsic reward
represented in Equation 5 becomes a sparse reward where
an agent gets 0 reward if l2 distance between s and g is
within some threshold δg and gets −1 otherwise. Other MI-
based methods can also be considered a GCRL by modeling
qλ(g|s) to follow N (µ(s), σ2I) where µ(s) is a function
approximator usually following an encoder structure.

We further expand the interpretation of MI-based methods
as a framework of GCRL to a framework of curriculum
learning, which we term VCRL. Curriculum learning in RL
studies the order of training skills or tasks. In the context
of GCRL, the order of tasks, curriculum, is determined by
characterizing a goal distribution p(g) (Fournier et al., 2018;
Florensa et al., 2018; Racaniere et al., 2019; Ren et al., 2019;
Zhang et al., 2020; Klink et al., 2020). Without an explicit
design of p(g), VCRL is reduced to a simple GCRL where
a target goal is given from the environment, ptarget(g). Oth-
erwise, one can design a goal generative model to satisfy
various purposes of the training. For instance, EDL (Cam-
pos et al., 2020), a variant of MI-based RL, aims to train
a state space covering skill. EDL first learns pexplored(g)
along with an exploration policy (Lee et al., 2019) which
tries to cover the entire state space. Then, it optimizes the
MI objective (Equation 3) with the stationary goal distribu-
tion pexplored(g). Skew-Fit (Pong et al., 2020) also seeks to
learn a state space covering skill in an unsupervised manner.
However, unlike EDL, it assumes a non-stationary goal dis-
tribution to ensure that the state density p(s) converges to
uniform distribution. This is achieved by formulating the
goal distribution, p(g), to be proportional to the approxi-
mate state density, pvisited(s), raised to a skewing parameter
α within the range of [−1, 0). Similarly, RIG samples goals
directly from pvisited(s).

4. Value Uncertainty Variational Curriculum
Despite the many empirical successes of empowerment
methods, learning complex skills is still challenging since
there has been little consideration of p(g) in the MI objec-
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Figure 2. Illustrations of simulated environments. (Left) Point maze navigation tasks which we name PointMazeA, B, C, and SquareLarge
in sequential order. The initial state and goal distribution of each task are depicted by a blue circle and red box, respectively. (Top right)
Configuration-based robot manipulation tasks: FetchPush, FetchPickAndPlace and FetchSlide. The goal distribution which represents the
target position for the puck, is illustrated by a red cylinder. (Bottom right) Vision-based robot manipulation tasks: SawyerDoorHook,
SawyerPickup and SawyerPush.

tive (Achiam et al., 2018; Eysenbach et al., 2019; Warde-
Farley et al., 2019; Campos et al., 2020). To efficiently learn
complex skills, it is important to effectively optimize the
variational empowerment in Equation 3. To this end, the
agent should seek out goals from which it can learn the
most. This can be formalized in the uncertainty of value
functions which track the performance of the policy. To esti-
mate the uncertainty, we use an ensemble of multiple value
functions that has been widely adopted in the literature with
empirical success (Osband et al., 2016; Lakshminarayanan
et al., 2017; Osband et al., 2018; Zhang et al., 2020). For-
mally, we maintain an ensemble of parameters for value
functions: ψ = {ψ1, ..., ψK}, which is randomly initialized
independently,

Value functions vψ : s, g → Vψ(s, g). (6)

We quantify the uncertainty of value functions in predictions
of the ensemble members from the initial state by computing
the variance over the ensemble of the value functions:

Uncertainty U(g) : Var[{Vψ(s0, g)|ψ ∈ {ψ1, ..., ψK}].
(7)

Proposition 1. If Vψ(s0, g) follows a log-concave distribu-
tion, then we have

I(Vψ(s0, g);ψ|s0, g) ≥ log(2
√
Var[Vψ(s0, g)]). (8)

Proof Sketch. We rewrite the mutual information as the dif-
ference between conditional entropy and marginal entropy.
We then use the result in (Marsiglietti & Kostina, 2018)
on a lower bound on the entropy of a log-concave random
variable, expressed in terms of the p-th absolute moment
to obtain the conclusion. The complete proof appears in
Appendix C.

It follows from Proposition 1 that finding a goal which
maximizes the mutual information can be relaxed into the
surrogate problem, which is to select a goal that maximizes
the uncertainty in predictions of an ensemble of value func-
tions when we take K → ∞. With this intuition, one
natural option to sample goals is to compute a goal proba-
bility proportional to the uncertainty p(g) ∝ U(g), where
g ∈ support(pvisitedt ). To prevent goals with lower density
from being frequently proposed, we adopt the Skew strategy
(Pong et al., 2020) which assigns more weight to rare sam-
ples by skewing the goal sampling probability. We therefore
sample goals from the following distribution:

pVUVC
t (g) =

1

Zt,α
U(g)pvisitedt (g)α, α ∈ [−1, 0), (9)

where Zt,α is the normalizing coefficient. We approximate
pvisitedt by training a generative model on samples in the
replay buffer, where we use a β-VAE (Higgins et al., 2017)
in our experiments. We term a VCRL method with a goal
generative model following Equation 9 as VUVC.
Definition 1. (Expected Entropy Increment over Uniform
Curriculum). Given the empirical distribution of the visited
state

pvisitedt (s) =

t∑
i=1

I(si = s)

t
, (10)

where I(·) is an indicator function, uniform curriculum goal
distribution pUt and value uncertainty-based curriculum goal
distribution pVU

t are defined as follows:

pUt (g) = U(support(pvisitedt ))(g), (11)

pVU
t (g) =

1

Zt
U(g)pUt (g), (12)

where Zt is the normalizing coefficient, pUt is uniform over
the support of the pvisitedt and U(g) is the value uncertainty.
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Figure 3. Learning curves for configuration-based point maze navigation tasks (top), continuous robot control tasks (middle), and vision-
based continuous robot manipulation tasks (bottom). Mean (SD) of each performance measure over 5 random seeds are reported where
results are smoothed across 10 training epochs for each seed. VUVC consistently outperforms other VCRL variants for all tasks.

Then the expected entropy increment over uniform curricu-
lum It is defined as

It = Eg∼pVU
t

[H(pvisitedt+1 )]− Eg∼pUt [H(p
visited
t+1 )]. (13)

To study the asymptotic behavior of the expected next step
entropy induced by VUVC, we define the expected entropy
increment over uniform curriculum in Equation 13 for the
case of discrete state space. However, computing the em-
pirical distribution of the next visited state pvisitedt+1 requires
marginalizing out the MDP dynamics which is intractable
to compute. Therefore, we consider two special cases when
(1) an agent always reaches the goal in Proposition 2 and
(2) an agent sometimes fails to reach goals but potentially
increases the amount of entropy in Proposition 3.

Proposition 2. Given ϵ = 1
t and ρπθ (s|g) = I(s = g), if

Cov[U(g), log pvisitedt (g)] ≤ 0, (14)

and take ϵ→ 0, then we have,

lim
ϵ→0

∂

∂ϵ
It =

lim
ϵ→0

∂

∂ϵ

(
Eg∼pVU

t
[H(pvisitedt+1 )]− Eg∼pUt [H(p

visited
t+1 )]

)
> 0.

(15)

Proof Sketch. We begin by deriving a next step empirical
distribution of the visited state given a curriculum goal g and

a stationary state distribution induced by the policy ρπθ (s|g),
which can be written as pvisitedt+1 (s) =

pvisitedt (s)+ϵρπθ (s|g)
1+ϵ .

Plugging this back into Definition 1, we analyze asymptotic
behavior of the expected entropy increment and obtain the
conclusion with the assumption ρπθ (s|g) = I(s = g). The
complete proof is provided in Appendix C.

With an accurate goal-conditioned policy and the model of
dynamics, Proposition 2 gives us intuition that our VUVC is
at least better than the uniform curriculum which Skew-Fit
aims to converge to, if the uncertainty of the learned value
functions U(g) and the log density of pvisitedt are negatively
correlated. We expect this negative correlation to happen
frequently, since the uncertainty is positive for novel states,
but it eventually reduces to zero with a sufficiently large
number of samples.
Proposition 3. Define the set G = Gexploit∪Guninfo∪Ginfo
and positive constant ∆1,∆2 where

ρπθ (s|g) =


I(s = g) for g ∈ Gexploit
ρπθ

uninfo(s|g) for g ∈ Guninfo
ρπθ

info(s|g) for g ∈ Ginfo,
(16)

for all g ∈ Guninfo,

Es∼ρπθ
uninfo(s|g)

[log pvisitedt (s)] = log pvisitedt (g) + ∆1,

and for all g ∈ Ginfo,

Es∼ρπθ
info(s|g)

[log pvisitedt (s)] = log pvisitedt (g)−∆2.
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Figure 4. An illustration of the relation between value uncertainty
and log density of visited states (left) and the landscape of value
uncertainty (middle) and success rate (right).

Given ϵ = 1
t , if

Cov[U(g), log pvisitedt (g)] ≤ 0,

Eg∈Guninfo
[pVU
t (g)] ≤ Eg∈Guninfo

[pUt (g)],

Eg∈Ginfo
[pVU
t (g)] ≥ Eg∈Ginfo

[pUt (g)],

and take ϵ→ 0, then we have,

lim
ϵ→0

∂

∂ϵ
It =

lim
ϵ→0

∂

∂ϵ

(
Eg∼pVU

t
[H(pvisitedt+1 )]− Eg∼pUt [H(p

visited
t+1 )]

)
> 0.

Proof Sketch. The proof proceeds in a similar manner as
Proposition 2 except for an assumption G = Gexploit ∪
Guninfo ∪ Ginfo. The complete proof is in Appendix C.

Proposition 3 extends Proposition 2 to the case where the
goal-conditioned policy is sub-optimal and fails to achieve
some of the goals. It implies that we need a curriculum
method which can filter out uninformative states when the
policy can not consistently achieve certain states, in order
to achieve a rapid increment of entropy. Empirical observa-
tions indicate that VUVC achieves this effect (further details
provided in Section 5).

5. Experiments
5.1. Experimental Setup and Baselines

We validate the effectiveness of VUVC on 10 different en-
vironments. They consist of point maze navigation tasks
(Zhang et al., 2020; Trott et al., 2019), configuration-based
robot control tasks (Plappert et al., 2018), and vision-based
robot manipulation tasks (Nair et al., 2018) which are shown
in Figure 2. Especially, for configuration-based robot tasks,
we modify the initial state and goal distribution following
from the prior work (Ren et al., 2019) to consider more com-
plicated tasks which require extensive exploration. Further
details of experimental setups are presented in Appendix D.

By comparing VUVC to HER (Andrychowicz et al., 2017),
we study how effectively explicit curriculum improves sam-
ple efficiency over implicit curriculum. We examine how
well value uncertainty curriculum goals encourages explo-
ration over goals from GoalGAN (Florensa et al., 2018)
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Figure 5. Curriculum goal distribution and accumulated visited
states. The red contour line illustrates the curriculum goal distribu-
tions and cyan dots represent visited states by the agent. VUVC
covers the state space significantly faster than the baselines.

which generates goals by measuring task difficulty through
success rate, over goals from DIAYN (Eysenbach et al.,
2019) which divides the visited state space into separate
sections for each skill, or over goals from RIG (Nair et al.,
2018) and Skew-Fit (Pong et al., 2020) which sample goals
from the density estimate. We also investigate the impor-
tance of gradually increasing state coverage for the goal
distribution by comparing it to EDL (Campos et al., 2020),
and investigate how efficiently VUVC increases the visited
state entropy.

5.2. Comparison of Sample Efficiency

We compare the number of required samples for task com-
pletion in various environments which are based on either
configuration observation or image observation. Our ex-
perimental results illustrated in Figure 3 show that VUVC
outperforms a variety of VCRL variants. Note that although
EDL and EDL-Oracle take advantage of an additional train-
ing phase, VUVC outperforms them.
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Point Maze Navigation Tasks VUVC successfully ac-
complishes all tasks, while some baseline methods fail. Es-
pecially in the complicated PointMazeSquareLarge environ-
ment, VUVC requires much less interaction for task com-
pletion. This result suggests the importance of an elaborate
curriculum goal distribution in comparison to GoalGAN
or Skew-Fit and emphasizes the importance of a gradually
increasing state covering goal distribution when compared
to EDL and EDL-Oracle.

Configuration-based Robotic Manipulation Tasks In
all three tasks, VUVC significantly outperforms all base-
lines. It is also noteworthy that VUVC performs better than
EDL-Oracle, even though our method does not make an ex-
cessive assumption (i.e., the need for an oracle uniform goal
sampler). In comparison to Skew-Fit which also generates
goals from a non-stationary distribution, the success rate
of VUVC increases much faster. This result indicates to us
that our method increases the entropy of the visited state
distribution more efficiently than Skew-Fit.

Vision-based Robotic Manipulation Tasks VUVC
presents the best performance compared to other VCRL
variants in image observation environments. We train a pol-
icy in a latent space instead of directly training in an image
space, as it has been shown that this solves RL problems in
an image space efficiently (Nair et al., 2018), where an en-
coder of state density estimate model for a goal generator is
used for a mapping function from an image observation to a
latent observation. Even in a poorly-structured observation
space, Figure 3 shows that VUVC consistently outperforms
a variety of baseline methods. Note that DIAYN struggles in
the SawyerDoorHook and SawyerPickup tasks as its policy
remain close to the initial state during the training phase.

5.3. Impact of the Value Uncertainty

To see the effects of the value uncertainty in the curriculum,
in Figure 4, we investigate (1) how the value uncertainty
U(g) and log density of visited states pvisitedt are correlated,
and (2) how well the value uncertainty filters out uninfor-
mative states. In general, we observe that U(g) and pvisitedt

show negative correlation, indicating that VUVC covers
the state space faster than the uniform curriculum for the
optimal goal-conditioned policy as the regularity condition
of Proposition 2 holds empirically. In addition to this, we
observe a case which satisfies the regularity condition of
Proposition 3 from the landscape visualization, implying
that our method is more effective than the uniform curricu-
lum. Uncertainty is low for easily reachable goals (yellow
in the success rate landscape) as well as barely reachable
goals (purple). On the other hand, uncertainty of goals that
are moderately reachable (green) is high, which indicates
that the value uncertainty focuses more on informative goals
and results in better performance as we see in Figure 3.

Figure 6. An illustrative example of how we utilize a global planner
to generate a subgoal for our real robot platform.
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Figure 7. Building-scale navigation task with a real-world robot
without (top left) and with global planner (top right). (Bottom)
Evaluation on reaching the target goal.

5.4. Extensive Exploration for State Coverage

We next evaluate the effectiveness of our method by qual-
itatively comparing the speed of state coverage of each
method in the PointMazeSquareLarge environment. Figure
5 demonstrates that VUVC efficiently increases the visited
state entropy by considering the value uncertainty. Further-
more, after a sufficient number of exploration steps, the
curriculum goal distribution induced by VUVC approaches
a uniform distribution as the value uncertainty for every
state converges to a consistent value. The results for other
tasks are presented in Appendix F.3.

5.5. Deploying Skills on the Real-world Robot

We evaluate our method in a building-scale navigation task
on the Husky A200 mobile robot which detects obstacles
using a LiDAR sensor. We first apply our algorithm in a
2D navigation environment, and deploy learned navigation
skills directly on the real robot in a zero-shot setup. Figures
6 and 7 show that the learned navigation skill can be di-
rectly used on our real-world robot without a manual design
of complex reward functions and curriculum. We further
demonstrate that combining learned navigation skills with

7
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the help of a global planner improves navigation perfor-
mance. The learned skill aims to reach the local goal gt that
is dlocal away from the robot on the trajectory generated by
the global planner. Figure 7 demonstrates that the learned
skill combined with the global planner reaches the goal
faster (solid line) than the learned skill itself (dashed line).
Detailed description of the real-world experiment setup can
be found in Appendix F.2.

6. Related Work
6.1. Curriculum RL

In GCRL, a goal relabeling scheme which samples goals
from failed trajectories is proposed as an implicit curriculum
method (Andrychowicz et al., 2017; Fang et al., 2018; Liu
et al., 2018; Ding et al., 2019; Fang et al., 2019; Nair et al.,
2018). Another line of work investigates curriculum genera-
tion methods that consider task difficulty. These methods
explicitly model a curriculum generative model, generat-
ing goals based on task difficulty (Florensa et al., 2018;
Racaniere et al., 2019), competence progress (Fournier et al.,
2018), utilization of an additional agent (Narvekar & Stone,
2019), maximization of achieved goal distribution entropy
with heuristic (Pitis et al., 2020), or progressive updating
towards a predefined target distribution (Klink et al., 2020).
However, prior works do not provide theoretical justification
(Florensa et al., 2018; Racaniere et al., 2019), are limited to
a given target distribution (Fournier et al., 2018; Narvekar &
Stone, 2019; Klink et al., 2020), or depend on manually en-
gineered heuristics (Pitis et al., 2020). The notion of uncer-
tainty has been also considered in VDS (Zhang et al., 2020)
which measures the uncertainty of the Q-functions to sam-
ple curriculum goals. However, this work lacks theoretical
justification and assumes an oracle goal sampler accessing
a uniform distribution over all valid states in a state space,
which artificially ignores exploration problems by resetting
the agent to any state in the environment, whereas our work
does not require such an assumption.

6.2. Empowerment and Unsupervised Skill Learning

Recent studies on empowerment have studied the forms of
mutual information-based objectives to learn state-covering
skills (Campos et al., 2020; Pong et al., 2020), promote skill
diversity (Achiam et al., 2018; Eysenbach et al., 2019; Liu
et al., 2022), learn non-parametric reward functions (Warde-
Farley et al., 2019), establish meta-training task distributions
(Jabri et al., 2019), incorporate skill-transition dynamics
models along with skill-conditioned policies for a model-
based planning (Sharma et al., 2019), and enhance general-
ization through the successor feature framework (Hansen
et al., 2020; Liu & Abbeel, 2021a). In addition, a number
of works have studied how to extend empowerment to high-
dimensional image space by using a non-parametric nearest

neighbor to estimate entropy (Liu & Abbeel, 2021b; Yarats
et al., 2021; Seo et al., 2021). However, most of this research
assumes a fixed stationary distribution over skills (or goals)
and there has been little exploration regarding the form of
skill (or goal) distribution p(z) (or p(g)). Compared to prior
empowerment approaches, we investigate the effectiveness
of curriculum skill distribution.

6.3. Uncertainty Quantification in RL

Measures of uncertainty have played a key role in RL. Boot-
strapped DQN (Osband et al., 2016) uses a bootstrapping
method to estimate the uncertainty of the Q-value, and uti-
lizes it for efficient exploration. Plan2Explore (Sekar et al.,
2020) leverages an ensemble of one-step predictive models
to guide the exploration. Both bootstrapping and dropout
methods are used to measure the uncertainty of the collision
prediction model for safe navigation (Kahn et al., 2017).
PBP-RNN (Benatan & Pyzer-Knapp, 2019) uses probabilis-
tic backpropagation as an alternative to quantify uncertainty
within a safe RL scenario. PETS (Chua et al., 2018) employs
trajectory sampling with probabilistic dynamics models to
bridge gap model-based RL and model-free RL.

6.4. Intrinsic Reward and Exploration

In a tabular setting, visit counts can be used as exploration
bonus to encourage exploration (Strehl & Littman, 2008).
Count-based exploration methods are further extended to
non-tabular setting by introducing the pseudo-count (Belle-
mare et al., 2016; Ostrovski et al., 2017) or successor rep-
resentation (Machado et al., 2020). Another common ap-
proach guides the agent based on prediction errors. For
instance, squared prediction error in learned dynamics mod-
els is used as exploration bonus (Stadie et al., 2015). RND
(Burda et al., 2019) uses errors in a randomly generated pre-
diction problem that predicts the output of a fixed randomly
initialized neural network given the observations. Our work
enables agents to reach any previously visited states by
learning goal-conditioned policies that cover the entire goal
space. In contrast, exploration bonuses help agents visit
novel states, but they cannot reuse learned policies to solve
user-specified goals as those states are quickly forgotten.

7. Conclusion
We provide the unifying framework VCRL which recasts
MI-based RL as curriculum learning in goal-conditioned
RL. Under VCRL framework, we propose a novel approach
VUVC for unsupervised discovery of skills which utilizes
a value uncertainty for an increment in the entropy of the
visited state distribution. Under regularity conditions, we
prove that VUVC improves the expected entropy more than
the uniform curriculum method. Our experimental results
demonstrate that VUVC consistently outperforms a variety
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of prior methods both on configuration-based and vision-
based continuous robot manipulation tasks. We also demon-
strate that VUVC enables a real-world robot to learn to
navigate in a long-range environment without any explicit
rewards, and that incorporating skills with a global planner
further improves the performance.

Acknowledgements
This work was supported by the Industry Core Technology
Development Project, 20005062, Development of Artificial
Intelligence Robot Autonomous Navigation Technology for
Agile Movement in Crowded Space, funded by the Ministry
of Trade, Industry & Energy (MOTIE, Republic of Korea)
and by Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2022-0-00984, Develop-
ment of Artificial Intelligence Technology for Personalized
Plug-and-Play Explanation and Verification of Explanation,
No.2019-0-00075, Artificial Intelligence Graduate School
Program (KAIST)).

References
Achiam, J., Edwards, H., Amodei, D., and Abbeel, P.

Variational option discovery algorithms. arXiv preprint
arXiv:1807.10299, 2018.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in Neural Information Processing Systems (NeurIPS),
30, 2017.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. Advances in Neural
Information Processing Systems (NeurIPS), 29, 2016.

Benatan, M. and Pyzer-Knapp, E. O. Fully bayesian re-
current neural networks for safe reinforcement learning.
arXiv preprint arXiv:1911.03308, 2019.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Explo-
ration by random network distillation. In International
Conference on Learning Representations (ICLR), 2019.

Campos, V., Trott, A., Xiong, C., Socher, R., Giró-i Nieto,
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A. Limitations
We summarize the limitations of our work as follows:

• Although VUVC demonstrates significant improvements in both sample efficiency and the ability to cover the state
space, the quantitative experimental results suggest that divergence during training is a potential problem, particularly
in tasks such as FetchPickAndPlace, which has a higher dimensionality of state space compared to others. It is likely
that divergence occurs in this task when there are states in a confined space that exhibit high value uncertainty, causing
VUVC to focus on sampling goals around these states for a certain period of time.

• Demonstrating that the regularity conditions of Proposition 2 and 3 hold is limited in empirical study (see Figure 4).
Therefore, it is an appealing research direction to rigorously show the regularity conditions hold.

• In our experiment, we consider a fixed initial state. Even though the core concept of our approach, which estimates
the uncertainty of the learned value functions, remains applicable to variable initial states, its performance might be
affected negatively due to the increased training data required to handle a wide range of initial states. We have not yet
validated the scalability of our approach in environments with non-fixed initial states, and leave it as future work.

B. Relationship with Active Inference
Our work is also related to active inference (Friston et al., 2016; 2021; Parr et al., 2022). Active inference can play a
crucial role in the context of world models, as it allows the agent to update its beliefs based on the actions performed by
changing the gathered observations. For example, to efficiently learn a world model, Plan2Explore (Sekar et al., 2020) and
LEXA (Mendonca et al., 2021) agents seeks out surprising states by leveraging ensembles of world models to guide their
exploration. This can be related to our approach, VUVC, which seek out goals that the agent learns the most from. Moreover,
in our approach, we focus on maximizing state-marginal mutual information I(s; z), but if we maximize state-predictive
mutual information I(s′; z|s), as in the DADS method (Sharma et al., 2019), we would learn skill-transition dynamics
models, which might be considered as world models. From an active inference perspective, this could lead the agent to
select actions and collect observations in a manner that reduces the uncertainty associated with skill-transition dynamics.

C. Proofs
Proposition 1. If Vψ(s0, g) follows a log-concave distribution, then we have

I(Vψ(s0, g);ψ|s0, g) ≥ log(2
√
Var[Vψ(s0, g)]). (8)

Proof. The mutual information can be rewritten as the difference between conditional entropy and marginal entropy, which
correspond to, respectively, the aleatoric uncertainty and predictive entropy:

I(Vψ(s0, g);ψ|s0, g) = H(Vψ(s0, g)|s0, g)−H(Vψ(s0, g)|ψ, s0, g). (17)

When the value function is deterministic with zero variance, maximizing the mutual information is equal to maximizing
the marginal entropy. As shown in (Marsiglietti & Kostina, 2018), a lower bound on the entropy of a log-concave random
variable can be derived in terms of the p-th absolute moment:

H(Vψ(s0, g)|s0, g) ≥ log

(
2∥Vψ(s0, g)− E[Vψ(s0, g)]∥p

Γ(p+ 1)
1
p

)
, (18)

where Γ denotes the Gamma function. Moreover, for p = 2, the bound tightens as

H(Vψ(s0, g)|s0, g) ≥ log(2
√

Var[Vψ(s0, g)]), (19)

which implies selecting a skill/goal that maximizes the disagreement in predictions of an ensemble of value functions is
equivalent to maximizing the lower bound approximation of the mutual information.
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Proposition 2. Given ϵ = 1
t and ρπθ (s|g) = I(s = g), if

Cov[U(g), log pvisitedt (g)] ≤ 0, (14)

and take ϵ→ 0, then we have,

lim
ϵ→0

∂

∂ϵ
It =

lim
ϵ→0

∂

∂ϵ

(
Eg∼pVU

t
[H(pvisitedt+1 )]− Eg∼pUt [H(p

visited
t+1 )]

)
> 0. (15)

Proof. Given a visited state s′ at time t+ 1, the next step empirical distribution of the visited state can be written as

pvisitedt+1 (s|s′) = pvisitedt (s) + ϵI[s = s′]

1 + ϵ
. (20)

With a curriculum goal g and a stationary state distribution induced by the policy ρπθ (s|g), a next step empirical distribution
of the visited state can be written as

pvisitedt+1 (s) =
∑
s′

pvisitedt+1 (s|s′)ρπθ (s′|g)

=
∑
s′

ρπθ (s′|g)
(
pvisitedt (s) + ϵI[s = s′]

1 + ϵ

)
=
pvisitedt (s) + ϵρπθ (s|g)

1 + ϵ
. (21)

Substituting the expression of pvisitedt+1 (s) into entropy increment over uniform curriculum gives

It = Eg∼pVU
t

[H(pvisitedt+1 )]− Eg∼pUt [H(p
visited
t+1 )]

=
∑
g

(pVU
t (g)− pUt (g))

∑
s

−p
visited
t (s) + ϵρπθ (s|g)

1 + ϵ
log

pvisitedt (s) + ϵρπθ (s|g)
1 + ϵ

. (22)

We take the derivative with respect to ϵ and consider the asymptotic behavior where ϵ→ 0:

lim
ϵ→0

∂

∂ϵ
It

=
∑
g

(pVU
t (g)− pUt (g))

∑
s

lim
ϵ→0

∂

∂ϵ
− pvisitedt (s) + ϵρπθ (s|g)

1 + ϵ
log

pvisitedt (s) + ϵρπθ (s|g)
1 + ϵ

=
∑
g

(pVU
t (g)− pUt (g))

∑
s

lim
ϵ→0
− 1

1 + ϵ2

(
(ρπθ (s|g)− pvisitedt (s))(log

pvisitedt (s) + ϵρπθ (s|g)
1 + ϵ

+ 1)

)
=
∑
g

(pVU
t (g)− pUt (g))

∑
s

−(ρπθ (s|g)− pvisitedt (s))(log pvisitedt (s) + 1)

=
∑
g

(pVU
t (g)− pUt (g))

∑
s

(
−ρπθ (s|g) log pvisitedt (s) + pvisitedt (s) log pvisitedt (s)

)
.
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Substituting ρπθ (s|g) = I(s = g) simplifies

lim
ϵ→0

∂

∂ϵ
It =

∑
g

(pVU
t (g)− pUt (g))

∑
s

(
−I[s = g] log pvisitedt (s) + pvisitedt (s) log pvisitedt (s)

)
=
∑
g

(pVU
t (g)− pUt (g))(− log pvisitedt (g)− E[− log pvisitedt (g)])

= −
∑
g

(pVU
t (g)− E[pVU

t (g)])(log pvisitedt (g)− E[log pvisitedt (g)])

+
∑
g

(pUt (g)− E[pUt (g)])(log pvisitedt (g)− E[log pvisitedt (g)])

= −Cov[U(g), log pvisitedt (g)],

where we use the fact that pVU
t (g) = 1

Zt
pUt (g)U(g) and pUt (g) = E[pUt (g)] for all g. Thus we can complete the proof.

Proposition 3. Define the set G = Gexploit ∪ Guninfo ∪ Ginfo and positive constant ∆1,∆2 where

ρπθ (s|g) =


I(s = g) for g ∈ Gexploit
ρπθ

uninfo(s|g) for g ∈ Guninfo
ρπθ

info(s|g) for g ∈ Ginfo,
(16)

for all g ∈ Guninfo,

Es∼ρπθ
uninfo(s|g)

[log pvisitedt (s)] = log pvisitedt (g) + ∆1,

and for all g ∈ Ginfo,

Es∼ρπθ
info(s|g)

[log pvisitedt (s)] = log pvisitedt (g)−∆2.

Given ϵ = 1
t , if

Cov[U(g), log pvisitedt (g)] ≤ 0,

Eg∈Guninfo
[pVU
t (g)] ≤ Eg∈Guninfo

[pUt (g)],

Eg∈Ginfo
[pVU
t (g)] ≥ Eg∈Ginfo

[pUt (g)],

and take ϵ→ 0, then we have,

lim
ϵ→0

∂

∂ϵ
It =

lim
ϵ→0

∂

∂ϵ

(
Eg∼pVU

t
[H(pvisitedt+1 )]− Eg∼pUt [H(p

visited
t+1 )]

)
> 0.

Proof. We substitute the G = Gexploit ∪ Guninfo ∪ Ginfo into the entropy increment over uniform curriculum and expand the
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expression:

lim
ϵ→0

∂

∂ϵ
It

=
∑

g∈Gexploit

(pVU
t (g)− pUt (g))

∑
s

(
−I[s = g] log pvisitedt (s) + pvisitedt (s) log pvisitedt (s)

)
+

∑
g∈Guninfo

(pVU
t (g)− pUt (g))

∑
s

(
−ρπθ

uninfo(s|g) log p
visited
t (s) + pvisitedt (s) log pvisitedt (s)

)
+

∑
g∈Ginfo

(pVU
t (g)− pUt (g))

∑
s

(
−ρπθ

info(s|g) log p
visited
t (s) + pvisitedt (s) log pvisitedt (s)

)
=
∑
g∈G

(pVU
t (g)− pUt (g))

∑
s

(
−I[s = g] log pvisitedt (s) + pvisitedt (s) log pvisitedt (s)

)
+

∑
g∈Guninfo

(pVU
t (g)− pUt (g))

(
log pvisitedt (g)−

∑
s

ρπθ (s|g) log pvisitedt (s)

)

+
∑

g∈Ginfo

(pVU
t (g)− pUt (g))

(
log pvisitedt (g)−

∑
s

ρπθ (s|g) log pvisitedt (s)

)
= −Cov[U(g), log pvisitedt (g)]−∆1 ·

∑
g∈Guninfo

(pVU
t (g)− pUt (g)) + ∆2 ·

∑
g∈Ginfo

(pVU
t (g)− pUt (g))

Following the assumptions, we can conclude the proof.

D. Experimental Setup Details
D.1. Environments

As we described, we adopt the point mazes from the prior works (Zhang et al., 2020; Trott et al., 2019). Following these
works, an agent observes a position of a point and takes action given a 2-dimensional goal position. For configuration-based
robotic manipulation tasks, we utilize Fetch environments (Plappert et al., 2018) whose initial and goal distribution are
modified to consider more complicated tasks, following the prior work (Ren et al., 2019). In these environments, an
observation includes gripper position and velocity, gripper state, and object position and velocity. Given a 3-dimensional
desired object position as a goal, it takes action to move its end-effector in Cartesian coordinates and open/close the gripper.
For vision-based manipulation tasks, we adopt Sawyer environments (Nair et al., 2018) which manipulate a 7-DoF Sawyer
robotic arm solely from a visual input without any explicit positional information of either a robotic arm or an object. A task
to solve is given as a desired goal image which the agent should match its observation image with. HuskyNavigate is the
environment in which we train navigation skills that we deployed on the real robot. An observation consists of the raw 2D
laser measurements, the relative goal position, and current robot velocity. Given a 2-dimensional goal position, an action
command which consists of linear velocity and angular velocity is given to the robot. Details about the environments are
summarized in Table 2.

Parameter all PointMaze all Fetch SawyerDoorHook SawyerPickup SawyerPush HuskyNavigate

State space S ∈ R2 ∈ R25 ∈ R48×48×3 ∈ R48×48×3 ∈ R48×48×3 ∈ R364

Action space A ∈ R2 ∈ R4 ∈ R3 ∈ R3 ∈ R2 ∈ R2

Goal space G ∈ R2 ∈ R3 ∈ R48×48×3 ∈ R48×48×3 ∈ R48×48×3 ∈ R2

Episode length 50 50 100 50 50 1000

Table 2. Environment details for each experiment.

D.2. Baseline Algorithms

We evaluate sample efficiency and state coverage speed of VUVC compared to the following baseline methods:
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• Hindsight Experience Replay (HER) (Andrychowicz et al., 2017): HER is a naı̈ve goal-conditioned RL method. The
key idea of HER is to construct implicit curriculum goals by revisiting previous states in the experience replay. By
storing additional trajectories using these curriculum goals, HER generates reward signals, even in situations where the
initial sparse reward fails to provide meaningful feedback.

• Reinforcement learning with Imagined Goals (RIG) (Nair et al., 2018): RIG trains a goal-conditioned policy in an
unsupervised manner by estimating the visited state distribution and automatically setting curriculum goals sampled
from this distribution.

• GoalGAN (Florensa et al., 2018): GoalGAN encourages an agent to explore by suggesting curriculum goals from
the generative model (Mao et al., 2017). To encourage an agent to explore the environment, it generates goals of
intermediate difficulty where the difficulty of task (or goal) is measured from a success rate over some number of trials
to solve the task. In vision-based robotic manipulation tasks, we compute the success rate in the latent space where an
encoder is inherited from RIG which adopts a VAE as a state density estimate model.

• Diversity Is All You Need (DIAYN) (Eysenbach et al., 2019): DIAYN learns a latent skill based on mutual information
maximization between skills and visited states with policy entropy regularization. It also reduces the mutual information
between actions and skills, given the state, in order to separate the skills from each other, and partitions the visited state
space into separate sections for each skill, each of which has a uniform stationary prior distribution.

• Explore, Discover and Learn (EDL) (Campos et al., 2020): EDL overcomes the limitation of existing variational
empowerment methods which provide a poor coverage of the state space. Unlike RIG which makes use of the current
goal-conditioned policy to approximate the state distribution, EDL utilizes a fixed uniform distribution over all S
which would require an oracle sampler from the set of valid states. If the oracle is unavailable, an exploration policy
is employed to induce the uniform distribution across valid states. The skill (or goal) distribution is inferred from
this uniform state distribution by using a VAE. Then, the state-covering policy is trained based on the learned skill
distribution following the variational empowerment objective.

• Skew-Fit (Pong et al., 2020): Skew-Fit aims to achieve a general-purpose policy that can accomplish new user-specified
goals, in an unsupervised manner. To achieve such goal-conditioned policy, Skew-Fit estimates the visited state
distribution like RIG, and skews this distribution with the negative exponent so that the skewed distribution converges
to a uniform distribution over states. Under the assumption that the goal space is equivalent to the state space, goals are
sampled from the skewed distribution when training, which implies that the goal distribution is non-stationary as the
visited state space gets larger.

E. Implementation Details and Hyperparameters
For all experiments, the agents are trained with SAC (Haarnoja et al., 2018) with an automatically tuned entropy coefficient.
During the training of the RL agent, we relabel transitions with goals by sampling from the curriculum goal distribution with
probability 0.5 and the future goals with probability 0.3. We use β-VAE for both modeling a state density and computing an
intrinsic reward, log qλ(g|s). For DIAYN, we use a fixed set of 100 skills. To evaluate DIAYN’s goal-reaching performance,
we estimate the target skill from the desired goal using a discriminator. This estimated skill is then used as the goal for
goal-conditioned policy. For RIG and Skew-Fit in Sawyer experiments, we use hyperparameters inherited from the official
implementation of Skew-Fit (Pong et al., 2019). For the PointMaze and Fetch experiments, we add exploration noise into
the action after a goal is reached by following the Go-Explore (Ecoffet et al., 2019) and normalize the observations using
a running mean and standard deviation. For the Sawyer experiment, we normalize the image observations to be in the
interval [0, 1] by dividing by the maximum pixel intensity. Normalization is especially crucial for training β-VAE on all
environments. For training an exploration policy in EDL, we use the entropy of the marginal state distribution (Co-Reyes
et al., 2018; Islam et al., 2019) as a reward to encourage the agent to visit less visited states more.

The training time on a single NVIDIA Quadro 8000 GPU can range from 6 to 30 hours depending on the task and the
situation.

github.com/rail-berkeley/rlkit
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Hyperparameter Value

Discount factor 0.98
Replay buffer size 1000000

Episode length 50
RL batch size 2048

Observation normalization {Yes, No}
Polyak averaging coefficient for target networks {0.001, 0.005}

Policy hidden activation ReLU
Policy learning rate {0.0003, 0.001, 0.003}

Q-Function hidden activation ReLU
Q-Function learning rate {0.0003, 0.001, 0.003}

Ensemble size for quantifying value uncertainty {3, 5, 7}
VAE batch size 256

VAE latent dimension size 2
VAE encoder activation ReLU
VAE decoder activation ReLU

VAE learning rate {0.0003, 0.001, 0.003}
β for β-VAE {5, 10, 20}
α for Skew -1

Table 3. General hyperparameters used for all PointMaze and Fetch experiments. Values between brackets are tuned independently using a
grid search.

Hyperparameter all PointMaze FetchPush/PickAndPlace FetchSlide

Minimum # steps in replay buffer before training 5000 {5000, 20000, 50000} {5000, 20000, 50000}

Table 4. Specific hyperparameters for all PointMaze and Fetch experiments. Values between brackets are tuned independently using a grid
search.

F. Additional Experiments
F.1. Ablation Study: Ensemble Size

To study the robustness of the ensemble size for quantifying value uncertainty, we compare the ensemble size of 3, 5, and 7
in PointMazeSquareLarge whose results are shown in Figure 8. As illustrated in Figure 8, the performance of VUVC with
different ensemble size does not differ substantially.

F.2. Real-World Robot Experiments

Setup The training of our navigation policy is performed using an OpenAI-gym-compatible simulator that we specially
design to integrate it into the robot operating system (ROS). We generate an indoor map (Kastner et al., 2022) of size 25m ×
25m, as shown in Figure 9, and simulate a robot with a 360◦ field of view 2D LiDAR sensor with a resolution set to 512.
We also pre-define a collision threshold, where the agent would be notified of a collision if the sensor measurement is within
the threshold. The navigation policy samples an action at ∈ R2, consisting of linear velocity vt ∈ [0.0, 0.5] and angular
velocity wt ∈ [−0.64, 0.64], at 5Hz.

We illustrate an example of how VUVC can be used to assist a 2D mobile robot with its navigation task using a laser
sensor whose training environment and results are shown in Figure 9. By using VUVC, the robot is able to extensively
cover the state space, eventually reaching the full state space that would have otherwise been impossible to achieve without
detouring through long-range navigation. In this environment, our method successfully discovers skills which enable a robot
to complete a real-world navigation task in a zero-shot setup, and which can be incorporated with a global planner that
further expands reachable distance.

Simulator is available at github.com/leekwoon/nav-gym
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Hyperparameter Value

Discount factor 0.99
Replay buffer size 100000

RL batch size 1024
Policy hidden activation ReLU

Policy learning rate 0.001
Q-Function hidden activation ReLU

Q-Function learning rate 0.001
Ensemble size for quantifying value uncertainty 3

VAE batch size 64

Table 5. General hyperparameters used for all Sawyer experiments.

Hyperparameter SawyerDoorHook SawyerPickup SawyerPush

Episode length 100 50 50
VAE latent dimension size 16 16 4

β for β-VAE 20 30 20
α for Skew -0.5 -1 -1

Table 6. Specific hyperparameters for the Sawyer experiments.

To evaluate the performance of the trained policy on a real robot, we deploy skills on a real Husky A200 mobile robot in
the building which is depicted in the left of Figure 6. The local goal gt is selected to be dlocal away from the robot on the
trajectory generated by the global planner, which utilizes the A* algorithm, at 2Hz. To clarify, we update a global plan from
the A* algorithm where gt is selected, and pass gt to the goal-conditioned policy. We evaluate the performance of the trained
policy in the simulator using two key metrics: 1) the robot’s success in reaching the target goal and 2) the time required to
traverse to it, as shown at the bottom of Figure 7. We compare these metrics for skills with and without a global planner. For
navigation skills without a global planner, a fixed target goal is given, while for skills with a global planner, gt is given. In a
zero-shot setup, the robot is able to successfully navigate to two target goals (red and green stars) located 13m and 22m
away from its initial position, respectively, without the use of a global planner. When assisted by a global planner, the robot
is able to reach a farthest goal (a blue star) located 31m away from the initial position. Notably, the traverse time to the
closest and intermediate goals are reduced from 43 seconds to 33 seconds and from 101 seconds to 67 seconds, respectively.
These results demonstrate the effectiveness of our approach in the real-world.
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Figure 8. Learning curves for configuration-based point maze navigation task when the ensemble size is 3, 5, and 7, respectively. Mean
(SD) of success rate over 5 random seeds are reported.
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Figure 9. A simulation environment for training a mobile robot (left) and accumulated visited states for every 100 epoch (right). We
illustrate an example of how VUVC can be used to assist a 2D mobile robot with its navigation task using a laser sensor. By using VUVC,
the robot is able to cover more of the state space, eventually reaching the full state space that would have otherwise been impossible to
achieve without detouring through long-range navigation.
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F.3. Additional Results

Figure 10∼18 demonstrate the curriculum goal distribution and how it changes in the point navigation environments as well
as in the robotic manipulation environments which we omit due to space constraint.
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Figure 10. (PointMazeA) Curriculum goal distribution and accumulated visited states for a fixed seed for each method. The red contour
line illustrates the curriculum goal distribution and cyan dots represent visited states by the agent.
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Figure 11. (PointMazeB) Curriculum goal distribution and accumulated visited states for a fixed seed for each method. The red contour
line illustrates the curriculum goal distribution and cyan dots represent visited states by the agent.
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Figure 12. (PointMazeC) Curriculum goal distribution and accumulated visited states for a fixed seed for each method. The red contour
line illustrates the curriculum goal distribution and cyan dots represent visited states by the agent.
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Figure 13. (FetchPush) Curriculum goal distribution and accumulated visited states for a fixed seed for each method. The red contour line
illustrates the curriculum goal distribution and cyan dots represent visited states by the agent.
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Figure 14. (FetchSlide) Curriculum goal distribution and accumulated visited states for a fixed seed for each method. The red contour line
illustrates the curriculum goal distribution and cyan dots represent visited states by the agent.
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Figure 15. (FetchPickAndPlace) Curriculum goal distribution and accumulated visited states for a fixed seed for each method. The red
contour line illustrates the curriculum goal distribution and cyan dots represent visited states by the agent.
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Figure 16. (SawyerDoorHook) Examples of curriculum goals for a fixed seed for each method. Latent codes are given as a curriculum
goal and their reconstructed images are illustrated for visualization.
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Figure 17. (SawyerPickup) Examples of curriculum goals for a fixed seed for each method. Latent codes are given as a curriculum goal
and their reconstructed images are illustrated for visualization.
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Figure 18. (SawyerPush) Examples of curriculum goals for a fixed seed for each method. Latent codes are given as a curriculum goal and
their reconstructed images are illustrated for visualization.
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