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ABSTRACT

Time series signal analysis plays an essential role in many applications, e.g.,
activity recognition and healthcare monitoring. Recently, features extracted with
deep neural networks (DNNs) have shown to be more effective than conventional
hand-crafted ones. However, most existing solutions rely solely on the network
to extract information carried in the raw signal, regardless of its inherent physical
and statistical properties, leading to sub-optimal performance particularly under a
limited amount of training data.
In this work, we propose a novel tree-structured wavelet neural network for time
series signal analysis, namely T-WaveNet, taking advantage of an inherent property
of various types of signals, known as the dominant frequency range. Specifically,
with T-WaveNet, we first conduct frequency spectrum energy analysis of the signals
to get a set of dominant frequency subbands. Then, we construct a tree-structured
network that iteratively decomposes the input signal into various frequency sub-
bands with similar energies. Each node on the tree is built with an invertible neural
network (INN) based wavelet transform unit. Such a disentangled representation
learning method facilitates a more effective extraction of the discriminative fea-
tures, as demonstrated with the comprehensive experiments on various real-life
time series classification datasets.

1 INTRODUCTION

Time-varying signal analysis plays a crucial role in various applications. For example, smartwatches
utilize inertial signals for human activity logging (Khan et al., 2019); brain-computer interfaces
employ electroencephalography (EEG) signals to identify user intentions (Zhang et al., 2020; Aut-
thasan et al., 2021); clinical diagnosis systems use surface electromyography signals (sEMG) for
neuromuscular pathological analysis (Duan et al., 2015), and develop muscle-computer interfaces to
control external devices (Pancholi et al., 2021).

The signals mentioned above are all typical time series data (i.e., a set of observations collected and
ordered chronologically) and express information at specific frequency ranges. Generally speaking,
time series signal analysis consists of three steps: (i) data segmentation, wherein the continuous
signals are partitioned into segments using fixed- or variable-sized windows; (ii) feature extraction,
wherein various techniques are applied on each segment to extract distinguishing features; and
(iii) downstream tasks, which generate the desired outputs for certain tasks (e.g., classification and
anomaly detection) with the extracted features.

Among the three steps, feature extraction is usually the most critical one. Traditional feature
extraction approaches for time series signals can be broadly categorized as statistical and structural
methods (Lara et al., 2012). The former utilizes statistical measurements in time- or frequency-
domain to figure out discriminative features, where exemplar time-domain measurements are mean
and variance (Kao et al., 2009; Vepakomma et al., 2015), and typical frequency-domain measurements
include short-time Fourier transform (STFT) and discrete Wavelet transform (DWT) (Jiang & Yin,
2015; Duan et al., 2015)). On the other hand, structural methods aim at describing the morphological
interrelationship among the data via polynomial and/or exponential analysis (Olszewski, 2001).
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While the above hand-crafted features are efficient for some simple signal analysis tasks, their limited
representation capability makes them incapable of dealing with complicated signals contaminated by
noise or artifacts, and hence less competitive in real-world tasks (Chen et al., 2021). Recently, deep
neural networks (DNNs) have become the mainstream approaches for feature extraction in time series
signal analysis. Various DNN models, including CNN-based solutions (Xi et al., 2018; Lawhern
et al., 2018; Lin et al., 2020; Amin et al., 2019), CNN-LSTM combined models (Wang et al., 2020;
Xu et al., 2019; Yuki et al., 2018), and Transformer-based techniques (Song et al., 2021; Li et al.,
2021), are proposed in the literature, achieving promising performance in many tasks.

Despite of the remarkable success of these deep models, most of them place heavy demands on a large
amount of labeled data. However, in many real-world applications, it is difficult and/or expensive to
acquire sufficient labeled data to train these models. In addition, noise and artifacts that commonly
exist in the time series signals make it even harder to obtain discriminative and robust representations.
To the end, it may not fully reveal the superiority of deep models when solely relying on the network
to directly extract information from raw signals. To solve this problem, some works attempt to use
prior knowledge or hand-crafted features to guide the training of the deep learning models, aiming at
extracting more effective features with a limited amount of training data (Ito et al., 2018; Wei et al.,
2019; Laput & Harrison, 2019). However, these methods either simply leverage prior knowledge as
gates to select features or intuitively add some statistical measurements as regularization terms to
the losses, which fail to bring significant improvement. Moreover, designing tailored feature sets for
different kinds of signals is tedious and time-consuming, which severely limits the generalization
capability of such methods. In this regard, a promising way to acquire more discriminative features is
to explore approaches to deeply integrating the inherent properties of the signals into the training
process of the deep learning models.

An inherent property termed as the dominant frequency range has been evidenced in many time series
signals, which is a small subset of the frequency components that carries the primary information
of the signal (Telgarsky, 2013). For instance, more than 95% of human body motion energy exists
in the frequency components below 15 Hz (Karantonis et al., 2006); the informative frequency
ranges in brain signals (EEG) have been discovered and named as δ (0.1-3 Hz) , θ (4-7 Hz), α
(8–13Hz), β (14-30 Hz) and γ (31-100Hz) (CR & MP, 2011). However, most existing deep learning
models are unaware of this essential property, and do not fully consider the different roles of various
frequency components, leading to sub-optimal solutions. Motivated by the above, we propose a novel
tree-structured wavelet neural network, namely T-WaveNet, to extract more effective features from
time-series signals by seamlessly and effectively integrating this property into a deep model. Different
from previous models, the proposed T-WaveNet adaptively represents the dominant energy range of
the input signal with more discriminative features, which can be naturally and easily generalized and
applied to different kinds of time series signals. The main contributions of this work are threefold:

• We perform frequency spectrum energy analysis for signal decomposition in T-WaveNet, wherein
the frequency ranges with more energies are divided into finer-grained subbands and are thus
represented with more dimensions compared with other low-energy frequency ranges in the feature
vector, which facilitates effective learning of informative and discriminative features with a limited
number of potentially noisy training samples.

• To extract the features effectively, we propose a novel invertible neural network (INN) based
wavelet transform as the tree node in the T-WaveNet. Compared to fixed-basis wavelet Haar or
lifting scheme-based wavelet, INN-based wavelet provides better representation capacity owing
to its entirely data-driven characteristic. To the best of our knowledge, this is the first attempt to
model wavelet transform using INN.

• Finally, inspired by the self-attention mechanism in Transformer, we propose an instrumental feature
fusion module which considers the feature dependencies across different frequency components,
thus effectively enhances the robustness of the model by mitigating the impact of the heterogeneity
exists in sensor signals recorded from different subjects.

Extensive experiments on four popular sensor signal datasets, namely UCI-HAR for activity recog-
nition, OPPORTUNITY for gesture recognition, BCICIV2a for intention recognition, and NinaPro
DB1 for muscular movement recognition, show that our T-WaveNet consistently outperforms state-of-
the-art solutions.
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2 RELATED WORK

In this section, we review related work on feature extractions for time series analysis and wavelet
transform modeling using deep learning techniques.

2.1 FEATURE EXTRACTION FOR SIGNAL ANALYSIS

Existing feature extraction methods for time-varying signal analysis can be broadly classified into
hand-crafted and deep learning-based methods, and the former can be further divided into statistical
and structural approaches.

Hand-crafted statistical and structural approaches are widely used in early studies. For instance,
Kao et al. (2009) applies statistical features such as the mean and the mean absolute deviation
(MAD) for online activity detection from a portable device. Duan et al. (2015) performs discrete
wavelet transform on surface-Electromyography (sEMG) signal for hand motion classification. While
relatively easy to calculate, these hand-crafted features are not effective for complicated tasks.

In recent years, DNNs have become the mainstream approaches for signal feature extraction. CNN-
based models are widely used to extract local temporal correlations of time series data. For exam-
ple, Lee et al. (2017) combines multiple CNN layers with different kernel sizes to obtain the temporal
dependencies at various time scales. Lawhern et al. (2018), Lin et al. (2020), and Amin et al. (2019)
utilize CNNs in BCI applications to establish end-to-end EEG decoding models and achieve promising
performance. As CNN-based models are often insufficient for extracting long-term temporal features,
Ordóñez & Roggen (2016), Yuki et al. (2018), and Chambers & Yoder (2020) propose to combine
CNNs with LSTMs to extract both short- and long-term temporal features. Xu et al. (2019) bring
out the Inception CNN structures to extract local temporal features at various time scales and utilize
gated recurrent units (GRUs) to obtain global temporal representations. Recently, Transformer-based
methods utilize the self-attention mechanism to model the global temporal dependencies and shows
superior performance in various tasks. For example, Song et al. (2021) construct a simple yet effective
Transformer-based model to obtain discriminative representations for EEG signal classification. Li
et al. (2021) design a two-stream convolution-augmented transformer to extract features for human
activity recognition, which considers both time-over-channel and channel-over-time dependencies.

The above deep learning based solutions try to extract features directly from the raw signal, which
ignore the unique characteristics of each type of signals (e.g., the frequency spectrum information)
and usually become less effective when training on scarce signal data. Notably, some works try to
alleviate this issue by guiding the DNNs with the traditional time-frequency features such that more
effective deep representations can be learned. For instance, Ito et al. (2018) feed the spectrogram
images constructed from the temporal features of the inertial signals into CNN models to learn
inter-modality features. Laput & Harrison (2019) train a CNN on the time-frequency-spectral features
of the input sensor signal to obtain a fine-grained hand activity sensing system. Furthermore, S et al.
(2019) integrates the Short-Time Fourier Transform into the DNNs to directly learn frequency-domain
features. However, the above solutions often need to design tailored features for different kinds of
signals, which is tedious and time-consuming, and severely limits the application scenarios.

2.2 WAVELET TRANSFORM MODELING

Frequency-domain feature extraction methods such as Fourier or Wavelet transform are more prefer-
able to time-domain ones, since it is usually easier to extract discriminative features in the frequency
domain than directly from the raw input signal. Compared with Fourier transform, which decomposes
a signal into fixed frequency components, Wavelet transform is shown to have excellent properties
for transient signal analysis, thanks to its capability to analyze signals at different frequencies with
various time resolutions. In this section, we focus on Wavelet transform.

Recently, integrating wavelet transform with deep learning techniques is shown to be effective in signal
and image processing. Early attempts directly replace certain layers in the DNNs with traditional
wavelet transform to reduce the number of parameters as well as improve the interpretability. For
instance, Williams & Li (2018) replace the max-pooling layer with a wavelet pooling algorithm to
address the overfitting problem. Fujieda et al. (2017) propose to replace the pooling and convolution
layers with wavelet transform.
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Figure 1: Given an input signal, we first perform (a) Frequency Spectrum Energy Analysis to
decompose signal (fs) into multiple frequency subbands with comparable energy, where each
subband contains at most one formant. Then, according to the above decomposition, we con-
struct (b) T-WaveNet, a tree-structured network, where each node is a (c) Frequency Bisection
Operator built with an INN-based wavelet transform. The operator outputs the high- (d) and low-
frequency (c) components of the input if its binary gate value is “1”, and otherwise bypass the input
(φ, ψ, ρ, and η have the same structure: Conv1D(3, 1)→LeakyRelu(α = 0.01)→Dropout(rate =
50%)→Conv1D(3, 1)→Tanh.). Considering the personalized heterogeneity of the input, we utilize a
(d) Feature Fusion Module to fuse the subband features {hi} according to the feature dependen-
cies across various frequency components. Finally, the enhanced feature vectors are supervised by
Cross-Entropy loss for classification. See Section 3 for more details.

The above methods typically utilize a fixed wavelet basis (such as Haar (Haar, 1910)), which tend to
be sub-optimal as it is less flexible and expressive for complex data. Recently, Rodriguez et al. (2020)
propose to replace the fixed wavelet basis in the lifting scheme with deep learnable modules to realize
an adaptive wavelet transform unit for image classification, aiming at learning more discriminative
frequency features from images.

In this work, to better handle the complex spatial-temporal time series data, we build a novel deep
wavelet transform unit with powerful representation capability, named frequency bisection operator.
It decomposes the input signal into frequency subbands of various sizes and models the wavelet basis
with an INN (Dinh et al., 2014). To the best of our knowledge, this is the first attempt to model the
wavelet transform using INN. We detail the proposed solution in Section 3.2.

3 METHODS

Instead of solely relying on the neural network for information extraction from raw signals, T-WaveNet
takes into consideration the uneven information distribution among different frequency ranges of
signals and constructs a tree-structured network for feature learning, where those frequency ranges
with more energy are divided into finer-grained subbands and represented with more dimensions in
the feature vector, leading to more powerful representations embedding more desired information
extracted from time series signals.

An overview of the T-WaveNet is shown in Fig. 1. We first perform frequency spectrum energy
analysis (Fig. 1 (a)) to obtain the set of signal frequency subbands with various formants and energy
envelops. Then, we construct T-WaveNet, a tree-structured network (Fig. 1 (b)), which iteratively
decomposes the input signal into frequency subbands of various sizes according to frequency spectrum
energy analysis. Each node on the tree is a frequency bisection operator built with an INN-based
wavelet transform unit (Fig. 1 (c)). The operator is conditioned on a binary gate. It outputs the
high-frequency and low-frequency components of the input if the gate value is “1”, and otherwise
bypass the input. In addition, different subjects may have some unique characteristics, resulting in
distribution divergence. To deal with such individualized heterogeneity, after obtaining the set of
features from each frequency subband, we utilize an effective feature fusion module to enhance the
task-oriented subband features (Fig. 1 (d)).
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3.1 FREQUENCY SPECTRUM ENERGY ANALYSIS

To quantitatively evaluate the information within the frequency range and perform the subband
splitting accordingly for constructing the T-WaveNet, we perform frequency spectrum energy analysis
(FSEA) to obtain a set of frequency subbands with roughly equivalent energy. In this way, the
informative frequency range would be divided into finer subbands and be represented with more
feature dimensions, easing the representation learning of signal data.

FSEA consists of two phases: a formants-guidance frequency band splitting phase to obtain the initial
subbands set, and an energy-guidance advanced subband splitting to further balance the energy of
each subband. In the first phase, given the input signal X ∈ RN , we first calculate the spectrum with
the Fourier transform on the entire signal (Fig. 1 (a)) so as to obtain the overall frequency distribution
of the signal. Next, we obtain the set of formants P = {fp}p, where fp is a local maximum (i.e.,
formant) of the envelope of spectrum1. Such formants represent the most direct source of the signal
information. Then, we recursively bisect the frequency band until there is at most one formant
that falls in each frequency subband [fi, fj ], where fi and fj are the starting and ending frequency,
respectively. All these subbands are collected in set Q. In the second phase, we calculate the energy
of each subband in Q with Eq. (1) (Boashash, 2003) and further bisect the subband whose energy
exceeds ζ times of Emin, where Emin is the the minimum subband energy for subbands in Q, and ζ is
a scaling factor. This subband splitting phase further ensures that each resulted subband in the new
set Q′ contains similar amount of energy. Here, Amp(f) is the amplitude of the frequency f .

Energy =

∫ fj

fi

Amp (f) df . (1)

The FSEA, in principle, can be regarded as a perquisite for T-WaveNet construction. Based on Q′
obtained from FSEA, we construct the proposed T-WaveNet in two steps: (i) bottom-up marking, and
(ii) pruning. In the bottom-up marking process, given a full binary tree with some height (Fig. 1 (b)),
we locate each subband in Q′ and set its binary gate as “0”, which serves as the leaves. Next, we
set the binary gates of all other nodes on the path from the leaves to the root as ”1”. In the pruning
process, the nodes without gate settings are removed from the tree. The leaves of resulted sub-tree
cover all the frequency subbands in Q′. With the above, FSEA divides the frequency ranges with
more energy into finer-grained subbands.

3.2 FREQUENCY BISECTION OPERATOR

Each node in the T-WaveNet is a frequency bisection operator built with an INN-based second-
generation wavelet transform. The second-generation wavelets, also known as Lifting Scheme
theory (Sweldens, 1998), is a simple yet powerful approach to construct different wavelets such
as Haar. The main idea is to utilize the strong correlation among the neighboring samples in the
signal to separate the low-frequency (approximation) and high-frequency (details) subbands. The
Lifting Scheme separates the input vector X = (x[0], x[1], ..., x[2k − 1]), k ∈ N, into low- and
high-frequency subbands in three steps.

• Splitting. The signal is split into two non-overlapping partitions as shown in Eq.(2). The general
partition method is dividing the signal to even part Xeven = (x[0], x[2], ..., x[2k− 2]) and odd part
Xodd = (x[1], x[3], ..., x[2k − 1]). The spliting operater is:

• Predictor. The two partition sets are distributed alternatively in the original signal. Based on the
signal correlation, it is possible to build a good predictor P to predict one partition set from the
other. One example to predict Xodd from Xeven is shown in Eq. (3), where d (details) denotes the
difference between Xodd and the prediction set P (Xeven).

• Updator. As shown in Eq. (4), the details d is further used to update the even part with an updator
U to preserve some consistent characteristics of the original signal, such as mean and higher
moments. Here, c is also called “approximation”.
(Xeven, Xodd) = Splitting(X). (2) d = Xodd − P (Xeven). (3) c = Xeven + U(d). (4)

In traditional wavelet transform, the choice of the wavelet basis is important yet difficult, which
would affect the analysis results significantly. Traditional wavelet construction framework with fixed

1In case that the signal is too noisy, one can first conduct standard denoising approaches in the corresponding
domains to minimize the impact of noise.
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coefficients (P,U ) usually lacks of adaptability to extract more informative features from complex
signals.Therefore, we take advantage of the INN (Dinh et al., 2014), a bijective transformation, to
build the wavelet transform unit, which can effectively model the correlations between the inputs and
the outputs with learnable structures. To combine the Lifting Scheme with INN, the improvements
include: (i) adapting Eq. (3), (4) to an affine function, as shown in Eq. (5), (6), which improves
the transformation ability; (ii) learning the wavelet coefficients (φ, ψ, ρ and η) in Eq. (5), (6) using
separate CNN modules.

d = Xodd � exp(φ(Xeven))− ρ(Xeven), (5); c = Xeven � exp(ψ(d)) + η(d). (6)

Here, exp(φ(·)), exp(ψ(·)) stand for scale and ρ, η stand for translation. � is the element-wise
production. The exp(·) is to introduce non-linearity into the function and is omitted in Fig. 1 (c).
Note that, if the values of φ and ψ are set to zero, Eq. (5), (6) will degenerate to the standard Lifting
Scheme equations (Eq. (3), (4)).

The proposed INN-based wavelet transform has two advantages. First, being an invertible architecture,
INN avoids information loss during feature extraction and, hence, inherits the conventional wavelet
transform property. Second, the wavelet basis is entirely data-driven, and learning high-dimensional
coefficients can be regarded as implementing various wavelet basis to the input simultaneously
according to the requirements of the downstream task, which is more effective than conventional
fixed-basis wavelets.

3.3 FEATURE FUSION MODULE

There inevitably exists personalized heterogeneity in the signal data collected on different subjects.
Thus, the features extracted from a certain frequency subband may contribute differently to different
subjects. To alleviate the effect of personalized heterogeneity and achieve better task performance,
we build an efficient feature fusion module inspired by the well-known Transformer (Vaswani
et al., 2017). The feature fusion module is built on the self-attention mechanism, which learns the
personalized feature dependencies across different frequency subbands, and adaptively enhances the
task-related subband features with higher weights during fusion, as illustrated in Fig. 1 (d).

To calculate the weights of the features h ∈ Rn×m extracted from the frequency subband set Q′, we
first calculate the query q, keys k, and values v from subband features h:

q = Wqh + bq,q ∈ Rr×m; k = Wkh + bk,k ∈ Rr×m; v = Wvh + bv, v ∈ Rr×m (7)

where W∗ ∈ Rr×n and b∗ ∈ Rr are the weight matrix and bias, respectively, m is the number of
features, n is the feature dimension of h, and r is the feature dimension of q,k and v. Then, we
compute the attention weights for each value as the compatibility score of the query with Eq.(8).
Then the output of the feature fusion module is calculated as the weighted sum of the values in Eq.(9).

α = softmax(kT q), α ∈ Rm×m. (8) H = α · vT ,H ∈ Rm×r. (9)

The flattened attentive frequency subband representation Hflatten ∈ R(mr) is finally fed into a standard
softmax classifier to produce the prediction results:

p = softmax(WHflatten + b),p ∈ RC (10)

where W ∈ RC×(mr) and b ∈ RC are the weight matrix and bias, respectively, pi is the i-th element
of p, which denotes the predicted probability for class i = 1, . . . , C, and C is the number of class.

3.4 LOSS FUNCTION

Our loss function is shown in Eq. (11). The first term is the cross-entropy loss for classification,
where C denotes the number of classes, and yi is the binary ground-truth. Besides this term, we also
explore incorporating an additional term to regularize the wavelet decomposition during training.
The second loss term ensures that, for each frequency bisection operator, the mean value of the
decomposition output cj is close to that of the input xj . Here, M is the total number of operators in
the tree-structured network, and λ tunes the strength of the regularization.

L = −
C∑
i

yi log(pi) + λ

M∑
j

‖xj − cj‖2 . (11)
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Table 1: The four datasets used in our experiments.

Datasets # classes # samples in the
timing window Signal types # signals Sampling rate(Hz) # subjects Data partitioning

OPPORTUNITY 18 48 Inertial data 77 30 3

Train: Subject 1:ADL(1,2,3,4,5), drill;
Subject 2:ADL(1,2), drill;
Subject 3:ADL(1,2), drill;

Test: Subject 2:ADL(4,5); Subject 3:ADL(4,5)
UCI-HAR 6 128 Inertial data 9 50 30 Train/Test: 7:3
BCICIV2a 4 400 EEG 22 250 9 Leave-one-subject-out

NinaPro DB1 52 150 surface EMG 10 100 27 Training: Subjcets (1,3,4,6,7,8,9);
Test: Subjects (2,5,10)

4 EXPERIMENTS

In this section, we evaluate the performance of T-WaveNet on four datasets, namely OPPORTUNITY
(OPPOR) (Ordóñez & Roggen, 2016), UCI-HAR (Davide et al., 2013), BCICIV2a (Brunner et al.,
2008), and NinaPro DB1 (Manfredo et al., 2012). A brief description of these datasets is listed in
Table 1. More details on experimental settings, additional experimental results and discussions (e.g.,
performance on other datasets, hyperparameter analysis, robustness, and computational time) are
presented in the supplementary materials.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare T-WaveNet with state-of-the-art methods on various signal classification tasks and
datasets, and the experimental results are shown in Tables 2-5.

As can be observed, the performances of previous state-of-the-art methods vary with different types
of signals, while the proposed T-WaveNet consistently achieves better performance across all these
datasets. We attribute it to the fact that the proposed method seamlessly and effectively integrates the
inherent dominant energy range property of signals into our deep model. In the following, we present
detailed analysis of comparison on benchmarks of each task.

Table 2: Performance comparison on UCI-
HAR dataset.

Methods UCI-HAR
Accuracy Fw

DeepConvLSTM 0.908 0.905
Res-LSTM 0.916 0.915

CNN-LSTM 0.921 -
InnoHAR - 0.945
STFNet 0.929 0.923

Harmonic 0.929 0.929
LSTM-CNN 0.958 -

MI-CNN-GRU 0.962 0.961
T-WaveNet 0.971 ± 0.012 0.974 ± 0.009

Table 3: Performance comparison on OPPOR
dataset.

Methods OPPOR
Fm Fw

DeepConvLSTM 0.672 0.915
LSTM-S 0.698 0.912

LSTM Ensembles 0.726 -
ARN - 0.903

Res-LSTM - 0.905
Harmonic 0.575 0.894
FilterNet 0.743 0.928

T-WaveNet 0.763 ± 0.011 0.931 ± 0.013

Human activity recognition (UCI-HAR and OPPOR)

As can be observed from Table 2, T-WaveNet outperforms both the recent end-to-end deep mod-
els (Harmonic (Hu et al., 2020) , LSTM-CNN (Xia et al., 2020), MI-CNN-GRU (Dua et al., 2021))
and a hybrid model (STFNet (S et al., 2019)) on the UCI-HAR dataset. To be specific, compared with
MI-CNN-GRU, T-WaveNet yields 2.18% and 1.35% relative improvements in terms of Accuracy
and Fw score, respectively. This is because, MI-CNN-GRU solely relies on combining the CNN and
GRU model for feature extraction, without considering the essential information in the frequency
domain. In contrast, STFNet integrates the STFT (Short-Time Fourier Transform) into the neural
network to learn features directly in the frequency domain. However, it does not distinguish the roles
of various frequency components. T-WaveNet decomposes the most informative frequency range
into finer-grained subbands, which increases the representation capacity for feature learning under
limited training samples. Similarly, for the OPPOR dataset in Table 3, compared with the popular
CNN-LSTM structure used in FilterNet (Chambers & Yoder, 2020) , T-WaveNet clearly demonstrates
better feature learning capability with a 2.66% improvement in Fm score. As for, and 2.66% im-
provement of Fm for OPPOR. Such improvements clearly demonstrate the feature learning ability
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of the proposed method. Moreover, T-WaveNet can better capture the inter-class differences than
existing solutions, because it learns the feature dependencies across different frequency subbands.

Brain intention recognition (BCICIV2a)

It is challenging to learn effective features for brain intention recognition since EEG signals are usually
quite noisy. As shown in Table 4, T-WaveNet achieves superior performance on BCICIV2a compared
with standard CNN classifiers (e.g., CTCNN (Schirrmeister et al., 2017) and EEGNet (Lawhern
et al., 2018)). The EEG-Image (Bashivan et al., 2018) model tries to apply all sorts of hand-
crafted features (i.e., spectral, spatial, and temporal features) into the CNN-RNN architecture, but
it actually mislead the neural network in feature learning, resulting in poor performance. The
graph neural network-based classifier NG-CRAM (Zhang et al., 2020) is effective in modeling the
spatial correlations among signals, but it also suffers from noises during message passing among
neighbouring nodes. Finally, MIN2Net (Autthasan et al., 2021) utilizes auto-encoder to extract
features from the input signals, but it may lose some essential information during this procedure.
Also, the implementation of the Conv2D may restrict the model’s ability in learning long-term
temporal dependencies. In contrast, T-WaveNet concentrates on the features extracted from the
dominant energy range with more discriminative power, and the proposed INN-based wavelet can
avoid the information loss during feature extraction, thereby yielding more robust representations.

Table 4: Performance comparison on BCI-
CIV2a dataset.

Methods BCICIV2a
Accuracy

CTCNN 0.4767 ± 0.1506
EEGNet 0.5130 ± 0.0518

EEG Image 0.3270 ± 0.0430
Cascade model 0.3183 ± 0.0399
Parallel model 0.3267 ± 0.4499

NG-CRAM 0.6011 ± 0.0996
MIN2Net 0.6033 ± 0.0924
T-WaveNet 0.6301 ± 0.0212

Table 5: Performance comparison on NinaPro
dataset.

Methods NinaPro
Accuracy

GengNet 0.778
MV-CNN 0.874

TCN 0.898
HuNet 0.870
WeiNet 0.850

XceptionTime 0.918
DLPR 0.911

T-WaveNet 0.932 ± 0.0103

Muscular movement recognition (NinaPro DB1)

As shown in Table 5, T-WaveNet achieves a relative 6.65% improvement over WeiNet (Wei et al.,
2019) that trains a CNN classifier on hand-crafted features, and 1.52% improvement over Xcep-
tionTime (Rahimian et al., 2020) that solely relies on time domain features. DLPR (Pancholi et al.,
2021) combines both the time- (peaks and zero-crossing) and frequency- (power spectral) domain
features with CNNs and achieves remarkable performance for this task. However, this solution
requires lots of domain knowledge and much efforts to design signal-specific features, which is
challenging to be generalized to other signal types. In contrast, the proposed INN-based wavelet
transform in T-WaveNet is adaptive for learning information from both time- and frequency-domain,
which facilitates to extract more discriminative features for muscular movement recognition.

�

(a)

�

(b)

�

(c)

Figure 2: Effectiveness of FSEA for tree structure configuration. The histograms below denote
the energy preserved in the frequency subband of each leaf. (a) is the configuration obtained with
FSEA (Section 3.1), wherein the energy contained in each subband is similar. (b) and (c) are other
two exemplar configurations with uneven energy distribution due to the coarser split of the dominant
frequency range, all of which suffer from performance degradation (decreased Fm). See Section 4.2.
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4.2 ABLATION STUDY

Here, we study the impact of each component in T-WaveNet by performing a detailed ablation study
on the challenging OPPOR dataset and the corresponding frequency spectrum is shown in Fig.1 (a).

Impact of frequency spectrum energy analysis. To verify the effectiveness of FSEA, we train two
other variants of the T-WaveNet with different feature vector distributions (Fig. 2). Fig. 2 (a) shows
that the tree structure constructed with the dominant energy range concept outperforms other variants,
indicating that dominant frequency bands represented with more dimensions in feature vectors indeed
contain more discriminative information for classification. The impact of the two-phases subband
splitting scheme is shown in the supplementary.

Impact of frequency bisection operator. To verify the effectiveness of our INN-based wavelet
transform in the frequency bisection operator, we also experiment with two variants: (i) T-WaveNet-
Haar, which replaces the INN-based wavelet transform with the traditional Haar wavelet basis; (ii)
T-WaveNet-LS, which implements the deep version of the Lifting Scheme, in which the P and U
in Eq.(3)(4) are realized using the same deep modules as φ, ψ ,ρ and η (Fig.1 (c)). The results in
Table 6 show that our T-WaveNet achieves 18.6% and 3.8% improvements on Fm score in OPPOR
dataset over T-WaveNet-Haar and T-WaveNet-LS, respectively. We attribute the improvements to the
fact that our high-dimensional deep wavelet coefficients are learned from data. Thus, our INN-based
wavelet is more adaptable to various signals compared with the fixed Haar wavelets, and has higher
representation capacity than the deep Lifting Scheme. See the supplementary for more details.

Table 6: Results with structural variants. “−Haar”
means the frequency bisection operator is replaced
by the traditional Haar wavelet. “−LS” denotes the
deep version of the Lifting Scheme. “−noFusion”
means the feature fusion module is removed from
T-WaveNet.

Structural variants Fm Fw
T-WaveNet-Haar 0.644 ± 0.012 0.908 ± 0.016

T-WaveNet-LS 0.735 ± 0.008 0.926 ± 0.007
T-WaveNet-noFusion 0.747 ± 0.013 0.928 ± 0.006

T-WaveNet 0.763 ± 0.011 0.931 ± 0.013

Feature fusion module. To demonstrate the
effectiveness of the proposed adaptive feature
fusion module for handling the personalized
heterogeneity of the signal data, we remove the
fusion module from T-WaveNet and fuse the
leaf features {hi} with equivalent weights (T-
WaveNet-noFusion). As shown in Table 6, the
performance of the resulted model decreases
by 2%-3%, which indicates that the proposed
feature fusion module learns the feature de-
pendencies across various frequency compo-
nents and enhances task-related features for
classification. More details are presented in
the supplementary.

4.3 DISSCUSSION AND LIMITATION

Our approach is currently more suitable for the time-series data with some specific patterns in their
frequency spectrum across subjects/cases. Biological signals often have such characteristics and
in this regard, we extensively evaluate the proposed network on biological signals. However, if
other time-series signals have similar properties, our network can also been applied to analyze them
and achieves performance gains (see the supplementary for more experimental results). On the
contrary, if the time-series data does not have this characteristic, especially when the frequency
energy spectrum is time-variant (e.g., some financial data), the proposed network cannot achieve
remarkable performance improvements.

5 CONCLUSION

We propose T-WaveNet, a novel tree-structured wavelet neural network for time series signal analysis,
which exploits an inherent property of various types of signals, i.e., the dominant frequency range, to
more efficiently extract informative representations from input signals than most existing solutions
that depend only on the raw data. We first conduct frequency spectrum energy analysis of the signals
to get a set of dominant frequency subbands. We then construct a tree-structured network with
INN-based wavelet transform units to iteratively decomposes the input signal into various frequency
subbands with similar energies. Finally, all the leaf node features are adaptively fused to mitigate the
impact of the individualized heterogeneity of the signals. Experimental results on four datasets clearly
show the superiority of T-WaveNet over other state-of-the-art solutions for time series classification
task. This work, in general, offers insights on how to leverage both data and empirical knowledge to
drive a learning model towards more powerful representations for time series signals, which is of
great significance for many practical applications with a limited amount of training data.
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