
Sequentially Acquiring Concept Knowledge to Guide Continual Learning

Shivanand Kundargi
University of Maryland, Baltimore County

shivank2@umbc.edu

Kowshik Thopalli
Lawrence Livermore National Laboratory

thopalli1@llnl.gov

Tejas Gokhale
University of Maryland, Baltimore County

gokhale@umbc.edu

Abstract

The goal of continual learning (CL) is to adapt to new data
(plasticity) while retaining the knowledge acquired from old
data (stability). Existing methods focus on balancing stabil-
ity and plasticity to mitigate the challenge of catastrophic
forgetting while promoting learning. However, the impact
of order and nature of new samples that the network is
trained on remains an underexplored factor. A CL algo-
rithm should ideally also have the ability to rank incoming
samples in terms of their relationship with prior data and
their effect on the learning process. In this work, we inves-
tigate if scoring and prioritizing incoming data based on
their semantic relationships with the model’s current knowl-
edge can boost CL performance. We propose SACK, short
for Sequentially Acquiring Concept Knowledge, a scalable
and model-agnostic two-step technique for continual learn-
ing. SACK dissects categorical knowledge of the model
into fine-grained concepts, computes the relationships be-
tween previously learned concepts and new concepts in
each experience, and uses this relationship knowledge for
prioritizing new samples. Experiments across several types
of CL methods (regularization, replay, and prompt-based)
in class-incremental and task-incremental settings demon-
strate that our approach consistently results in higher ac-
curacy, reduces forgetting, and enhances plasticity. Code:
https://github.com/abcxyz709/SACK

1. Introduction
The standard machine learning paradigm can be sum-
marized as a three-step pipeline: Collect Data −→
Train Model on Data −→ Evaluate Model
on Data. This is rarely the case in real-world deploy-
ments, where models encounter continuous streams of
data that differ from what they have seen before. The
new streams of data are characterized by often having

new object categories, style changes, or photometric
variations, all of which pose a significant challenge to the
models developed under static assumptions. Moreover,
deep learning models when trained sequentially on such
streams often suffer from catastrophic forgetting [6],
where learning new tasks erases knowledge acquired by
learning earlier tasks. Consequently, a broad body of
work in the CL literature [9, 12, 18, 20, 24] has been in
addressing this fundamental trade-off between learning
effectively from novel data (plasticity) while mitigating
the catastrophic forgetting of already acquired knowledge
(stability). While existing approaches attempt to strike this
balance through various strategies, they typically treat all
samples in the new experience (labeled novel data) with
equal importance, without considering which examples
are most informative or beneficial for the model to learn
from. This contrasts sharply with how humans learn: new
information is acquired and understood in the context of
prior knowledge. This principle is central to curriculum
design, where concepts are introduced in a sequence that
builds on what has already been mastered. Most continual
learning methods, however, treat all new examples equally,
ignoring their relevance to what the model already knows.
This can lead to inefficient learning -where the model
struggles to integrate unfamiliar concepts or reinforces less
relevant patterns at the expense of stability. In this work,
we propose an alternative approach: one that enables the
learner to prioritize examples based on their conceptual
relevance to previously acquired knowledge, thereby
supporting more effective and balanced continual learning.

Motivated by this intuition, we propose a concept-based
framework, SACK, that allows continual learners to assess
the relevance of new data based on what has already been
learned. The framework works in two steps: (i) it interprets
and represents the model’s knowledge from previous ex-
periences using natural language concepts, and (ii) it com-
putes alignment scores between these existing concepts and

https://github.com/abcxyz709/SACK

𝑓𝑓𝑡𝑡𝜃𝜃
Concept
Extractor

hooked bill
red belly
water bird
brown wings

...

...𝒦𝒦𝑡𝑡
Learner

Concept-
Based
Scoring

lake bird
yellow body
pointy beak

brown feathers
...

𝒞𝒞𝑡𝑡+1

Model after
Experience 𝑡𝑡

𝑓𝑓𝑡𝑡+1𝜃𝜃

…𝑤𝑤1 𝑤𝑤2 … 𝑤𝑤|𝒴𝒴𝑡𝑡|

Incoming Data

…
Class-wise Weights

𝒟𝒟𝑡𝑡+1
𝑤𝑤1 𝑤𝑤2 𝑤𝑤|𝒴𝒴𝑡𝑡|

Sequential Acquisition of Concept Knowledge (SACK) Model Training (Experience t+1)

𝒟𝒟𝑡𝑡+1

Figure 1. Overview of SACK, where we connect activated concepts obtained after concept extraction with concepts corresponding to
classes in the new experience via concept-based scoring. These class-specific connection weights are further used as sample importances
while learning new experience.

the concepts required to understand the new data. These
scores are then used to guide training: SACK prioritizes
classes that are more conceptually similar to past knowl-
edge early in training, and gradually shifts focus toward less
similar, harder-to-learn classes as training progresses.

This approach marks a significant departure from stan-
dard continual learning practices. To the best of our knowl-
edge, SACK is the first framework that explicitly stud-
ies the impact of ordering samples within an experience
based on the model’s evolving understanding. Moreover,
SACK is fully modular and can be seamlessly integrated
into any existing CL method without requiring architectural
changes. We validate the effectiveness of our approach
through extensive experiments on three datasets—CIFAR-
100 [11], CUB-200 [27], and ImageNet-R [8]. We
incorporate SACK into five widely used CL baselines:
replay-based methods (iCaRL [18], DER, and DER++[4]),
the regularization-based method LwF[12], and the recent
prompt leanring-based method CoDA-Prompt [24]. Across
all combinations and evaluation metrics, we observe that
SACK consistently enhances performance, demonstrating
its broad utility and effectiveness.

2. Related Work
Continual and Curriculum Learning The challenge of
enabling models to accumulate knowledge over time with-
out overwriting prior information [6] has led to extensive
research in continual learning (CL), also known as life-
long or incremental learning. To address the stability-
plasticity dilemma, three major CL strategies have emerged:
regularization-based methods [9, 12], replay-based tech-
niques [20, 23], and architectural modifications [21]. Re-
cently, prompt-based methods [24] have gained attention,
where task-specific prompts are learned while keeping the
model backbone fixed. For further comprehensive infor-
mation and detailed overview about more continual meth-
ods, we refer readers to recent literature survey studies
[16, 26, 28]. Since CL deals with stream of data, certain

aspects of curriculum learning[2, 5] in context of CL has
also been explored by works like [1] where the effect of or-
dering the tasks in CL has been investigated. Unlike these
approaches, our framework SACK dynamically assesses the
relative importance of each training class by probing the
model’s prior semantic knowledge and uses that informa-
tion to construct a suitable curriculum in a given experience.
Interpretability Tools for Knowledge Discovery. Since
our approach relies on effectively capturing the concepts
learned by the model in previous experiences, the research
on interpretability methods is highly relevant to our effort.
Classical methods like SHAP [13], LIME [19], and Grad-
CAM [22] offer local insights but fall short in capturing
higher-level semantic structure. Recent methods like CLIP-
Dissect [14] address this by leveraging CLIP’s [17] vision-
language space to semantically interpret internal represen-
tations of a given deep model. While other intepretability
tools such as concept bottleneck models (CBMs) [10, 15]
have been explored in CL [30], they require complex ar-
chitectural changes. Given the demonstrated effectiveness
of CLIP-Dissect [14] in vision models, we adopt it as the
interpretability tool of choice in this work and note that
SACK can be readily used with any tool, including CBMs.

3. SACK
The core idea of SACK is to guide learning at each ex-
perience by leveraging the model’s evolving understand-
ing. Specifically, it involves two steps: first, extracting the
concepts acquired from previous experiences and those re-
quired to learn the new classes—concept extraction; and
second, computing relative scores between them—concept-
based scoring—to design a targeted curriculum that priori-
tizes learning based on conceptual relevance. An overview
of the approach is shown in Figure 1.
Preliminaries Consider a classifier f parameterized by
weights θ that maps inputs x ∈ X to categorical outputs y ∈
Y . In a CL setting, the classifier is exposed to a sequence
of experiences Et at discrete time steps t ∈ {1, . . . , T}.

Model parameters θ are updated sequentially using one ex-
perience at a time.

3.1. Concept Extraction

Extracting Concepts from Incoming Data At each ex-
perience, following standard CL practice, the learner
has access to the names of classes Yt from that ex-
perience. We use a large language model (e.g., GPT-
4) to expand the names of classes to a set of con-
cepts that describe each class by appropriately prompt-
ing the model as described in [15, 25]. For in-
stance, the attributes/concepts for the class ‘‘bear’’ are
defined by ‘‘thick coat, mighty roar, large
paws, round ears, dark eyes’’, etc. Let Ct be
the set of the concepts for all classes Yt in the experience
Et. Further, let C1:t = {Ci}ti=1 be the combined set of con-
cepts obtained for all experiences until Et.
Extracting Concepts Learned by the Model To extract the
concepts learned by the model up to the current experience
t, we use CLIP-Dissect [14], which associates natural lan-
guage concepts and confidence scores with individual neu-
rons at a given layer. We retain only the top 25% of concepts
based on their confidence scores to filter out noisy or weakly
aligned concepts. The resulting set of high-confidence con-
cepts is denoted by Kt.

3.2. Concept-Based Scoring

Now that we have computed concepts corresponding to the
incoming experience Ct+1 = {Ci}Yi=1 and activated con-
cepts acquired by the model Kt, we will use them to assign
weights to each class y ∈ Yt+1. Using the CLIP text en-
coder, we obtain embeddings u ∈ R768×L corresponding
to L activated concepts. Similarly, we obtain embeddings
vy ∈ R768×R corresponding to R concepts for each class
y ∈ {1, . . . |Y|}. We then compute the cosine similarity be-
tween u and each vy to obtain Hy ∈ RL×R. Each row Hy

ℓ

of this similarity matrix represents the similarity of a partic-
ular neuron activated concept with every concept extracted
from class y. To obtain the class-specific weights for a class
y ∈ Y , we average the max value from each row l of Hy .

3.3. Designing a Concept-Based Sampler

As described in Algorithm 1, to train on incoming experi-
ence Et+1, we use the class-specific weights from the pre-
vious section to guide the sampling of training data for each
epoch within that experience. Let pg represent the class-
wise sampling probabilities used by the sampler at epoch
g, and let W represent the connection weights obtained for
each class in the incoming new experience Et+1. Inspired
from the recent results in anti-curriculum learning [29], ini-
tially, we set the sampling to uniform, and as the training
progresses, the sampling probabilities are linearly interpo-

Algorithm 1 Sequentially Acquiring Concept Knowledge
1: Input: Labeled data Dt(Xt,Yt) for each experience Et. Model f

with initial parameters θ
2: Initialize: Experience index t← 1; parameters θ1
3: θ1 ← TRAIN(D1, θ1) ▷ train model f on first experience
4: for each experience Et, t ∈ {2, . . . T} do
5: Initialize: θt ← θt−1 ▷ continual parameter update
6: Kt ← DISSECT(fθ) ▷ obtain concepts for model’s current

knowledge
7: Ct ← LLM(Yt) ▷ obtain concepts for new experience classes
8: w ← CONCEPT SCORING(Kt, Ct) ▷ obtain class-wise scores
9: for each epoch g = 0 to G do

10: pg = (1− λg) · 1
|Yt|

1+ λg
W∑|Yt|

j=1 Wj
, where λg = g

G

11: D̂g
t ← WEIGHTED SAMPLING(Dt, pg) ▷ sample data

12: θt ← TRAIN(D̂g
t , θt) ▷ train model f

13: end for
14: end for
15: return θ∗ ▷ final updated model parameters

lated towards the class-specific importance weights:

pg = (1− λg) ·
1

|Yt+1|
· 1+ λg ·

wt+1∑|Yt+1|
y=1 wy

t+1

,

where λg =
g − 1

G− 1
; ∀g ∈ {1, G}.

where λg is the interpolation coefficient that increases lin-
early over time, |Yt+1| is the number of classes, and G is
the number of epochs. At the beginning of each experience
(epoch g = 1), we have λg = 0 and therefore the sampler
starts with a uniform distribution. At the end of each expe-
rience (epoch g = G), we have λg = 1, i.e. the sampler
ends with a distribution based on the class-based scores.

4. Experiments
We perform an extensive evaluation of SACK under dif-
ferent continual learning settings (CIL, TIL) with models
of varying scales (ResNets, CLIP, Vision Transformers) on
multiple benchmark datasets. We describe our experimental
setup and results in this section.
Experimental Setup In all of our experiments, we utilize
CLIP-dissect [14] to extract the knowledge/concepts learnt
by the model through data from previous experiences. Since
SACK is not specific to any particular choice of continual
learning method, we incorporate SACK in a variety of CL
methods. To integrate SACK across different CL meth-
ods, we utilize the mammoth [3] library. Datasets. We
use CIFAR-100 [11], CUB-200 [27], and ImageNet-R [8]
for our experiments. To evaluate SACK under fine-grained
classification and under distribution shifts we use CUB-
200 [27] and ImageNet-R [8] respectively.
Implementation Details. Concept Extraction. For iCaRL,
DER, DER++, and LwF using ResNets [7], we extract con-
cepts from the last fully connected layer and for CODA-
Prompt [24], which uses CLIP, we dissect the learn-

Method CIFAR-100 CUB-200 IMAGENET-R
Avg.ACC Last.ACC BWT Avg.ACC Last.ACC BWT Avg.ACC Last.ACC BWT

LWF[12] 28.80 92.60 -89.50 10.78 37.75 -20.41 8.40 8.49 -14.03
LWF + SACK 29.33 92.70 -88.70 10.87 42.34 -20.81 12.83 17.62 -12.36
iCaRL[18] 82.81 91.4 -4.88 17.29 14.45 -7.37 5.47 9.27 -23.66
iCaRL + SACK 83.30 91.90 -4.38 24.71 20.91 1.69 6.35 8.54 -24.32
DER[4] 80.33 91.10 -10.50 26.30 56.29 -21.89 24.18 58.17 -45.62
DER + SACK 81.36 92.50 -9.70 26.60 57.82 -22.50 25.30 58.59 -45.27
DER++[4] 80.47 93.20 -10.97 51.81 60.20 0.655 35.74 48.61 -9.07
DER++ + SACK 82.82 93.50 -8.27 52.25 61.05 0.66 36.85 54.77 -9.07
CODA-Prompt[24] 98.56 99.50 0.17 89.23 93.02 -0.02 91.24 90.44 0.50
CODA-Prompt + SACK 98.56 99.50 0.08 89.34 93.02 0.28 91.35 89.38 0.80

Table 1. Performance comparison of various continual learning (CL) methods with and without integration of SACK in the Task-
Incremental Learning (TIL) setting. Each dataset is split into 10 sequential experiences with an equal number of classes per experience.
Results are reported using Average Accuracy, Last Accuracy, and Backward Transfer. Bold represents best values.

Method CIFAR-100 CUB-200 IMAGENET-R
Avg.ACC Last.ACC BWT Avg.ACC Last.ACC BWT Avg.ACC Last.ACC BWT

LWF[12] 9.34 92.60 -68.51 3.77 37.75 -28.77 0.84 8.49 -24.66
LWF + SACK 9.43 92.70 -66.58 4.23 42.34 -28.19 1.76 17.62 -22.42

iCaRL[18] 48.06 53.60 -18.40 3.89 2.38 -7.84 1.81 4.73 -49.63
iCaRL + SACK 49.83 55.80 -19.22 7.06 3.40 -2.52 1.89 4.03 -44.22

DER[4] 49.22 75.90 -38.70 5.68 56.12 -45.20 5.81 58.17 -25.95
DER + SACK 49.24 80.80 -38.60 5.82 57.65 -45.30 5.83 58.38 -24.18

DER++[4] 45.93 85.70 -44.86 28.11 49.82 -17.26 12.34 40.12 -26.92
DER++ + SACK 49.04 83.00 -40.62 28.26 52.04 -17.14 11.28 52.01 -33.45

CODA-Prompt[24] 86.79 90.20 -5.40 71.31 85.71 -8.48 75.24 74.94 -5.75
CODA-Prompt + SACK 87.26 90.70 -5.50 71.78 85.20 -8.05 75.65 75.37 -5.49

Table 2. Evaluating the improvements after integration of
SACK in the Class-Incremental Learning (CIL) setting.

able head of CLIP’s vision encoder. Hyperparameters.
All hyperparameters follow the standard settings from the
mammoth library [3], which we also use to train baselines
for fair comparison.
Evaluation Metrics. To evaluate the efficacy of the pro-
posed approach, we utilize three standard CL evaluation
metrics- underline(i) Average Accuracy, (ii) Last Accuracy
and (iii) Backward Transfer (BWT). In all cases, higher
values indicate better performance.

4.1. Results
SACK Improves All CL methods in Task-Incremental
Learning From table 1 we can observe that, on CIFAR-100,
all baseline methods benefit from the integration of SACK.
For instance, iCaRL+SACK improves Avg.ACC by 0.59%
With SACK, DER++ achieves a 2.92% gain in Avg.ACC
and a 24.6% reduction in forgetting. In contrast, CODA-
Prompt’s performance remains unchanged with SACK
—likely due to its already saturated performance, achieving
99.50% on Last.ACC, leaving little room for improvement.
On the more challenging and fine-grained CUB-200 dataset,
SACK yields striking improvements, clearly demonstrat-
ing the benefits of our principled approach. When com-
bined with iCaRL, Avg.ACC improves by 42.9%, and BWT
turns positive, indicating strong knowledge retention. Simi-
lar improvements are observed for other methods as well.
Notably, even the stronger CODA-Prompt benefits from

SACK, with BWT increasing from −0.02 to 0.28. Fur-
thermore, on the ImageNet-R benchmark—which intro-
duces significant real-world distribution shifts—SACK en-
hances the performance of all methods. For example, when
integrated with LWF, Avg.ACC improves by 52.7% and
Last.ACC more than doubles. Even with other methods,
SACK shows consistent gains across all metrics thereby
demonstrating its generality and effectiveness in TIL set-
ting.

Benefits Continue to Persist even In The Challenging
Class Incremental Learning Setup Beyond the TIL set-
ting, we also evaluate the performance of SACK in the more
challenging class-incremental learning (CIL) setup, and re-
sults are summarized in Table 2. In CIL, task identities
are not available at inference time, making CL substan-
tially harder. Despite this increased difficulty, SACK con-
tinues to deliver consistent improvements across multiple
baselines and datasets. On CIFAR-100, SACK offers mod-
est but meaningful gains across most methods. For ex-
ample, integrating SACK with iCaRL improves Avg.ACC
from 48.06 to 49.83 (a 3.69% increase). DER++ also
sees noticeable improvements, with Avg.ACC increasing
from 45.93 to 49.04 While gains for CODA-Prompt are
smaller, SACK still improves Avg.ACC without compro-
mising on the BWT. Similar to results obtained in TIL, on
CUB-200, the benefits of SACK are especially apparent.
When combined with iCaRL, Avg.ACC increases by over
81% (from 3.89 to 7.06). Interestingly, even with strong
baselines such as CODA-Prompt, SACK brings modest im-
provements to both Avg.ACC and BWT. Finally, results on
the ImageNet-R benchmark highlight SACK ’s robustness.
With LWF, Avg.ACC more than doubles from 0.84 to 1.76,
and Last.ACC jumps from 8.49 to 17.62. DER++ benefits
significantly as well, with Last.ACC improving by nearly
12 points however this increases comes at the cost of BWT.
These consistent improvements across diverse methods and
benchmarks validate the effectiveness of SACK in the more

realistic and demanding CIL setting.

5. Conclusion

In this work, we have developed SACK (Sequentially Ac-
quiring Concepts), a method-, model-, and setting-agnostic
two-step continual learning framework that helps CL meth-
ods prioritize samples in the new experience based on the
prior concept knowledge of the learner.

Acknowledgements
SK was supported by the UMBC Cybersecurity Gradu-
ate Fellows program. TG was supported by the SURFF
award from UMBC ORCA. Computing support was pro-
vided by UMBC HPCF. KT’s work was performed un-
der the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract
No. DE-AC52-07NA27344, Lawrence Livermore National
Security, LLC and was supported by the LLNL-LDRD Pro-
gram under Project No. 25-SI-001. The views and opin-
ions of the authors expressed herein do not necessarily
state or reflect those of the funding agencies and employ-
ers.

References
[1] Samuel J Bell and Neil D Lawrence. The effect of task order-

ing in continual learning. arXiv preprint arXiv:2205.13323,
2022. 2

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages
41–48, 2009. 2

[3] Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo
Porrello, and Simone Calderara. Class-incremental continual
learning into the extended der-verse. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 3, 4

[4] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for gen-
eral continual learning: a strong, simple baseline. Advances
in neural information processing systems, 33:15920–15930,
2020. 2, 4

[5] Jeffrey L Elman. Learning and development in neural net-
works: The importance of starting small. Cognition, 48(1):
71–99, 1993. 2

[6] Robert M. French. Catastrophic forgetting in connectionist
networks. Trends in Cognitive Sciences, 3(4):128–135, 1999.
1, 2

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 3

[8] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt,
and Justin Gilmer. The many faces of robustness: A critical

analysis of out-of-distribution generalization. ICCV, 2021.
2, 3

[9] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 1, 2

[10] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen
Mussmann, Emma Pierson, Been Kim, and Percy Liang.
Concept bottleneck models. In International conference on
machine learning, pages 5338–5348. PMLR, 2020. 2

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2, 3

[12] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017. 1, 2, 4

[13] Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In Advances in neural infor-
mation processing systems, pages 4765–4774, 2017. 2

[14] Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Au-
tomatic description of neuron representations in deep vision
networks. arXiv preprint arXiv:2204.10965, 2022. 2, 3

[15] Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-
Wei Weng. Label-free concept bottleneck models. arXiv
preprint arXiv:2304.06129, 2023. 2, 3

[16] Haoxuan Qu, Hossein Rahmani, Li Xu, Bryan Williams, and
Jun Liu. Recent advances of continual learning in computer
vision: An overview. IET Computer Vision, 19(1):e70013,
2025. 2

[17] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PmLR, 2021. 2

[18] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017. 1, 2, 4

[19] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Model-agnostic interpretability of machine learning. arXiv
preprint arXiv:1606.05386, 2016. 2

[20] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-
licrap, and Gregory Wayne. Experience replay for continual
learning. Advances in neural information processing sys-
tems, 32, 2019. 1, 2

[21] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

[22] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 2

[23] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In Advances
in Neural Information Processing Systems. Curran Asso-
ciates, Inc., 2017. 2

[24] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola
Cascante-Bonilla, Donghyun Kim, Assaf Arbelle, Rameswar
Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Contin-
ual decomposed attention-based prompting for rehearsal-free
continual learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
11909–11919, 2023. 1, 2, 3, 4

[25] Rakshith Subramanyam, Kowshik Thopalli, Vivek
Narayanaswamy, and Jayaraman J Thiagarajan. De-
cider: Leveraging foundation model priors for improved
model failure detection and explanation. In European
Conference on Computer Vision, pages 465–482. Springer,
2024. 3

[26] Gido M Van de Ven, Tinne Tuytelaars, and Andreas S To-
lias. Three types of incremental learning. Nature Machine
Intelligence, 4(12):1185–1197, 2022. 2

[27] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. 2011. 2, 3

[28] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu.
A comprehensive survey of continual learning: Theory.
Method and Application, 2302:00487, 2023. 2

[29] Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do
curricula work? arXiv preprint arXiv:2012.03107, 2020. 3

[30] Sin-Han Yang, Tuomas Oikarinen, and Tsui-Wei Weng.
Concept-driven continual learning. Transactions on Machine
Learning Research, 2024. 2

	Introduction
	Related Work
	SACK
	Concept Extraction
	Concept-Based Scoring
	Designing a Concept-Based Sampler

	Experiments
	Results

	Conclusion

