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Abstract

The goal of continual learning (CL) is to adapt to new data
(plasticity) while retaining the knowledge acquired from old
data (stability). Existing methods focus on balancing stabil-
ity and plasticity to mitigate the challenge of catastrophic
forgetting while promoting learning. However, the impact
of order and nature of new samples that the network is
trained on remains an underexplored factor. A CL algo-
rithm should ideally also have the ability to rank incoming
samples in terms of their relationship with prior data and
their effect on the learning process. In this work, we inves-
tigate if scoring and prioritizing incoming data based on
their semantic relationships with the model’s current knowl-
edge can boost CL performance. We propose SACK, short
for Sequentially Acquiring Concept Knowledge, a scalable
and model-agnostic two-step technique for continual learn-
ing. SACK dissects categorical knowledge of the model
into fine-grained concepts, computes the relationships be-
tween previously learned concepts and new concepts in
each experience, and uses this relationship knowledge for
prioritizing new samples. Experiments across several types
of CL methods (regularization, replay, and prompt-based)
in class-incremental and task-incremental settings demon-
strate that our approach consistently results in higher ac-
curacy, reduces forgetting, and enhances plasticity. Code:
https://github.com/abcxyz709/SACK

1. Introduction

The standard machine learning paradigm can be sum-
marized as a three-step pipeline: Collect Data —
Train Model on Data — Evaluate Model

on Data. This is rarely the case in real-world deploy-
ments, where models encounter continuous streams of
data that differ from what they have seen before. The
new streams of data are characterized by often having

new object categories, style changes, or photometric
variations, all of which pose a significant challenge to the
models developed under static assumptions. Moreover,
deep learning models when trained sequentially on such
streams often suffer from catastrophic forgetting [6],
where learning new tasks erases knowledge acquired by
learning earlier tasks. Consequently, a broad body of
work in the CL literature [9, 12, 18, 20, 24] has been in
addressing this fundamental trade-off between learning
effectively from novel data (plasticity) while mitigating
the catastrophic forgetting of already acquired knowledge
(stability). While existing approaches attempt to strike this
balance through various strategies, they typically treat all
samples in the new experience (labeled novel data) with
equal importance, without considering which examples
are most informative or beneficial for the model to learn
from. This contrasts sharply with how humans learn: new
information is acquired and understood in the context of
prior knowledge. This principle is central to curriculum
design, where concepts are introduced in a sequence that
builds on what has already been mastered. Most continual
learning methods, however, treat all new examples equally,
ignoring their relevance to what the model already knows.
This can lead to inefficient learning -where the model
struggles to integrate unfamiliar concepts or reinforces less
relevant patterns at the expense of stability. In this work,
we propose an alternative approach: one that enables the
learner to prioritize examples based on their conceptual
relevance to previously acquired knowledge, thereby
supporting more effective and balanced continual learning.

Motivated by this intuition, we propose a concept-based
framework, SACK, that allows continual learners to assess
the relevance of new data based on what has already been
learned. The framework works in two steps: (i) it interprets
and represents the model’s knowledge from previous ex-
periences using natural language concepts, and (ii) it com-
putes alignment scores between these existing concepts and
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Figure 1. Overview of SACK, where we connect activated concepts obtained after concept extraction with concepts corresponding to
classes in the new experience via concept-based scoring. These class-specific connection weights are further used as sample importances

while learning new experience.

the concepts required to understand the new data. These
scores are then used to guide training: SACK prioritizes
classes that are more conceptually similar to past knowl-
edge early in training, and gradually shifts focus toward less
similar, harder-to-learn classes as training progresses.

This approach marks a significant departure from stan-
dard continual learning practices. To the best of our knowl-
edge, SACK is the first framework that explicitly stud-
ies the impact of ordering samples within an experience
based on the model’s evolving understanding. Moreover,
SACK is fully modular and can be seamlessly integrated
into any existing CL method without requiring architectural
changes. We validate the effectiveness of our approach
through extensive experiments on three datasets—CIFAR-
100 [11], CUB-200 [27], and ImageNet-R [8]. We
incorporate SACK into five widely used CL baselines:
replay-based methods (iCaRL [18], DER, and DER++[4]),
the regularization-based method LwF[12], and the recent
prompt leanring-based method CoDA-Prompt [24]. Across
all combinations and evaluation metrics, we observe that
SACK consistently enhances performance, demonstrating
its broad utility and effectiveness.

2. Related Work

Continual and Curriculum Learning The challenge of
enabling models to accumulate knowledge over time with-
out overwriting prior information [6] has led to extensive
research in continual learning (CL), also known as life-
long or incremental learning. To address the stability-
plasticity dilemma, three major CL strategies have emerged:
regularization-based methods [9, 12], replay-based tech-
niques [20, 23], and architectural modifications [21]. Re-
cently, prompt-based methods [24] have gained attention,
where task-specific prompts are learned while keeping the
model backbone fixed. For further comprehensive infor-
mation and detailed overview about more continual meth-
ods, we refer readers to recent literature survey studies
[16, 26, 28]. Since CL deals with stream of data, certain

aspects of curriculum learning[2, 5] in context of CL has
also been explored by works like [ 1] where the effect of or-
dering the tasks in CL has been investigated. Unlike these
approaches, our framework SACK dynamically assesses the
relative importance of each training class by probing the
model’s prior semantic knowledge and uses that informa-
tion to construct a suitable curriculum in a given experience.

Interpretability Tools for Knowledge Discovery. Since
our approach relies on effectively capturing the concepts
learned by the model in previous experiences, the research
on interpretability methods is highly relevant to our effort.
Classical methods like SHAP [13], LIME [19], and Grad-
CAM [22] offer local insights but fall short in capturing
higher-level semantic structure. Recent methods like CLIP-
Dissect [14] address this by leveraging CLIP’s [17] vision-
language space to semantically interpret internal represen-
tations of a given deep model. While other intepretability
tools such as concept bottleneck models (CBMs) [10, 15]
have been explored in CL [30], they require complex ar-
chitectural changes. Given the demonstrated effectiveness
of CLIP-Dissect [14] in vision models, we adopt it as the
interpretability tool of choice in this work and note that
SACK can be readily used with any tool, including CBMs.

3. SACK

The core idea of SACK is to guide learning at each ex-
perience by leveraging the model’s evolving understand-
ing. Specifically, it involves two steps: first, extracting the
concepts acquired from previous experiences and those re-
quired to learn the new classes—concept extraction; and
second, computing relative scores between them—concept-
based scoring—to design a targeted curriculum that priori-
tizes learning based on conceptual relevance. An overview
of the approach is shown in Figure 1.

Preliminaries Consider a classifier f parameterized by
weights 6 that maps inputs z € X to categorical outputs y €
Y. In a CL setting, the classifier is exposed to a sequence
of experiences F; at discrete time steps ¢t € {1,...,T}.



Model parameters 6 are updated sequentially using one ex-
perience at a time.

3.1. Concept Extraction

Extracting Concepts from Incoming Data At each ex-
perience, following standard CL practice, the learner
has access to the names of classes ); from that ex-
perience. We use a large language model (e.g., GPT-
4) to expand the names of classes to a set of con-
cepts that describe each class by appropriately prompt-
ing the model as described in [15, 25]. For in-
stance, the attributes/concepts for the class * ‘bear’’ are
defined by *‘thick coat, mighty roar, large
paws, round ears, dark eyes’’,etc. Let C; be
the set of the concepts for all classes ); in the experience
E. Further, let C1., = {C; }}_; be the combined set of con-
cepts obtained for all experiences until F;.

Extracting Concepts Learned by the Model To extract the
concepts learned by the model up to the current experience
t, we use CLIP-Dissect [14], which associates natural lan-
guage concepts and confidence scores with individual neu-
rons at a given layer. We retain only the top 25% of concepts
based on their confidence scores to filter out noisy or weakly
aligned concepts. The resulting set of high-confidence con-
cepts is denoted by /C;.

3.2. Concept-Based Scoring

Now that we have computed concepts corresponding to the
incoming experience C;+1 = {C;}}, and activated con-
cepts acquired by the model IC;, we will use them to assign
weights to each class y € )Vy4+1. Using the CLIP text en-
coder, we obtain embeddings v € R7%¥*L corresponding
to L activated concepts. Similarly, we obtain embeddings
vY € R768XE corresponding to R concepts for each class
y € {1,...|Y|}. We then compute the cosine similarity be-
tween u and each vY to obtain HY € REXE, Each row H}
of this similarity matrix represents the similarity of a partic-
ular neuron activated concept with every concept extracted
from class y. To obtain the class-specific weights for a class
y € Y, we average the max value from each row [ of HY.

3.3. Designing a Concept-Based Sampler

As described in Algorithm [, to train on incoming experi-
ence iy, we use the class-specific weights from the pre-
vious section to guide the sampling of training data for each
epoch within that experience. Let p, represent the class-
wise sampling probabilities used by the sampler at epoch
g, and let WV represent the connection weights obtained for
each class in the incoming new experience Iy ;. Inspired
from the recent results in anti-curriculum learning [29], ini-
tially, we set the sampling to uniform, and as the training
progresses, the sampling probabilities are linearly interpo-

Algorithm 1 Sequentially Acquiring Concept Knowledge

1: Input: Labeled data D¢ (X, ) ) for each experience E;. Model f
with initial parameters 0

2: Initialize: Experience index ¢ <— 1; parameters 61

3: 01 + TRAIN(D1,61) > train model f on first experience

4: for each experience E¢, t€ {2,...7}do

5

6

Initialize: 0; < 0, > continual parameter update

K¢ < DISSECT(fp) > obtain concepts for model’s current
knowledge

Ct < LLM(yt)

w — CONCEPT_SCORING(K,Ct) > obtain class-wise scores

7 > obtain concepts for new experience classes
8:
9: for each epoch g = 0 to G do
0

10: pg:(lf)\g)-ﬁlJr)\g%, where \g = &
11: ﬁf < WEIGHTED_SAMPLING (D¢, py) > sample data
12: 0; — TRAIN(D;?7 1) > train model f
13: end for

14: end for

15: return 60* > final updated model parameters

lated towards the class-specific importance weights:
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where ), is the interpolation coefficient that increases lin-
early over time, |);1] is the number of classes, and G is
the number of epochs. At the beginning of each experience
(epoch g = 1), we have A\, = 0 and therefore the sampler
starts with a uniform distribution. At the end of each expe-
rience (epoch g = G), we have A\, = 1, i.e. the sampler
ends with a distribution based on the class-based scores.

4. Experiments

We perform an extensive evaluation of SACK under dif-
ferent continual learning settings (CIL, TIL) with models
of varying scales (ResNets, CLIP, Vision Transformers) on
multiple benchmark datasets. We describe our experimental
setup and results in this section.

Experimental Setup In all of our experiments, we utilize
CLIP-dissect [14] to extract the knowledge/concepts learnt
by the model through data from previous experiences. Since
SACK is not specific to any particular choice of continual
learning method, we incorporate SACK in a variety of CL
methods. To integrate SACK across different CL meth-
ods, we utilize the mammoth [3] library. Datasets. We
use CIFAR-100 [11], CUB-200 [27], and ImageNet-R [8]
for our experiments. To evaluate SACK under fine-grained
classification and under distribution shifts we use CUB-
200 [27] and ImageNet-R [8] respectively.
Implementation Details. Concept Extraction. For iCaRL,
DER, DER++, and LwF using ResNets [7], we extract con-
cepts from the last fully connected layer and for CODA-
Prompt [24], which uses CLIP, we dissect the learn-




CIFAR-100

CUB-200

IMAGENET-R

Method Avg.ACC Last.ACC BWT AvgACC LastACC BWT Avg.ACC LastACC BWT
LWF[12] 2880  92.60 -89.50 1078  37.75 -2041 840 849  -14.03
LWF + SACK 2933 9270 -88.70 10.87 4234 2081 1283  17.62 -12.36
iCaRL[18] 82.81 914 488 1729 1445 137 547 927  -23.66
iCaRL + SACK 8330 9190 -438 2471 2091 169 635 854 2432
DER[4] 8033  91.10 -1050 2630 5629 -21.89 24.18  58.17 -45.62
DER + SACK 8136 9250 -9.70 2660  57.82 -22.50 2530  58.59 -45.27
DER++[4] 8047 9320 -1097 5181 6020 0655 3574 4861  -9.07
DER++ + SACK 8282 9350 -827 5225 6105 0.66 3685 5477  -9.07
CODA-Prompt[24] 9856 9950 017 8923  93.02 -0.02 9124 9044 0.0

CODA-Prompt + SACK  98.56  99.50 008 8934 9302 028 9135  89.38  0.80

Table 1.

Performance comparison of various continual learning (CL) methods with and without integration of SACK in the Task-

Incremental Learning (TIL) setting. Each dataset is split into 10 sequential experiences with an equal number of classes per experience.
Results are reported using Average Accuracy, Last Accuracy, and Backward Transfer. Bold represents best values.

CIFAR-100 CUB-200 IMAGENET-R

AvgACC LastACC BWT AvgACC  LastACC BWT AvgACC  LastACC BWT
LWEF[12] 9.34 9260  -68.51 3.77 3775 -28.77 0.84 8.49 -24.66
LWF + SACK 9.43 92.70 -66.58 423 42.34 -28.19 1.76 17.62 -2242
iCaRL[18] 48.06 53.60 -18.40 3.89 2.38 -7.84 1.81 473 -49.63
iCaRL + SACK 49.83 55.80 -19.22 7.06 340 -2.52 1.89 4.03 -44.22
DER[4] 49.22 75.90 -38.70 5.68 56.12 -45.20 5.81 58.17 -25.95
DER + SACK 49.24 80.80 -38.60 582 57.65 -45.30 5.83 58.38 -24.18
DER++([4] 45.93 85.70 -44.86 28.11 49.82 -17.26 1234 40.12 -26.92
DER++ + SACK 49.04 83.00 -40.62 28.26 52.04 -17.14 11.28 52,01 -3345
CODA-Prompt[24] 86.79 90.20 -5.40 71.31 85.71 -8.48 75.24 74.94 -5.75
CODA-Prompt + SACK 87.26 90.70 -5.50 7178 85.20 -8.05 75.65 7537 -5.49

Method

Table 2. Evaluating the improvements after integration of
SACK in the Class-Incremental Learning (CIL) setting.

able head of CLIP’s vision encoder. Hyperparameters.
All hyperparameters follow the standard settings from the
mammoth library [3], which we also use to train baselines
for fair comparison.

Evaluation Metrics. To evaluate the efficacy of the pro-
posed approach, we utilize three standard CL evaluation
metrics- underline(i) Average Accuracy, (ii) Last Accuracy
and (iii) Backward Transfer (BWT). In all cases, higher
values indicate better performance.

4.1. Results

SACK Improves All CL methods in Task-Incremental
Learning From table 1 we can observe that, on CIFAR-100,
all baseline methods benefit from the integration of SACK.
For instance, iCaRL+SACK improves Avg.ACC by 0.59%
With SACK, DER++ achieves a 2.92% gain in Avg.ACC
and a 24.6% reduction in forgetting. In contrast, CODA-
Prompt’s performance remains unchanged with SACK
—Ilikely due to its already saturated performance, achieving
99.50% on Last.ACC, leaving little room for improvement.
On the more challenging and fine-grained CUB-200 dataset,
SACK yields striking improvements, clearly demonstrat-
ing the benefits of our principled approach. When com-
bined with iCaRL, Avg. ACC improves by 42.9%, and BWT
turns positive, indicating strong knowledge retention. Simi-
lar improvements are observed for other methods as well.
Notably, even the stronger CODA-Prompt benefits from

SACK, with BWT increasing from —0.02 to 0.28. Fur-
thermore, on the ImageNet-R benchmark—which intro-
duces significant real-world distribution shifts—SACK en-
hances the performance of all methods. For example, when
integrated with LWE, Avg.ACC improves by 52.7% and
Last. ACC more than doubles. Even with other methods,
SACK shows consistent gains across all metrics thereby
demonstrating its generality and effectiveness in TIL set-
ting.

Benefits Continue to Persist even In The Challenging
Class Incremental Learning Setup Beyond the TIL set-
ting, we also evaluate the performance of SACK in the more
challenging class-incremental learning (CIL) setup, and re-
sults are summarized in Table 2. In CIL, task identities
are not available at inference time, making CL substan-
tially harder. Despite this increased difficulty, SACK con-
tinues to deliver consistent improvements across multiple
baselines and datasets. On CIFAR-100, SACK offers mod-
est but meaningful gains across most methods. For ex-
ample, integrating SACK with iCaRL improves Avg. ACC
from 48.06 to 49.83 (a 3.69% increase). DER++ also
sees noticeable improvements, with Avg.ACC increasing
from 45.93 to 49.04 While gains for CODA-Prompt are
smaller, SACK still improves Avg.ACC without compro-
mising on the BWT. Similar to results obtained in TIL, on
CUB-200, the benefits of SACK are especially apparent.
When combined with iCaRL, Avg.ACC increases by over
81% (from 3.89 to 7.06). Interestingly, even with strong
baselines such as CODA-Prompt, SACK brings modest im-
provements to both Avg.ACC and BWT. Finally, results on
the ImageNet-R benchmark highlight SACK ’s robustness.
With LWF, Avg. ACC more than doubles from 0.84 to 1.76,
and Last. ACC jumps from 8.49 to 17.62. DER++ benefits
significantly as well, with Last. ACC improving by nearly
12 points however this increases comes at the cost of BWT.
These consistent improvements across diverse methods and
benchmarks validate the effectiveness of SACK in the more



realistic and demanding CIL setting.

5. Conclusion

In this work, we have developed SACK (Sequentially Ac-
quiring Concepts), a method-, model-, and setting-agnostic
two-step continual learning framework that helps CL meth-
ods prioritize samples in the new experience based on the
prior concept knowledge of the learner.
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