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Abstract

This paper evaluates the viability of using001
fixed language models for training text classi-002
fication networks on low-end hardware. We003
combine language models with a CNN ar-004
chitecture and put together a comprehensive005
benchmark with 8 datasets covering single-006
label and multi-label classification of topic,007
sentiment, and genre. Our observations are dis-008
tilled into a list of trade-offs, concluding that009
there are scenarios, where not fine-tuning a lan-010
guage model yields competitive effectiveness011
at faster training, requiring only a quarter of012
the memory compared to fine-tuning.013

1 Introduction014

The transition to neural networks as primary ma-015

chine learning paradigm in natural language pro-016

cessing (NLP), and especially pre-training lan-017

guage models, has led to dramatic effectiveness018

improvements in most any NLP task. Current state-019

of-the-art approaches utilize pre-trained language020

models, which are fine-tuned to a given set of target021

variables (i.e., by training all parameters of the lan-022

guage model). Training neural networks requires023

calculating a gradient for every layer and batch el-024

ement, thus easily tripling the required memory.025

Meanwhile, this practice often exceeds the capabil-026

ities of end-user graphics cards. Nevertheless, such027

graphics cards can still get by without fine-tuning,028

through fitting a fixed parameter language model.029

This leads us to the following questions: (1) Can030

older or cheaper graphics cards be used to train neu-031

ral language models for text classification without032

fine-tuning? (2) How does their effectiveness com-033

pare to the state-of-the-art fine-tuning methods?034

(3) What are the trade-offs between effectiveness035

and efficiency? A less resource-intensive means to036

using language models is especially beneficial in037

cases where older graphics cards are available (e.g.,038

due to the presently prohibitive upgrade costs), and039

where outsourcing to cloud services is not an op-040

tion (e.g., for privacy, security, or budget reasons). 041

Among others, our experiments show that the drop 042

of performance for single-label topic classification 043

is marginal at around 1%; other tasks suffer more 044

severe drops at around 10%. At the lower end, 045

training a fixed parameter language model is al- 046

ways superior to word embeddings. 047

2 Related Work 048

Currently, text classification is mostly tackled us- 049

ing neural networks. Virtually every state-of-the- 050

art result for text classification has been achieved 051

using neural language models (Yang et al., 2019; 052

Aly et al., 2019; Pal et al., 2020). Typically, a 053

pre-trained language model is used, attaching an 054

extra layer for projection to task-specific target vari- 055

ables, and fine-tuning both (Devlin et al., 2019). 056

This either requires graphics cards with large mem- 057

ory, or low batch sizes. A substantial amount of 058

research focuses on methods to downsize these 059

pre-trained language models (Sanh et al., 2019; 060

Mikolov et al., 2013; Clark et al., 2020). But, while 061

these approaches reduce the number of parameters 062

drastically, the memory during fine-tuning can still 063

exceed 10 GiB due to gradient calculations. 064

Prior to language models, the most popular neu- 065

ral approach was to leverage pre-trained word em- 066

beddings, like GloVe (Pennington et al., 2014) and 067

Word2Vec (Mikolov et al., 2013), feed them to 068

task-specific neural architectures (Xiao et al., 2019; 069

Kim, 2014), and then train on the task data at hand. 070

Although pre-trained word embeddings also range 071

at around 100M parameters, they are computation- 072

ally efficient, since no gradient calculations are 073

required. However, these approaches suffer from 074

problems, such as out-of-vocabulary words and 075

context insensitivity. We evaluate the performance 076

of neural networks using a fixed-parameter lan- 077

guage model as a middle ground between fine- 078

tuning and word embeddings, investigating the 079

trade-off between efficiency and effectiveness. 080
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3 Experimental Setup081

We employ the Huggingface library (Wolf et al.,082

2020) as a reference implementation for various083

state-of-the-art language models, and a PyTorch084

(Paszke et al., 2019) implementation of a CNN085

feature extraction module, which has proven use-086

ful for word-embedding-based models in differ-087

ent combinations (Kim, 2014; Rios and Kavuluru,088

2018). The following language models are com-089

pared to word embeddings: The base versions of090

BERT (bert-base-cased) and RoBERTa (roberta-091

base) with standard hyperparameters. Moreover, a092

heavily downsized BERT-Tiny, a 2-layer version of093

BERT-base (bert_uncased_L-2_H-768_A-12), and094

a version with reduced hidden size and attention095

heads (bert_uncased_L-12_H-128_A-2).096

The CNN consists of c convolutional layers with097

ki kernel sizes, 1 ≤ i ≤ c, and f filters per layer.098

Its resulting feature vector is projected to the num-099

ber of target classes of the corresponding dataset.100

Combinations of the CNN layer with either a lan-101

guage model or word embeddings are trained with102

and without fine-tuning. We use c = 4 convolu-103

tional layers with kernel sizes of 3,4,5, and 6, and104

filter size f = 100. The CNN model is trained us-105

ing Adam (Kingma and Ba, 2015) with a learning106

rate of 5e − 5. The number of input tokens is set107

to 200. For multi-label tasks, a sigmoid activation108

of outputs and binary cross-entropy loss is used,109

and for single-label tasks, a softmax activation with110

categorical cross-entropy. For feature extraction, a111

batch size of 50 is used across all datasets while it112

has to be adjusted to 40 for fine-tuning to circum-113

vent memory errors. We run each setting 3 times114

and report mean and standard deviation. Training115

epochs for each dataset are listed in Appendix A1.116

The aforementioned models are evaluated on117

8 datasets for a broad view of their effectiveness118

and efficiency compared to word embeddings. In119

both test cases, we feed the output of the language120

model into the CNN module and train both in com-121

bination. All datasets used are English. Each multi-122

label dataset has an unbalanced label distribution.123

The following datasets are included:124

AG News: News articles from the 4 largest top-125

ics of the corpus for a total of 30,000 training and126

1,900 test samples per topic (Zhang et al., 2015).127

20NEWS: Messages from Usenet newsgroups128

with 20 topic classes. for a total of 11,314 training129

and 7,532 test samples (Lang, 1995).130

DBpedia: An ontology dataset with 14 classes 131

for a total 40,000 training and 5,000 test samples 132

per class, randomly chosen from DBpedia 2014 133

(Zhang et al., 2015). 134

TREC: Question classification dataset consist- 135

ing of open-domain, fact-based questions. We use 136

the versions with 6 and 50 classes, each containing 137

5,452 training and 500 test samples. 138

Yelp: A sentiment classification dataset contain- 139

ing 650,000 Yelp reviews used as training samples, 140

as well as 50,000 test samples. Each review may 141

have a rating between 1 and 5 stars for classes. 142

RCV1-v2: Topic classification dataset created 143

by categorization of newswire stories. This version 144

consists of 103 classes for a total of 23,149 train- 145

ing and 781,265 test samples with a label density 146

of 3.12 (Lewis et al., 2004). 147

BlurbGenreCollection_EN: Genre classifica- 148

tion dataset using book blurbs made up of a short 149

abstracts describing a given book with 152 classes 150

for a total of 58,715 training and 18,394 test sam- 151

ples with a label density of 3.01 (Aly et al., 2019). 152

Ohsumed: Medical dataset split into 23 differ- 153

ent cardiovascular diseases for classes for a total of 154

7,643 training and 6,286 test samples with a label 155

density of 1.64 (Hersh et al., 1994). 156

4 Results 157

Effectiveness: We report accuracy on the single- 158

label datasets in Table 1 and micro Preci- 159

sion/Recall/F1 on multi-label datasets in Table 2. 160

The results of feature extraction and fine-tuning 161

are also compared to the current state-of-the-art 162

results of the chosen datasets. On both single-label 163

and multi-label datasets, fine-tuning on average per- 164

forms better than feature extraction. In most cases, 165

the smallest language model, BERT-Tiny, trained 166

with feature extraction is on par with the word em- 167

beddings. However, when increasing model size 168

or using fine-tuning, the word embeddings fall be- 169

hind regarding recall. DBpedia is the only dataset 170

on which BERT achieves better results with fine- 171

tuning and feature extraction. We argue that this 172

can be attributed to the much higher similarity be- 173

tween pre-training and downstream task compared 174

to RoBERTa which was also observed by (Peters 175

et al., 2019). While feature extraction can achieve 176

good results on single-label data compared to fine- 177

tuning it unfortunately falls short when training on 178

multi-label data. 179

Memory: We train on an NVIDIA 1080Ti with 180
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11GiB of VRAM. We compare the differences in181

memory usage by model between single-label and182

multi-label datasets using the feature extraction183

and fine-tuning approaches. As shown in App. A2,184

when training with feature extraction the memory185

usage of the larger models is generally the same,186

hovering between 1.6-1.7 GiB. The same can be187

said about fine-tuning where the usage stays be-188

tween 10.3-10.6 GiB when applying BERT and189

RoBERTa. One must consider that even with a190

batch size reduction of 20% these models take up191

almost all our available VRAM. Therefore, the ac-192

tual memory savings with equalized batch sizes193

are larger. While the memory usage of GloVe is194

the same as BERT-base concerning feature extrac-195

tion, a large reduction is possible with the smallest196

BERT models for both feature extraction and fine-197

tuning. In the case of BERT-Tiny 1GiB of VRAM198

or less is needed in both cases.199

Time: There are two aspects to training time:200

Time per epoch and overall training time. To eval-201

uate epoch time, we calculate the mean of each202

dataset’s runs and divide by BERT-FE time to get203

relative values. The results are presented in App.204

A3. Generally speaking fine-tuning takes around205

twice to thrice as long per epoch than feature ex-206

traction. On single-label datasets RoBERTa-FE207

overall takes longer to train than BERT, with the208

increase in training time conforming to the increase209

in model size. GloVe and the small BERT models210

only require a fraction of time compared to their211

larger counterparts. Time savings of around 95%212

using feature extraction and 90% using fine-tuning213

are possible with BERT-Tiny. While per epoch214

time advantage is substantial for feature extraction,215

to be fair, we have to look at the net training time in216

App. A4. To achieve the best results with feature217

extraction, it takes about 2-3 times more epochs to218

compete. This sometimes leads to feature extrac-219

tion taking more overall time than fine-tuning, thus220

nullifying the gain per epoch.221

Trade-offs: There are a number of observations222

to be made from these experiments, which are:223

Feature extraction can be a viable option for224

single-label classification, losing only 1.06% of rel-225

ative performance on average compared to its fine-226

tuning counterpart for topic classification, while us-227

ing only 1.7 GiB VRAM. Sentiment and question228

classification seem to draw more benefit from fine-229

tuning with a relative performance gain of 7.08%230

and 13%, respectively.231

Feature extraction loses significantly on multi- 232

label classification, 8% decrease in performance on 233

average, while also requiring more overall training 234

time. The only argument for using feature extrac- 235

tion in multi-label tasks would be strong memory 236

constrictions. 237

Feature extraction is a viable option if you have 238

memory restrictions (even 2GiB or lower), since 239

the larger feature extraction models hover around 240

1.65 GiB of VRAM with the smallest at 700MiB. 241

For example, when having a restriction of 2GiB 242

it is still better to use feature extraction on a large 243

model than to fine-tune a small model. 244

Per epoch time efficiency: In all feature extrac- 245

tion cases you get a better per epoch time efficiency. 246

As discussed above, this amortizes when compar- 247

ing the overall run times or hyperparameters. If 248

time per epoch is a relevant metric (e.g., in split 249

training sessions) this can be useful. 250

Very small language models are competitive, 251

when compared to word embeddings. The small 252

memory footprint enables training on older hard- 253

ware while maintaining a comparable performance 254

combined with faster individual epochs. 255

No matter the hardware restrictions there is al- 256

ways a language model better and more efficient 257

to use. If the language model crosses a minimum 258

size it consistently outperforms word embeddings 259

while maintaining a smaller memory footprint. 260

5 Summary 261

In this paper, we evaluated using language mod- 262

els without fine-tuning for text classification. We 263

surveyed a set of publicly available datasets to dis- 264

till a list of trade-offs regarding performance, time, 265

and memory, to decide whether keeping a fixed 266

language model is a viable option in scenarios with 267

limited hardware resources. We found that there 268

are use cases in which using a larger model and 269

not fine-tuning proves to be a good way to go, the 270

main reason being memory restrictions. The largest 271

model in our experiments (RoBERTa) without fine- 272

tuning and a batch size of 50 still has a memory 273

footprint comparable to fixed word embeddings, 274

while improving on every dataset by 6.61% on av- 275

erage. We hope this analysis may help with regards 276

to choosing the appropriate hardware and model 277

combination. 278
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Method AG News 20NEWS DBpedia TREC-6 TREC-50 YELP

GloVe-FE 91.84 ±0.18 79.85 ±0.04 98.71 ±0.01 92.33 ±0.77 84.13 ±0.57 58.75 ±0.06
GloVe-FiT 92.14 ±0.19 80.06 ±0.15 98.79 ±0.02 92.33 ±0.09 77.80 ±0.71 59.63 ±0.15
BERT-Tiny-FE 90.74 ±0.04 78.29 ±0.28 98.74 ±0.02 88.47 ±0.19 71.13 ±0.41 60.74 ±0.09
BERT-Tiny-FiT 92.92 ±0.13 80.52 ±0.19 99.01 ±0.02 91.33 ±0.25 81.33 ±1.20 63.57 ±0.09
BERT-L-2-FE 93.03 ±0.11 84.12 ±0.26 99.18 ±0.02 94.33 ±0.38 78.40 ±0.16 63.57 ±0.06
BERT-L-2-FiT 93.76 ±0.15 84.90 ±0.08 99.23 ±0.02 95.00 ±0.33 89.73 ±0.25 65.13 ±0.05
BERT-L-12-FE 91.37 ±0.09 78.88 ±0.39 98.95 ±0.01 90.27 ±0.57 73.53 ±0.47 60.77 ±0.01
BERT-L-12-FiT 93.47 ±0.25 82.50 ±0.47 99.08 ±0.02 94.60 ±0.43 87.93 ±0.94 65.24 ±0.18
BERT-FE 92.97 ±0.06 84.25 ±0.43 99.19 ±0.02 94.87 ±0.34 78.87 ±0.62 63.25 ±0.03
BERT-FiT 94.01 ±0.06 84.69 ±0.29 99.26 ±0.03 97.13 ±0.25 92.00 ±0.65 66.44 ±0.17
RoBERTa-FE 92.49 ±0.06 85.81 ±0.16 99.04 ±0.01 78.53 ±0.50 55.13 ±0.62 64.16 ±0.09
RoBERTa-FiT 94.84 ±0.25 85.59 ±0.3 99.21 ±0.01 96.67 ±0.09 90.67 ±1.32 68.70 ±0.05

SOTA 95.55
Yang et al.

88.5
Wu et al.

99.4
Yang et al.

98.07
Cer et al.

97.2
Tayyar Madabushi and Lee

73.28
Abreu et al.

Table 1: Test Accuracy (%) averaged over 3 runs on the single-label datasets. We compare feature extraction (FE)
with our baselines and state-of-the-art (SOTA) models.

Dataset Method Precision Recall F1

RCV1

GloVe-FE 90.33 ±0.09 67.69 ±0.13 77.38 ±0.06
GloVe-FiT 90.70 ±0.13 67.89 ±0.10 77.65 ±0.02
BERT-Tiny-FE 89.20 ±0.12 70.21 ±0.12 78.57 ±0.05
BERT-Tiny-FiT 81.99 ±0.45 78.22 ±0.13 80.06 ±0.16
BERT-L-2-FE 92.41 ±0.02 73.37 ±0.12 81.79 ±0.07
BERT-L-2-FiT 84.99 ±0.34 83.31 ±0.31 84.14 ±0.07
BERT-L-12-FE 91.58 ±0.09 68.93 ±0.14 78.66 ±0.08
BERT-L-12-FiT 82.77 ±0.17 82.79 ±0.24 82.78 ±0.06
BERT-FE 87.88 ±0.18 77.97 ±0.43 82.63 ±0.16
BERT-FiT 86.12 ±0.20 86.39 ±0.19 86.26 ±0.08
RoBERTa-FE 87.62 ±0.11 81.34 ±0.08 84.36 ±0.04
RoBERTa-FiT 86.93 ±0.52 87.30 ±0.62 87.11 ±0.07
MAGNET (Pal et al., 2020) - - 88.5

Ohsumed

GloVe-FE 69.25 ±0.43 56.99 ±0.13 62.53 ±0.19
GloVe-FiT 68.71 ±0.22 59.14 ±0.09 63.57 ±0.14
BERT-Tiny-FE 65.79 ±0.30 57.40 ±0.34 61.31 ±0.29
BERT-Tiny-FiT 60.97 ±0.65 59.13 ±0.81 60.03 ±0.12
BERT-L-2-FE 74.46 ±0.02 57.04 ±0.24 64.60 ±0.28
BERT-L-2-FiT 67.87 ±0.81 65.23 ±0.60 66.52 ±0.21
BERT-L-12-FE 67.10 ±0.04 56.02 ±0.30 61.05 ±0.17
BERT-L-12-FiT 66.08 ±0.68 63.78 ±1.08 64.89 ±0.23
BERT-FE 71.25 ±0.78 61.21 ±0.07 65.84 ±0.32
BERT-FiT 71.74 ±0.80 69.75 ±0.39 70.72 ±0.31
RoBERTa-FE 69.67 ±0.25 64.08 ±0.26 66.76 ±0.15
RoBERTa-FiT 73.78 ±1.06 69.26 ±2.15 71.74 ±0.62
SVM (Zha and Li, 2018) - - 62.9

BGC_EN

GloVe-FE 81.90 ±0.34 50.98 ±0.65 62.84 ±0.40
GloVe-FiT 82.46 ±0.19 53.49 ±0.21 64.89 ±0.12
BERT-Tiny-FE 80.64 ±0.09 55.62 ±0.28 65.83 ±0.20
BERT-Tiny-FiT 71.50 ±0.33 70.69 ±0.08 71.10 ±0.19
BERT-L-2-FE 85.31 ±0.08 61.61 ±0.02 71.55 ±0.01
BERT-L-2-FiT 78.14 ±1.29 74.56 ±0.99 76.30 ±0.11
BERT-L-12-FE 82.69 ±0.12 54.89 ±0.11 65.98 ±0.12
BERT-L-12-FiT 72.75 ±0.21 74.16 ±0.20 73.44 ±0.17
BERT-FE 76.87 ±0.44 70.18 ±0.27 73.37 ±0.05
BERT-FiT 77.54 ±0.23 78.64 ±0.3 78.09 ±0.17
RoBERTa-FE 73.72 ±0.31 71.35 ±0.34 72.52 ±0.03
RoBERTa-FiT 78.41 ±0.37 79.36 ±0.32 78.88 ±0.07
Caps. Network (Aly et al., 2019) 77.21 ±0.54 71.73 ±0.63 74.37 ±0.35

Table 2: Comparison between feature extraction (FE) and our baselines on multi-label datasets using Preci-
sion/Recall/F1 (%). We include the best published result on the respective dataset for context.
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A Appendix437

Dataset FE FiT

AGNews 20 10
20NEWS 300 100
DBpedia 10 10
TREC-6 150 50
TREC-50 150 50
YELP 15 5
RCV1 50 20
BGC_EN 40 20
Ohsumed 300 80

Table A1: Number of epochs for every dataset.

Method FE FiT

GloVe 1643 3941
BERT-Tiny 693 1007
BERT-L-2 1371 3159
BERT-L-12 715 2419
BERT 1667 10319
RoBERTa 1729 10577

Table A2: Average memory usage during training in
MiB.

BERT RoBERTa GloVe BERT-Tiny BERT-L-2 BERT-L-12
Dataset FE FiT FE FiT FE FiT FE FiT FE FiT FE FiT

AGNews 1.0 2.62 1.25 2.59 0.04 0.24 0.05 0.11 0.21 0.52 0.12 0.37
20NEWS 1.0 1.96 1.08 1.74 0.03 0.15 0.05 0.08 0.15 0.3 0.13 0.27
DBpedia 1.0 2.58 1.24 2.54 0.04 0.23 0.05 0.1 0.21 0.51 0.12 0.36
TREC-6 1.0 2.64 0.99 2.65 0.04 0.14 0.04 0.1 0.21 0.51 0.12 0.36
TREC-50 1.0 2.63 1.0 2.64 0.04 0.14 0.04 0.1 0.21 0.51 0.12 0.36
YELP 1.0 2.67 0.99 2.69 0.04 0.15 0.05 0.1 0.23 0.54 0.13 0.38
RCV1 1.0 1.55 0.79 1.32 0.05 0.18 0.06 0.08 0.19 0.3 0.12 0.2
Ohsumed 1.0 1.92 0.8 1.74 0.05 0.27 0.06 0.09 0.19 0.38 0.12 0.28
BGC_EN 1.0 2.11 1.08 1.97 0.05 0.27 0.06 0.1 0.2 0.42 0.12 0.29

Table A3: Average time in seconds per epoch measured as multiples of BERT-FE.

BERT RoBERTa GloVe BERT-Tiny BERT-L-2 BERT-L-12
Dataset FE FiT FE FiT FE FiT FE FiT FE FiT FE FiT

AGNews 4.32 5.62 5.43 5.58 0.17 0.51 0.78 0.90 3.65 4.51 2.08 3.17
20NEWS 10.08 6.86 11.33 6.11 0.34 0.50 1.93 0.85 5.46 3.32 3.58 2.42
DBpedia 10.51 26.74 12.91 26.43 0.41 2.39 2.04 3.35 8.76 16.02 5.07 11.20
TREC-6 1.50 1.32 1.49 1.32 0.19 0.29 0.12 0.08 0.62 0.41 0.35 0.29
TREC-50 1.50 1.32 1.50 1.32 0.19 0.29 0.12 0.08 0.62 0.41 0.35 0.29
YELP 17.65 15.74 17.51 15.82 3.61 6.10 4.30 4.02 7.99 6.39 7.07 6.72
RCV1 6.31 3.92 4.93 3.36 0.34 0.46 1.16 1.48 3.56 5.31 2.32 3.70
Ohsumed 5.58 3.00 4.58 2.71 0.25 0.40 0.94 0.34 3.06 1.44 1.88 1.02
BGC_EN 6.32 6.56 5.22 6.11 0.30 0.85 1.19 1.01 4.12 4.24 2.55 2.97

Table A4: Average total training time per dataset in hours.
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