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Abstract

Foundation models have been successfully adapted to the task of time series forecasting
due to their ability to capture long-range dependencies, as demonstrated in the field of
Natural Language Processing (NLP). However, effectiveness of applying these pre-trained
time series foundation models (TSFMs) in the target domain is limited due to the need for
hyperparameter optimization to match the characteristics of the target domain. To address
this limitation, we propose a novel algorithm AT4TS: Autotune for Time Series Foundation
Models that aims to efficiently automate the process of selective fine-tuning of pre-trained
TSFMs for a given target domain. Our approach helps remove the tedious task of accu-
rately configuring the tunable hyperparameters required to selectively update parameters to
enhance predictive performance on unseen out-of-domain target datasets. AT4TS has been
validated through diverse pre-trained models like Chronos and Tiny Time Mixers (TTM),
fine-tuning strategies like Low Rank Adaptation (LoRA) and custom fine-tuning and state-
of-the-art hyperparameter optimization (HPO) methods. Extensive experimental results on
real-world benchmark datasets demonstrate that AT4TS efficiently identifies the optimal
configuration of tunable hyperparameters for autotuning TSFMs. We show improvements
as high as 20.55% and 45.34% for one of the out-of-domain datasets compared to zero-shot
pre-trained models for Chronos and TTM respectively.

1 Introduction

Time series forecasting has always been critical for decision-making across various domains including retail,
smart grids, healthcare, finance, weather, traffic control among others (Peterson, [2017)) (Hernandez et al.,
2014). The remarkable success of LLMs in broad domains like Computer Vision (CV) and Natural Language
Processing (NLP) (Vaswani et al., [2017) (Wen et al., 2022)) has prompted researchers to adapt these models
to the task of time series forecasting (Wu et all 2022; |Garza & Mergenthaler-Cansecol 2023; |Gruver et al.
2024) given their ability to capture long range dependencies present in time series data. These models
are pre-trained on vast amounts of data spanning a multitude of domains leveraging the general purpose
representations learnt in the process. However, to excel on the domain specific downstream task it becomes
important to fine-tune these models on datasets from the target domain (Wen et al.,[2022). Such adaptation
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is generally achieved via fine-tuning, which involves updating all the parameters of the pre-trained model
(Jin et al [2023; |Bommasani et al., [2021; [Lv et al., [2023)). Given the large number of parameters that are
originally trained, full fine-tuning becomes an operational challenge if we wish to adapt these models to the
target domain.

Recent studies have shown that the computational burden and inefficiencies associated with full fine-tuning
can be mitigated by adapting only a small percentage of the parameters in addition to the pre-trained model
for each task which greatly enhances the operational efficiency of these models (Hu et al 2021)). This helps
in learning the specific characteristics of the target-domain while also retaining the broad understanding of
general time series data acquired during the pre-training phase. These techniques are termed as Parameter-
Efficient Fine-Tuning (PEFT). One of the popular PEFT techniques, LoRA (Low Rank Adaptation)(Hu
et all 2021)) trains only selective dense layers in a neural network while keeping the pre-trained weights
frozen. This approach has been widely applied to various domains such as medical imaging, video text
generation and speech synthesis (Balne et al. 2024) to name a few. However, its application to time series
is under explored.

AutoML, which involves automating the process of composing and parameterizing ML algorithms to maxi-
mize a specific metric such as model accuracy on a given dataset has been widely used to improve the accuracy
of traditional machine learning and deep learning models (He et al.| [2021). Leveraging this knowledge, auto-
tuning of pre-trained foundation models for a given target domain can potentially lead to improvement in the
accuracy of these models compared to traditional fine-tuning with fixed hyperparameters of the fine-tuning
algorithms.

To this end, we propose a novel algorithm called AT4TS : Autotune for Time Series Foundation Models,
which achieves efficient fine-tuning of pre-trained TSFMs through the integration of parameter-efficient fine-
tuning techniques along with hyperparameter optimization of the fine-tuners to improve the performance
of time series foundation models in the target domain. We illustrate our algorithm using two different
categories of TSFMs: Chronos, a Transformer-based architecture and TTM, a lightweight non Transformer-
based model. In particular, to achieve an efficient implementation of autotuning, we adopt the classical
Limited Discrepancy Search (LDS) algorithm introduced by (Harvey & Ginsberg), [1995) to optimize the
hyperparameter selection process. This algorithm is essentially a depth-first search strategy that identifies
new set of solutions by iteratively increasing the number of discrepancy values where the discrepancy refers to
the number of variables in the current configuration that differ from their values in the initial configuration.
We further establish the robustness of AT4TS by using it with other hyperparameter optimization methods,
namely, Hyperopt (Bergstra et al., 2015) and Bayesian Optimization and Hyperband (BOHB) (Falkner et al.,
2018). The novel contributions of this paper include:

e Automated fine-tuning exploring tunable hyperparameter configurations for fine-tuners of pre-
trained time series foundation models to find the optimal hyperparameters for the target domain.
To the best of our knowledge, this is the first paper to explore the potential of autotuning TSFMs.

o Generalized applicability of AT4TS algorithm across disparate pre-trained models (transformer based
and non-transformer based), fine-tuning strategies (LoRA and custom fine-tuning) and HPO meth-
ods (LDS, Hyperopt and BOHB).

o Extensive tests across a suite of out-of-domain real-world benchmark datasets to compare the per-
formance of autotuned TSFMs, traditional fine-tuning strategies, and zero-shot pre-trained models.

2 Related Work

With the recent success of foundation models in the domains of NLP and CV, there has been growing research
for leveraging their potential for time series analysis particularly for long-term forecasting. To this end,
TSFMs aim to accomplish the zero-shot generalization capabilities across a diverse spectrum of downstream
tasks, thereby, minimizing the need for explicit task-specific model development. Furthermore, TSFMs hold
the promise of attaining superior performance through domain specific fine-tuning catering to a wide range
of applications. Authors in (Liang et al.l |2024)), propose a comprehensive taxonomy offering a thorough
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understanding of the rapidly evolving landscape of TSFMs. Based on their methodological categorization,
most of the popular TSFMs are: Transformer-based, non Transformer-based and diffusion-based models.
We briefly discuss the first two categories of TSFMs in this section as we illustrate our approach using one
model from each category.

Transformer-based TSFMs: In the first category, authors in (Zhou et al. 2021) (Wu et all 2021
(Zhou et all[2022) employ transformer-based architectures to capture long-term dependencies in time series
data. They further handle the challenges of quadratic time complexity and high memory usage through
self-attention and auto-correlation mechanisms. PatchTST (Nie et al., |2022)) on the other hand, introduced
two key components : segmentation of time series into patches serving as input tokens to the transformer
along with channel-independence overcoming the challenge of high memory usage of attention maps. Yet
another pioneering work in this area is Lag-Llama (Rasul et al 2023)) inspired by the LLaMA (Touvron
et al.,|2023|) LLM which utilizes a simple decoder-only transformer architecture for time series forecasting by
using lagged features as covariates. Another line of work, LLMTime (Gruver et al., 2024), uses time series as
strings with careful pre-processing specific to the given LLMs’ tokenizer. Likewise, Chronos (Ansari et al.|
2024) employs the encoder-decoder transformer architecture from the T5 (Raffel et al., 2020) LLM family
requiring minimal modifications i.e, tokenization through scaling and quantization.

Non Transformer-based TSFMs: Non-Transformer based models use diverse architectures to efficiently
process temporal patterns. One groundbreaking contribution in this category is a relatively smaller model
(1-5 million parameters) called Tiny Time Mixers (TTM) (Ekambaram et all 2024). Build upon TSMixer
architecture, it uses light-weight MLPMixer blocks interleaved with simple gated attention outperforming
many foundation models with significantly larger model parameter sizes.

Parameter Efficient Fine Tuning (PEFT): In order to make TSFMs more accessible and adaptable to
facilitate their wider application to real-world downstream tasks, they can be directly deployed to leverage
the general temporal knowledge acquired in the pre-training phase. However, in operational deployments,
domain specific target data is used to fine-tune these models to further enhance their zero-shot performance.
Most commonly, PEFT techniques have been proposed in NLP and CV for fine-tuning a subset of parameters
in various downstream tasks. One of them is LoRA (Hu et al.,2021) which adds trainable low-rank matrices
into transformer layers to approximate the weight updates while keeping the existing weights frozen. The
application of LoRA in the domain of fine-tuning TSFMs remains largely unexplored due to the rapidly
evolving nature of this field and hence, motivates this work. The authors in (Gupta et al.,2024)) investigate
the impact of LoRA based fine-tuning across popular TSFMs which relates to our work, however, they do
not attempt autotuning TSFMs using different parameter efficient fine-tuning techniques which makes our
contribution novel.

Hyperparameter Optimization (HPO): Hyperparameter optimization (HPO) can potentially act as
an important component in searching for optimal hyperparameters for selectively fine-tuning the pre-trained
models. Bayesian optimization (BO) has been the state-of-the-art method for optimizing hyperparameters
for neural networks (Eggensperger et al., [2013) (Feurer et al., [2015)). It relies on probabilistic modeling of
the objective function given the observed data points. Other methods include Hyperband (Li et al., [2022)
which is a bandit based method that adaptively allocates different budgets b and utilizing successive halving
to find the best out of a set of randomly sampled configurations. BOHB leverages the benefits of both BO
and HB to achieve faster convergence to the most optimal configurations. Hyperopt is based on bayesian
optimization that uses Tree-of-Parzen-Estimators (TPE) (Bergstra et al., |2011)) algorithm for carrying out
hyperparameter optimization for ML algorithms.

Autotuning methods in other domains: Autotuning has not been explored in the context of time
series forecasting using TSFMs. However, the importance of obtaining the best hyperparameters for fine-
tuning has been studied extensively across other domains. The authors in (Liu & Wang} 2021)) discuss the
impact of automated HPO methods on finetuning pre-trained language models. They systematically compare
automated HPO methods with grid search and analyse the failure scenarios in HPO for fine-tuning. Another
work (Tribes et al.l 2023) explores HPO using blackbox optimization algorithms such as NOMAD and



Published in Transactions on Machine Learning Research (09/2025)

hyperparameter config space o%s RAY
Time Series
Foundation Model 'dropout': d,, 'dropout': d
(Pre-Trained on ‘learning_rate’: r;,» ¢ ¢ ¢ e o e . lea?n:ng " rayfl:'e .
- Pty

‘batch_size’: b, ‘batch_size’: b,

generates
' ! ! ]
Hyperparameter Hyperparameter Hyperparameter Hyperparameter
config 1 config2 config 3 e confign

i Auto-Tuned
Training i model using

: + . _______;------. best config

oy, &y PN, o6

S i i
" o) 1 ()
Tlme Q(g;e <% D{?° D N Y & -:00 i IS 0‘6\°
series oy,
dataset Trial1 Trial2  Trial3 Trialn ' © 2
(Target Evaluation Ranking
D i ——— best trial
omain) v v ] based on
> % error A

Trial1  Trial2 Trial 3 Trialn

Test performance

Figure 1: Architecture diagram showing the workflow of our algorithm, AT4TS using Hyperparameter
Optimization and Ray Tune for parallelization of the tune trials.

demonstrate improved performance of fine-tuned LLMs on downstream tasks. suggest best
practices to set hyperparameters for fine-tuning of models in image domain tasks. They further demonstrate
that key hyperparameters such as effective learning rate, momentum and weight decay are dependent on the
similarity between the source and target domains.

3 Methodology

In this section, we first define the problem statement and then present a detailed description of the AT4TS
design approach we adopted using selective fine-tuning: LoRA and custom fine-tuning coupled with LDS as
the search algorithm.

Problem Statement Given a multivariate time series X € R“*" of length n, number of channels/variables
c and context length ¢l where 1 < ¢l < n, the forecasting task is to predict future values Y € R *" where
¢ denotes the number of channels being forecasted and h is the forecast horizon.

To solve the forecasting task described above while also demonstrating the contribution of this work through
their application, we employ two TSFMs: Chronos (Ansari et al., 2024), a transformer-based model which
handles univariate datasets and TTM (Ekambaram et al. [2024), a non-transformer-based model built for
mutivariate data setting. These models have been pre-trained on a large collection of publicly available time
series datasets from varied domains. However, since these models are trained on a broad spectrum of time
series data, their performance on a specific task which in our case is the unseen target dataset may not
always be optimal.

Chronos with PEFT: We implement AT4TS using Chronos with PEFT. LoRA (Hu et al.,|2021)), a preva-
lent PEFT technique helps in integrating domain specific knowledge to the pre-trained model by fine-tuning
a minimal number of weights. This is achieved in a storage and compute-efficient manner by constraining the
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Algorithm 1 AT4TS algorithm using selective fine-tuning and LDS
Input: Pre-trained Model M, target dataset X split into Xipain, Xval and Xiest, search space Y =
{Y1,...,Y,}, SEARCH with maximum discrepancy &

Output: Optimally tuned hyperparameters Y,,; and Autotuned Model My,

opt

1: Define hyperparameter search space Y = {Y7,...,Y,}
2: Execute SEARCH : Initialize y° to default hyperparameters and let y* + y°
3: forall6=1,...,0 do

4: SEARCH(y*, Y, 6, 1)

5: end for

6: return y*, M*

7. procedure SEARCH(y, Y, 0, i)

8: if 9 ==0or i > |Y| then

9: Yopt7 Myom <«

SCORE(}’, Xtraina Xval, M)

10: return Yy, My, ,

11: else

12: for all values y € D(Y[i]) do

13: if y[i] ==y then

14: z + SEARCH(y,Y,i+1,0)

15: else

16: y vy Yl <y

17: z + SEARCH(y',Y,i+ 1,0 — 1)
18: end if

19: return z
20: end for
21: end if

22: end procedure

23: procedure SCORE(y, Xirain, Xval, M)
24: M + TrainModel(y*, Xtrain)

25: score < EvaluateModel(M, X.)

26: if score > best_ score then
27: My, < M

28: Yopt <y~

29: best__score < score

30: end if

31: return Y,,;, My, ,

32: end procedure

update (AW) to the pre-trained weight matrix Wy € R¥** by representing it with a low-rank decomposition,
Wo+ AW =Wy + BA

where B € R¥™" A € R™** and the rank r < min(d, k). During fine-tuning, W} is frozen, while the weights
of A and B are updated. We adapt the weight matrices corresponding to the self-attention module and the
feed-forward layer modules of the transformer architecture.

TTM with custom fine-tuning: In the case of TTM, we adopt the fine-tuning technique as described
in (Ekambaram et al., 2024) wherein the backbone of the model is frozen while only updating the weights of
the TTM forecast head. This is because of the following three reasons: (1) this is the fine-tuning strategy
used by TTM developers and therefore, makes it a credible comparison; (2) the size of these models is much
smaller and so LoRA is not as efficient as shown by preliminary experiments we conducted; and (3) we want
to demonstrate that AT4TS can be applied across different fine-tuning strategies.
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ATA4TS using parameter efficient fine-tuning and LDS: We design a novel algorithm to perform
automated fine-tuning of time series foundation models described above using LoRA and custom fine-tuning
methods in conjunction with LDS. This fine-tuning is achieved by using a distributed Ray-based frameworkﬂ
Figure [I| shows the architecture diagram of our approach wherein we take a pre-trained model and specify a
minimal subset of weights to be trained to adapt the model on the target dataset. The hyperparameter config
space block corresponds to the hyperparameter search space which is defined as the domain of values that are
explored and evaluated during the process of hyperparameter tuning. For instance, LoRA hyperparameters
include learning rate, batch size, rank, scaling factor etc as shown in Table The hyperparameter config
blocks 1 to m correspond to trials which are executed concurrently in a distributed cluster. Each trial
represents a model fine-tuned and evaluated on the train and validation split of the target dataset respectively.
The most promising hyperparameter configuration is obtained by ranking the trials based on the chosen error
or performance metric on the validation split. In the end, the fine-tuned model corresponding to the best-
found hyperparameter configuration (also called the autotuned model) is evaluated on the test split of the
target dataset.

Algorithm [T]outlines the steps involved in AT4TS. The algorithm starts with initialising the hyperparameter
search space. We use Limited Discrepancy Search or LDS (Harvey & Ginsberg, |1995)) to traverse this space
effectively starting from an initial configuration of default hyperparameters. It should be noted that AT4TS
provides the flexibility of using any other search algorithm and is not limited by LDS. Specifically, LDS takes
as input a vector of variables Y = {Y7,...,Y,} corresponding to the hyperparameters together with their
domains of values D = {D(Y?), ..., D(Y,,) } representing the hyperparameter search space to be explored and
the maximum discrepancy value § which limits the number of allowed variable-value assignment changes from
the initial solution y° = (39, ...,42) where y? € D(Y;) is a value in variable’s Y; domain and outputs the next
solution y* based on the discrepancy value. Notice that LDS requires the variables to have finite domains of
values, and therefore any continuous hyperparameter needs to be discretized. In addition, LDS is required
to look for a reasonably good solution which is typically given by the default hyperparameter configuration
here, hence, we set y° to the default LoRA configuration for Chronos and default fine-tuning parameters in
case of TTM. We begin with a discrepancy value 8 of 1 and conduct an iterative search that allows to change
the values of at most # hyperparameters in the initial solution y°. We then increment @ until 6 exceeds
the maximum discrepancy value. Function SEARCH defined in line 7 performs the actual exploration of
the hyperparameter search space limited by discrepancy 6. This assists in incrementally searching around
the default configuration compared to random exploration. For each configuration y’ returned by LDS, we
fine-tune the model in line 24 and evaluate it on the validation split to compute the error metric as outlined
in the SCORE function in the algorithm. At the end, we get the best configuration y* corresponding to the
lowest error and the autotuned model M™ in line 6 which is then evaluated on the held out test split.

For illustration, Figure [2[ shows the search space explored by LDS with discrepancy value 1 (denoted by
LDS(1)) for 3 dummy variables [A, B, C] with domain values {ay, a2}, {b1,b2} and {c1, c2}, respectively. In
this case, LDS(1) starts from the initial assignment of {ai,b1,c;} which corresponds to the leftmost blue
leaf node and traverses the search space in a depth-first manner visiting only the blue leaf nodes.

The algorithm described above is then implemented in a distributed manner using Ray Tune (Liaw et al.,
2018) which provides an open source framework for distributed model training and selection. Each configu-
ration returned by LDS corresponds to the trials executed concurrently in a cluster. We use the default Ray
tune scheduler which is first-in-first-out (FIFO) passing through the trial configurations without performing
any early stopping.

4 Experimental Setup

In this section, we present the datasets used in the fine-tuning experiments along with the implementation
details of the proposed AT4TS framework.

Datasets For our experiments, we use 10 univariate datasets from the Monash Time Series Forecasting
Repository (Godahewa et all 2021) for autotuning Chronos models. These datasets are part of the Bench-

Thttps://www.ray.io/
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Figure 2: Example of the search space traversed by LDS with maximum discrepancy value = 1.

Table 1: Univariate Datasets used for the Chronos experiments.

. Num. Series Prediction

Dataset Domain  Freq. Series Length Length (H)
Traffic Transport 1H 862 17544 24
Weather Nature 1D 3010 14296* 30
ETT (Hourly) Energy 1H 14 17420 24
ERCOT Load Energy 1H 8 154854 24
éiftrr?ilii; Energy 30min 5 231052* 48
Exchange Rate Finance 1B 8 7588 30
FRED-MD Economics 1M 107 728 12
NN5 (Daily) Finance 1D 111 791 56
M5 Retail 1D 30490 1562* 28
ETT (15 min.) Energy 15min 14 69680 24

mark II datasets in (Ansari et al., [2024]) used for zero-shot evaluation. Table [I| provides the details of the
datasets used for the experiments. Each dataset is a collection of series where each series is split into train,
validation and test instances. The * in the series length represents average length of the time series for 3
datasets, Weather, Australian Electricity and M5 which consists of variable length time series. The number
of instances in validation and test label depend on the prediction horizon which is specific for each dataset.
We use the GluonTS library to split the datasets using the same strategy as used in (Ansari et al., 2024).
For each dataset, the train split includes all the data points from the beginning of the time series up until
the last two prediction horizon lengths, which are held out for validation and testing respectively. We use
these datasets as they have not been used in the pre-training phase of the Chronos T5 models. Similarly,
Table [3] lists the datasets used for TTM in our experiments. All the datasets except MORE were used in
(Ekambaram et all [2024) for zero-shot/few-shot evaluation with no overlap with the pre-training datasets.
These are multivariate benchmark datasets which do not contain any exogenous variables. To further vali-
date the efficacy of our approach in an unseen target domain, we use a real-world wind energy dataset called
MOREﬂ data containing exogenous channels. This dataset uses wind park data for 18 months from 11 wind
turbines (WT2 to WT11) in a wind park. The dataset consists of SCADA data from the sensors on the wind
turbines combined with weather data. In our experiments, we only utilize a sample of this dataset with 9500
points. Since TTM can capture cross-channel correlations and exogenous variables, MORE data is an ideal
fit for the autotuning application scenario targeted by our approach.

2https://github.com/MORE-EU/OpenData.
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Table 2: Chronos: LoRa Hyperparamater Search Space.

Parameter Name Range of values
alpha {4, 8, 16, 32, 64}
dropout {0.0, 0.05, 0.1}
rank {2, 4, 8, 16, 32}
bias "'none", "all", "lora_only"}
learning_ rate {0.0001, 0.001, 0.01}
batch_ size {4, 8, 16}
grad_ accumulation_ steps {1, 4, 8}

Table 3: Multivariate Datasets used for the TTM experiments.

Dataset  Freq. 0000 o els variaies  variablen.
MORE 1H 9500 13 1 12
ETThl 1H 17420

ETTh2 1H 17420 7 7

ETTml  15min 69680 N/A
ETTm2 15min 69680

Weather  10min 52696 21 21

Electricity ~ 1H 26304 321 321

Models We used Chronos T5 models as the Transformer-based architecture for demonstrating our ap-
proach, AT4TS. These models, trained from scratch on time series data, are widely adopted open-source
transformers that have achieved state-of-the-art (SOTA) performance in time series analysis. Chronos T5
models have been pre-trained and released in 5 sizes ranging from Tiny (16M), Mini (20M), Small (46M),
Base (200M) and Large (710M) with number of model parameters in brackets. In our experiments, we
focus on univariate time series forecasting as Chronos models are pre-trained for the univariate setting. We
use the lightweight version of the models i.e. Mini in order to utilize minimal computational resources for
demonstrating the applicability of our approach. We also used TTM which is a significantly smaller (1-5M)
pre-trained model for effective zero/few-shot multivariate forecasting. TTM is composed of TSMixer archi-
tecture, based on MLP blocks and has 4 key components namely, TTM backbone, TTM decoder, Forecast
head and the optional exogenous mixer known for capturing cross channel relationships and exogenous vari-
ables. They have been released as 3 variants: TTM-Base (1M), TTM-Enhanced (4M) and TTM-Advanced
(5M) trained with context length, 512, 1024 and 1536 respectively. We specifically used the lightweight
TTM-Base in our experiments. Our experiments validate that AT4TS is model agnostic and can be flexibly
adapted to use both transformer and non-transformer based TSFMs.

Table 4: TTM: Custom Fine-Tuning Hyperparamater Search Space.

Parameter Name Range of values

head_ dropout {0.1,0.4, 0.7}
batch_ size {8, 16, 32, 64}
learning_rate {0.001, 0.0001}
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Table 5: Mean MASE scores obtained using Chronos T5 mini model in Zero Shot, Default LoRA Fine-Tuning

and our approach, AT4TS with LDS.

Dataset

Zero Shot

Default LoRA Fine Tuning

AT4TS(LDS)

Traffic
Weather
ETT (Hourly)
ERCOT Load
Australian Electricity
Exchange Rate
FRED-MD

0.853 (£0.0012)
0.859 (£0.0032)
0.795 (+£0.0111)
0.582 (£0.0107)
0.965 (£0.0406)
2.054 (+0.1561)
0.473 (+£0.0105)

0.776 (£0.0015)
0.848 (£0.0039)
0.830 (£0.0179)
0.566 (+0.0341)
1.151 (£0.0300)
1.871 (£0.0527)
0.508 (40.0100)
0.605 (+0.0012)

0.747 (£0.0157
0.822 (+0.0043
0.797 (£0.0235
0.566 (+0.0341
0.832 (£0.0827
1.632 (+0.1756
0.511 (40.0092
0.620 (£0.0138

o — — T

o

NN5 (Daily) 0.648 (40.0059)
M5 0.942 (40.0004)
ETT (15 min.) 0.709 (£0.0269)

0.926 (£0.0003)
0.712 (£0.0172)

0.925 (+0.0005
0.727 (£0.0378

= =

Table 6: Mean MASE scores obtained with Chronos T5 mini model using different HPO techniques in AT4TS
and average rank (lower is better).

Dataset ATATS
BOHB HyperOpt LDS
Traffic 0.768 (£0.0041)  0.779 (£0.0495) 0.747 (£0.0157)
Weather 0.818 (+£0.0037)  0.824 (£0.0028)  0.822 (+0.0043)
ETT (Hourly) 0.798 (£0.0231)  0.794 (+0.0036)  0.797 (+0.0235)
ERCOT Load 0.617 (£0.0301)  0.602 (£0.0456 0.566 (+0.0341)

)
Australian Electricity 0.738 (£0.0699)  0.829 (+0.0257)  0.832 (£0.0827)
)

(
(

2.262 (£0.0568)  2.143 (£0.5007
(

Exchange Rate ( 1.632 (£0.1756)
FRED-MD 0.540 (£0.0560)  0.554 (£0.0288)  0.511 (£0.0076)
NN5 (Daily) 0.601 (£0.0116)  0.597 (£0.0090)  0.620 (£+0.0138)

M5 0.923 (£0.0005) 0.922 (+0.0011)  0.925 (£0.0005)

ETT (15 min.) 0.694 (+£0.0295)  0.694 (£0.0121)  0.727 (£0.0378)

Avg. Rank 2.0 1.9 1.9

Implementation Details AT4TS has been implemented using Ray Tune (Liaw et al.| 2018|) and Trans-
formersﬂ libraries. It supports both Transformer and non-Transformer TSFMs as well as parameter efficient
fine-tuning (backed by the PEFTE| Library). The number and range of tunable hyperparameters are set
based on the fine-tuning strategy being used. Tables [2] and [4] show the search space for LoRA hyperparam-
eters and custom fine-tuning hyperparameters used in autotuning Chronos and TTM models respectively.
We execute multiple trials selected using LDS for each dataset to find the best hyperparameter configuration
and output the autotuned model corresponding to it. We limit the number of trials to 10 in case of Chronos
and 15 for TTM to demonstrate the robustness of our approach in a resource-constrained environment. We
used the maximum discrepancy value based on the number of hyperparameters to be tuned. In our case, we
set this to 8 for Chronos and 2 for TTM. A lower value of maximum discrepancy involves a more focused
search while higher values allow more broader exploration of the potential hyperparameter search space. To
ensure a comprehensive evaluation across different fine-tuning settings in the case of Chronos, we use mean
absolute scaled error (MASE) as the evaluation metric. Since the model produces probabilistic forecasts,
the forecasted value for each datapoint is calculated as the median (0.5-quantile) of 20 samples, which is
then used to calculate the metrics similar to (Ansari et al., 2024]). The MASE scores are averaged across 5
runs. For TTM, we use mean squared error (MSE) as the standard error metric and report average MSE
scores across five forecast lengths, F'Ls € {24,48,60,96,192} similar to (Ekambaram et al. [2024). The

3https://huggingface.co/docs/transformers
4https://huggingface.co/docs/peft
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hyperparameters for default fine-tuning of TTM for ETTh/ETTm/weather/electricity are configured to the
same values as used in (Ekambaram et al., |2024)). For MORE dataset, we set the default values as follows:
learning rate=0.001, head dropout=0.4 and batch size=64. The experiments were performed on a multi-node
cluster environment using a combination of CPUs and A100 GPUs. In order to compare the performance
of LDS search algorithm with other state-of-the-art HPO methods, we run AT4TS by plugging in Hyperopt
and BOHB as the search algorithm. The detailed analysis of the results obtained are discussed in the next
section.

Table 7: Mean MSE scores obtained using TTM-Base model in Zero Shot, Default Fine-Tuning and our
approach, AT4TS.

Dataset Zero Shot Default Fine Tuning ATA4TS
MORE 0.247 (£0.1129) 0.213 (40.1044) 0.135 (+0.0122)
ETThl 0.348 (£0.0281) 0.348 (+0.0303) 0.343 (+0.0329)
ETTh2 0.245 (+0.0614) 0.246 (£0.0639) 0.241 (4+0.0635)
ETTml  0.286 (£0.0534) 0.279 (£0.0513) 0.259 (4-0.0445)
ETTm2  0.152 (£0.0471) 0.150 (£0.0464) 0.144 (40.0436)
Weather  0.133 (£0.0353) 0.133 (£0.0359) 0.130 (£0.0347)

Electricity  0.145 (40.0305) 0.137 (£0.0292) 0.120 (+0.0179)

Table 8: Mean MSE scores obtained with TTM using different HPO techniques in AT4TS and average rank
(lower is better).

Dataset ATATS
BOHB HyperOpt LDS
MORE 0.136 (£0.0129)  0.137 (£0.0144)  0.135 (+0.0122)
ETThl 0.343 (+£0.0329) 0.343 (+0.0334) 0.343 (+0.0329)
ETTh2 0.246 (£0.0681)  0.244 (£0.0663) 0.241 (+0.0635)
ETTml 0.260 (£0.0449)  0.259 (4+0.0445) 0.259 (£0.0445)
ETTm2 0.144 (+0.0434) 0.144 (£0.0436) 0.144 (+0.0436)
Weather 0.135 (£0.0365) 0.130 (4+0.0348) 0.130 (£0.0347)
Electricity ~ 0.120 (+0.0179) 0.120 (+0.0178) 0.120 (+0.0179)
Avg. Rank 1.71 1.42 1.00

5 Results

We present comparative results of our approach for Chronos in Table [5| which shows the performance of mini
T5 Chronos model variant in zero-shot setting along with different fine-tuning settings. We report MASE
averaged over 5 runs for both zero-shot and default fine-tuning setting. For AT4TS, we run 10 trials and
report MASE corresponding to the best LoRA configuration, which is also averaged over 5 runs. We observe
that the performance of our approach is better than zero-shot and default LoRA fine-tuning for 6 out of 10
datasets as highlighted in the last column of Table[5] This can be attributed to the superior performance of
LoRa when coupled with automated hyperparameter optimization.

We observe that, for target domain datasets such as Exchange Rate and Australian Electricity which do
not share any similarity with the pre-training source datasets, our approach outperforms with a significant
margin. To support our argument, we measure dataset similarity between pre-training and target datasets
using Maximum Mean Discrepancy (Wang et al., |2021) along with Principal Component Analysis (PCA)
(Abdi & Williams| 2010) (See details in Appendix [7.1)). However, it is important to note that dataset
similarity is not the only criterion that influences the zero-shot and fine-tuned performances of the pre-
trained time series foundation models. Based on the findings in (Ekambaram et al., 2024]) Section 4.7
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Figure 3: % improvement using geometric mean achieved by AT4TS over zero-shot across datasets for
Chronos and TTM.
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Figure 4: Performance comparison for Zero-shot and Autotuned models for Monash Australian Electricity
and Exchange Rate datasets.

(Ablation studies) and (Ansari et al., 2024) section 5.6 (TSMixup Augmentations), dataset coverage and
resolution diversity have also shown to play a pivotal role in improving the zero-shot performance of these
pre-trained models on unseen (out-of-domain) datasets.

Our results also validate that LoRA achieves superior performance while significantly reducing the number of
trained parameters for most of the out-of-domain target datasets. We compare our method against the zero-
shot performance using relative error scores. In Figure [3] left plot visualizes the improvement achieved by
ATATS in comparison to the zero-shot model for each dataset. The relative error scores are then aggregated
across all datasets using the geometric mean similar to (Ansari et al.; [2024). Therefore, our method achieves
an overall relative improvement of 5.26% over the zero-shot model performances across all datasets. This
is denoted by the red dotted line in the plot. We can see that the autotuned model outperforms the zero-
shot model for most datasets. Moreover, it exhibits particularly strong performance on datasets such as
exchange rate with a significant MASE improvement of 20.55%. This can be partially attributed to its
relative dissimilarity with the pretraining datasets (see the Appendix Section 8.1).

Figure [ illustrates the predictive performance of the various Chronos models on the target domain datasets
: Monash Australian Electricity and Exchange Rate respectively. Here, we compare the forecasts obtained
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Figure 5: Performance comparison for Zero-shot TTM and autotuned TTM using AT4TS for MORE data.
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Figure 6: Avg MSE score comparison across different HPO Methods for AT4TS using TTM.

on the test split by our autotuned model with zero-shot models, clearly highlighting the improved prediction
accuracy obtained using our approach. In summary, our findings demonstrate that AT4TS can efficiently
autotune time series foundation models enhancing their downstream performance in the target domain.

Table [6] further explores the effectiveness of LDS in comparison to other state-of-the-art HPO techniques,
namely BOHB and Hyperopt. We observe that the average rank for HyperOpt and LDS is equal. However,
in comparison to BOHB, LDS is marginally better with a lower average rank. This demonstrates that LDS
performs on par with the state-of-the-art HPO techniques. It is noteworthy that we only run 10 trials in
our experiments for Chronos to demonstrate the robustness of AT4TS in a resource constraint environment
and achieve strong performance in comparison to zero-shot and default LoRA fine tuning. However, in the
presence of more computational and time resources, AT4TS can easily scale well to explore a much larger
hyperparameter search space.
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Next, we present the results obtained on using TTM-Base model with AT4TS, zero-shot and default fine-
tuning approaches for 7 datasets. For default fine-tuning setting, we fix the parameters such as batch size
and head dropout based on the target dataset similar to (Ekambaram et al.,[2024). The most striking results
are observed with the MORE dataset. As shown in Table [7] we observe that the autotuned model using
our approach, AT4TS, outperforms both zero-shot and default fine-tuning approaches for all datasets. The
predictive performance of autotuned model using AT4TS is better than zero-shot by 45.34% for MORE data
as shown in the right plot of Figure The same is illustrated in Figure [5| where we observe significant
improvement in the prediction accuracy. Our approach also demonstrates superior performance compared
to default fine-tuning, achieving an average MSE of 0.135 with a 5.48% overall improvement across forecast
lengths and up to 13% improvement for longer forecast horizons. We highlight that AT4TS successfully
explores the best hyperparameter configurations leading to improved fine-tuned performance on out-of-
domain target datasets overcoming the drawbacks associated with traditional fine-tuning techniques with
fixed hyperparameters.

Similar to Chronos, Table [ shows the comparison of LDS to other state-of-the-art HPO techniques, namely
BOHB and Hyperopt. In general, we observe that HPO methods tend to consistently improve the per-
formance of the fine-tuned model, compared to default fine-tuning configuration. Furthermore, we also
calculate the average rank for the 3 HPO methods across all datasets to clearly highlight that LDS is on
par with state-of-the-art HPO techniques such as Hyperopt and BOHB, performing slightly better in some
cases. The findings are particularly interesting as we can observe from the bar plot in Figure [] that all
HPO methods converge to the lowest MSE corresponding to the best hyperparameter configuration except
for datasets, MORE and ETTh2 where LDS is marginally better than other HPO methods. This behaviour
can be attributed to the following reasons, first, TTM-Base is a much smaller (1M) model in comparison to
Chronos-mini (16M) model which implies fewer parameters to fine-tune. Second, in the custom fine-tuning
approach for TTM, the model backbone is frozen and only the model head is updated. And, Third, we
run 15 trials tuning a much smaller hyperparameter search space in comparison to Chronos which results in
faster convergence to the optimal configuration.

6 Conclusion and Future Work

Time series foundation models efficiently capture long-range patterns and dependencies, improving the
model’s ability to predict complex temporal relationships. However, their successful application to specific
downstream tasks needs adaptation to the target domain datasets which can be achieved via fine-tuning.
In this work, we propose AT4TS, Autotune for time series foundation models using parameter efficient
fine-tuning methods along with LDS as the search strategy. We also compare LDS with other SOTA HPO
methods namely BOHB and Hyperopt and show its strong competence. Our approach outperforms tradi-
tional fine-tuning strategies specifically for out-of-domain datasets not seen during the model pre-training
phase. In addition, we show that AT4TS can be easily applied to both transformer and non transformer-
based architectures making it highly scalable yielding competitive results for out-of-domain datasets. In the
future, we aim to extend AT4TS for more complex TSFMs and hybrid fine-tuning approaches as we witness
continued research in the rapidly evolving TSFM space.
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7 Appendix

7.1 Dataset Similarity Experiments

In this section, we add the details of the additional experiments performed to measure the similarity between
pre-training datasets against the target datasets used in evaluating our approach. We use Maximum Mean
Discrepancy(MMD) (Wang et al., [2021)) to measure the marginal distribution disparity between the pre-
training and evaluation datasets. MMD is a non-parametric distance measure between the source and target
domains computed by converting the data into a Reproducing Kernel Hilbert Space (RKHS), using the below
equation,

2

NSD N
MMD(P(Xsp), P(X1p)] = |Elp(Xsp)] ~ Elp(X10)][3, = HleD > olay) — 1 D olay)
p=1 q=1 H

where P(Xgp) and P(Xrp) are the marginal data distributions of the source and target domains, respec-
tively, Ngp and N are the number of data samples in the source and target domains, ¢ is the mapping
function from the original feature space to the RKHS, and H is the RHKS space . The value of MMD starts
from 0, indicating that the two domains are completely identical. As the values increase, this indicates the
increase in dissimilarity between datasets.

Due to the diverse sizes of pre-training datasets (ranging from 12*1320 to 225280*350640) of these foundation
models, we first perform Principal Component Analysis (PCA) (Abdi & Williams| 2010) to reduce the
dimensionality and transform the feature space to principal components which is then used to calculate the
MMD values. For datasets where the time series length is longer than 10000, we randomly sample 10000
points to perform PCA. For all other datasets, we use the complete dataset for PCA. Table [9] and [I0] list the
dataset sizes considered for performing PCA for both pre-training and target datasets. The datasets were
normalized to have zero mean and unit variance prior to performing PCA. Based on experimentation with
different component values, we select 5 principal components for all datasets.

Table 9: Dataset size used for PCA of pre-training datasets.

Pre-training Dataset Dataset size for PCA
re-training Latasets (Time Series length*No. of series)
Mexico City Bikes 10000*494
Solar (5 min) 10000*5166
Solar (Hourly) 8760*5166
Taxi (Hourly) 734*2428
Wind Farms (Daily) 354*337
Wind Farms (Hourly) 8514*337

Table 10: Dataset size used for PCA of target datasets.

Target Datasets Dataset size for PCA
(Time Series length*No. of series)

Monash Traffic 10000*862
ETT (Hourly) 10000714
ERCOT Load 10000*8
Australian Electricity 10000*5
Exchange Rate 7588%8
FRED-MD 728*107
NN5 791*111
ETT(15 min) 10000714

M5 1562*30490

Weather 10000*3010
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Table 11: MMD values obtained on comparing the Chronos target datasets with a subset of pre-training
datasets.

Target Dataset Subset of Pre-training Datasets (Chronos) Avg
Mexico City Bikes | Solar (5 min) | Solar (Hourly) | Taxi (Hourly) | Wind Farms (Daily) | Wind Farms (Hourly) | MMD
Monash Traffic 0.066671 0.393231 0.304424 0.060626 0.083929 0.080981 0.1650
‘Weather 0.034445 0.336337 0.257396 0.013908 0.056538 0.047534 0.1244
ETT(Hourly) 0.484774 0.824982 0.735012 0.491731 0.437348 0.421104 0.5658
ERCOT Load 0.658415 1.00162 0.91165 0.668411 0.615951 0.583416 0.7399
Australian Electricity 0.716793 1.058788 0.968819 0.725577 0.669882 0.645624 0.7976
Exchange Rate 0.594259 0.936563 0.846594 0.603339 0.547911 0.523279 0.6753
FRED-MD 0.096956 0.459704 0.369734 0.12633 0.118785 0.092587 0.2107
NN5 0.145958 0.515722 0.425748 0.182453 0.163181 0.126763 0.2600
M5 0.038404 0.347983 0.258042 0.014831 0.059337 0.050844 0.1282
ETT(15 min) 0.450568 0.793353 0.703383 0.460112 0.407914 0.382236 0.5329

Table [11] shows the MMD values obtained by comparing the pre-training datasets with the target datasets.
We compare each dataset used to validate AT4TS to a subset of pre-training datasets of the Chronos models.

We consider a subset of pre-training datasets from the Chronos paper (Ansari et all 2024) mentioned in
Table 3 Appendix section B. We calculate MMD values per dataset and then provide an average across all the
pre-training datasets. We observe that MMD values support our argument for both Australian Electricity
and Exchange Rate datasets which show high MMD values of 0.798 and 0.675 respectively indicating rela-
tively high dissimilarity with the pre-training datasets compared with other target domain datasets. Hence,
Autotune leads to significantly better results for these datasets given they are both out-of-domain as well as
showing dissimilarity with the pre-training datasets.

However, we hypothesize that dataset similarity is not the only criteria that influences the zero-shot and
fine-tuned performances of the pre-trained time series foundation models as discussed in (Ekambaram et al.
2024) Section 4.7 (Ablation studies) and (Ansari et al. 2024]) section 5.6 (TSMixup Augmentations) where
the dataset coverage and resolution diversity have shown to improve the zero-shot performance of these
pre-trained models on unseen datasets. These findings point towards other factors beyond distance-based
similarity that affect the final performance of these models. As we can see, MMD values only partially
support the argument as expected and should not be considered the only deciding factor in assessing the
performance improvements achieved on auto-tuning these models.
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