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Abstract—The practical implementation of Shannon’s sam-
pling theorem using analog-to-digital converters (ADCs) involves
an inescapable trade-off between dynamic range and digital
resolution. The Unlimited Sensing Framework (USF) overcomes
this fundamental limitation by leveraging a co-design of modulo
folding in hardware with algorithmic unfolding (or ironing) in
software. While recent years have seen progress on both hardware
and algorithmic fronts, further technological advancements are
needed to push the bandwidth (BW) limits of modulo ADC hard-
ware. Can higher bandwidths be achieved through algorithms
alone? In this paper, we take a computational sensing approach
to enhance the operational capabilities of modulo ADCs by
shifting the emphasis from precise, resource-intensive hardware
to algorithmic solutions. As a result, we demonstrate a 100-
fold bandwidth expansion beyond the modulo ADC’s technical
specifications. Our key contributions include: the mathematical
formalization of the bandwidth expansion problem based on phe-
nomenological observations of high-frequency non-linear effects,
a sampling theorem that provides recovery guarantees for our
algorithm, and hardware validation demonstrating the practical
advantages of our method.

Index Terms—Analog-to-digital converters (ADCs), bandwidth,
sampling theory, super-resolution, unlimited sensing.

I. Introduction

The Unlimited Sensing Framework (USF) [1]-[4] is built
on a simple yet powerful mathematical insight: for smooth
functions, their fractional part encodes the integer part. This
insight leads to a novel digital sensing pipeline that redefines
digital acquisition, representation, and processing.

Why is this significant? Conventional ADCs work on the
Shannon-Nyquist principle and quantize the input signal (in-
teger part) with the resulting quantization noise (fractional
part) imposing a fundamental limit on digital resolution. One
aspect which is less considered in mathematical sampling
and approximation theory is the saturation problem—when
the dynamic range of the input signal exceeds the ADC’s
capacity, it can lead to saturation [5], [6] or clipping loss
[7], [8], rendering the sampled signal nearly useless. In
contrast, USF demonstrates that signals can be reconstructed
from quantization noise (fractional part) [9], overcoming the
saturation problem and achieving high digital resolution within
a given bit budget.
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Fig. 1: Folding of the bandlimited Dirichlet kernel using USF hardware [3],
[4], [10], [11] generates the fractional part, or the continuous-time modulo
signal. We demonstrate the impact of pushing the bandwidth beyond the low-
power hardware’s design limit, originally intended for an input bandwidth of 1
kHz. For reconstruction from these measurements, see Fig. 4, and also Fig. 5.

As shown in Fig. 1, in the USF, the quantization noise
is acquired in the analog domain, prior to sampling, by
implementing modulo non-linearity in hardware [3], [4], [11]
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where |-| denotes the integer part of g. Akin to the Shannon-
Nyquist sampling theorem, despite modulo folding, the sam-
pling theorem in USF [1], [2] proves that sampling or time
quantization is lossless. The remaining loss comes from am-
plitude quantization, for which it is well known that the ADCs
expend their power linearly with oversampling but exponen-
tially with bit-budget [12]. Hence, the USF is power efficient
because for the same bit budget, it quantizes a much smaller
dynamic range offering digital super-resolution in addition to
eliminating the saturation problem. Hardware validation of the
USF has shown a 60-fold dynamic range extension in practice
[11] together with a 10 dB improvement in the quantization
noise floor in applications e.g. radar [13] and tomography [14].
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Fig. 2: Hardware calibration of the residue e, = g — .#)(g) (see (1)) via
controlled experiment, with optimal input BW e.g. 100 Hz. The evolution of
non-linearity is shown as it becomes more pronounced with increasing input
BW at 1000 Hz and 10000 Hz, corresponding to the measurements in Fig. 1.
Extensive experiments reveal that the behavior of the residue at higher BWs
is related to the ideal BW residue through low-pass projections with a .

Phenomenological Observations. Since the development of
our first hardware in [3], we have been actively developing the
USF hardware [10], [11], [13], [15], which has continuously
guided our theoretical and algorithmic progress. Experimental
observations (see Fig. 1) reveal that when the folding hardware
is pushed beyond its designed BW specifications, the folded
signal experiences a new form of distortion. Although modulo
hardware has been developed in subsequent works [16], such
observations have not been reported in previous studies.

As shown in Fig. 2, sweeping through higher input BWs re-
veals non-linearity in the residue, defined as e, = g — ., (g).
Our key observation is that residues at higher input BWs are
related to the residue under ideal BW conditions through a
low-pass projection. This experimental insight motivates the
development of a new algorithm that directly addresses hard-
ware non-idealities in the digital domain. Current algorithms
are not designed to handle such cases, partly due to the novelty
of this observation and the existing divide between theory and
hardware. An algorithm for Bandwidth Expansion [17], [18],
i.e. recovering the input in the presence of high BW non-
linearities is highly desirable, as it enables the efficient use of
low-cost hardware beyond its prescribed specifications.

Contributions. Embodying the spirit of computational sens-
ing, our contributions lie at the intersection of theory, algo-
rithms, hardware, and experiments. Specifically, we: 1) Formal-
ize the bandwidth expansion problem by identifying the un-
derlying mathematical forward model. ii) Develop an efficient
algorithm with noise resilience and super-resolution capabil-
ities, supported by a recovery guarantee. iii) Demonstrate a
100-fold bandwidth expansion through hardware experiments,
highlighting the effectiveness of the proposed approach.

II. From Observations to a Mathematical Model

Let g € Bq, be a bandlimited input. The ideal modulo-
folded samples are given by y [n] = #x(g (t))|,_,r» Where
T > 0 is the sampling period. When pushing the BW of
the modulo ADC hardware or .#)\—ADC, the folding rate is
constrained by the response of the slowest switching compo-
nent (e.g. slew rate [19]). Through extensive experiments, we
have observed that the non-ideal deviation from (1) can be
modeled as 2(.#\(g)), where 2(-) represents an unknown
non-linearity. Interestingly, our experiments reveal that the
following approximation holds across a wide range of BWs:

D(M(9)) (t) = (p % M(9)) (1) E ya, (). (@)

This model suggests that the unknown non-linearity 2(-)
is empirically equivalent to a low-pass projection of .Z)(-),
where ¢ () accounts for accumulated inertia—previously ob-
served in a different form as hysteresis [20]. The setup is back-
wards compatible with the ideal modulo non-linearity because,
under optimal BW conditions, 2 — Identity = ¢ — 4.

Existing recovery algorithms [2], [3], [21]-[25] are not
designed to handle such non-idealities unless 2 is the identity
operator, and thus fail to recover ¢ in the presence of distor-
tions. The goal of this paper is to develop a robust recovery
method for reconstructing the bandlimited input signal g from
the distorted folded samples {yq, [n]}nel, . thereby computa-
tionally extending the effective BW of .#/,—ADC.

III. Signal Recovery via Algorithmic Bandwidth Expansion

In this section, our goal is to map the recovery problem into
an “Additive Super-Resolution” problem. The starting point is
the modular decomposition property [1], leading to
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where ¢,,, € 2\Z and 7,,, € TZ™ represent the fold amplitude
and instant, respectively. In view of (2), we can write,

p€bBa, 4

and given that €, is a simple function [2], its total-variation
results in a sparse representation. Consequently, we note that,

Yo, = ¢ * MN(G) = gx ¢ — g x ¢,

€Bq, (see Fig. 2)
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which is an additive super-resolution problem where the
recovery entails separation of the additive terms: i) dg € Bq,
and, ii) low-pass projections of spikes. The sampled version
of the problem can be formulated as the recovery of g from,

@
ya, ] = (pxy) ] = (& 4(9)[n], nely. (©)
where & denotes circular convolution and Iy = {0,... N—1}.

Theorem 1. Let g € Bq, and ¢ € Bq,. Suppose we
are given measurements, yo,[n] in (6) and ¢ is known.



Then, {g[n]}nec1y can be perfectly recovered (up to a con-
stant), provided that N, — Ny, > 2M, where Ny def
[Q,T(N —

1)/ (2m)] and M is the number of folds.
Proof. Inview of (6) and (3), we have yqo, [n] = ¢ [n|®g [n]—

en]®ey[n]. Let g[n] = g[n+ 1] — g[n]| denote the finite
difference. Then,

pln]®gn] -

In above, Y, can be decomposed into, a) bandlimited term:
p®g with BW min (Qg,Q,) (In practice, Q, > Q),
and b) low-pass projections of spikes, (@@gg), since
ggln] = ZTAT/L[:_OI emd [n— 7 /T], (see Fig. 2), where 4[]
denotes the Kronecker delta.

Y, [n]= pnl®e,[n], nely_y. (7)

g

Fourier-Domain Separation. From the sampled representa-
tion in (7), we observe a separability [3] in the Fourier domain
that leads to model simplification. Let § denote the DFT
(Discrete Fourier Transform) of g, then, (7) maps to,

Yo, W] =0k glk] —@[kEg K], keln—1 (8
where Eg is a sum of complex exponentials given by,
M—1 — )2k Tm,
Eg [k] - Z =0 cme (N=DT 9

which spans the entire digital frequency band. However, note

(29)[k] =0, k€[0,NJU[N—-2— Ny, N—2 (10)

where N, & [Q,T(N —1)/(2m)]. Consequently, we obtain

U, WE -BKE K, ke[N,+1,N-3-N,. (1)

o,
Noté that (k] = 0if kK € [0, N,JU[N —2— N,, N — 2],
where N, © [Q,T(N — 1)/ (27)]. Hence, €, can be found

&K Y gy, K /BIK), ke[N,+1LNJ. (12
Residue Recovery via Prony’s Method. Having known /g\g (],
5, /B = &K = TM, e TR where

Tm/T € Iy-_1, the fold parameters {c,, Tm }mer,, can be
found using the Prony’s method [26]: let f [k ] with k € Tpr4q
be the filter with z-transform f(z) = Yoot f[k]zF =
H%;&(l—umzfl) where 1u,,, = e~727m/(T(N=1)) The roots
of f(z) uniquely determines the folding locations of interest.
Then, it follows that f annihilates the complex exponential
sequence g, k], k € [Ny + 1, Ny|:
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In vector-matrix form, (13) can be written as Af = 0 where A
is the Toeplitz matrix constructed by €,. Given A is rank defi-
cient, we can find the filter coefficients { f [k]}kern,, by solving

G+ )1 (13)

eme TIN=1) T(N

Algorithm 1 Bandwidth Expansion in USF

Input: Folded measurements {yq, [1]}ner, and .
1: Compute the DFT of Yo, '

Evaluate £, [k] , k € [N, Y 1,N, »] via (9).

Find {f [k|}ren,,., via (13).

Estimate {c, T }rmely -

Recover €, using (3).

: Reconstruct g using (14).

Output The recovered bandlimited signal g.

A

the above system of equations, provided that N, — N, > 2M.
Thereafter, {Tm}mer,, can be estimated by computing the
roots of f (z) and amplitudes {¢, }mer,, are found via least-
squares. Given {cp,, i}, the residue is reconstructed using
(3), leading to yo, + &4 % ¢ — p x g. Given g € Bg, and
Q, > )y, g can be reconstructed via inverse filtering

g =IDFT (1;_q, 0,19¢/?) , (14)

where 1, is the indicator function, g, is the DFT of g, and
IDFT denotes the inverse Discrete Fourier Transform. O

9o =Y, TEg* ¢

Algorithmic Implementation. Theorem 1 leads to an efficient
algorithm outlined in Algorithm 1 and validated in Section I'V.
For estimating {¢,, 7, }, we employ the Matrix Pencil Method
[27], which provides improvements over Prony’s method!. The
number of folds (M) can be determined using methods like
second-order statistic of eigenvalues (SORTE) [31].

IV. Experiments

The overarching goal of the this section is to demonstrate
bandwidth expansion of .Z\—ADC is feasible in practice. By
intentionally increasing the input signal BW way beyond the
technical specifications of the .#,—ADC, we introduce measure-
ment distortions at the hardware level and recover the original
input using advanced algorithms. This is made possible by
ironing the modulo folds that get distorted during the BW
expansion. Through our numerical simulations and hardware
experiments, we demonstrate precise signal recovery, made
possible by the co-design of hardware and algorithms.

A. Numerical Tests on Noise Resilience.

We first conduct the following numerical tests to evaluate
the robustness of the proposed algorithm in the presence of
noise. The input g has a BW of 1 kHz with ||g||., = 1. We
set A = 0.10 and generate ideal, noiseless folded samples as
y[n] = A(g(nT)),n € Iy, where T = 4.0 us, M = 20,
and N = 24990. The noisy, distorted samples are yielded
as Yo, [n] = (p*40(9)) (nT) + win], w ~ N (0, 0%)
where ¢ is obtained from hardware experiments to mimic
real-world conditions. For each noise level o, the recovery
error is computed by averaging results over 1000 random
noise realizations. The performance of the proposed algorithm

'Other high-resolution spectral estimation techniques, such as those pro-
posed in [28]-[30], are also applicable.
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Fig. 3: Recovery MSE vs SNR. The result at each SNR sample is averaged
over 1000 random realizations. The dynamic range is ||g||,, = 10A. Our
method offers accurate recovery up to a low SNR (5 dB).
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Fig. 4: Fold Separation with Super-Resolution. The localized nature of the
input Dirichlet kernels results in closely spaced folds near the peak (M =
4). From top to bottom, the BW is progressively increased (from 4 to 10
kHz, corresponding to the data in Fig. 1), leading to increasingly pronounced
folding non-idealities. Despite the challenges associated with fold separation,
accurate recovery is achieved across all scenarios.

across SNR levels ranging from 0 to 30 dB is shown in Fig. 3.
As demonstrated in Fig. 3, the proposed algorithm achieves
accurate reconstruction down to SNR = 5 dB, showcasing its
superior resilience to noise effects.

B. Hardware Experiments.

Protocol. In the first experiment, we use localized, bandlimited
Dirichlet kernels, shown in Fig. 1 to assess the ability to sep-
arate closely spaced folds—a critical capability when dealing
with high dynamic range inputs. In the second experiment, we
push the input signal BW to 10° Hz, exceeding the .#\—ADC
’s design limit of handling up to 10® Hz. The ¢ is obtained
through experimental calibration and remains fixed throughout
the experiments. For each setup, the distorted folded samples
are captured directly from the .#,—ADC. Simultaneously, the
input and output of the .#\—ADC are recorded using the
PicoScope 3406D oscilloscope, providing ground truth and
measurement data, respectively. In each experiment, we fix
the signal waveform and the system response ¢, progressively
increasing the BW: from 4 — 10 kHz in Fig. 4 and from
20 — 100 kHz in Fig. 5.

Experiment 1: Super-Resolved Folds. The input signal BW
ranges from 4 to 10 kHz, with [|g||., = 2.52. We set
A =077 and T = 16.0 ps, resulting in M = 4 folds and
N = {12508,5001} for {4,10} kHz, respectively. At higher
input BWs, resolving two adjacent folds becomes challenging
as their separation approaches the time span of the system
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Fig. 5: 100x Bandwidth Expansion. To further evaluate the merits of the BW
expansion method, the input BW is pushed from 20 kHz to 100 kHz, where
the folding behavior becomes highly distorted and visually unrecognizable.
In contrast, the proposed method demonstrates robust performance, achieving
reasonabe reconstructions even at 100 kHz.

response . This difficulty is particularly noticeable at 10 kHz,
as shown in Fig. 4. Despite these challenges, the proposed
algorithm successfully reconstructs the signal, achieving a
PSNR of over 35 dB. This highlights its high-resolution
capability and effectiveness in handling closely spaced folds.

Experiment 2: Bandwidth Expansion. In the second exper-
iment, T' = 4.0 ns, ||g||., = 4.32 with A = 0.79, resulting in
M = 16 folds and N = {25002, 10004} for {20,100} kHz, re-
spectively. The BW of ¢ is progressively increased from 2 x 10*
to 10° Hz to evaluate the algorithm’s performance under
extreme conditions. As shown in Fig. 5, the measurements are
severely distorted and difficult to interpret as the BW grows,
presenting significant challenges for recovery. However, the
proposed method demonstrates robust performance, achieving
accurate reconstruction even at 10° Hz, thereby enabling a 100-
fold BW expansion.

V. Conclusion

In recent years, the Unlimited Sensing Framework (USF)
has emerged as a digital acquisition method capable of simul-
taneously achieving high dynamic range and digital resolution.
This is enabled by modulo ADCs, which perform signal
folding in analog hardware. Our experimental observations
reveal that when the modulo ADC is pushed beyond its de-
signed bandwidth specifications, the folded signal experiences
a new form of distortion attributed to non-linearities. Our work
shows that this distortion can be empirically modeled as an
additive super-resolution problem, motivating the development
of novel recovery methods. In this paper, we presented an
efficient algorithm with super-resolution capabilities, backed
by a recovery guarantee. Through hardware experiments, we
demonstrated a 100-fold bandwidth expansion, highlighting
the practical effectiveness of our approach. Our method fa-
cilitates the efficient use of low-cost USF hardware beyond its
prescribed specifications, providing a pathway to extend the
operational limits of USF enabled digital acquisition systems.
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