

LARGE EEG-U-TRANSFORMER FOR TIME-STEP LEVEL DETECTION WITHOUT PRE-TRAINING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Electroencephalography (EEG) reflects the brain’s functional state, making it
012 a crucial tool for diverse detection applications, including event-centric analy-
013 sis like seizure detection and status-centric analysis like pathological detection.
014 While deep learning-based approaches have recently shown promise for automated
015 detection, traditional models are often constrained by limited learnable parame-
016 ters and only achieve modest performance. In contrast, large foundation models
017 showed improved capabilities by scaling up the model size, but required extensive
018 time-consuming pre-training. Moreover, both types of existing methods focus on
019 window-level classification, which requires redundant post-processing pipelines for
020 event-centric tasks. In this work, based on the multi-scale nature of EEG events, we
021 propose a simple U-shaped model to efficiently learn representations by capturing
022 both local and global features using convolution and self-attentive modules for
023 sequence-to-sequence modeling. Compared to other window-level classification
024 models, our method directly outputs predictions at the time-step level, eliminating
025 redundant overlapping inferences. Beyond sequence-to-sequence modeling, the
026 architecture naturally extends to window-level classification by incorporating an
027 attention-pooling layer. Such a paradigm shift and model design demonstrated
028 promising efficiency improvement, cross-subject generalization, and state-of-the-
029 art performance in various time-step and window-level classification tasks in the
030 experiment. More impressively, our model showed the capability to be scaled up to
031 the same level as existing large foundation models that have been extensively pre-
032 trained over diverse datasets and outperforms them by solely using the downstream
033 fine-tuning dataset.

1 INTRODUCTION

034
035
036 Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical
037 activity of the brain. Such recorded biosignals dynamically reveal the brain’s functional state, making
038 it an essential tool for studying brain activity. Among the EEG signal processing analysis, certain
039 tasks, such as pathological detection, are status-centric that require predicting the class of an input
040 signal window, while other tasks, such as seizure detection, are event-centric that aim to identify
041 transitions from background noise to meaningful events. Traditionally, neurologists implement
042 analysis by manually checking large numbers of multi-channel EEG signals. However, visual analysis
043 is time-consuming and prone to subjectivity. Therefore, the automation of the detection of the
044 underlying brain dynamics in EEG signals is significant to obtain fast and objective EEG analysis.

045
046
047
048
049
050
051
052
053 In recent years, deep learning models have demonstrated impressive abilities to capture the intricate
dependencies within time series data, making them a powerful tool for EEG signal analysis over
traditional manual and statistical methods (Zhu & Wang, 2023; Seeuws et al., 2024; Thuwajit et al.,
2021; M. Shama et al., 2023; Tang et al., 2021). More recently, large foundation models that take
advantage of self-supervised learning techniques have shown promising results in EEG analysis
(Wang et al., 2024; Jiang et al., 2024; Yang et al., 2023a; Kostas et al., 2021). However, most existing
work implements the classification task at a sliding window level, which involves segmenting a
signal recording into distinct windows and predicting a label for each sample. Converting discrete
predictions into continuous masking for event-centric tasks involves extensive post-processing, which
departs from existing algorithms in simultaneous detection. In addition, while foundation models
successfully scaled up their size, which, in turn, achieved impressive performance, through pre-training,

such a process requires diverse datasets and tremendous time and computation resources. Moreover, most existing biomedical signal processing research trains and evaluates models using formulated training and testing datasets that have a fixed sequence length. Such experimental settings and evaluation metrics do not fit with real-world requirements and often limit the model design, as different model architectures might benefit from different sequence lengths.

In contrast to window-level classification models, sequence-to-sequence modeling, a type of encoder-decoder architecture that maps an input sequence to an output sequence, provides a straightforward solution to avoid redundant post-processing steps through time-step-level classification. As the semantic information of time series data is mainly hidden in the temporal variance, U-Net (Ronneberger et al., 2015), a fully convolutional encoder-decoder network with skip connections that was originally designed for image segmentation, becomes a competitive backbone and has been widely used in the scientific field (Zhu & Beroza, 2019; Li & Guan, 2021; Chatzichristos et al., 2020; Seeuws et al., 2024; Perslev et al., 2019; Mukherjee et al., 2023; Pan et al., 2025; Wang & Li, 2024). However, the drawback of such models also stands out. Firstly, U-Net primarily operates within local receptive fields, making it difficult for U-Net to capture global features effectively. Beyond that, building up a U-Net requires stacking deeper layers, often leading to vanishing gradients and overfitting.

Present work. In this work, we proposed a training/inference framework for sequence-to-sequence EEG modeling to get rid of redundant overlapping inference. Such a framework significantly improved the real-world usage efficiency and achieved a 10-fold runtime improvement compared to window-level baselines. Subsequently, we propose a simple U-shaped architecture, comprising of convolutions and transformers with a self-attention mechanism, to be integrated into our framework. Such an architecture solved the mentioned drawbacks of the U-Net architecture and, compared to the pure-Transformer model, demonstrated memory usage efficiency and improved ability to exploit local structure with better temporal invariance. Beyond time-step level classification, we propose to use a simple attention-linear pooling layer to aggregate time-step embeddings for window-level classification, making it a unified solution for both event-centric and status-centric EEG analysis.

In the experiment, we evaluate the proposed model against both event-level and sample-level metrics in the event-centric task, namely, seizure detection, to reflect realistic clinical requirements (Dan et al., 2024; Beniczky et al., 2017); and benchmark our approach using standardized window-level datasets for sleep-stage classification and pathological detection to facilitate direct comparisons with baseline methods. Our model consistently outperforms existing algorithms across all tasks. In the event-centric task, compared to window-level baselines, our time-step classification model achieves a 10-fold runtime improvement. Further cross-dataset evaluation highlights the model’s robustness and cross-subject generalization. More impressively, unlike several large foundation models in the baseline that require extensive pre-training across various EEG datasets, our method achieves state-of-the-art performance by solely using the downstream fine-tuning dataset without any pre-training process.

In summary, our contribution is listed as follows:

- We go beyond window-level representation and propose a training/inference framework to do sequence-to-sequence modeling. Such a framework can be easily adapted to the window-level classification, making it a unified solution for both event-centric and status-centric EEG analysis.
- We propose the EEG-U-Transformer to be integrated into such a unified framework and demonstrate the state-of-the-art performance in both types of tasks.
- We show that our model outperforms existing EEG foundation models that have been extensively pre-trained over diverse datasets by solely using the downstream fine-tuning dataset, revealing practical insights and an under-explored question on validating the pre-training’s trade-off between the return and cost.

2 METHODOLOGY

2.1 PRELIMINARY

For continuous EEG waveforms, the training dataset is generated by segmenting the waveform into bags of uniform windows $\mathcal{D} = (\mathcal{X}, \mathcal{Y}) = \{(x_i, y_i) \mid i = 1, \dots, N\}$. Each input window $x_i \in \mathbb{R}^{T \times K}$

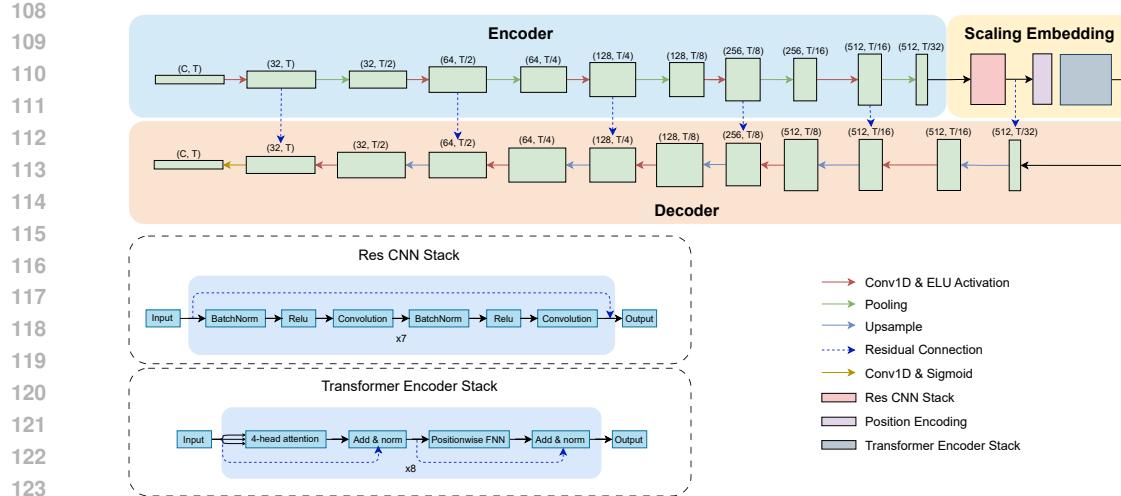


Figure 1: An example of our model’s architecture in time-step level classification.

represents a multivariate time series with K channels and T time steps. We use $x_i[t, k]$ to denote the data value at time step t and channel k within the sample x_i . In window-level classification model, the ground truth label $y_i \in \{1, 2, \dots, C\}$ indicates whether the window contains an activity, where C represents the number of classes. In contrast, in a time-step-level classification model, $y_i \in \{1, 2, \dots, C\}^T$ is a box-shaped label set indicating the presence of an event at each time step. The model is trained to produce predictions \hat{y} that minimize the classification objective, i.e., $\hat{y}_{:,i} = f_\theta(x_i)$, $\theta \in \arg \min \mathcal{L}$. Here, we use Cross-Entropy as our loss function \mathcal{L} , which, as shown in Equation 1, measures the dissimilarity between the predicted and true labels.

$$\mathcal{L}(y, \hat{y}) = -\frac{1}{T} \sum_i^T \sum_j^C y_{j,i} \log(\hat{y}_{j,i}) \quad (1)$$

2.2 NETWORK DESIGN

At an intuitive level, we are motivated by the multi-scale nature of EEG events and design the neural network’s architecture based on (1) convolution layers can efficiently down-sampling the long sequence and can exploit the local structure with a better temporal invariance, which, in turn, yields a better generalization; (2) self-attentive modules can help enriching the number of learnable parameters while integrating global information by the self-attention mechanism; and (3) a corresponding decoder is required to map high-level features back to the original length for time-step-level classification, thus to avoid redundant sliding window-level inference with high overlapping ratio. As a result, our model comes to be a U-shaped network with an encoder, a scaling embedding component, and a decoder, as shown in Fig. 1.

Encoder. The encoder comprises N Convolution-MaxPooling blocks with various large kernel sizes, denoted as K_s , for each block, to comprehensively learn preliminary local features. Correspondingly, the padding parameter is set to be $\lfloor \frac{K_s}{2} \rfloor$ for each convolution layer. For each block, the input length will be down-sampled to half of its input size, and the feature dimension will be increased to the pre-defined out channel dimension. Essentially, after the encoder, the input signals were embedded into a preliminary vector representation $z \in \mathbb{R}^{d_{model} \times \frac{T}{2^N}}$, where the d_{model} represents the final layer’s output dimension.

Scaling Embedding. Inspired by Mousavi et al. (2020), after getting the encoded output, we implement a ResCNN stack (He et al., 2016) first to refine these tokenized features to yield a better generalization with better temporal invariance. The ResCNN stack consists of 7 blocks of Convolution-Convolution layers with residual connections. The output channel remains the same as the input, and the kernel size was set to be small ($K_s \in \{2, 3\}$) to exploit local structure.

We then employ a transformer encoder stack Vaswani et al. (2017) to scale up the model size and to learn global representation across the tokenized signal. Specifically, the sine and cosine functions of different frequencies are used to be positional encodings,

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{\text{model}}}}}\right), \quad PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i+1}{d_{\text{model}}}}}\right)$$

which can then be summed with the input embedding. The refined representation, denoted as Z , will then be projected into equally-shaped query, key, and value spaces,

$$Q = ZW^Q, \quad K = ZW^K, \quad V = ZW^V,$$

and processed with the use of the global-attention mechanism as described in Equation 2.

$$A = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V \quad (2)$$

The attention output is combined with tokens with a residual connection and layer normalization, and a subsequent feed-forward network to transform the output with another residual addition. Such hierarchical processing scales the model and integrates both local features and global context, enabling the model to learn complex temporal dependencies.

Decoder. Similar to the encoder, we use a convolutional decoder to decrypt the compressed information from the center latent space into a sequence of probability distributions. However, instead of the convolution-pooling block, we upsample the input with a scale factor of 2 and then with a convolution to decrease the number of channels and to increase the number of time steps back to the original window length. Residual connections are deployed between the encoder and decoder to facilitate efficient gradient flow.

Finally, the classifier was applied to project the time-step embedding into the targeted shape. For time-step level classification, the classifier is a simple one-dimensional convolution layer. For window-level classification, a learnable attention-pooling mechanism, described in Section 2.3, was applied to aggregate time-step representations.

2.3 ATTENTION POOLING

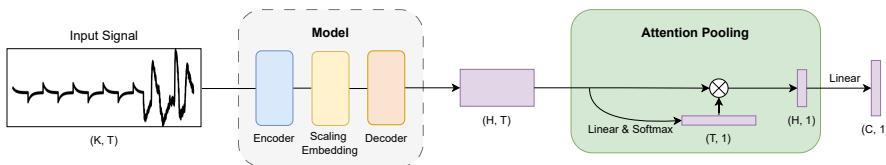


Figure 2: Attention-pooling layer for window-level classification.

To adapt the model to solve window-level classification tasks, we employ a learnable attention-based pooling mechanism, as shown in Figure 2, to efficiently embed each time step’s high-level representations. Given the decoded feature map $Z \in \mathbb{R}^{H \times T}$, where H denotes the output dimension of the final convolution layer in the decoder, we first compute a scalar attention score for each time step via a linear projection described in Equation 3, where $X_{perm} \in \mathbb{R}^{T \times H}$ is the transposed representation and $W_a \in \mathbb{R}^{H \times 1}$ is a learned parameter.

$$\mathbf{a} = \text{softmax}(\mathbf{W}_a \cdot \mathbf{X}_{perm}) \in \mathbb{R}^{T \times 1} \quad (3)$$

These attention weights are used to aggregate temporal features into a fixed-size context vector via weighted summation described in Equation 4.

$$\mathbf{z} = \sum_{t=1}^T a_t \mathbf{X}_{:,t} \in \mathbb{R}^{H \times 1} \quad (4)$$

This operation enables the model to selectively focus on informative temporal regions while remaining fully differentiable. The pooled representation z is subsequently passed to a linear classifier followed by a sigmoid (or softmax) layer to produce the final window-level prediction.

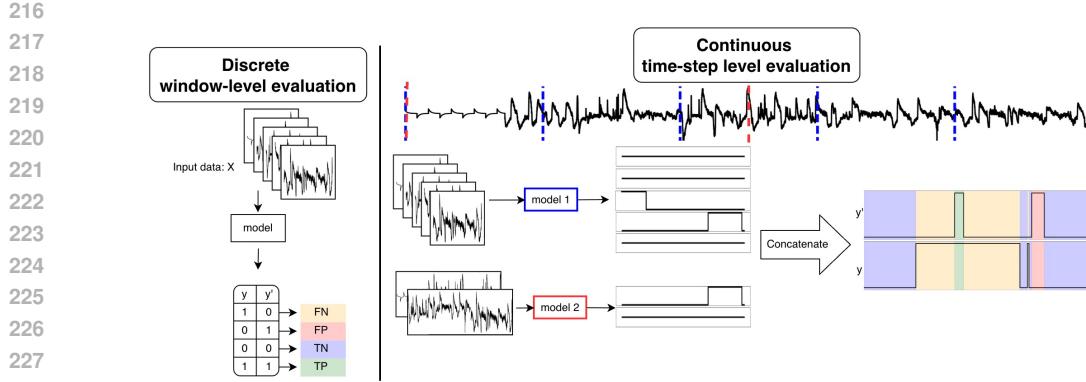


Figure 3: Two different inference and evaluation frameworks, where models can pick the best-matched sequence length under continuous evaluation.

2.4 SEQUENCE-TO-SEQUENCE MODELING

Training. Given a list of continuous EEG waveforms, a segmentation process was deployed to slice signals into uniform windows with fixed sequence length $T = D_{window} \times f_s$, where D_{window} is the signal duration for a window in the unit of seconds, and f_s denotes for the sampling frequency. We define a hyperparameter $r_{overlap}$, which represents the overlap ratio in time steps between consecutive windows, facilitating the augmentation of training samples.

The current EEG corpus poses a significant class imbalance challenge, as the majority of signals represent background activity, while meaningful events are sparsely distributed throughout the recordings. In our work, to enhance the model’s capability to differentiate activity signals from background noise and other events, we statistically categorize training windows into three classes: no-activity, full-activity, and partial-activity, and uniformly sample a certain number of windows from each class to create a balanced dataset. Specifically, our training dataset is constructed as Equation 5.

$$\mathcal{D} = \mathcal{D}_{partial} \cup \mathcal{D}_{full}^* \cup \mathcal{D}_{bckg}^* \quad (5)$$

where $\mathcal{D}_{partial}$ comprises all partial-activity windows, while \mathcal{D}_{full}^* and \mathcal{D}_{bckg}^* are randomly selected subsets of full-activity and no-activity windows, respectively. The sizes of these subsets are determined by $|\mathcal{D}_{full}^*| = \alpha \times |\mathcal{D}_{partial}|$ and $|\mathcal{D}_{bckg}^*| = \beta \times |\mathcal{D}_{partial}|$. α and β are weighting parameters controlling the relative proportions of windows full of events and windows lacking activities.

Post-processing. After having a sequence of probabilities outputted by the model, we implement a set of simple post-processing steps to convert continuous probabilities to the final detection. Initially, we apply a straightforward threshold filter to obtain a discrete mask as described in Equation 6, where the hyperparameter $\tau \in \mathbb{R}^c$ represents the threshold for each class.

$$\tilde{y}_i[t] = \begin{cases} c, & \text{if } \hat{y}_i[t, c] \geq \tau_c \\ 0, & \text{otherwise} \end{cases}, \quad \text{for } t = 1, \dots, T \quad (6)$$

Then, a pair of morphological operations, one with binary opening and one with binary closing operation, are employed using Virtanen et al. (2020) to eliminate spurious spikes of activity and to fill short 0 gaps. Lastly, we implement a simple duration-based rule to discard blocks of event labels lasting less than a minimal clinically relevant duration, denoted as $L_{min} = D_{min} \times f_s$, where D_{min} represents the minimum duration seconds and f_s represents the sampling frequency.

Inference. Traditionally, similar to the training set, the testing set in an experiment is a bag of fixed windows that are randomly sampled from the segmented patches. As described in the left part of Figure 3, window-level classification models directly perform inference over the formulated discrete input and evaluate over the corresponding ground truth labels.

In the context of this work, however, we elect to measure performance using a continuous time-step and event-level measure with the use of Dan et al. (2024). Specifically, time-step-based scoring

270

271

Table 1: Dataset/model statistics for each task.

272

273

274

275

276

277

278

279

280 compares annotation labels time-step by time-step to detect TP, FP, TN, and FN. In contrast, event-
 281 based scoring assesses performance based on the temporal overlap between predicted and reference
 282 events. The detailed description of both scoring methods is available in the Appendix E. Such
 283 measures take a more holistic approach to evaluation and focus on the events in question, not on
 284 window-centric classification results.

285 We showed the continuous time-step level evaluation framework on the right side of Figure 3. Given
 286 a long continuous EEG waveform with activity masking, we firstly segment it into a sequential list of
 287 windows that match the model’s input size. By popping windows from the queue and feeding them
 288 into the model, a sequence of masks will be output. Concatenating these sequential masks together
 289 will lead to the final annotation, which can then be compared with the ground truth label for the
 290 continuous recording under either time-step level or event level.

291

292

3 EXPERIMENT

293

294

295

3.1 SETTINGS

296

297

298

299

300

301

302

Dataset. We conduct experiments on one sequence-to-sequence modeling task, namely, seizure detection, and two window-level classification tasks, namely, sleep stage classification and pathological detection, to comprehensively evaluate the proposed method. For window-level tasks, we follow the experimental settings established in prior work, using standardized datasets with fixed channel counts and sequence lengths. In contrast, seizure detection is evaluated in a continuous manner, allowing the model to flexibly choose window shape. Dataset statistics for each task are summarized in Table 1, and descriptions are provided in Appendix H.

303

304

305

306

307

308

Model implementation. The ResCNN stack consists of seven residual blocks with kernel sizes $[3, 3, 3, 3, 2, 3, 2]$, each followed by batch normalization ($\epsilon = 10^{-3}$), ReLU activation, and spatial dropout. The transformer encoder contains 8 stacked layers with an embedding dimension of 512, 4 attention heads, and a feedforward dimension of 2048. The number of encoder and decoder blocks, as well as the filter and kernel size for their convolution layers, varies between different tasks. Detailed architecture is available in the Appendix G.

309

310

311

312

313

314

315

Training. We implemented our deep learning model using PyTorch and trained on 1 NVIDIA L40S 46GB GPU. For seizure detection, our training parameters include a batch size of 256, a learning rate of 1e-4, a weight decay of 2e-5, and a drop rate of 0.1 for all dropout layers. We use Binary Cross-Entropy loss as the objective function and RAdam as the optimizer. The training process was set to be 100 epochs with early stopping if no improvement in validation loss was observed over 12 epochs. For two window-level classification tasks, we use the same training configurations with EEGPT (Wang et al., 2024). We repeat the experiments five times with different random seeds.

316

317

3.2 TIME-STEP LEVEL CLASSIFICATION

318

319

320

321

322

323

Seizure detection is an event-oriented task, where epileptic seizures are the events of interest, which requires the model to output a set of $(t_{onset}, t_{duration})$ tuples in the SCORE compliant Beniczky et al. (2017), making it an ideal task for sequence-to-sequence modeling. We use Temple University Hospital EEG Seizure Corpus v2.0.3(TUSZ)Shah et al. (2018), the largest public dataset for seizure detection, to formulate our training dataset, and use its predefined testing recordings to evaluate model performance. The testing set is a list of blind EEG signals from different subjects that are

324

325

Table 2: Model performance in TUSZ’s predefined testing set. The highest value is **bolded**.

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Evaluation Scale	Model	F1-score	Sensitivity	Precision
Sample-based	Gotman	0.0679	0.0558	0.0868
	EEGWaveNet	0.1088	0.1051	0.1128
	DCRNN	0.1917	0.4777	0.1199
	Zhu-Transformer	0.4256	0.5406	0.3510
	EventNet	0.4830	0.5514	0.4286
	DeepSOZ-HEM	0.4466	0.4609	0.3791
Event-based	Ours	0.5730	0.4724	0.7281
	Gotman	0.2089	0.6199	0.1256
	EEGWaveNet	0.2603	0.4427	0.1844
	DCRNN	0.3262	0.5723	0.2281
	Zhu-Transformer	0.5387	0.6116	0.5259
	EventNet	0.5655	0.6116	0.5259
	DeepSOZ-HEM	0.5940	0.6222	0.4306
	Ours	0.6713	0.7168	0.6312

340

341

342

343

344

345

Table 3: Model’s Runtime Over TUSZ’s testing Set. The lowest runtime is **bolded**.

Model	Total Runtime(s)	Runtime(s) per 1-hour EEG
DCRNN	2571.75	60.24
EEGWaveNet	1690.19	39.59
Zhu-Transformer	3309.51	77.53
Ours	169.96	3.98

346

347

348

349

completely separated from the training set and validation set, which ensures the generalization of model performance.

350

351

352

353

354

355

356

357

We standardized the datasets used for training and testing by arranging 18 EEG channels in a consistent sequence, detailed discussed in Appendix H.1. The sequence length of a window is set to be 1-minute, sampled at 256 Hz, i.e., $T = 15360$. In dataset formulation, followed by Equation 5, we use $\alpha = 0.54$ and $\beta = 1.0$ to sample windows. The $r_{overlap} = 0.75$ is set to augment training samples, and $r_{overlap} = 0$ is used during the inference time. In post-processing, we adjust hyper-parameters based on the validation set’s performance. Specifically, threshold τ was set to 0.8 and minimum seizure duration $D_{min} = 2$. Detailed hyper-parameter analysis are provided in the Appendix D.

358

359

360

361

362

363

Baselines. We implement one rule-based algorithm, namely, Gotman (Gotman, 1982), and five deep learning models, namely, Eventnet (Seeuws et al., 2024), Zhu-Transformer (Zhu & Wang, 2023), DCRNN (Tang et al., 2021), DeepSOZ-HEM(M. Shama et al., 2023), and EEGWaveNet (Thuwajit et al., 2021) with the use of SZCORE Dan et al. (2024). Every baseline’s training dataset is formulated using the TUSZ’s predefined training set, but different sampling strategies, input window lengths, and pre-processing processes are used.

364

365

366

Evaluation Metrics. We evaluate our method and baselines’ F1-score, sensitivity, and precision with the use of the SZCORE framework (Dan et al., 2024) under the sample(time-step) and event scale as described in Section 2.4. The detailed description of both scale are provided in Appendix E.

367

368

369

370

371

372

As shown in Table 2, our model significantly outperforms other models under both evaluations by the improvement of 13.01% under time-step level and 18.63% under event level in terms of F1-score. It is noteworthy that we tune the post-processing threshold on the event-based performance, which leads to a relatively low sample-based sensitivity, but with a high precision. We also evaluate the sample-level AUROC distribution across testing waveforms to score models’ performance without the impact of the threshold hyperparameter in the Appendix C.2.

373

374

375

376

377

Runtime Analysis. We further verify our model’s efficiency by comparing the inference time, from the time that data was passed into the model to the time that the annotation file with HED-SCORE compliant was output, with other window-level classification models using TUSZ’s testing set in Table 3. Our model demonstrates the lowest running time with the ability to handle a one-hour-long recording in 3.98 seconds. Compared to EEGWaveNet, our model achieves about 10-fold runtime improvement.

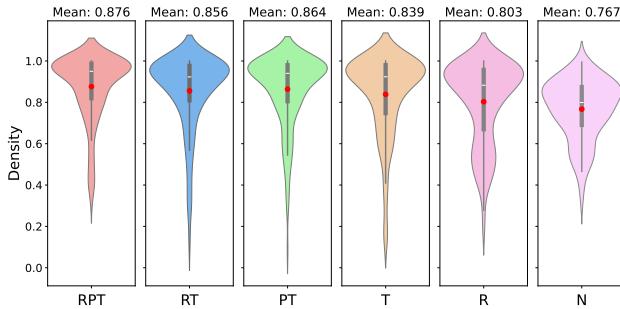


Figure 4: Ablation study for our model by evaluating the AUROC distributions. **N** represents a vanilla deep U-Net without ResCNN and Transformer encoder stack; **R** represents the U-Net with ResCNN stack; **T** represents the U-Net with Transformer Stack; **P** means adding positional encoding before feeding into the transformer stack.

Table 4: The classification performance on the Sleep-EDFx dataset. The highest value is **bolded**.

Methods	Model Size	Balanced Accuracy	Cohen's Kappa	Weighted F1
U-Sleep (Perslev et al., 2021)	3.1M	0.6720 ± 0.0043	0.6157 ± 0.013	0.7150 ± 0.012
BENDR (Kostas et al., 2021)	3.9M	0.6655 ± 0.0043	0.6659 ± 0.0043	0.7507 ± 0.0029
BIOT (Yang et al., 2023a)	3.2M	0.6622 ± 0.0013	0.6461 ± 0.0017	0.7415 ± 0.0010
LaBraM (Jiang et al., 2024)	5.8M	0.6771 ± 0.0022	0.6710 ± 0.0006	0.7592 ± 0.0005
EEGPT (Wang et al., 2024)	25M	0.6917 ± 0.0069	0.6857 ± 0.0019	0.7654 ± 0.0023
Ours	6.1M	0.7201 ± 0.0059	0.6954 ± 0.0004	0.7693 ± 0.0029

Ablation Study. We show each model component’s necessity by testing multiple partial models after removing certain components. We use AUROC-distribution across testing recording files to ignore the impact of post-processing. As shown in Figure 4, vanilla U-Net has an underwhelming performance with a low AUROC mean. Solely adding a ResCNN stack or a transformer stack will marginally improve the model performance, but also lead to a bigger variance with some extreme false cases. By contrast, integrating both the ResCNN and Transformer stacks produces not only higher mean AUROC but also reduced variance, indicating that these components complement each other effectively. These results underscore the importance of each proposed element in achieving robust and accurate seizure detection.

3.3 WINDOW LEVEL CLASSIFICATION

We further validate the effectiveness of our model by following the most recent work’s setting to conduct comparative experiments with state-of-the-art large EEG foundation models over window-level tasks, including stage classification for multi-class classification task and pathological detection for binary classification task.

Sleep stage classification. Following the EEGPT (Wang et al., 2024), we use Sleep-EDFx (Kemp et al., 2000) to formulate the training and testing datasets contain bags of windows with 2 channels and 30-second length sampled at 256Hz, i.e., $T = 7680$. *Balanced Accuracy*, *Weighted F1*, and *Cohen’s Kappa* are used as evaluation metrics. For large foundation model baselines, we use the pre-trained weights as initialization and either fully fine-tune the model or train additional layers using the linear-probing method, based on the proposed work, over the downstream training set. In comparison, our model is directly trained over the downstream training set.

As shown in Table 4, our model exhibited accuracy improvements of 4.11%. Remarkably, with the use of convolution networks that can efficiently encode from temporal information, our model is able to scale up to the same level of size as other large foundation models while keeping a smooth gradient flow and effectively leading to a convergence without any pre-training. At the same time, such a convolution-transformer combination also outperforms the large pre-trained models with considerably more learnable parameters than our method, like EEGPT.

432

433

Table 5: The results of different methods on TUAB. The highest value is **bolded**.

434

435

436

437

438

439

440

441

442

Pathological Detection. We use TUAB (Shah et al., 2018), a corpus of EEGs that have been annotated as clinically normal(non-pathological) or abnormal(pathological). For the data splitting and baselines implementation, we strictly follow the same configuration as BIOT (Yang et al., 2023a) to fairly compare all methods. A window in the dataset contains 23 channels with 10-second signals sampled at 200Hz, i.e., $T = 2000$. Every baseline is a fully fine-tuned model, while, similar to sleep stage classification, we purely use the downstream dataset to train the model. Followed by EEGPT (Wang et al., 2024), the *Balanced Accuracy* and *AUROC* are used as evaluation metrics. We should acknowledge that we removed LabraM from the baseline list as this model is pre-trained on the TUEG dataset, which is a superset corpus of TUAB with a similar signal distribution.

451

452

453

454

455

The results are provided in Table 5, where our model achieves the best balanced accuracy with an improvement of 2.02% over EEGPT. On the other hand, our method achieved the top-tier AUROC performance but was lower than the best model, BIOT. This might be led by the small sequence length, which, after the convolution layers, will output short feature vectors that, in turn, limit the global attention’s performance.

456

457

3.4 CROSS-DEVICE SEIZURE DETECTION

458

Beyond testing under the same data distribution, our method demonstrated good cross-subject and cross-device generalization performance, which underscores its potential for real-world applications across patients and hospitals. In Table 6, we trained a model with the use of TUSZ’s predefined training set and Siena Scalp dataset (Detti, 2020) and apply the algorithm to two different EEG corpus, namely, SeizeIT1(Vandecasteele et al., 2020) and Dianalund(Dan et al., 2024). Both datasets are acquired at different regions, from different subjects with varying ranges of age, and from different monitoring devices, leading to unique signal attributes that depart from the training set. The detailed dataset description is available in the Appendix.

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

4 CONCLUSION AND DISCUSSIONS

474

In this paper, we propose to learn the EEG signal’s representation at a time-step level to boost the EEG model’s efficiency on event-centric tasks, such as seizure detection, by getting rid of redundant overlapping inference and complicated post-processing steps. Beyond sequence-to-sequence modeling, our experimental results revealed that strong performance can be achieved through a well-designed, simple architecture without reliance on complex pre-training or massive data resources. Such results significantly lowered the barrier to deployment in clinical real-world settings.

482

483

484

485

While our model already achieves state-of-the-art performance on three downstream tasks, the proposed encoder-decoder architecture also supports a variety of pre-training strategies, such as

¹A variation of the EEGWaveNet model proposed by IBM. Source code is available on <https://github.com/IBM/channel-adaptive-eeg-classifier>.

486

487

Table 6: Model performance in SeizeIT1 and Dianalund datasets. The highest value is **bolded**.

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

Masked Autoencoders(MAE) (He et al., 2022). It is worth exploring the architecture’s capability of unsupervised representation learning to further improve the classification performance in downstream tasks.

503

504

ETHICS STATEMENT

505

506

507

508

509

In this study, we used multiple publicly available datasets that comply with medical ethical policies (e.g., the Declaration of Helsinki) and were approved by the Institutional Review Boards (IRBs) of the respective institutions that collected and shared the data. Therefore, ethical and privacy standards are assumed to be upheld.

510

511

512

513

514

515

516

517

518

Demographic information across datasets is often limited, and critical metadata such as medication usage or comorbidities is generally missing. In the absence of such information required for patient stratification, this and related work are limited to a one-size-fits-all modeling approach. This limitation could introduce bias during training and risk misdiagnosis during testing. Seizure detection can be performed offline (retrospective analysis) or online (real-time monitoring). In both cases, false positives (FPs) and false negatives (FNs) are significant, but in real-time settings, FNs are especially critical as they may delay medical intervention. Therefore, we strongly advocate for a human-in-the-loop framework when deploying such models in clinical environments, even if models are fine-tuned for patient-specific stratification.

519

520

REPRODUCIBILITY STATEMENT

521

522

523

524

Our source code and model are available at <https://anonymous.4open.science/r/EEG-U-Transformer-5E86>, where a detailed README file has been provided for reproducing experiments. A detailed dataset description is also provided in Appendix H.

525

526

LLM USAGE

527

528

We utilize LLMs (e.g., ChatGPT) to assist with language polishing during writing.

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Ahmed M Abdelhameed, Hisham G Daoud, and Magdy Bayoumi. Deep convolutional bidirectional
543 lstm recurrent neural network for epileptic seizure detection. In *2018 16th IEEE International New*
544 *Circuits and Systems Conference (NEWCAS)*, pp. 139–143. IEEE, 2018.

545 Sandor Beniczky, Harald Aurlien, Jan C Brøgger, Lawrence J Hirsch, Donald L Schomer, Eugen
546 Trinka, Ronit M Pressler, Richard Wennberg, Gerhard H Visser, Monika Eisermann, et al. Standard-
547 ized computer-based organized reporting of eeg: Score–second version. *Clinical Neurophysiology*,
548 128(11):2334–2346, 2017.

549 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
550 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
551 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

553 Christos Chatzichristos, Jonathan Dan, A Mundanad Narayanan, Nick Seeuws, Kaat Vandecasteele,
554 Maarten De Vos, Alexander Bertrand, and Sabine Van Huffel. Epileptic seizure detection in eeg via
555 fusion of multi-view attention-gated u-net deep neural networks. In *2020 IEEE Signal Processing*
556 *in Medicine and Biology Symposium (SPMB)*, pp. 1–7. IEEE, 2020.

557 Jonathan Dan, Una Pale, Alireza Amirshahi, William Cappelletti, Thorir Mar Ingolfsson, Xi-
558 aying Wang, Andrea Cossettini, Adriano Bernini, Luca Benini, Sandor Beniczky, et al. Sz-
559 core: Seizure community open-source research evaluation framework for the validation of
560 electroencephalography-based automated seizure detection algorithms. *Epilepsia*, 2024.

562 Paolo Detti. Siena scalp eeg database. *PhysioNet*. doi, 10:493, 2020.

563 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
564 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
565 *the North American chapter of the association for computational linguistics: human language*
566 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

568 Jean Gotman. Automatic recognition of epileptic seizures in the eeg. *Electroencephalography and*
569 *clinical Neurophysiology*, 54(5):530–540, 1982.

571 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
572 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
573 pp. 770–778, 2016.

574 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
575 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
576 *vision and pattern recognition*, pp. 16000–16009, 2022.

578 M. R. Islam, X. Zhao, Y. Miao, H. Sugano, and T. Tanaka. Epileptic seizure focus detection from
579 interictal electroencephalogram: a survey. *Cognitive Neurodynamics*, 17(1):1–23, Feb 2023. doi:
580 10.1007/s11571-022-09816-z.

581 Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic represen-
582 tations with tremendous eeg data in bci. *arXiv preprint arXiv:2405.18765*, 2024.

584 Jin Jing, Wendong Ge, Shenda Hong, Marta Bento Fernandes, Zhen Lin, Chaoqi Yang, Sungtae An,
585 Aaron F Struck, Aline Herlopian, Ioannis Karakis, et al. Development of expert-level classification
586 of seizures and rhythmic and periodic patterns during eeg interpretation. *Neurology*, 100(17):
587 e1750–e1762, 2023.

588 Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and Josefien JL Oberye.
589 Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg.
590 *IEEE Transactions on Biomedical Engineering*, 47(9):1185–1194, 2000.

592 Demetres Kostas, Stephane Aroca-Ouellette, and Frank Rudzicz. Bndr: Using transformers and a
593 contrastive self-supervised learning task to learn from massive amounts of eeg data. *Frontiers in*
Human Neuroscience, 15:653659, 2021.

594 Hongli Li, Man Ding, Ronghua Zhang, and Chunbo Xiu. Motor imagery eeg classification algorithm
 595 based on cnn-lstm feature fusion network. *Biomedical signal processing and control*, 72:103342,
 596 2022.

597

598 Hongyang Li and Yuanfang Guan. Deepsleep convolutional neural network allows accurate and fast
 599 detection of sleep arousal. *Communications biology*, 4(1):18, 2021.

600 Yang Li, Zuyi Yu, Yang Chen, Chunfeng Yang, Yue Li, X Allen Li, and Baosheng Li. Automatic
 601 seizure detection using fully convolutional nested lstm. *International journal of neural systems*, 30
 602 (04):2050019, 2020.

603

604 Ailiang Lin, Bingzhi Chen, Jiayu Xu, Zheng Zhang, Guangming Lu, and David Zhang. Ds-transunet:
 605 Dual swin transformer u-net for medical image segmentation. *IEEE Transactions on Instrumenta-
 606 tion and Measurement*, 71:1–15, 2022.

607

608 Meng Lou, Shu Zhang, Hong-Yu Zhou, Sibei Yang, Chuan Wu, and Yizhou Yu. Transxnet: learning
 609 both global and local dynamics with a dual dynamic token mixer for visual recognition. *IEEE
 610 Transactions on Neural Networks and Learning Systems*, 2025.

611

612 Deeksha M. Shama, Jiasen Jing, and Archana Venkataraman. Deepsoz: A robust deep model for
 613 joint temporal and spatial seizure onset localization from multichannel eeg data. In *International
 614 Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 184–194.
 Springer, 2023.

615

616 S Mostafa Mousavi, William L Ellsworth, Weiqiang Zhu, Lindsay Y Chuang, and Gregory C Beroza.
 617 Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection
 618 and phase picking. *Nature communications*, 11(1):3952, 2020.

619

620 Ayan Mukherjee, Rohan Banerjee, and Avik Ghose. A novel u-net architecture for denoising of
 621 real-world noise corrupted phonocardiogram signal. *arXiv preprint arXiv:2310.00216*, 2023.

621

622 Peng Pan, Chengxue Zhang, Jingbo Sun, and Lina Guo. Multi-scale conv-attention u-net for medical
 623 image segmentation. *Scientific Reports*, 15(1):12041, 2025.

624

625 Xuran Pan, Chunjiang Ge, Rui Lu, Shiji Song, Guanfu Chen, Zeyi Huang, and Gao Huang. On
 626 the integration of self-attention and convolution. In *Proceedings of the IEEE/CVF conference on
 627 computer vision and pattern recognition*, pp. 815–825, 2022.

628

629 Wei Yan Peh, Yuanyuan Yao, and Justin Dauwels. Transformer convolutional neural networks for
 630 automated artifact detection in scalp eeg. In *2022 44th Annual International Conference of the
 631 IEEE Engineering in Medicine & Biology Society (EMBC)*, pp. 3599–3602. IEEE, 2022.

632

633 Mathias Perslev, Michael Jensen, Sune Darkner, Poul Jørgen Jenum, and Christian Igel. U-time: A
 634 fully convolutional network for time series segmentation applied to sleep staging. *Advances in
 635 neural information processing systems*, 32, 2019.

636

637 Mathias Perslev, Sune Darkner, Lykke Kempfner, Miki Nikolic, Poul Jørgen Jenum, and Christian
 638 Igel. U-sleep: resilient high-frequency sleep staging. *NPJ digital medicine*, 4(1):72, 2021.

639

640 Olivier Petit, Nicolas Thome, Clement Rambour, Loic Themyr, Toby Collins, and Luc Soler. U-net
 641 transformer: Self and cross attention for medical image segmentation. In *Machine Learning in
 642 Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI
 643 2021, Strasbourg, France, September 27, 2021, Proceedings 12*, pp. 267–276. Springer, 2021.

644

645 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 646 image segmentation. In *Medical image computing and computer-assisted intervention—MICCAI
 647 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III
 648 18*, pp. 234–241. Springer, 2015.

649

650 Mohammed Saqib, Yuanda Zhu, May Wang, and Brett Beaulieu-Jones. Regularization of deep neural
 651 networks for eeg seizure detection to mitigate overfitting. In *2020 IEEE 44th Annual Computers,
 652 Software, and Applications Conference (COMPSAC)*, pp. 664–673. IEEE, 2020.

648 Nick Seeuws, Maarten De Vos, and Alexander Bertrand. Avoiding post-processing with event-based
 649 detection in biomedical signals. *IEEE Transactions on Biomedical Engineering*, 2024.

650

651 Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Meysam Golmo-
 652 hammadi, Iyad Obeid, and Joseph Picone. The temple university hospital seizure detection corpus.
 653 *Frontiers in neuroinformatics*, 12:83, 2018.

654

655 Yonghao Song, Xueyu Jia, Lie Yang, and Longhan Xie. Transformer-based spatial-temporal feature
 656 learning for eeg decoding. *arXiv preprint arXiv:2106.11170*, 2021.

657

658 Siyi Tang, Jared A Dunnmon, Khaled Saab, Xuan Zhang, Qianying Huang, Florian Dubost, Daniel L
 659 Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved elec-
 660 troencephalographic seizure analysis. *arXiv preprint arXiv:2104.08336*, 2021.

661

662 Punnawish Thuwajit, Phurin Rangpong, Phattarapong Sawangjai, Phairot Autthasan, Rattanaphon
 663 Chaisaen, Nannapas Banluesombatkul, Puttaranun Boonchit, Nattasate Tatsaringkansakul, Tha-
 664 panun Sudhawiyangkul, and Theerawit Wilairatprasitporn. Eegwavenet: Multiscale cnn-based
 665 spatiotemporal feature extraction for eeg seizure detection. *IEEE Transactions on Industrial
 666 Informatics*, 18(8):5547–5557, 2021.

667

668 Kaat Vandecasteele, Thomas De Cooman, Jonathan Dan, Evy Cleeren, Sabine Van Huffel, Borbála
 669 Hunyadi, and Wim Van Paesschen. Visual seizure annotation and automated seizure detection
 670 using behind-the-ear electroencephalographic channels. *Epilepsia*, 61(4):766–775, 2020.

671

672 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 673 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 674 systems*, 30, 2017.

675

676 Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 677 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
 678 algorithms for scientific computing in python. *Nature methods*, 17(3):261–272, 2020.

679

680 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
 681 transformer for universal and reliable representation of eeg signals. *Advances in Neural Information
 682 Processing Systems*, 37:39249–39280, 2024.

683

684 Haoyu Wang and Xiaofeng Li. Expanding horizons: U-net enhancements for semantic segmentation,
 685 forecasting, and super-resolution in ocean remote sensing. *Journal of Remote Sensing*, 4:0196,
 686 2024.

687

688 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 689 Temporal 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
 690 2022.

691

692 Chaoqi Yang, M Brandon Westover, and Jimeng Sun. Biot: Cross-data biosignal learning in the wild.
 693 *arXiv preprint arXiv:2305.10351*, 2023a.

694

695 Chaoqi Yang, Cao Xiao, M Brandon Westover, Jimeng Sun, et al. Self-supervised electroencephalo-
 696 gram representation learning for automatic sleep staging: model development and evaluation study.
 697 *JMIR AI*, 2(1):e46769, 2023b.

698

699 Pengbo Zhao, Cheng Lian, Bingrong Xu, and Zhigang Zeng. Multiscale global prompt transformer for
 700 eeg-based driver fatigue recognition. *IEEE Transactions on Automation Science and Engineering*,
 701 22:2700–2711, 2024.

702

703 Xinliang Zhou, Chenyu Liu, Ruizhi Yang, Liangwei Zhang, Liming Zhai, Ziyu Jia, and Yang
 704 Liu. Learning robust global-local representation from eeg for neural epilepsy detection. *IEEE
 705 Transactions on Artificial Intelligence*, 5(11):5720–5732, 2024.

706

707 Weiqiang Zhu and Gregory C Beroza. Phasenet: a deep-neural-network-based seismic arrival-time
 708 picking method. *Geophysical Journal International*, 216(1):261–273, 2019.

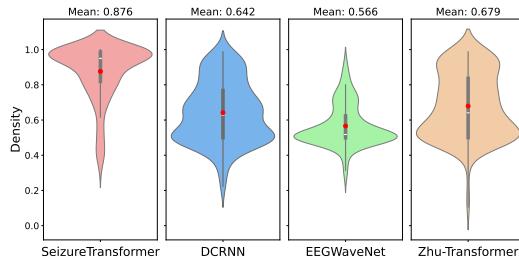
709

710 Yuanda Zhu and May D Wang. Automated seizure detection using transformer models on multi-
 711 channel eegs. In *2023 IEEE EMBS International Conference on Biomedical and Health Informatics
 712 (BHI)*, pp. 1–6. IEEE, 2023.

702 A RELATED WORK
703
704
705
706707 **Automated EEG Analysis.** To mitigate the subjectivity and intensive manual effort associated with
708 analyzing EEG data, various deep learning approaches have been employed, including models based
709 on convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks
710 (GNNs), and Transformers.
711712 CNN-based models Thuwajit et al. (2021); Wu et al. (2022) excel at extracting local spatial features
713 but typically struggle with long-term temporal dependencies. Conversely, RNN-based models
714 Abdelhameed et al. (2018); Saqib et al. (2020), especially those using Long Short-Term Memory
715 (LSTM) architectures, effectively model temporal sequences but often encounter difficulties in spatial
716 feature extraction and suffer from gradient vanishing issues over long sequences. Prior studies
717 have combined CNN and RNN modules to simultaneously capture both spatial and temporal EEG
718 features. Graph neural network (GNN) models Tang et al. (2021) approach EEG data as spatio-
719 temporal graphs, extracting relational information among channels for tasks such as anomaly detection
720 and classification. Transformer-based models, benefiting from recent advances in large language
721 models, have emerged as robust tools for modeling long-term temporal dependencies. Similar to
722 earlier efforts with RNNs, recent studies Li et al. (2020) combined CNN modules with Transformer
723 components, aiming to leverage both spatial and temporal features inherent in multi-channel EEG
724 data. Additionally, several works explored Global-local interaction and fusion Zhou et al. (2024);
725 Zhao et al. (2024); Lou et al. (2025); Pan et al. (2022), which is similar to our model architecture, but
726 only focused on either event-centric or status-centric tasks instead of proposing a unified framework.
727728 Although these models have demonstrated impressive classification performance, the transition from
729 window-level predictions to sample-level masks, indicating precise event onset times and durations,
730 remains redundant and time-consuming. Additionally, most existing studies rely on window-level
731 evaluation metrics, comparing predictions directly with ground truth labels per window rather than
732 employing more clinically relevant event-level measures.
733734 **Large Foundation Models.** With the success of Large Language Model(LLM) Brown et al.
735 (2020); Devlin et al. (2019), more and more EEG research is focusing on building large foundation
736 models. Such foundation models take advantage of a self-supervised learning strategy to learn the
737 representation of EEG signals from a wide range of datasets. The pre-trained model is then adapted,
738 either by fully fine-tuning or by probing from the outputted representation, to do various downstream
739 tasks. For instance, BIOT Yang et al. (2023a) use a contrastive learning strategy to learn embeddings
740 for biosignals with various formats; LaBraM Jiang et al. (2024) learns universal embeddings through
741 a masked autoencoder to do unsupervised pre-training over 2500 hours of EEG data; EEGPT Wang
742 et al. (2024) employs a dual self-supervised approach for pretraining, involving spatio-temporal
743 representation alignment and mask-based reconstruction. Such models demonstrate impressive
744 performance over a variety of downstream tasks while requiring extensive time and memory to do
745 pre-training.
746747 **U-Net.** U-Net Ronneberger et al. (2015) architecture was first proposed in the field of CV for image
748 segmentation tasks. Considering the temporal continuity of time series data, such networks have been
749 widely deployed in various sequence-to-sequence scientific signal processing applications, such as
750 seismic phase detection Zhu & Beroza (2019), sleep-staging classification Li & Guan (2021); Perslev
751 et al. (2019), denoising heart sound signals Mukherjee et al. (2023), and seizure detection Islam et al.
752 (2023); Seeuws et al. (2024).
753754 There are some works exploring combining U-Net with Transformer for other fields. For example,
755 in a medical image segmentation task, Petit et al. (2021) used self and cross-attention with U-Net;
756 Lin et al. (2022) incorporated hierarchical Swin Transformer into U-Net to extract both coarse and
757 fine-grained feature representations. In seismic analysis, Mousavi et al. (2020) proposed a deep
758 neural network that can be regarded as a U-Net with global and self-attention but without a residual
759 connection. However, in the biomedical signal processing area, to the best of our knowledge, there is
760 no existing work to scale U-Net using transformer blocks. The closest work to this paper is Islam
761 et al. (2023), where multiple attention-gated U-Nets are used and a following LSTM network is
762 implemented to fuse results.
763

756
757 Table 7: Model Performance in cross-device seizure detection task with the use of Dianalund dataset.

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773	759 760 761 762 763 764 765 766 767 768 769 770 771 772 773	759 760 761 762 763 764 765 766 767 768 769 770 771 772 773	759 760 761 762 763 764 765 766 767 768 769 770 771 772 773		
			759 760 761 762 763 764 765 766 767 768 769 770 771 772 773	759 760 761 762 763 764 765 766 767 768 769 770 771 772 773	759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
Model	Architecture		F1-score	Sensitivity	Precision
SeizureTransformer	U-Net & CNN & Transformer		0.43	0.37	0.45
Van Gogh Detector	CNN & Transformer		0.36	0.39	0.42
S4Seizure	S4		0.34	0.30	0.42
DeepSOZ-HEM	LSTM & Transformer		0.31	0.58	0.27
HySEIZa	Hyena-Hierarchy & CNN		0.26	0.6	0.22
Zhu-Transformer	CNN & Transformer		0.20	0.46	0.16
SeizUnet	U-Net & LSTM		0.19	0.16	0.20
Channel-adaptive	CNN		0.14	0.06	0.20
EventNet	U-Net		0.14	0.6	0.09
Gradient Boost	Gradient Boosted Trees		0.07	0.15	0.09
DynSD	LSTM		0.06	0.55	0.04
Random Forest	Random Forest		0.06	0.05	0.07
SD2025	LaBraM		0.477	0.6975	0.0271
NE Illusion	JEPA		0.0269	0.6888	0.0157
STORM	BENDR		0.0203	0.9887	0.0112

774
775 **B CODE AVAILABILITY**
776777 Our source code and model are available at <https://anonymous.4open.science/r/EEG-U-Transformer-5E86>.
778
779780 **C MORE RESULTS**
781782 **C.1 DIANALUND CROSS-DEVICE SEIZURE DETECTION**
783784 We provided the full model performance leaderboard in Table 7, where models are evaluated over the
785 Dianalund dataset for cross-device seizure detection. As shown in the Table, our model achieves the
786 best performance with the highest F1-score.
787788 **C.2 AUROC FOR SEIZURE DETECTION**
789790
791 Figure 5: Violin plots illustrating the distribution of AUROC values for SeizureTransformer, DCRNN,
792 EEGWaveNet, and Zhu-Transformer models evaluated on the TUSZ v2.0.3 predefined testing set.
793 Mean AUROC scores for each model are indicated above each plot, with the SeizureTransformer
794 demonstrating the highest overall performance.
795
796
797
798
799800 We quantify the model's performance using the area under the receiver operating characteristic
801 (AUROC). For each continuous EEG recording, the ROC curve plots the true and false positive rates
802 across all possible decision thresholds, and the AUC represents the area under the ROC curve, which
803 summarizes the model's performance. As shown in Figure 5, our model demonstrated the highest
804 performance, with a mean AUROC of 0.876 and a distribution tightly concentrated toward higher
805 values.
806
807
808
809

810
811
812
813
814
815
816
817Table 8: Effect of dataset formulation (event-level F_1) with $\tau = 0.8$

$\beta \setminus \alpha$	0.2	0.4	0.54 (full)
1.0	0.6240	0.6554	0.6713
2.0	0.6638	0.6531	0.6667

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 9: Threshold–performance trade-off (event-level metrics)

τ	F_1	Sensitivity	Precision
0.9	0.6916	0.6549	0.7327
0.8	0.6713	0.7168	0.6312
0.6	0.6308	0.7611	0.5386
0.4	0.5914	0.7876	0.4734
0.2	0.5470	0.8053	0.4143

D HYPER-PARAMETER ANALYSIS

Dataset formulation. Table 8 indicates that a balanced dataset, which is formulated with a balanced number of windows that lack seizures, full of seizures, and a partial part of seizures, will benefit the model’s performance. Too many windows that are full of seizure activities will negatively influence the training quality. In that case, we recommend a balanced dataset, i.e., $\alpha = 1$ and $\beta = 1$, if conditions allow, to maximize the model’s performance.

Detection threshold. Table 9 reports the effect of varying the decision threshold τ . Higher thresholds favor precision at the expense of sensitivity, whereas lower thresholds improve sensitivity but increase false positives. In practice, τ can be tuned to clinical priorities: intensive care monitoring may prioritize sensitivity, while wearable devices benefit from higher precision to reduce alarm fatigue.

Table 10: Model size (number of learnable parameters) vs. feed-forward width (dim_{ff}) and number of encoder layers (num_layers).

$\text{dim}_{\text{ff}} \setminus \text{num_layers}$	4	8	12
1024	23,143,393	31,554,529	39,965,665
2048	28,391,393	41,000,929	53,610,465
4096	38,887,393	59,893,729	80,900,065

Table 12: Ablation of post-processing (morphological filtering and short-event removal).

Post-process	F_1	Sensitivity	Precision
normal	0.6916	0.6549	0.7327
no morphological filter	0.6887	0.6460	0.7374
no remove event	0.6686	0.6785	0.6590
none	0.6156	0.7345	0.5298

Model size scaling. As shown in Table 10 and 11, our proposed model fits the scaling law that model performance is better when the model size is scaled up (whether through the number of layers or the feedforward dimension). On the other hand, given the limited dataset size, the performance will drop when the model size is too big.

Post-processing. We report the ablation study of post-processing in Table 12. Removing both steps slightly increases sensitivity but substantially hurts precision and overall F_1 , showing that morphological filtering and short-event removal effectively reduce false alarms.

864
865 Table 11: Event-level F_1 vs. feed-forward width (dim_{ff}) and number of encoder layers (num_layers).
866
867
868
869
870

$\text{dim}_{\text{ff}} \setminus \text{num_layers}$	4	8	12
1024	0.6626	0.6398	0.6838
2048	0.6598	0.6916	0.6760
4096	0.6740	0.6902	0.6568

871
872

E SAMPLE AND EVENT-BASED SCORING

873874
875 These two scale scoring methods are proposed by Dan et al. (2024), which aims to align EEG machine
876 learning research with real-world clinical requirements.
877878 **Sample(Time-Step)-based Scoring.** Annotations are evaluated at 1 Hz, aligning with human
879 annotator resolution. Each 1-second sample is labeled as a true positive (TP), false positive (FP), or
880 false negative (FN). Machine learning models can use arbitrary window sizes and overlaps, as long as
881 they produce predictions at 1 Hz. For partial overlaps with seizures, a sample is labeled as "seizure"
882 if the overlap exceeds 50%.883 **Event-based Scoring.** evaluates activities based on the overlap between predicted and reference
884 events. Any overlapping prediction is counted as a true positive (TP), while non-overlapping
885 predictions are false positives (FP).
886887 Due to challenges in precisely annotating events' start and end times, caused by gradual EEG
888 transitions and artifacts, some tolerance is introduced as follows for seizure detection evaluation:
889890

- **Pre-ictal tolerance:** Predictions up to 30 seconds before the annotated onset are accepted.
- **Post-ictal tolerance:** Predictions up to 60 seconds after the annotated offset are accepted.
- **Minimum overlap:** Any overlap, however brief, is sufficient for detection.
- **Event merging:** Events separated by less than 90 seconds are merged, which corresponds to the combined pre- and post-ictal tolerance.
- **Maximum event duration:** Events longer than 5 minutes are split.

898

F PSEUDOCODE FOR TIME-STEP LEVEL CLASSIFICATION

899900
901 **Algorithm 1** Window level classification model's prediction workflow at a time-step level classifica-
902 tion.
903904 **Require:** recording duration T (in seconds), sampling frequency f_s , window size D_{window} (in
905 seconds), overlap ratio $r_{\text{overlap}} \in [0, 1]$, decision threshold τ .
906907 **Ensure:** Sample-level prediction mask y_{mask} .
908

```

1:  $B \leftarrow \lfloor \frac{T - D_{\text{window}}}{(1 - r_{\text{overlap}}) \times D_{\text{window}}} \rfloor + 1$  {Number of windows to predict}
2: Predict  $\hat{y} \in \mathbb{R}^B$ 
3: Initialize  $y_{\text{mask}} \leftarrow \mathbf{0}^{T \cdot f_s}$ 
4:  $w_s \leftarrow D_{\text{window}} \cdot f_s$  {Number of samples per window}
5:  $s_s \leftarrow (1 - r_{\text{overlap}}) \cdot w_s$  {Window step size in samples}
6: for each index  $i = D_{\text{window}}$  to  $\text{len}(\hat{y}) - 1$  do
7:    $l \leftarrow \max(0, \lfloor i \cdot s_s \rfloor)$ 
8:    $r \leftarrow \min(T \cdot f_s, \lfloor (i + 1) \cdot s_s \rfloor)$ 
9:    $v \leftarrow \text{mean}(\hat{y}[\max(0, i - D_{\text{window}}) : \min(i, T)]) > \tau$ 
10:   $y_{\text{mask}}[l : r] \leftarrow \text{int}(v)$ 
11: end for
12: return  $y_{\text{mask}}$ 

```

918 **Algorithm 2** Our model’s prediction workflow at a time-step level classification.
919 **Require:** recording duration T (in seconds), sampling frequency f_s , window size D_{window} , decision
920 threshold τ .
921 **Ensure:** Binary prediction mask $y_{\text{mask}} \in \{0, 1\}^{T \times f_s}$.
922 1: $B = \lfloor \frac{T}{D_{\text{window}}} \rfloor$ {Number of samples per window}
923 2: Predict $\hat{y} \in \mathbb{R}^{D_{\text{window}} \cdot f_s}$
924 3: $\hat{y} \leftarrow \text{Flatten}(\hat{y})[: T \times f_s]$
925 4: $y_{\text{mask}}[t] \leftarrow \begin{cases} 1, & \text{if } \hat{y}[t] > \tau \\ 0, & \text{otherwise} \end{cases}$
926 5: # Other post-processing with a time complexity of $\mathcal{O}(D_{\text{window}} \cdot f_s)$
927 6: **return** y_{mask}

930
931
932

933 **Computational complexity.** Let a recording have duration T seconds sampled at f_s Hz, window
934 size D_{window} (in seconds), and overlap ratio $r_{\text{overlap}} \in [0, 1]$. The stride (in samples) is
935

936
937
938
939
940

941 which induces

942
943
944
945
946
947
948
949

$$s_s = (1 - r_{\text{overlap}}) D_{\text{window}} f_s,$$

$$B = \left\lfloor \frac{T f_s - D_{\text{window}} f_s}{s_s} \right\rfloor + 1 = \Theta\left(\frac{T f_s}{1 - r_{\text{overlap}}}\right)$$

950 windows per pass.

951 *Window-level (Alg. 1).* The model produces B window scores and then expands them to a sample
952 mask; both steps are linear in the number of covered samples, giving
953

954
955
956
957
958

$$\mathcal{O}\left(\frac{T f_s}{1 - r_{\text{overlap}}}\right).$$

959 Accurate onset/duration labeling typically uses a high overlap (e.g., $r_{\text{overlap}} \approx 0.8$), which enlarges
960 the constant by the factor $\frac{1}{1 - r_{\text{overlap}}}$; practical post-processing remains linear and does not change the
961 order.

963 *Time-step (Alg. 2).* The network outputs one score per sample; thresholding plus light post-processing
964 costs

965
966
967
968
969
970
971

$$\mathcal{O}(T f_s) + \mathcal{O}(D_{\text{window}} f_s) = \mathcal{O}(T f_s).$$

Setting $r_{\text{overlap}} = 0$ eliminates redundant evaluations entirely.

972 **G ARCHITECTURE DETAILS**
973
974
975
976
977978 Table 13: Model design for seizure detection
979

980 Input Size	981 Operator	982 kernel / pool	983 stride	984 padding
985 19×15360	986 Conv1d (19 \rightarrow 32) + ELU	987 11	988 1	989 5
990 32×15360	991 MaxPool1d	992 2	993 2	994 0
995 32×7680	996 Conv1d (32 \rightarrow 64) + ELU	997 9	998 1	999 4
999 64×7680	1000 MaxPool1d	1001 2	1002 2	1003 0
1003 64×3840	1004 Conv1d (64 \rightarrow 128) + ELU	1005 7	1006 1	1007 3
1007 128×3840	1008 MaxPool1d	1009 2	1010 2	1011 0
1011 128×1920	1012 Conv1d (128 \rightarrow 256) + ELU	1013 7	1014 1	1015 3
1015 256×1920	1016 MaxPool1d	1017 2	1018 2	1019 0
1019 256×960	1020 Conv1d (256 \rightarrow 512) + ELU	1021 5	1022 1	1023 2
1023 512×960	1024 MaxPool1d	1025 2	1026 2	1027 0
1027 512×480	1028 ResCNNStack	1029 –	1030 –	1031 –
1031 512×480	1032 PositionalEncoding + Transformer	1033 –	1034 –	1035 –
1035 512×480	1036 Upsample (x2)	1037 –	1038 –	1039 –
1039 512×960	1040 Conv1d (512 \rightarrow 512) + ELU	1041 3	1042 1	1043 1
1043 512×960	1044 Upsample (x2)	1045 –	1046 –	1047 –
1047 512×1920	1048 Conv1d (512 \rightarrow 256) + ELU	1049 5	1050 1	1051 2
1051 256×1920	1052 Upsample (x2)	1053 –	1054 –	1055 –
1055 256×3840	1056 Conv1d (256 \rightarrow 128) + ELU	1057 5	1058 1	1059 2
1059 128×3840	1060 Upsample (x2)	1061 –	1062 –	1063 –
1063 128×7680	1064 Conv1d (128 \rightarrow 64) + ELU	1065 7	1066 1	1067 3
1067 64×7680	1068 Upsample (x2)	1069 –	1070 –	1071 –
1071 64×15360	1072 Conv1d (64 \rightarrow 32) + ELU	1073 7	1074 1	1075 3
1075 32×15360	1076 Conv1d (32 \rightarrow 1)	1077 11	1078 1	1079 5
1079 1×15360	1080 Squeeze (remove channel)	1081 –	1082 –	1083 –

1001 Table 14: Model design for sleep stage classification
1002

1003 Input Size	1004 Operator	1005 kernel / pool	1006 stride	1007 padding
1008 2×7680	1009 Conv1d (2 \rightarrow 16) + ELU	1010 11	1011 1	1012 5
1012 16×7680	1013 MaxPool1d	1014 2	1015 2	1016 0
1016 16×3840	1017 Conv1d (16 \rightarrow 32) + ELU	1018 9	1019 1	1020 4
1020 32×3840	1021 MaxPool1d	1022 2	1023 2	1024 0
1024 32×1920	1025 Conv1d (32 \rightarrow 64) + ELU	1026 7	1027 1	1028 3
1028 64×1920	1029 MaxPool1d	1030 2	1031 2	1032 0
1032 64×960	1033 Conv1d (64 \rightarrow 128) + ELU	1034 7	1035 1	1036 3
1036 128×960	1037 MaxPool1d	1038 2	1039 2	1040 0
1040 128×480	1041 ResCNNStack	1042 –	1043 –	1044 –
1044 128×480	1045 PositionalEncoding + TransformerEncoder	1046 –	1047 –	1048 –
1048 128×480	1049 Upsample (x2)	1050 –	1051 –	1052 –
1052 128×960	1053 Conv1d (128 \rightarrow 128) + ELU	1054 3	1055 1	1056 1
1056 128×960	1057 Upsample (x2)	1058 –	1059 –	1060 –
1060 128×1920	1061 Conv1d (128 \rightarrow 64) + ELU	1062 5	1063 1	1064 2
1064 64×1920	1065 Upsample (x2)	1066 –	1067 –	1068 –
1068 64×3840	1069 Conv1d (64 \rightarrow 32) + ELU	1070 5	1071 1	1072 2
1072 32×3840	1073 Upsample (x2)	1074 –	1075 –	1076 –
1076 32×7680	1077 Conv1d (32 \rightarrow 16) + ELU	1078 7	1079 1	1080 3
1080 16×7680	1081 AttentionPooling	1082 –	1083 –	1084 –
1084 16	1085 Linear (16 \rightarrow 5)	1086 –	1087 –	1088 –
1088 5	1089 Softmax	1090 –	1091 –	1092 –

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

H DATASET DESCRIPTION AND DATA PROCESSING

H.1 SEIZURE DETECTION

- **Siena Scalp EEG Database** Detti (2020): This database contains EEG recordings from 14 patients collected at the Neurology and Neurophysiology Unit of the University of Siena. The cohort includes 9 male participants aged 25 to 71 and 5 female participants aged 20 to 58. Recordings were conducted using Video-EEG at a sampling rate of 512 Hz, with electrode placement following the international 10-20 system. In most cases, 1 or 2 EKG channels were also recorded. An experienced clinician diagnosed epilepsy and classified seizure types based on the standards of the International League Against Epilepsy, following a detailed evaluation of each patient’s clinical and electrophysiological data.
- **TUH EEG Seizure Corpus v2.0.3** Shah et al. (2018): This dataset is a curated subset of the TUH EEG Corpus, originally collected from archived clinical EEG records at Temple University Hospital between 2002 and 2017. It includes recordings that were selected based on clinical documentation and the results of seizure detection algorithms to ensure a higher likelihood of seizure presence. Version 2.0.0 features 7,377 EDF files from 675 patients, totaling 1,476 hours of EEG data. The recordings are generally short, averaging around 10 minutes each. The dataset features variability in both sampling rates and the number of EEG channels, though all recordings have a minimum sampling rate of 250 Hz and include at least 17 EEG channels following the 10-20 electrode placement system. Seizure annotations are provided in CSV format, detailing the start and end times, affected channels, and seizure types.
- **SeizeIT1** Vandecasteele et al. (2020): This dataset was collected during the ICON project (2017–2018) in collaboration with KU Leuven and other institutions. It focuses on developing a seizure monitoring system using behind-the-ear (bhE) EEG electrodes, aiming to balance seizure detection accuracy with patient wearability in home environments. Data were recorded during presurgical evaluations in a hospital setting, where patients were continuously monitored via video EEG (vEEG) over several days. A total of 82 patients participated, with 54 having bhE EEG recordings. Among them, 42 patients experienced seizures, yielding between 1 to 22 seizures per patient (median: 3). Available data per patient include full 10-20 scalp EEG, bhE EEG, and single-lead ECG (typically lead II).
- **Dianalund** Dan et al. (2024): The dataset was gathered at the Epilepsy Monitoring Unit (EMU) of the Filadelfia Danish Epilepsy Centre in Dianalund over the period from January 2018 to December 2020, using the NicoletOne™ v44 amplifier. It includes data from 65 patients who experienced at least one seizure during their hospital stay, with each seizure displaying a visually identifiable electrographic pattern on video. In total, 4360 hours of EEG recordings were collected, with patient monitoring durations ranging from 18 to 98 hours. Most participants were adults (median age: 34), and eight were children aged between 5 and 66 years. Across all subjects, 398 seizures were captured and independently annotated by three certified neurophysiologists specializing in long-term video-EEG monitoring. When

Table 15: Model design for pathological detection

Input Size	Operator	kernel / pool	stride	padding
23 × 2000	Conv1d (23→64) + ELU	11	1	5
64 × 2000	MaxPool1d	2	2	0
64 × 1000	Conv1d (64→128) + ELU	9	1	4
128 × 1000	MaxPool1d	2	2	0
128 × 500	ResCNNStack	–	–	–
128 × 500	PositionalEncoding + Transformer	–	–	–
128 × 500	Upsample (x2)	–	–	–
128 × 1000	Conv1d (128→128) + ELU	3	1	1
128 × 1000	Upsample (x2)	–	–	–
128 × 2000	Conv1d (128→64) + ELU	5	1	2
64 × 2000	AttentionPooling	–	–	–
64	Linear (64→1)	–	–	–
1	Sigmoid	–	–	–

1080 disagreements arose, a final consensus label was established. All data were anonymized
 1081 and converted into a BIDS-compliant format using an adapted version of the epilepsy2bids
 1082 Python tool tailored for this dataset. EEG recordings were standardized to the 19-channel
 1083 10-20 system, re-referenced to a common average, and resampled at 256 Hz.
 1084

1085 **Pre-processing.** We arrange every EEG recording’s channels in a consistent sequence: $[Fp1-F3,$
 1086 $F3-C3, C3-P3, P3-O1, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4, P4-O2,$
 1087 $Fp2-F8, F8-T4, T4-T6, T6-O2]$. The signals are then resampled to a common 256 Hz using the Fourier
 1088 method Virtanen et al. (2020). An Gaussian normalization to each channel is then implemented by
 1089 calculating

$$1090 \quad x_i^* = (x_i^* - \bar{x})/s_x, \\ 1091 \quad \bar{x} = \frac{1}{K} \sum_{i=1}^K x_i, \\ 1092 \quad s_x = \frac{1}{K-1} \sum_{i=1}^K (x_i - \bar{x})^2. \\ 1093 \\ 1094 \\ 1095 \\ 1096$$

1097 Followed by Zhu & Wang (2023), a bandpass filter was applied to preserve signal components
 1098 within the 0.5 Hz to 100 Hz frequency range. Following this, two notch filters were used to remove
 1099 frequencies at 1 Hz and 60 Hz, which commonly correspond to heart rate artifacts and power line
 1100 interference, respectively. Note that we only use TUSZ v2.0.3, and Siena Scalp EEG is used for
 1101 dataset formulation. The other two datasets are merely used for cross-dataset evaluation.
 1102

1103 H.2 SLEEP STAGE CLASSIFICATION

1104 • **Sleep-EDFx** Kemp et al. (2000): This dataset comprises 197 (78 healthy subjects) whole-
 1105 night polysomnographic (PSG) recordings collected from healthy subjects and individuals
 1106 with mild sleep difficulties. The recordings include EEG (from Fpz-Cz and Pz-Oz electrode
 1107 placements), horizontal EOG, submental chin EMG, and event markers. Some records
 1108 also contain respiration and body temperature measurements. Each PSG recording is
 1109 accompanied by a hypnogram annotated by trained technicians according to the 1968
 1110 Rechtschaffen and Kales manual, detailing sleep stages W, R, 1, 2, 3, 4, movement time
 1111 (M), and unscored segments.

1112 **Pre-processing.** The preprocessing approach followed the method proposed by EEGPT Wang et al.
 1113 (2024). Initially, the EEG signals were converted to millivolts (mV). A 30 Hz low-pass filter was
 1114 then applied to remove high-frequency noise. The recordings were segmented into non-overlapping
 1115 30-second windows, and each window underwent z-score normalization independently for each
 1116 channel.
 1117

1118 H.3 PATHOLOGICAL(ABNORMAL) DETECTION

1119 • **TUH Abnormal EEG Corpus v3.0.1** Shah et al. (2018): TUAB is a collection of EEG
 1120 recordings from Temple University Hospital, labeled as either normal or abnormal. It
 1121 includes 2,993 EEG files recorded between 2002 and 2017. The data is split into training
 1122 and evaluation sets, with no overlap in patients between them. The training set has 2,717
 1123 files from 2,130 people, and the evaluation set has 276 files from 253 people. The formulated
 1124 dataset contains a total of 409455 10-second samples.
 1125

1126 **Pre-processing.** We first removed non-EEG channels, such as EKG, EMG, and respiration were first
 1127 removed. Next, only recordings with 21 standard 10-20 EEG channels were retained and reordered to
 1128 a consistent reference montage. Recordings not matching the expected channel order were excluded.
 1129

1130 Signals were then bandpass filtered between 0.1 Hz and 75 Hz to remove slow drifts and high-
 1131 frequency noise. A notch filter at 50 Hz was applied to suppress power line interference. Data were
 1132 downsampled to 200 Hz for efficiency. Each recording was then segmented into non-overlapping
 1133 10-second windows (2,000 samples per segment), and each segment was saved with a label indicating
 whether it was from an abnormal (1) or normal (0) EEG.