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ABSTRACT

Electroencephalography (EEG) reflects the brain’s functional state, making it a
crucial tool for diverse detection applications like seizure detection and sleep
stage classification. While deep learning-based approaches have recently shown
promise for automated detection, traditional models are often constrained by limited
learnable parameters and only achieve modest performance. In contrast, large
foundation models showed improved capabilities by scaling up the model size,
but required extensive time-consuming pre-training. Moreover, both types of
existing methods require complex and redundant post-processing pipelines to
convert discrete labels to continuous annotations. In this work, based on the multi-
scale nature of EEG events, we propose a simple U-shaped model to efficiently
learn representations by capturing both local and global features using convolution
and self-attentive modules for sequence-to-sequence modeling. Compared to
other window-level classification models, our method directly outputs predictions
at the time-step level, eliminating redundant overlapping inferences. Beyond
sequence-to-sequence modeling, the architecture naturally extends to window-level
classification by incorporating an attention-pooling layer. Such a paradigm shift
and model design demonstrated promising efficiency improvement, cross-subject
generalization, and state-of-the-art performance in various time-step and window-
level classification tasks in the experiment. More impressively, our model showed
the capability to be scaled up to the same level as existing large foundation models
that have been extensively pre-trained over diverse datasets and outperforms them
by solely using the downstream fine-tuning dataset.

1 INTRODUCTION

Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical
activity of the brain. Such recorded biosignals dynamically reveal the brain’s functional state, making
it an essential tool for studying brain activity. Among the EEG signal processing analysis, certain
tasks, such as pathological detection, are status-centric that require predicting the class of an input
signal window, while other tasks, such as seizure detection, are event-centric that aim to identify
transitions from background noise to meaningful events. Traditionally, neurologists implement
analysis by manually checking large numbers of multi-channel EEG signals. However, visual analysis
is time-consuming and prone to subjectivity. Therefore, the automation of the detection of the
underlying brain dynamics in EEG signals is significant to obtain fast and objective EEG analysis.

In recent years, deep learning models have demonstrated impressive abilities to capture the intricate
dependencies within time series data, making them a powerful tool for EEG signal analysis over
traditional manual and statistical methods (Zhu & Wang, 2023; Seeuws et al., 2024; Thuwajit et al.,
2021; M. Shama et al., 2023; Tang et al., 2021). More recently, large foundation models that take
advantage of self-supervised learning techniques have shown promising results in EEG analysis
(Wang et al., 2024; Jiang et al., 2024; Yang et al., 2023a; Kostas et al., 2021). However, most existing
work implements the classification task at a sliding window level, which involves segmenting a
signal recording into distinct windows and predicting a label for each sample. Converting discrete
predictions into continuous masking for event-centric tasks involves extensive post-processing, which
departs from existing algorithms in simultaneous detection. In addition, while foundation models
successfully scaled up their size, which, in turn, achieved impressive performace, through pre-training,
such a process requires diverse datasets and tremendous time and computation resources. Moreover,
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most existing biomedical signal processing research trains and evaluates models using formulated
training and testing datasets that have a fixed sequence length. Such experimental settings and
evaluation metrics do not fit with real-world requirements and often limit the model design, as
different model architectures might benefit from different sequence lengths.

In contrast to window-level classification models, sequence-to-sequence modeling, a type of encoder-
decoder architecture that maps an input sequence to an output sequence, provides a straightforward
solution to avoid redundant post-processing steps through time-step-level classification. As the se-
mantic information of time series data is mainly hidden in the temporal variance, U-Net (Ronneberger
et al., 2015), a fully convolutional encoder-decoder network with skip connections that was originally
designed for image segmentation, becomes a competitive backbone and has been widely used in the
scientific field (Zhu & Beroza, 2019; Li & Guan, 2021; Chatzichristos et al., 2020; Seeuws et al.,
2024; Perslev et al., 2019; Mukherjee et al., 2023; Pan et al., 2025; Wang & Li, 2024). However, the
drawback of such models also stands out. Firstly, U-Net primarily operates within local receptive
fields, making it difficult for U-Net to capture global features effectively. Beyond that, building up a
U-Net requires stacking deeper layers, often leading to vanishing gradients and overfitting.

Present work. In this work, we propose a simple U-shaped architecture to solve the mentioned
challenges. The model comprises of three components (i) a deep encoder comprising 1D convolutions,
(ii) a residual CNN stack and a transformer encoder to embed previous output into a high-level
representation, and (iii) a streamlined decoder which converts these features into a sequence of
probabilities, directly indicating the presence or absence of events at every time step. Specifically,
the encoder performs initial down-sampling and preliminary local feature extraction, enabling the
long-sequence input. Subsequently, the scaling embedding module leverages Res-CNN stacks to
further exploit local structure for better generalization and multi-head self-attention layers from
Transformer architectures to integrate global context and to enrich the model’s learnable parameters
for high-dimensional representation learning. Finally, the decoder up-samples the embedded vectors
to input-length sequences for direct time-step-level classification, significantly reducing the need
for extensive post-processing. Beyond time-step level classification, we propose to use a simple
attention-linear pooling layer to aggregate time-step embeddings for window-level classification.

In the experiment, we evaluate the proposed model against both event-level and sample-level metrics
in the event-centric task, namely, seizure detection, to reflect realistic clinical requirements (Dan
et al., 2024; Beniczky et al., 2017); and benchmark our approach using standardized window-level
datasets for sleep-stage classification and pathological detection to facilitate direct comparisons
with baseline methods. Our model consistently outperforms existing algorithms across all tasks.
In the event-centric task, compared to window-level baselines, our time-step classification model
achieves a 10-fold runtime improvement. Further cross-dataset evaluation highlights the model’s
robustness and cross-subject generalization. More impressively, unlike several large foundation
models in the baseline that require extensive pre-training across various EEG datasets, our method
achieves state-of-the-art performance by solely using the downstream fine-tuning dataset without any
pre-training process.

2 METHODOLOGY

2.1 PRELIMINARY

For continuous EEG waveforms, the training dataset is generated by segmenting the waveform into
bags of uniform windowsD = (X ,Y) = {(xi, yi) | i = 1, . . . , N}. Each input window xi ∈ RT×K

represents a multivariate time series with K channels and T time steps. We use xi[t, k] to denote
the data value at time step t and channel k within the sample xi. In window-level classification
model, the ground truth label yi ∈ {1, 2, . . . , C} indicates whether the window contains an activity,
where C represents the number of classes. In contrast, in a time-step-level classification model,
yi ∈ {1, 2, . . . , C}T is a box-shaped label set indicating the presence of an event at each time
step. The model is trained to produce predictions ŷ that minimize the classification objective, i.e.,
ŷi = fθ(xi), θ ∈ argminL. Here, we use Cross-Entropy as our loss function L, which, as shown in
Equation 1, measures the dissimilarity between the predicted and true labels.

L(y, ŷ) = − 1

T

T∑
i

C∑
j

yij log(ŷij) (1)
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Figure 1: An example of our model’s architecture in time-step level classification.

2.2 NETWORK DESIGN

At an intuitive level, we are motivated by the multi-scale nature of EEG events and design the
neural network’s architecture based on (1) convolution layers can efficiently down-sampling the long
sequence and can exploit the local structure with a better temporal invariance, which, in turn, yields a
better generalization; (2) self-attentive modules can help enriching the number of learnable parameters
while integrating global information by the self-attention mechanism; and (3) a corresponding docoder
is required to map high-level features back to the original length for time-step-level classification,
thus to avoid redundant sliding window-level inference with high overlapping ratio. As a result, our
model comes to be a U-shaped network with an encoder, a scaling embedding component, and a
decoder, as shown in Fig. 1.

Encoder. The encoder comprises N Convolution-MaxPooling blocks with various large kernel sizes,
denoted as Ks, for each block, to comprehensively learn preliminary local features. Correspondingly,
the padding parameter is set to be ⌊Ks

2 ⌋ for each convolution layer. For each block, the input length
will be down-sampled to half of its input size, and the feature dimension will be increased to the
pre-defined out channel dimension. Essentially, after the encoder, the input signals were embedded
into a preliminary vector representation z ∈ Rdmodel× T

2N , where the dmodel represents the final
layer’s output dimension.

Scaling Embedding. Inspired by Mousavi et al. (2020), after getting the encoded output, we
implement a ResCNN stack (He et al., 2016) first to refine these tokenized features to yield a
better generalization with better temporal invariance. The ResCNN stack consists of 7 blocks of
Convolution-Convolution layers with residual connections. The output channel remains the same as
the input, and the kernel size was set to be small(Ks ∈ {2, 3}) to exploit local structure.

We then employ a transformer encoder stack Vaswani et al. (2017) to scale up the model size and to
learn global representation across the tokenized signal. Specifically, the sine and cosine functions of
different frequencies are used to be positional encodings,

PE(pos,2i) = sin(pos/100002i/Td),

PE(pos,2i+1) = cos(pos/100002i/Td),

which can then be summed with the input embedding. Td = T
2N

is denoted for the condensed sequence
dimension. The refined representation, denoted as Z, will then be projected into equally-shaped
query, key, and value spaces,

Q = ZWQ,K = ZWK , V = ZWV ,
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Figure 2: Two different inference and evaluation frameworks.

and processed with the use of the global-attention mechanism as described in Equation 2.

A = softmax(
QKT

√
dk

)V (2)

The attention output is combined with tokens with a residual connection and layer normalization,
and a subsequent feed-forward network to transform the output with another residual addition. Such
hierarchical processing scales the model and integrates both local features and global context, enabling
the model to learn complex temporal dependencies.

Decoder. Similar to the encoder, we use a convolutional decoder to decrypt the compressed
information from the center latent space into a sequence of probability distributions. However, instead
of the convolution-pooling block, we upsample the input with a scale factor of 2 and then with a
convolution to decrease the number of channels and to increase the number of time steps back to
the original window length. Residual connections are deployed between the encoder and decoder to
facilitate efficient gradient flow.

Finally, the classifier was applied to project the time-step embedding into the targeted shape. For
time-step level classification, the classifier is a simple one-dimensional convolution layer. For
window-level classification, a learnable attention-pooling mechanism, described in Section 2.4, was
applied to aggregate time-step representations.

2.3 SEQUENCE-TO-SEQUENCE MODELING

Training. Given a list of continuous EEG waveforms, a segmentation process was deployed to slice
signals into uniform windows with fixed sequence length T = Dwindow × fs, where Dwindow is the
signal duration for a window in the unit of seconds, and fs denotes for the sampling frequency. We
define a hyperparameter roverlap, which represents the overlap ratio in time steps between consecutive
windows, facilitating the augmentation of training samples.

The current EEG corpus poses a significant class imbalance challenge, as the majority of signals
represent background activity, while meaningful events are sparsely distributed throughout the
recordings. In our work, to enhance the model’s capability to differentiate activity signals from
background noise and other events, we statistically categorize training windows into three classes:
no-activity, full-activity, and partial-activity, and uniformly sample a certain number of windows from
each class to create a balanced dataset. Specifically, our training dataset is constructed as Equation 3.

D = Dpartial ∪ D∗
full ∪ D∗

bckg (3)

where Dpartial comprises all partial-activity windows, while D∗
full and D∗

bckg are randomly selected
subsets of full-activity and no-activity windows, respectively. The sizes of these subsets are deter-
mined by |D∗

full| = α× |Dpartial| and |D∗
bckg| = β × |Dpartial|. α and β are weighting parameters

controlling the relative proportions of windows full of events and windows lacking activities.
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Post-processing. After having a sequence of probabilities outputted by the model, we implement a
set of simple post-processing steps to convert continuous probabilities to the final detection. Initially,
we apply a straightforward threshold filter to obtain a discrete mask as described in Equation 4, where
the hyperparameter τ ∈ Rc represents the threshold for each class.

ỹi[t] =

{
c, if ŷi[t, c] ≥ τc
0, otherwise

, for t = 1, . . . , T (4)

Then, a pair of morphological operations, one with binary opening and one with binary closing
operation, are employed using Virtanen et al. (2020) to eliminate spurious spikes of activity and to
fill short 0 gaps. Lastly, we implement a simple duration-based rule to discard blocks of event labels
lasting less than a minimal clinically relevant duration, denoted as Lmin = Dmin × fs, where Dmin

represents the minimum duration seconds and fs represents the sampling frequency.

Inference. Traditionally, similar to the training set, the testing set in an experiment is a bag of fixed
windows that are randomly sampled from the segmented patches. As described in the left part of
Figure 2, window-level classification models directly perform inference over the formulated discrete
input and evaluate over the corresponding ground truth labels.

In the context of this work, however, we elect to measure performance using a continuous time-step
and event-level measure with the use of Dan et al. (2024). Specifically, time-step-based scoring
compares annotation labels time-step by time-step to detect TP, FP, TN, and FN. In contrast, event-
based scoring assesses performance based on the temporal overlap between predicted and reference
events. The detailed description of both scoring methods is available in the Appendix E. Such
measures take a more holistic approach to evaluation and focus on the events in question, not on
window-centric classification results.

We showed the continuous time-step level evaluation framework on the right side of Figure 2. Given
a long continuous EEG waveform with activity masking, we firstly segment it into a sequential list of
windows that match the model’s input size. By popping windows from the queue and feeding them
into the model, a sequence of masks will be output. Concatenating these sequential masks together
will lead to the final annotation, which can then be compared with the ground truth label for the
continuous recording under either time-step level or event level.

2.4 ATTENTION POOLING

(K, T)

(H, T)
Linear & Softmax

(T, 1)
(H, 1)

Linear

(C, 1)

Attention Pooling

Encoder DecoderScaling 
Embedding

ModelInput Signal

Figure 3: Attention-pooling layer for window-level classification.

To adapt the model to solve window-level classification tasks, we employ a learnable attention-
based pooling mechanism, as shown in Figure 3, to efficiently embed each time step’s high-level
representations. Given the decoded feature map Z ∈ RH×T , where H denotes the output dimension
of the final convolution layer in the decoder, we first compute a scalar attention score for each
time step via a linear projection described in Equation 5, where Xperm ∈ RT×H is the transposed
representation and Wa ∈ RH×1 is a learned parameter.

a = softmax(Wa ·Xperm) ∈ RT×1 (5)
These attention weights are used to aggregate temporal features into a fixed-size context vector via
weighted summation described in Equation 6.

z =

T∑
t=1

atX:,t ∈ RH×1 (6)

This operation enables the model to selectively focus on informative temporal regions while remaining
fully differentiable. The pooled representation z is subsequently passed to a linear classifier followed
by a sigmoid (or softmax) layer to produce the final window-level prediction.
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Table 1: Dataset/model statistics for each task.
Task Dataset Class Frequency Model Channel Window length(s)
Sleep Sleep-EDFx 5 256 All 2 30

Abnormal TUAB 2 200 All 23 10

Seizure Detection TUSZ 2 256

EEGWaveNet 18 4
DCRNN 19 57

Zhu-Transformer 19 25
EventNet 19 120

DeepSOZ-HEM 19 600
Ours 18 60

3 EXPERIMENT

3.1 SETTINGS

Dataset. We conduct experiments on one sequence-to-sequence modeling task, namely, seizure de-
tection, and two window-level classification tasks, namely, sleep stage classification and pathological
detection, to comprehensively evaluate the proposed method. For window-level tasks, we follow the
experimental settings established in prior work, using standardized datasets with fixed channel counts
and sequence lengths. In contrast, seizure detection is evaluated in a continuous manner, allowing the
model to flexibly choose window shape. Dataset statistics for each task are summarized in Table 1,
and descriptions are provided in Appendix H.

Model implementation. The ResCNN stack consists of seven residual blocks with kernel sizes
[3, 3, 3, 3, 2, 3, 2], each followed by batch normalization (ϵ = 10−3), ReLU activation, and spatial
dropout. The transformer encoder contains 8 stacked layers with an embedding dimension of 512, 4
attention heads, and a feedforward dimension of 2048. The number of encoder and decoder blocks, as
well as the filter and kernel size for their convolution layers, varies between different tasks. Detailed
architecture is available in the Appendix G.

Training. We implemented our deep learning model using PyTorch and trained on 1 NVIDIA L40S
46GB GPU. For seizure detection, our training parameters include a batch size of 256, a learning
rate of 1e-4, a weight decay of 2e-5, and a drop rate of 0.1 for all dropout layers. We use Binary
Cross-Entropy loss as the objective function and RAdam as the optimizer. The training process was
set to be 100 epochs with early stopping if no improvement in validation loss was observed over
12 epochs. For two window-level classification tasks, we use the same training configurations with
EEGPT (Wang et al., 2024). We repeat the experiments five times with different random seeds.

3.2 TIME-STEP LEVEL CLASSIFICATION

Seizure detection is an event-oriented task, where epileptic seizures are the events of interest, which
requires the model to output a set of (tonset, tduration) tuples in the SCORE compliant Beniczky
et al. (2017), making it an ideal task for sequence-to-sequence modeling. We use Temple University
Hospital EEG Seizure Corpus v2.0.3(TUSZ)Shah et al. (2018), the largest public dataset for seizure
detection, to formulate our training dataset, and use its predefined testing recordings to evaluate
model performance. The testing set is a list of blind EEG signals from different subjects that are
completely separated from the training set and validation set, which ensures the generalization of
model performance.

We standardized the datasets used for training and testing by arranging 18 EEG channels in a
consistent sequence, detailed discussed in Appendix H.1. The sequence length of a window is set
to be 1-minute, sampled at 256 Hz, i.e., T = 15360. In dataset formulation, followed by Equation
3, we use α = 0.54 and β = 1.0 to sample windows. The roverlap = 0.75 is set to augment
training samples, and roverlap = 0 is used during the inference time. In post-processing, we adjust
hyper-parameters based on the validation set’s performance. Specifically, threshold τ was set to 0.8
and minimum seizure duration Dmin = 2. Detailed hyper-paremeter analysis are provided in the
Appendix D.

Baselines. We implement one rule-based algorithm, namely, Gotman (Gotman, 1982), and five
deep learning models, namely, Eventnet (Seeuws et al., 2024), Zhu-Transformer (Zhu & Wang,
2023), DCRNN (Tang et al., 2021), DeepSOZ-HEM(M. Shama et al., 2023), and EEGWaveNet
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Table 2: Model performance in TUSZ’s predefined testing set. The highest value is bolded.
Evaluation Scale Model F1-score Sensitivity Precision

Sample-based

Gotman 0.0679 0.0558 0.0868
EEGWaveNet 0.1088 0.1051 0.1128

DCRNN 0.1917 0.4777 0.1199
Zhu-Transformer 0.4256 0.5406 0.3510

EventNet 0.4830 0.5514 0.4286
DeepSOZ-HEM 0.4466 0.4609 0.3791

Ours 0.5730 0.4724 0.7281

Event-based

Gotman 0.2089 0.6199 0.1256
EEGWaveNet 0.2603 0.4427 0.1844

DCRNN 0.3262 0.5723 0.2281
Zhu-Transformer 0.5387 0.6116 0.5259

EventNet 0.5655 0.6116 0.5259
DeepSOZ-HEM 0.5940 0.6222 0.4306

Ours 0.6713 0.7168 0.6312

Table 3: Model’s Runtime Over TUSZ’s testing Set. The lowest runtime is bolded.
Model Total Runtime(s) Runtime(s) per 1-hour EEG

DCRNN 2571.75 60.24
EEGWaveNet 1690.19 39.59

Zhu-Transformer 3309.51 77.53
Ours 169.96 3.98

(Thuwajit et al., 2021) with the use of SZCORE Dan et al. (2024). Every baseline’s training dataset is
formulated using the TUSZ’s predefined training set, but different sampling strategies, input window
lengths, and pre-processing processes are used.

Evaluation Metrics. We evaluate our method and baselines’ F1-score, sensitivity, and precision
with the use of the SZCORE framework (Dan et al., 2024) under the sample(time-step) and event
scale as described in Section 2.3. The detailed description of both scale are provided in Appendix E.

As shown in Table 2, our model significantly outperforms other models under both evaluations by the
improvement of 13.01% under time-step level and 18.63% under event level in terms of F1-score.
It is noteworthy that we tune the post-processing threshold on the event-based performance, which
leads to a relatively low sample-based sensitivity, but with a high precision. We also evaluate the
sample-level AUROC distribution across testing waveforms to score models’ performance without
the impact of the threshold hyperparameter in the Appendix C.

Runtime Analysis. We further verify our model’s efficiency by comparing the inference time, from
the time that data was passed into the model to the time that the annotation file with HED-SCORE
compliant was output, with other window-level classification models using TUSZ’s testing set in
Table 3. Our model demonstrates the lowest running time with the ability to handle a one-hour-long
recording in 3.98 seconds. Compared to EEGWaveNet, our model achieves about 10-fold runtime
improvement.

Ablation Study. We show each model component’s necessity by testing multiple partial models
after removing certain components. We use AUROC-distribution across testing recording files to
ignore the impact of post-processing. As shown in Figure 4, vanilla U-Net has an underwhelming
performance with a low AUROC mean. Solely adding a ResCNN stack or a transformer stack will
marginally improve the model performance, but also lead to a bigger variance with some extreme
false cases. By contrast, integrating both the ResCNN and Transformer stacks produces not only
higher mean AUROC but also reduced variance, indicating that these components complement each
other effectively. These results underscore the importance of each proposed element in achieving
robust and accurate seizure detection.

3.3 WINDOW LEVEL CLASSIFICATION

We further validate the effectiveness of our model by following the most recent work’s setting to
conduct comparative experiments with state-of-the-art large EEG foundation models over window-

7
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Figure 4: Ablation study for our model by evaluating the AUROC distributions. N represents a vanilla
deep U-Net without ResCNN and Transformer encoder stack; R represents the U-Net with ResCNN
stack; T represents the U-Net with Transformer Stack; P means adding positional encoding before
feeding into the transformer stack.

Table 4: The classification performance on the Sleep-EDFx dataset. The highest value is bolded.
Methods Model Size Balanced Accuracy Cohen’s Kappa Weighted F1
U-Sleep (Perslev et al., 2021) 3.1M 0.6720± 0.0043 0.6157± 0.013 0.7150± 0.012
BENDR (Kostas et al., 2021) 3.9M 0.6655± 0.0043 0.6659± 0.0043 0.7507± 0.0029
BIOT (Yang et al., 2023a) 3.2M 0.6622± 0.0013 0.6461± 0.0017 0.7415± 0.0010
LaBraM (Jiang et al., 2024) 5.8M 0.6771± 0.0022 0.6710± 0.0006 0.7592± 0.0005
EEGPT (Wang et al., 2024) 25M 0.6917± 0.0069 0.6857± 0.0019 0.7654± 0.0023
Ours 6.1M 0.7201± 0.0059 0.6954± 0.0004 0.7693± 0.0029

level tasks, including stage classification for multi-class classification task and pathological detection
for binary classification task.

Sleep stage classification. Following the EEGPT (Wang et al., 2024), we use Sleep-EDFx (Kemp
et al., 2000) to formulate the training and testing datasets contain bags of windows with 2 channels
and 30-second length sampled at 256Hz, i.e., T = 7680. Balanced Accuracy, Weighted F1, and
Cohen’s Kappa are used as evaluation metrics. For large foundation model baselines, we use the
pre-trained weights as initialization and either fully fine-tune the model or train additional layers
using the linear-probing method, based on the proposed work, over the downstream training set. In
comparison, our model is directly trained over the downstream training set.

As shown in Table 4, our model exhibited accuracy improvements of 4.11%. Remarkably, with the
use of convolution networks that can efficiently encode from temporal information, our model is able
to scale up to the same level of size as other large foundation models while keeping a smooth gradient
flow and effectively leading to a convergence without any pre-training. At the same time, such a
convolution-transformer combination also outperforms the large pre-trained models with considerably
more learnable parameters than our method, like EEGPT.

Pathological Detection. We use TUAB (Shah et al., 2018), a corpus of EEGs that have been
annotated as clinically normal(non-pathological) or abnormal(pathological). For the data splitting
and baselines implementation, we strictly follow the same configuration as BIOT (Yang et al., 2023a)
to fairly compare all methods. A window in the dataset contains 23 channels with 10-second signals
sampled at 200Hz, i.e., T = 2000. Every baseline is a fully fine-tuned model, while, similar to sleep
stage classification, we purely use the downstream dataset to train the model. Followed by EEGPT
(Wang et al., 2024), the Balanced Accuracy and AUROC are used as evaluation metrics. We should
acknowledge that we removed LabraM from the baseline list as this model is pre-trained on the
TUEG dataset, which is a superset corpus of TUAB with a similar signal distribution.

The results are provided in Table 5, where our model achieves the best balanced accuracy with an
improvement of 2.02% over EEGPT. On the other hand, our method achieved the top-tier AUROC
performance but marginally lower than the best model, BIOT. This might be led by the small sequence
length, which, after the convolution layers, will output short feature vectors that, in turn, limit the
global attention’s performance.
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Table 5: The results of different methods on TUAB. The highest value is bolded.
Methods Model Size Balanced Accuracy AUROC
SPaRCNet (Jing et al., 2023) 0.79M 0.7896± 0.0018 0.8676± 0.0012
ContraWR (Yang et al., 2023b) 1.6M 0.7746± 0.0041 0.8456± 0.0074
FFCL (Li et al., 2022) 2.4M 0.7848± 0.0038 0.8569± 0.0051
CNN-T (Peh et al., 2022) 3.2M 0.7777± 0.0022 0.8461± 0.0013
BIOT (Yang et al., 2023a) 3.2M 0.7959± 0.0057 0.8815 ± 0.0043
ST-T (Song et al., 2021) 3.5M 0.7966± 0.0023 0.8707± 0.0019
EEGPT (Wang et al., 2024) 25M 0.7983± 0.0030 0.8718± 0.0050
Ours 7.3M 0.8144 ± 0.0002 0.8568± 0.0019

Table 6: Model performance in SeizeIT1 and Dianalund datasets. The highest value is bolded.
Dataset Evaluation Scale Model F1-score Sensitivity Precision

SeizeIT1

Sample-based
CA-EEGWaveNet 0.0043 0.0007 0.0072

DeepSOZ-HEM 0.2211 0.3853 0.2274
Ours 0.2821 0.1615 0.6372

Event-based
CA-EEGWaveNet 0.0200 0.0030 0.0500

DeepSOZ-HEM 0.2455 0.4686 0.2376
Ours 0.4547 0.3751 0.5623

Dianalund

Sample-based
CA-EEGWaveNet 0.0274 0.0070 0.2129

DeepSOZ-HEM 0.2870 0.4519 0.2805
Ours 0.2282 0.1240 0.4895

Event-based
CA-EEGWaveNet 0.1437 0.0571 0.2000

DeepSOZ-HEM 0.3125 0.5844 0.2657
Ours 0.4283 0.3692 0.4488

3.4 CROSS-DEVICE SEIZURE DETECTION

Beyond testing under the same data distribution, our method demonstrated good cross-subject and
cross-device generalization performance, which underscores its potential for real world applications
across patients and hospitals. In Table 6, we trained a model with the use of TUSZ’s predefined
training set and Siena Scalp dataset (Detti, 2020) and apply the algorithm to two different EEG corpus,
namely, SeizeIT1(Vandecasteele et al., 2020) and Dianalund(Dan et al., 2024). Both datasets are
acquired at different regions, from different subjects with varying ranges of age, and from different
monitoring devices, leading to unique signal attributes that depart from the training set. The detailed
dataset description is available in the Appendix.

Compared to CA-EEGWaveNet1 and DeepSOZ-HEM, our model achieves the best event-based F1-
score across both datasets(0.4547 on SeizeIT1 and 0.4283 on Dianalund). Although the evaluation
results inevitably dropped, our model demonstrates the most stable performance(with 34% F1-score
drop, which is lower than DeepSOZ-HEM with a 47% drop) across different data distributions,
underscoring its generalization ability.

4 CONCLUSION AND DISCUSSIONS

In this paper, we propose to learn the EEG signal’s representation at a time-step level to boost the EEG
model’s efficiency on event-centric tasks, such as seizure detection, by getting rid of redundant over-
lapping inference and complicated post-processing steps. Beyond sequence-to-sequence modeling,
our experimental results revealed that strong performance can be achieved through a well-designed,
simple architecture without reliance on complex pre-training or massive data resources. Such results
significantly lowered the barrier to deployment in clinical real-world settings.

While our model already achieves state-of-the-art performance on three downstream tasks, the
proposed encoder-decoder architecture also supports a variety of pre-training strategies, such as
Masked Autoencoders(MAE) (He et al., 2022). It is worth exploring the architecture’s capability of
unsupervised representation learning to further improve the classification performance in downstream
tasks.

1A variation of the EEGWaveNet model proposed by IBM. Source code is available on https://github.
com/IBM/channel-adaptive-eeg-classifier.
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ETHICS STATEMENT

In this study, we used multiple publicly available datasets that comply with medical ethical policies
(e.g., the Declaration of Helsinki) and were approved by the Institutional Review Boards (IRBs) of
the respective institutions that collected and shared the data. Therefore, ethical and privacy standards
are assumed to be upheld.

Demographic information across datasets is often limited, and critical metadata such as medication
usage or comorbidities is generally missing. In the absence of such information required for patient
stratification, this and related work are limited to a one-size-fits-all modeling approach. This limitation
could introduce bias during training and risk misdiagnosis during testing. Seizure detection can
be performed offline (retrospective analysis) or online (real-time monitoring). In both cases, false
positives (FPs) and false negatives (FNs) are significant, but in real-time settings, FNs are especially
critical as they may delay medical intervention. Therefore, we strongly advocate for a human-in-the-
loop framework when deploying such models in clinical environments, even if models are fine-tuned
for patient-specific stratification.

REPRODUCIBILITY STATEMENT

Our source code and model are available at https://anonymous.4open.science/r/
EEG-U-Transformer-5E86, where a detailed README file has been provided for reproducing
experiments. A detailed dataset description is also provided in Appendix H.

LLM USAGE

We utilize LLMs (e.g., ChatGPT) to assist with language polishing during writing.
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Hunyadi, and Wim Van Paesschen. Visual seizure annotation and automated seizure detection
using behind-the-ear electroencephalographic channels. Epilepsia, 61(4):766–775, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. Eegpt: Pretrained
transformer for universal and reliable representation of eeg signals. Advances in Neural Information
Processing Systems, 37:39249–39280, 2024.

Haoyu Wang and Xiaofeng Li. Expanding horizons: U-net enhancements for semantic segmentation,
forecasting, and super-resolution in ocean remote sensing. Journal of Remote Sensing, 4:0196,
2024.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Chaoqi Yang, M Brandon Westover, and Jimeng Sun. Biot: Cross-data biosignal learning in the wild.
arXiv preprint arXiv:2305.10351, 2023a.

Chaoqi Yang, Cao Xiao, M Brandon Westover, Jimeng Sun, et al. Self-supervised electroencephalo-
gram representation learning for automatic sleep staging: model development and evaluation study.
JMIR AI, 2(1):e46769, 2023b.

Weiqiang Zhu and Gregory C Beroza. Phasenet: a deep-neural-network-based seismic arrival-time
picking method. Geophysical Journal International, 216(1):261–273, 2019.

Yuanda Zhu and May D Wang. Automated seizure detection using transformer models on multi-
channel eegs. In 2023 IEEE EMBS International Conference on Biomedical and Health Informatics
(BHI), pp. 1–6. IEEE, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Automated EEG Analysis. To mitigate the subjectivity and intensive manual effort associated with
analyzing EEG data, various deep learning approaches have been employed, including models based
on convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks
(GNNs), and Transformers.

CNN-based models Thuwajit et al. (2021); Wu et al. (2022) excel at extracting local spatial features
but typically struggle with long-term temporal dependencies. Conversely, RNN-based models
Abdelhameed et al. (2018); Saqib et al. (2020), especially those using Long Short-Term Memory
(LSTM) architectures, effectively model temporal sequences but often encounter difficulties in spatial
feature extraction and suffer from gradient vanishing issues over long sequences. Prior studies have
combined CNN and RNN modules to simultaneously capture both spatial and temporal EEG features.
Graph neural network (GNN) models Tang et al. (2021) approach EEG data as spatio-temporal
graphs, extracting relational information among channels for tasks such as anomaly detection and
classification. Transformer-based models, benefiting from recent advances in large language models,
have emerged as robust tools for modeling long-term temporal dependencies. Similar to earlier efforts
with RNNs, recent studies Li et al. (2020) combined CNN modules with Transformer components,
aiming to leverage both spatial and temporal features inherent in multi-channel EEG data.

Although these models have demonstrated impressive classification performance, the transition from
window-level predictions to sample-level masks, indicating precise event onset times and durations,
remains redundant and time-consuming. Additionally, most existing studies rely on window-level
evaluation metrics, comparing predictions directly with ground truth labels per window rather than
employing more clinically relevant event-level measures.

Large Foundation Models. With the success of Large Language Model(LLM) Brown et al.
(2020); Devlin et al. (2019), more and more EEG research is focusing on building large foundation
models. Such foundation models take advantage of a self-supervised learning strategy to learn the
representation of EEG signals from a wide range of datasets. The pre-trained model is then adapted,
either by fully fine-tuning or by probing from the outputted representation, to do various downstream
tasks. For instance, BIOT Yang et al. (2023a) use a contrastive learning strategy to learn embeddings
for biosignals with various formats; LaBraM Jiang et al. (2024) learns universal embeddings through
a masked autoencoder to do unsupervised pre-training over 2500 hours of EEG data; EEGPT Wang
et al. (2024) employs a dual self-supervised approach for pretraining, involving spatio-temporal
representation alignment and mask-based reconstruction. Such models demonstrate impressive
performance over a variety of downstream tasks while requiring extensive time and memory to do
pre-training.

U-Net. U-Net Ronneberger et al. (2015) architecture was first proposed in the field of CV for image
segmentation tasks. Considering the temporal continuity of time series data, such networks have been
widely deployed in various sequence-to-sequence scientific signal processing applications, such as
seismic phase detection Zhu & Beroza (2019), sleep-staging classification Li & Guan (2021); Perslev
et al. (2019), denoising heart sound signals Mukherjee et al. (2023), and seizure detection Islam et al.
(2023); Seeuws et al. (2024).

There are some works exploring combining U-Net with Transformer for other fields. For example,
in a medical image segmentation task, Petit et al. (2021) used self and cross-attention with U-Net;
Lin et al. (2022) incorporated hierarchical Swin Transformer into U-Net to extract both coarse and
fine-grained feature representations. In seismic analysis, Mousavi et al. (2020) proposed a deep
neural network that can be regarded as a U-Net with global and self-attention but without a residual
connection. However, in the biomedical signal processing area, to the best of our knowledge, there is
no existing work to scale U-Net using transformer blocks. The closest work to this paper is Islam
et al. (2023), where multiple attention-gated U-Nets are used and a following LSTM network is
implemented to fuse results.

B CODE AVAILABILITY

Our source code and model are available at https://anonymous.4open.science/r/
EEG-U-Transformer-5E86.
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Table 7: Effect of dataset formulation (event-level F1) with τ = 0.8

β\α 0.2 0.4 0.54 (full)

1.0 0.6240 0.6554 0.6713
2.0 0.6638 0.6531 0.6667

Table 8: Threshold–performance trade-off (event-level metrics)
τ F1 Sensitivity Precision

0.9 0.6916 0.6549 0.7327
0.8 0.6713 0.7168 0.6312
0.6 0.6308 0.7611 0.5386
0.4 0.5914 0.7876 0.4734
0.2 0.5470 0.8053 0.4143

C AUROC FOR SEIZURE DETECTION

SeizureTransformer

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Mean: 0.876

DCRNN

Mean: 0.642

EEGWaveNet

Mean: 0.566

Zhu-Transformer

Mean: 0.679

Figure 5: Violin plots illustrating the distribution of AUROC values for SeizureTransformer, DCRNN,
EEGWaveNet, and Zhu-Transformer models evaluated on the TUSZ v2.0.3 predefined testing set.
Mean AUROC scores for each model are indicated above each plot, with the SeizureTransformer
demonstrating the highest overall performance.

We quantify the model’s performance using the area under the receiver operating characteristic
(AUROC). For each continuous EEG recording, the ROC curve plots the true and false positive rates
across all possible decision thresholds, and the AUC represents the area under the ROC curve, which
summarizes the model’s performance. As shown in Figure 5, our model demonstrated the highest
performance, with a mean AUROC of 0.876 and a distribution tightly concentrated toward higher
values.

D HYPER-PARAMETER ANALYSIS

Dataset formulation. Table 7 indicates that a balanced dataset, which is formulated with a balanced
number of windows that lack seizures, full of seizures, and a partial part of seizures, will benefit the
model’s performance. Too many windows that are full of seizure activities will negatively influence
the training quality. In that case, we recommend a balanced dataset, i.e., α = 1 and β = 1, if
conditions allow, to maximize the model’s performance.

Detection threshold. Table 8 reports the effect of varying the decision threshold τ . Higher
thresholds favor precision at the expense of sensitivity, whereas lower thresholds improve sensitivity
but increase false positives. In practice, τ can be tuned to clinical priorities: intensive care monitoring
may prioritize sensitivity, while wearable devices benefit from higher precision to reduce alarm
fatigue.
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Table 10: Event-level F1 vs. feed-forward width (dimff ) and number of encoder layers (num layers).
dimff\num layers 4 8 12

1024 0.6626 0.6398 0.6838
2048 0.6598 0.6916 0.6760
4096 0.6740 0.6902 0.6568

Table 9: Model size (number of learnable parameters) vs. feed-forward width (dimff ) and number of
encoder layers (num layers).

dimff\num layers 4 8 12

1024 23,143,393 31,554,529 39,965,665
2048 28,391,393 41,000,929 53,610,465
4096 38,887,393 59,893,729 80,900,065

Table 11: Ablation of post-processing (morphological filtering and short-event removal).
Post-process F1 Sensitivity Precision

normal 0.6916 0.6549 0.7327
no morphological filter 0.6887 0.6460 0.7374
no remove event 0.6686 0.6785 0.6590
none 0.6156 0.7345 0.5298

Model size scaling. As shown in Table 9 and 10, our proposed model fits the scaling law that model
performance is better when the model size is scaled up(whether through the number of layers or the
feedforward dimension). On the other hand, given the limited dataset size, the performance will drop
when the model size is too big.

Post-processing. We report the ablation study of post-processing in Table 11. Removing both
steps slightly increases sensitivity but substantially hurts precision and overall F1, showing that
morphological filtering and short-event removal effectively reduce false alarms.

E SAMPLE AND EVENT-BASED SCORING

These two scale scoring methods are proposed by Dan et al. (2024), which aims to align EEG machine
learning research with real-world clinical requirements.

Sample(Time-Step)-based Scoring. Annotations are evaluated at 1 Hz, aligning with human
annotator resolution. Each 1-second sample is labeled as a true positive (TP), false positive (FP), or
false negative (FN). Machine learning models can use arbitrary window sizes and overlaps, as long as
they produce predictions at 1 Hz. For partial overlaps with seizures, a sample is labeled as ”seizure”
if the overlap exceeds 50%.

Event-based Scoring. evaluates activities based on the overlap between predicted and reference
events. Any overlapping prediction is counted as a true positive (TP), while non-overlapping
predictions are false positives (FP).

Due to challenges in precisely annotating events’ start and end times, caused by gradual EEG
transitions and artifacts, some tolerance is introduced as follows for seizure detection evaluation:

• Pre-ictal tolerance: Predictions up to 30 seconds before the annotated onset are accepted.
• Post-ictal tolerance: Predictions up to 60 seconds after the annotated offset are accepted.
• Minimum overlap: Any overlap, however brief, is sufficient for detection.
• Event merging: Events separated by less than 90 seconds are merged, which corresponds

to the combined pre- and post-ictal tolerance.
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• Maximum event duration: Events longer than 5 minutes are split.

F PSEUDOCODE FOR TIME-STEP LEVEL CLASSIFICATION

Algorithm 1 Window level classification model’s prediction workflow at a time-step level classifica-
tion.
Require: recording duration T (in seconds), sampling frequency fs, window size Dwindow (in

seconds), overlap ratio roverlap ∈ [0, 1), decision threshold τ .
Ensure: Sample-level prediction mask ymask.

1: B ← ⌊ T−Dwindow

(1−roverlap)×Dwindow
⌋+ 1 {Number of windows to predict}

2: Predict ŷ ∈ RB

3: Initialize ymask ← 0T ·fs

4: ws ← Dwindow · fs {Number of samples per window}
5: ss ← (1− roverlap) · ws {Window step size in samples}
6: for each index i = Dwindow to len(ŷ)− 1 do
7: l← max(0, ⌊i · ss⌋)
8: r ← min(T · fs, ⌊(i+ 1) · ss⌋)
9: v ← mean(ŷ[max(0, i−Dwindow) : min(i, T )]) > τ

10: ymask[l : r]← int(v)
11: end for
12: return ymask

Algorithm 2 Our model’s prediction workflow at a time-step level classification.
Require: recording duration T (in seconds), sampling frequency fs, window size Dwindow, decision

threshold τ .
Ensure: Binary prediction mask ymask ∈ {0, 1}T×fs .

1: B = ⌊ T
Dwindow

⌋ {Number of samples per window}
2: Predict ŷ ∈ RDwindow·fs

3: ŷ ← Flatten(yŷ)[: T × fs]

4: ymask[t]←
{
1, if ŷ[t] > τ

0, otherwise
5: # Other post-processing with a time complexity of O(Dwindow · fs)
6: return ymask

Computational complexity. Let a recording have duration T seconds sampled at fs Hz, window
size Dwindow (in seconds), and overlap ratio roverlap ∈ [0, 1). The stride (in samples) is

ss = (1− roverlap)Dwindow fs,

which induces
B =

⌊Tfs −Dwindowfs
ss

⌋
+ 1 = Θ

( Tfs
1− roverlap

)
windows per pass.

Window-level (Alg. 1). The model produces B window scores and then expands them to a sample
mask; both steps are linear in the number of covered samples, giving

O
(

Tfs
1−roverlap

)
.

Accurate onset/duration labeling typically uses a high overlap (e.g., roverlap ≈ 0.8), which enlarges
the constant by the factor 1

1−roverlap
; practical post-processing remains linear and does not change the

order.

Time-step (Alg. 2). The network outputs one score per sample; thresholding plus light post-processing
costs

O(Tfs) + O(Dwindowfs) = O(Tfs).
Setting roverlap = 0 eliminates redundant evaluations entirely.
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G ARCHITECTURE DETAILS

Table 12: Model design for seizure detection
Input Size Operator kernel / pool stride padding
19× 15360 Conv1d (19→32) + ELU 11 1 5
32× 15360 MaxPool1d 2 2 0
32× 7680 Conv1d (32→64) + ELU 9 1 4
64× 7680 MaxPool1d 2 2 0
64× 3840 Conv1d (64→128) + ELU 7 1 3
128× 3840 MaxPool1d 2 2 0
128× 1920 Conv1d (128→256) + ELU 7 1 3
256× 1920 MaxPool1d 2 2 0
256× 960 Conv1d (256→512) + ELU 5 1 2
512× 960 MaxPool1d 2 2 0
512× 480 ResCNNStack – – –
512× 480 PositionalEncoding + Transformer – – –
512× 480 Upsample (×2) – – –
512× 960 Conv1d (512→512) + ELU 3 1 1
512× 960 Upsample (×2) – – –
512× 1920 Conv1d (512→256) + ELU 5 1 2
256× 1920 Upsample (×2) – – –
256× 3840 Conv1d (256→128) + ELU 5 1 2
128× 3840 Upsample (×2) – – –
128× 7680 Conv1d (128→64) + ELU 7 1 3
64× 7680 Upsample (×2) – – –
64× 15360 Conv1d (64→32) + ELU 7 1 3
32× 15360 Conv1d (32→1) 11 1 5
1× 15360 Squeeze (remove channel) – – –

Table 13: Model design for sleep stage classification
Input Size Operator kernel / pool stride padding
2× 7680 Conv1d (2→16) + ELU 11 1 5
16× 7680 MaxPool1d 2 2 0
16× 3840 Conv1d (16→32) + ELU 9 1 4
32× 3840 MaxPool1d 2 2 0
32× 1920 Conv1d (32→64) + ELU 7 1 3
64× 1920 MaxPool1d 2 2 0
64× 960 Conv1d (64→128) + ELU 7 1 3
128× 960 MaxPool1d 2 2 0
128× 480 ResCNNStack – – –
128× 480 PositionalEncoding + TransformerEncoder – – –
128× 480 Upsample (×2) – – –
128× 960 Conv1d (128→128) + ELU 3 1 1
128× 960 Upsample (×2) – – –
128× 1920 Conv1d (128→64) + ELU 5 1 2
64× 1920 Upsample (×2) – – –
64× 3840 Conv1d (64→32) + ELU 5 1 2
32× 3840 Upsample (×2) – – –
32× 7680 Conv1d (32→16) + ELU 7 1 3
16× 7680 AttentionPooling – – –

16 Linear (16→5) – – –
5 Softmax – – –
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Table 14: Model design for pathological detection
Input Size Operator kernel / pool stride padding
23× 2000 Conv1d (23→64) + ELU 11 1 5
64× 2000 MaxPool1d 2 2 0
64× 1000 Conv1d (64→128) + ELU 9 1 4
128× 1000 MaxPool1d 2 2 0
128× 500 ResCNNStack – – –
128× 500 PositionalEncoding + Transformer – – –
128× 500 Upsample (×2) – – –
128× 1000 Conv1d (128→128) + ELU 3 1 1
128× 1000 Upsample (×2) – – –
128× 2000 Conv1d (128→64) + ELU 5 1 2
64× 2000 AttentionPooling – – –

64 Linear (64→1) – – –
1 Sigmoid – – –

H DATASET DESCRIPTION AND DATA PROCESSING

H.1 SEIZURE DETECTION

• Siena Scalp EEG Database Detti (2020): This database contains EEG recordings from 14
patients collected at the Neurology and Neurophysiology Unit of the University of Siena.
The cohort includes 9 male participants aged 25 to 71 and 5 female participants aged 20
to 58. Recordings were conducted using Video-EEG at a sampling rate of 512 Hz, with
electrode placement following the international 10-20 system. In most cases, 1 or 2 EKG
channels were also recorded. An experienced clinician diagnosed epilepsy and classified
seizure types based on the standards of the International League Against Epilepsy, following
a detailed evaluation of each patient’s clinical and electrophysiological data.

• TUH EEG Seizure Corpus v2.0.3 Shah et al. (2018): This dataset is a curated subset of
the TUH EEG Corpus, originally collected from archived clinical EEG records at Temple
University Hospital between 2002 and 2017. It includes recordings that were selected based
on clinical documentation and the results of seizure detection algorithms to ensure a higher
likelihood of seizure presence. Version 2.0.0 features 7,377 EDF files from 675 patients,
totaling 1,476 hours of EEG data. The recordings are generally short, averaging around 10
minutes each. The dataset features variability in both sampling rates and the number of EEG
channels, though all recordings have a minimum sampling rate of 250 Hz and include at
least 17 EEG channels following the 10-20 electrode placement system. Seizure annotations
are provided in CSV format, detailing the start and end times, affected channels, and seizure
types.

• SeizeIT1 Vandecasteele et al. (2020): This dataset was collected during the ICON project
(2017–2018) in collaboration with KU Leuven and other institutions. It focuses on devel-
oping a seizure monitoring system using behind-the-ear (bhE) EEG electrodes, aiming to
balance seizure detection accuracy with patient wearability in home environments. Data
were recorded during presurgical evaluations in a hospital setting, where patients were
continuously monitored via video EEG (vEEG) over several days. A total of 82 patients
participated, with 54 having bhE EEG recordings. Among them, 42 patients experienced
seizures, yielding between 1 to 22 seizures per patient (median: 3). Available data per
patient include full 10-20 scalp EEG, bhE EEG, and single-lead ECG (typically lead II).

• Dianalund Dan et al. (2024): The dataset was gathered at the Epilepsy Monitoring Unit
(EMU) of the Filadelfia Danish Epilepsy Centre in Dianalund over the period from January
2018 to December 2020, using the NicoletOne™ v44 amplifier. It includes data from 65
patients who experienced at least one seizure during their hospital stay, with each seizure
displaying a visually identifiable electrographic pattern on video. In total, 4360 hours of EEG
recordings were collected, with patient monitoring durations ranging from 18 to 98 hours.
Most participants were adults (median age: 34), and eight were children aged between 5 and
66 years. Across all subjects, 398 seizures were captured and independently annotated by
three certified neurophysiologists specializing in long-term video-EEG monitoring. When
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disagreements arose, a final consensus label was established. All data were anonymized
and converted into a BIDS-compliant format using an adapted version of the epilepsy2bids
Python tool tailored for this dataset. EEG recordings were standardized to the 19-channel
10-20 system, re-referenced to a common average, and resampled at 256 Hz.

Pre-processing. We arrange every EEG recording’s channels in a consistent sequnce: [Fp1-F3,
F3-C3, C3-P3, P3-O1, Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-C4, C4-P4, P4-O2,
Fp2-F8, F8-T4, T4-T6, T6-O2]. The signals are then resampled to a common 256 Hz using the Fourier
method Virtanen et al. (2020). An Gaussian normalization to each channel is then implemented by
calculating

x∗
i = (x∗

i − x̄)/sx,

x̄ =
1

K

K∑
i=1

xi,

sx =
1

K − 1

K∑
i=1

(xi − x̄)2.

Followed by Zhu & Wang (2023), a bandpass filter was applied to preserve signal components
within the 0.5 Hz to 100 Hz frequency range. Following this, two notch filters were used to remove
frequencies at 1 Hz and 60 Hz, which commonly correspond to heart rate artifacts and power line
interference, respectively. Note that we only use TUSZ v2.0.3, and Siena Scalp EEG is used for
dataset formulation. The other two datasets are merely used for cross-dataset evaluation.

H.2 SLEEP STAGE CLASSIFICATION

• Sleep-EDFx Kemp et al. (2000): This dataset comprises 197 whole-night polysomnographic
(PSG) recordings collected from healthy subjects and individuals with mild sleep difficulties.
The recordings include EEG (from Fpz-Cz and Pz-Oz electrode placements), horizontal
EOG, submental chin EMG, and event markers. Some records also contain respiration and
body temperature measurements. Each PSG recording is accompanied by a hypnogram
annotated by trained technicians according to the 1968 Rechtschaffen and Kales manual,
detailing sleep stages W, R, 1, 2, 3, 4, movement time (M), and unscored segments.

Pre-processing. The preprocessing approach followed the method proposed by EEGPT Wang et al.
(2024). Initially, the EEG signals were converted to millivolts (mV). A 30 Hz low-pass filter was
then applied to remove high-frequency noise. The recordings were segmented into non-overlapping
30-second windows, and each window underwent z-score normalization independently for each
channel.

H.3 PATHOLOGICAL(ABNORMAL) DETECTION

• TUH Abnormal EEG Corpus v3.0.1 Shah et al. (2018): TUAB is a collection of EEG
recordings from Temple University Hospital, labeled as either normal or abnormal. It
includes 2,993 EEG files recorded between 2002 and 2017. The data is split into training
and evaluation sets, with no overlap in patients between them. The training set has 2,717
files from 2,130 people, and the evaluation set has 276 files from 253 people. The formulated
dataset contains a total of 409455 10-second samples.

Pre-processing. We first removed non-EEG channels, such as EKG, EMG, and respiration were first
removed. Next, only recordings with 21 standard 10-20 EEG channels were retained and reordered to
a consistent reference montage. Recordings not matching the expected channel order were excluded.

Signals were then bandpass filtered between 0.1 Hz and 75 Hz to remove slow drifts and high-
frequency noise. A notch filter at 50 Hz was applied to suppress power line interference. Data were
downsampled to 200 Hz for efficiency. Each recording was then segmented into non-overlapping
10-second windows (2,000 samples per segment), and each segment was saved with a label indicating
whether it was from an abnormal (1) or normal (0) EEG.
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