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Abstract—Leveraging on the recent advances on the Universal
Manipulation Interface (UMI) solution [1] for cost-effective and
easy human demonstration acquisition for robot learning, the
paper at hand introduces a generalizable hand-held gripper
implementation that broadens its usage to any type of robotic
gripper. Proposed solution consists on a hardware implementa-
tion that directly captures gripper state together with an interface
that ensures synchronization by embedding into video acquisition.
Besides tackling the issues from the default vision-based approach
for extracting gripper width, i.e. occlusions and additional
computation load, this approach allows to consider different
gripper operation modes such that any gripper configuration
can be integrated, which has been exemplified in the paper
for switch-actuated ones. For this purpose, a mechanical design
has been also proposed to quickly change between different
grippers adaptations using the standard UMI design. Solution
performance results are presented together with its application on
a manufacturing use case introducing switch-actuated grippers.
Index Terms—Hand-held grippers, Learning from Demonstration

I. INTRODUCTION

Process automation relies on endowing robots the ability to
execute tasks reliably and with the same level of performance
as skilled human operators. Leveraging on the recent advances
in Artificial Intelligence (AI), Learning from Demonstration
(LfD) aims at transferring operator performance to robot
execution from a set of demonstration containing relevant
data on the task at hand [6]. Classical approaches considered
guiding the robot platform directly to perform these task
demonstrations, but recent solutions have shifted towards cost-
effective hand-held grippers to enable a natural acquisition
process without any background in robotics. Moreover, not
relying on a physical robot detaches demonstration from an
specific platform such that data is valid for several with
minimal setup, i.e. enables cross-embodiment. Among all the
works in this direction, the Universal Manipulation Interface
(UMI) [1] has arose as a promising device to integrate the
simultaneous acquisition of different types of data that could
lead to an improved policy training, e.g. tactile information [2].
But broadening its adoption calls for an effort on solving
some of its issues that keep it from being reliable and cover
a variety of manipulation scenarios. Some works focused on
proposing an adaptation to substitute the default visual-based
localization system, which required an initialization procedure
that could ill-posed the acquisition of gripper trajectories and

had poor performance in homogeneous scenes, e.g. in [7]
through a marker-based approach using external self-calibrated
cameras. More recently, FastUMI [3] eliminated the need for
intrinsic mirror-based depth from UMI through the artificial
generation of depth maps, and also specific adaptations on
robot deployment for the specific parallel gripper model to
maintain visual consistency through a mechanical contraption.
Nevertheless, there are still two main caveats that still need to
be addressed:

1) Only parallel grippers are considered in the literature
since they can perform in a wide range of manipulation
tasks. However, they might not be optimal or even suit-
able for many, specially on industrial settings where tasks
generally involve the usage of tools, e.g. a screwdriver.

2) In all UMI variants, gripper width is generated through
the detection of ArUco markers [5], which makes it prone
to illumination changes or occlusions in manipulating
some elements, e.g. cables, on top of increasing com-
putation load.

This paper tackles both issues through the development
of a interface upon FastUMI design to generalize over any
type of robotic gripper, enabling a fully hardware-agnostic
policy learning. Approach presents (i) an integrated solution to
capture synchronized gripper positions through audio signals,
which (ii) enables introducing any gripper configuration, sup-
ported by a mechanical adaptation to easily change between
different adaptations. Figure II summarizes the main character-
istics of proposed solution, which are detailed in Section II.
Section III presents results on solution performance and its
application on the dismantling of a desktop computer using a
vacuum gripper and Section IV lays out main conclusions and
future work.

II. GENERALIZABLE GRIPPER INTERFACE FOR UMI

The core innovation on the proposed solution lies in replac-
ing ArUco-based gripper width estimation with direct hand-
held trigger position feedback, embedded as an additional
analog signal into the demonstration data captured by the
on-board GoPro. This approach takes inspiration from the
one proposed in ManiWAV [4], where microphones are used
as tactile sensing devices such that their feedback can be
naturally synchronized with captured video. In this way we
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Figure 1. Comparison between original UMI device (a) and proposed adaptation (b), exemplifying quick end-effector change feature for a vacuum robotic
gripper (c). All the contributions on the UMI device from this paper are highlighted in green.

achieve a low-latency and more reliable measure of gripper
state that is robust to occlusions and lighting variability, and
other factors such as wear and tear. Moreover, this approach
allows to naturally extend beyond parallel grippers to a wide
spectrum of end-effectors that might not present continuous
behaviours. In this category lie those tools that operate in
discrete on/off states, such as a vacuum or a magnetic grippers,
namely switch-actuated, which have been considered in this
paper to exemplify the flexibility of the generalizable interface.

A. Hardware Integration and Trigger Signal Conditioning

Gripper position feedback has been integrated using min-
imal hardware modifications and keeping the GoPro as the
central data capturing hub. The mechanical transmission of
the original tool remains a rack-pinion-rack assembly, ensur-
ing symmetric and coordinated motion of the gripper jaws.
Therefore, the position of the trigger has been bounded to
a linear potentiometer which is connected to an analog-to-
audio signal conditioning stage, such that it can be embedded
as a sound-input into the GoPro, synchronized with captured
video. The conversion takes the voltage proportional to trigger
potentiometer position in real time using 12-bit ADC readings
from an added on-board µ-controller, which then turns it into
a 440 Hz sine-wave carrier whose amplitude maps the mea-
sured position, such that the conditioned signal is transmitted
through a DAC into a standard 3.5 mm TRS jack connected to
the on-board GoPro, using its dedicated multimedia housing.

However, enabling the trigger position signal capturing dis-
ables external sound input, which could serve other purposes
within the demonstration acquisition as in [4]. Therefore,
leveraging into stereo sound input characteristic, transmitted
sound signal has been constructed as a dual-channel data
bus: right one for captured environmental sound and left one
for trigger position. This involves introducing an additional
microphone to be also connected with the µ-controller, as
shown in Fig. 2a. Hence, this solution preserves external audio
information alongside gripper position signal, guaranteeing the
precise synchronization of both with captured video.

Figure 2. Connection diagrams for acquiring trigger position through
embedded potentiometer and its processing, including environmental audio
capture (a) and for the actuated adaptation for vacuum gripper (b). Power
connections are omitted for clarity.

B. Adaptation for Switch-Actuated Gripper

To enable attaching a wide variety of end-effectors, we also
developed a quick change coupling at the upper part of the
trigger. This mechanism relies on a mechanical connection
designed to firmly secure the gripper adaptation through a
blocking mechanism activated through a side-to-side lever-
age. Hence, the only additional operation that needs to be
performed on the original parallel actuation is to remove the
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Figure 3. Sinusoidal audio signal containing trigger position from embedded
potentiometer and corresponding amplitude envelope used to reconstruct it on
demonstration post-processing.

flexible fingers from the adapters. Note that this means that the
rigid part will be still moving under trigger actuation, but its
impact on the posterior policy training can be tackled through
customary image masking on data preprocessing.

As aforementioned, in this paper we take as an exam-
ple the switch-actuated grippers due to their popularity in
manufacturing contexts, showing how the gripper position
from trigger feedback mechanism can be easily adapted to
this configuration. Once the specific gripper adaptation is
mechanically coupled to the hand-held device, the actuation
mean needs to be wired to the µ-controller. For switch-actuated
grippers they can be emulated through a relay connected to the
particular actuation mechanism, as it is shown in Fig. 2b for a
vacuum gripper, where both a vacuum pump and a bleed valve
need to be simultaneously activated. With regard to trigger
position audio signal, using the same signal conditioning
pipeline used for the parallel gripper, a simple user-defined
thresholding is used to encode the gripper’s state such that
the amplitude renders on/off states. Additionally, aiming at
having user-friendly device, a push button coupled with a LED
has been added to the hand-held device, such that user can
switch on-board between the continuous (LED off) or discrete
(LED on) modes. This has been also depicted in Figs. 1
and 2a. By considering both operation modes under a common
abstraction layer, proposed adaptations fully decouple gripper-
specific hardware from the diffusion-policy learning pipeline
improving flexibility and deployment efficiency.

C. Decoding and calibration

Before using the trigger position data on the UMI policy
training pipeline, a signal decoding step needs to be performed.
The amplitude from the sinusoidal wave is extracted using
RMS, normalized with the corresponding range and stored
alongside its respective timestamp, which can be seen in Fig. 3.
Additionally, due to the sound sampling rate being higher (440
Hz) than the video sampling (60 Hz), an interpolation of the
extracted amplitude values is needed over the timestamps of
the video frames. The result is a single, uniformly formatted
time series for gripper states that pairs every video frame
with a corresponding actuator-state value. This synchronized,
normalized dataset is what is used in the policy training
process.

Figure 4. Comparison of gripper position acquisition through proposed
embedded potentiometer and ArUco-based detection against Optitrack ground-
truth. Gaps in the ArUco-based graph represent missing samples.

Dataset size Post-processing Time [mm:ss] Time reduction (%)ArUco-based Trigger-based
50 13:13 06:19 52.2%
100 26:52 11:55 55.7%
150 39:51 18:38 53.5%

Table I
POST-PROCESSING TIMES FOR ARUCO AND TRIGGER-BASED SAMPLES ON
DIFFERENT DATASET SIZES. ALL EXPERIMENTS WERE CONDUCTED ON A

MACHINE EQUIPPED WITH AN INTEL® CORE™ I7-10700K CPU RUNNING
AT 3.80 GHZ, 31 GIB OF RAM, AND AN NVIDIA GEFORCE RTX 3090

GPU. THE OPERATING SYSTEM USED WAS UBUNTU 22.04.5 LTS.

III. PERFORMANCE AND USE CASE

First, the accuracy of proposed approach is compared to
the default gripper position extraction from ArUco detection
against the ground-truth given by an Optitrack system 1. Ob-
tained results, presented in Fig. 4, show that proposed method
based on the trigger embedded potentiometer outperforms
ArUco-based one, providing a continuous signal than even
presents a faster response than Optitrack one. As expected,
ArUco detection fails to provide some samples under fast
movements and illumination changes. Although interpolation
can solve this issue, as it can be seen on the results, this process
induces a delay around 100 [ms] with respect to ground-truth,
which might cut downs demonstration quality for training due
to data desynchronization as UMI authors outline.

Detecting ArUco markers also introduces an additional
computation load at post-processing that influences the scal-
ability of the model training phase from acquired demonstra-
tions. Table I summarizes the post-processing times for both
approaches on different dataset sizes, which shows that a mean
reduction of approx 53% is achieved using proposed approach.

Finally, to assess proposed solution on a real manufacturing
scenario involving switch-grippers, the partial dismantling
of a desktop computer has been used as a use case: first
removing the side lid, which needs to be performed using an
actuated adaptation for a vacuum gripper and then unplugging
an internal cable and hard-drive by changing to the default
parallel gripper configuration. The available video 2 shows the
complete demonstration acquisition process and Fig. 5 depicts
both phases together with the evolution of trigger position

1Natural Point, Optitrack: Motion Capture System - optitrack.com/
2Use Case video: shorturl.at/JaeFp

https://www.optitrack.com/
https://www.shorturl.at/JaeFp
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Figure 5. Desktop-computer dismantling use case using an actuated adaptation for vacuum grippers on the removal of the side lid (a) and using the parallel
configuration for detaching an internal cable and hard-drive (b), showing in this last one proposed approach performance together with ArUco one and its
mirroring approach.

signal and gripper widths for the set of available approaches,
respectively. Besides the default ArUco-based process for
gripper position, we have also included the approach presented
in FastUMI [3] to tackle occlusions of one marker, based on
mirroring the position of the detected one. On the first phase, it
can be seen how the adaptation is able to successfully remove
the lid, first by performing a side motion to unlock it and
then lifting it up. On the second phase it can be seen how the
ArUco-based approach does fail when one of the markers is
occluded (second scene, around 3.5 [s]) or not detected (fifth
scene, around 11[s]), and although the mirroring approach
does overcomes these situations is also ill-posed in case both
markers are not detected and suffers accuracy-loss and delay
due to the interpolation process.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes an upgrade of the UMI device to
(i) eliminate the need of vision-based gripper position de-
tection by embedding trigger position into an audio signal
synchronized with captured video, which leads to (ii) extend-
ing its usage with any gripper configuration, that relies on
a mechanical coupling and operation mode interface for a
quick operation change. Presented results show that solution

is reliable by design and outperforms defaults approach in
terms of synchronization, and additionally cuts demonstration
post-processing times to half. This is also demonstrated in the
manufacturing use case presented, in which the application
of the solution is exemplified by a vacuum gripper, that is
required for a task that would otherwise be difficult to carry
out using a parallel gripper.

Moving forward from the presented solution, our focus will
be devoted to decouple the approach from the GoPro setup,
leveraging on a ROS-centric integration that opens-up the
integration of additional data, e.g. depth.
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