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ABSTRACT

Deep neural networks show their extreme efficiency in solving a wide range of
practical problems. Despite this, a theoretical explanation of this phenomenon is
only beginning to emerge in scientific research. For some special kinds of deep
neural networks, it has been shown that depth is the key to efficiency. In partic-
ular, it has recently been shown that Tensor-Train networks, i.e. recurrent neural
networks, each layer of which implements a bilinear function, are exponentially
more expressive than shallow networks. However, in practice, recurrent neural
networks with identical layers are used, the analogue of which are Tensor-Train
networks with equal TT-cores. For this class of networks, the analogous result
was not proved, but formulated as a Hypothesis. We prove this Hypothesis and
thus close the question of exponential expressivity of Tensor-Train networks with
equal TT-cores. We also conduct a series of numerical experiments to confirm the
theoretical result.

1 INTRODUCTION

Deep neural networks solve many practical tasks both in computer vision via Convolutional Neu-
ral Networks (CNNs) and in audio and text processing via Recurrent Neural Networks (RNNs).
Although many practical problems are solved using deep neural networks (DNNs), the theoretical
justification of their effectiveness has not been fully studied.

One approach for justifying the power of depth is to show that deep networks can efficiently express
functions that would require shallow networks to have super-polynomial size. Early results related
to this approach Hastad (1986), Hastad & Goldmann (1991), Delalleau & Bengio (2011), Martens &
Medabalimi (2014) consider specific network architectures that are not commonly used in practice.

In 2016, Nadav Cohen, Or Sharir, and Amnon Shashua published a paper Cohen et al. (2016) in
which they proposed a deep network architecture based on arithmetic circuits (also known as Sum-
Product networks) that inherently uses three features of convolutional network architecture: locality,
sharing and pooling. They also showed a connection between the proposed architecture and Hierar-
chical Tucker decomposition of the parameter tensor Ay in the following hypotheses space:

hy(x1,x2, . . . ,xd) =

m∑
i1,...,id=1

Wi1...id
y · fθi1 (x1) · . . . · fθid (xd),

where hy is a score function for class label y; fθ is a representation function, selected from a para-
metric family F = {fθ : Rn → Rm}θ∈Θ; Wi1...id

y is a parameter tensor (see formal definition
in Chapter 2). Using this connection the authors proved that deep CNNs are exponentially more
expressive than shallow networks (see papers Cohen et al. (2016) and Cohen & Shashua (2016) for
details).

In 2018, Valentin Khrulkov, Alexander Novikov and Ivan Oseledets showed in the paper Khrulkov
et al. (2018) the connection between Tensor-Train tensor decomposition and deep recurrent-type
neural networks, and used this connection to prove that deep recurrent-type neural networks in which
all layers have their own parameters are exponentially more expressive than shallow neural networks.
The authors also hypothesized that their results are also true for traditional RNNs, in which layers

1



Under review as a conference paper at ICOMP 2024

share parameters. The research towards this hypothesis is particularly interesting because it refers
to the architectures used to solve practical problems.

Relevance. Recurrent neural networks are widely used in audio and text processing. Since the
theoretical result that deep recurrent-type neural networks in which all layers have their own param-
eters are exponentially more expressive than shallow neural networks is not applicable to traditional
RNNs, the problem of theoretical estimation of the expressive power of traditional RNNs remains
open and the solution of which is of immediate interest.

Scientific novelty. We formulate and prove the expressive power theorem for the Tensor-Train
decomposition with equal TT-cores (see Theorem 2 in Chapter 2). We also confirm the obtained
theoretical result with original numerical experiments (see Subsections 3.1, 3.2).

2 MAIN RESULT

In the following subsection we give a rigorous definition of hypotheses space considered in tensor
analysis.

2.1 DEFINITION OF THE HYPOTHESES SPACE

We consider the task of classification of a collection of vectors (x1, . . . ,xd),xi ∈ Rn, into one of
the categories Y := {1, . . . , Y }. Representing instances as a collection of vectors is natural in many
applications. We assume that the components x1, . . . ,xd of an instance X can be transformed by a
function fθ from the parametric family F = {fθ : Rn → Rm}θ∈Θ into vectors fθ(x1), . . . , fθ(xd),
which we call lower-dimensional representations of {xk}dk=1. As usual, an instance X will be
assigned to class y if and only if the value hy(X) of score function hy for class label y is maximal
among the values h1(X), . . . , hY (X) of score functions h1, . . . , hY for all class labels. We define
our hypotheses space by the following formula for the score function hy for a class label y:

hy(x1,x2, . . . ,xd) =

m∑
i1,...,id=1

Wi1...id
y · fθi1 (x1) · . . . · fθid (xd), (1)

where Wy is a coefficient tensor of order d and dimension m in each mode (see the motivation for
this definition of hypotheses space in Cohen et al. (2016)).

Denote [n] := {1, . . . , n} for any positive integer n. Let us recall some known tensor decomposi-
tions.

2.2 TENSOR DECOMPOSITIONS REMINDER

Canonical decomposition, also known as CANDECOMP/PARAFAC or CP-decomposition for short,
of a tensor X ∈ Rn1×...×nd is defined as follows

Xi1i2...id =

r∑
α=1

vi1
1,α · vi2

2,α · . . . · vid
d,α, vi,α ∈ Rni . (2)

Canonical rank, or CP-rank for short, of a tensor X is the minimal r such that canonical decompo-
sition of X with r summands exists.

Tensor-Train decomposition, or TT-decomposition for short, of a tensor X ∈ Rn1×...×nd is defined
as follows

Xi1i2...id =

r1∑
α1=1

r2∑
α2=1

. . .

rd−1∑
αd−1=1

Gi1α1

1 · Gα1i2α2

2 · . . . · Gαd−1id
d , (3)
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where Gk ∈ Rrk−1×nk×rk , k ∈ [d] (r0 := 1, rd := 1), are tensors which we call TT-cores. Tensor-
Train decomposition was introduced by Ivan Oseledets in Oseledets (2011) and was later studied in
more depth in Oseledets & Tyrtyshnikov (2010).

Tensor-Train ranks, or TT-ranks for short, of a tensor X is the element-wise minimal ranks r =
(r1, r2, . . . , rd−1) such that Tensor-Train decomposition of X with such r1, r2, . . . , rd−1 exists.

2.3 CONNECTION BETWEEN TENSOR-TRAIN DECOMPOSITION AND RNNS

In paper Khrulkov et al. (2018), Khrulkov, V. et al. showed that a recurrent-type neural network with
d layers, each implementing a bilinear function, lies in the hypotheses space defined by formula 1,
with the parameters of each of the d layers being exactly equal to the TT-cores G1, . . . ,Gd of the
corresponding Tensor-Train decomposition of the coefficient tensor Wy . Moreover, the TT-ranks
r1, r2, . . . , rd−1 of the corresponding Tensor-Train decomposition of Wy are equal to the dimensions
of the hidden states after, respectively, the first layer, the second layer and so on up to the (d− 1)-th
layer. Further we call such networks Tensor-Train networks.

Let us denote n := (n1, n2 . . . nd). Set of all tensors X with mode sizes n representable in TT-
format with

rankTT X ⩽ r,

for some vector of positive integers r (inequality is understood entry-wise) forms an irreducible
algebraic variety (see details in Shafarevich & Hirsch (1994)), which we denote by Mn,r.

One of the main results of paper Khrulkov et al. (2018) is the theorem about the lower bound on the
CP-rank for almost all tensors from Mn,r.
Theorem 1 (Valentin Khrulkov, Alexander Novikov, Ivan Oseledets; 2018). Suppose that d = 2k
is even. Define the following set

B :=
{

X ∈ Mn,r : rankCP X < q
d
2

}
,

where q = min {n, r}.

Then
µ(B) = 0,

where µ is the standard Lebesgue measure on Mn,r.

2.4 TENSOR-TRAIN NETWORKS WITH EQUAL TT-CORES

A subset of Mn,r consisting only of those tensors whose inner cores are equal, or in other words
G2 = G3 = . . . = Gd−1, is denoted by Meq

n,r.

Remark 1. The condition G2 = G3 = . . . = Gd−1 implies that n2 = n3 = . . . = nd−1 and r1 =
r2 = . . . = rd−1, i.e. Meq

n,r is defined only for such n, r that n = (nfirst, ninner, . . . , ninner︸ ︷︷ ︸
d−2 times

, nlast) and

r = (r, r, . . . , r︸ ︷︷ ︸
d−1 times

).

Let us denote G[nfirst, ninner, nlast, r] := Rnfirst×r × Rr×ninner×r × Rr×nlast . Then

Meq
n,r =

Gfirst @ Ginner @ . . . @ Ginner︸ ︷︷ ︸
d−2 times

@ Glast : (Gfirst,Ginner,Glast) ∈ G[nfirst, ninner, nlast, r]

 ,

where @ is a tensor dot product.

A similar to Theorem 1 result for Meq
n,r is of particular interest because it is about Tensor-Train

networks with equal inner layers, which is closest to traditional recurrent neural networks. We claim
to have proved this result, which is formulated as the following theorem.
Theorem 2. Suppose that d = 2k is even. Define the following set

B :=
{

X ∈ Meq
n,r : rankCP X < q

d
2

}
,
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where q = min {n, r − 1}.

Then
µ(B) = 0,

where µ is the standard Lebesgue measure on Meq
n,r.

To prove this theorem we need to formulate Lemma 3, which is proved in Khrulkov et al. (2018).
Lemma 3 (rank of matricization). Let Xi1i2...id and rankCP X = r. Then for any matricization
X(s,t) we have rankX(s,t) ⩽ r, where the ordinary matrix rank is assumed.

Proof. Our proof is based on applying Lemma 3 to a particular matricization of X. Namely, we
would like to show that for s = {1, 3, . . . , d− 1}, t = {2, 4, . . . , d} the following set

B(s,t) :=
{

X ∈ Meq
n,r : rankX(s,t) ⩽ q

d
2 − 1

}
has measure 0. Indeed, by Lemma 3 we have

B ⊂ B(s,t),

so if µ(B(s,t)) = 0 then µ(B) = 0 as well. Note that B(s,t) is an algebraic subset of Meq
n,r given

by the conditions that the determinants of all q
d
2 × q

d
2 submatrices of X(s,t) are equal to 0. Thus to

show that µ(B(s,t)) = 0 we need to find at least one X such that rankX(s,t) ⩾ q
d
2 . This follows

from the fact that because B(s,t) is an algebraic subset of the irreducible algebraic variety Meq
n,r, it

is either equal to Meq
n,r or has measure 0, as was explained before.

One way to construct such tensor is as follows. Let us define the following tensors:

Gi1α1

1 = [i1 = α1], G1 ∈ R1×n×r

Gαk−1ikαk

k =

{
[αk−1 = ik] · [αk = q + 1], if αk−1 ⩽ q

[ik = αk], if αk−1 = q + 1
0, if αk−1 > q + 1

, Gk ∈ Rr×n×r, k = 2, 3, . . . , d−1

Gαd−1id
d = [αd−1 = id], Gd ∈ Rr×n×1,

where [ · ] is the Iverson bracket notation.

The TT-ranks of the tensor X defined by the TT-cores are equal to rankTT X = (r, r, . . . , r).

Lemma 4 (structure of non-zero summands). Consider (i1, i2, . . . , id) ∈ [q]d and
(α1, α2, . . . , αd−1) ∈ [r]d−1 such that

Gi1α1

1 · . . . · Gαd−1id
d ̸= 0.

Then

αk =

{
ik, if k is odd

q + 1, if k is even for any k ∈ [d− 1].

Proof. Let us prove the lemma by induction over k.

• Base of the induction: k = 1.

Since Gi1α1

1 = [i1 = α1] ̸= 0, then α1 = i1.

• The induction step: k → k + 1, k ∈ [d− 2].

If k is odd, then αk = ik ∈ [q]. Hence Gαkik+1αk+1

k+1 = [αk = ik+1] · [αk+1 = q+1]. Since
Gαkik+1αk+1

k+1 ̸= 0, then [αk+1 = q + 1] ̸= 0, so αk+1 = q + 1.

If k is even, then αk = q+1. Hence Gαkik+1αk+1

k+1 = [ik+1 = αk+1]. Since Gαkik+1αk+1

k+1 ̸=
0, then [ik+1 = αk+1] ̸= 0, so αk+1 = ik+1.
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Lets consider the following matricization of the tensor X

X(i1,i3,...,id−1),(i2,i4,...,id)

The following identity holds true for any values of indices such that ik = 1, . . . , q, k = 1, . . . , d.

X(i1,i3,...,id−1),(i2,i4,...,id) =
∑

α1,...,αd−1

Gi1α1

1 . . .Gαd−1id
d =

(by Lemma 4) = Gi1i1
1 Gi1i2(q+1)

2 G(q+1)i3i3
3 . . .Gid−1id

d =(
[i1 = i1]

)
·
(
[i1 = i2] · [q + 1 = q + 1]

)
·
(
[i3 = i3]

)
· . . . ·

(
[id−1 = id]

)
=

[i1 = i2] · [i3 = i4] · . . . · [id−1 = id].

We obtain that

X(i1,i3,...,id−1),(i2,i4,...,id) = [i1 = i2] · [i3 = i4] · . . . · [id−1 = id] = I(i1,i3,...,id−1),(i2,i4,...,id),

where I is the identity matrix of size q
d
2 × q

d
2 .

To summarize, we found an example of a tensor X such that rankTT X ⩽ r and the matricization
X(i1,i3,...,id−1),(i2,i4,...,id) has a submatrix being equal to the identity matrix of size q

d
2 × q

d
2 , and

hence rankX(i1,i3,...,id−1),(i2,i4,...,id) ⩾ q
d
2 . This means that the canonical rankCP X ⩾ q

d
2 which

concludes the proof.

Theorem 2 gives a lower bound for almost all tensors of order d with modes n with Tensor-Train
rank at most r. Using the connection between Tensor-Train decomposition and recurrent neural
networks presented in Khrulkov et al. (2018), we have that traditional RNNs, which corresponds to
tensors from Meq

n,r, are exponentially more expressive than shallow neural networks.

3 NUMERICAL EXPERIMENTS

We distinguish two different purposes of numerical experiments:

• to confirm numerically the result of the Theorem 2, i.e., to generate a random tensor from
Meq

n,r, evaluate numerically its CP-rank and compare it with the theoretical bound (see
Subsection 3.1);

• to show that Tensor-Train network with equal inner TT-cores copes with classification tasks
on real data.

All performed numerical experiments are available via the link to the Github repository.

3.1 NUMERICAL VERIFICATION OF THEOREM 2

Any experiment in this section consists of several steps:

1. fixing the parameters nfirst, ninner, nlast, r and the upper bound dmax for depth d;

2. selection of “typical” TT-cores Gfirst, Ginner, Glast from G[nfirst, ninner, nlast, r] (see Re-
mark 1);

3. numerical evaluation of the CP-rank of the tensors from Meq
n,r generated by the TT-cores

Gfirst, Ginner, Glast for each d from {1, . . . , dmax};

4. aggregation of the results and plotting of the graph.
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Let us fix nfirst = ninner = nlast = 2, r = 3. Theorem 2 gives us the following lower bound on
CP-rank of almost all tensors from Meq

n,r: q
d
2 = min {nfirst, ninner, nlast, r − 1}

d
2 = 2

d
2 .

Since the standard Lebesgue measure on G[nfirst, ninner, nlast, r] is not a probability, we will choose
TT-cores Gfirst, Ginner, Glast using arbitrary distribution on G[nfirst, ninner, nlast, r], for example, stan-
dard normal.

A direct way to estimate the canonical rank of tensor X is to search for a low-rank approximation of
tensor X by increasing the CP-rank of an approximation. If at some CP-rank the low-rank approx-
imation differs from tensor X by a negligible error, then the number of summands in the low-rank
approximation will be equal to the CP-rank of X. The search for the low-rank approximation was
performed both using gradient descent by minimising the Frobenius norm of the difference between
X and the approximation, and using a function cpd (Canonical polyadic decomposition) from Ten-
sorlab Vervliet et al. (2016) which is a MATLAB Inc. (2022) package.

The results of these experiments are shown in the following graph (see Figure 1).

The graph shows that the theoretical lower bound derived from Theorem 2 is lower than estimated
CP-rank of chosen tensor for all considered values of depth d.

Figure 1: The graph compares the theoretical lower bound on CP-rank (orange line) and the numer-
ical CP-rank estimate of the random tensor from Meq

2,3 (blue line).
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3.2 EXPERIMENTS ON THE MNIST DATASET

In this section we consider standard computer vision datasets MNIST which is a collection of 70000
handwritten digits.

We have implemented Tensor-Train networks with both different and the same inner TT-cores using
PyTorch Paszke et al. (2019). We use Adam optimizer with batch size 64 and learning rate 5e−4.
Each picture of size 28 × 28 pixels is split into 16 non-overlapping 7 × 7 patches, whose low-
dimensional representations are alternately fed to the Tensor-Train network of depth 16.

The training process of these networks was as follows: in the initial stage, we added BatchNorm1d
layer after each recurrent layer of the Tensor-Train network and trained such a network for 20
epochs; in the second stage, we removed the normalisation layers and further trained the Tensor-
Train network for four epochs. This two-step approach avoided the problem of stopping training at
the initial stage.

For MNIST, both Tensor-Train networks and Tensor-Train networks with equal cores show reason-
able performance (see Table 1).

Table 1: The results of training Tensor-Train networks on MNIST dataset during 20+4 epochs.
TT-net with different cores TT-net with equal cores

Train accuracy 98.5 96.3
Test accuracy 97.3 95.7
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3.3 EXPERIMENTS ON THE CIFAR-10 DATASET

In this section we consider computer vision datasets CIFAR-10 which is a collection of 60000 32×32
color images in 10 different classes.

We use Adam optimizer with batch size 64 and learning rate 5e−4. Each picture of size 32 × 32
pixels is split into 16 non-overlapping 8 × 8 patches, whose low-dimensional representations are
alternately fed to the Tensor-Train network of depth 16.

The training process of these networks was as follows: in the initial stage, we added BatchNorm1d
layer after each recurrent layer of the Tensor-Train network and trained such a network for 40
epochs; in the second stage, we removed the normalisation layers and further trained the Tensor-
Train network for ten epochs. This two-step approach avoided the problem of stopping training at
the initial stage.

Despite the fact that we failed to train Tensor-Train networks with high accuracy to distinguish
classes, a network with equal TT-cores is not worse in accuracy than a network with different TT-
cores, but even better (see Table 2).

Table 2: The results of training Tensor-Train networks on CIFAR-10 dataset during 40+10 epochs.

TT-net with different cores TT-net with equal cores

Train accuracy 16.1 37.3
Test accuracy 15.9 37.6
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