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ABSTRACT

We introduce a novel extension of the canonical multi-armed bandit problem that
incorporates an additional strategic element: abstention. In this enhanced frame-
work, the agent is not only tasked with selecting an arm at each time step, but
also has the option to abstain from accepting the stochastic instantaneous reward
before observing it. When opting for abstention, the agent either suffers a fixed
regret or gains a guaranteed reward. Given this added layer of complexity, we
ask whether we can develop efficient algorithms that are both asymptotically and
minimax optimal. We answer this question affirmatively by designing and ana-
lyzing algorithms whose regrets meet their corresponding information-theoretic
lower bounds. Our results offer valuable quantitative insights into the benefits
of the abstention option, laying the groundwork for further exploration in other
online decision-making problems with such an option. Numerical results further
corroborate our theoretical findings.

1 INTRODUCTION

In the realm of online decision-making, the multi-armed bandit model, originally introduced by
Thompson (1933), has long served as a quintessential benchmark for capturing the delicate inter-
play between exploration and exploitation. In stochastic multi-armed bandit problems, the agent
sequentially selects an arm from the given set at each time step and subsequently observes a random
reward associated with the chosen arm. To maximize cumulative rewards, the agent must strike a
balance between the persistent pursuit of the arm with the highest expected reward (exploitation)
and the adventurous exploration of other arms to gain a deeper understanding of their potential (ex-
ploration). This fundamental challenge finds applications across a wide array of domains, ranging
from optimizing advertising campaigns to fine-tuning recommendation systems.

However, real-world scenarios often come fraught with complexities that challenge the simplicity
of the canonical bandit model. One notable complexity arises when the agent is equipped with
an additional option to abstain from accepting the stochastic instantaneous reward before actually
observing it. This added layer of decision-making considerably enriches the strategic landscape,
altering how the agent optimally navigates the trade-off between exploration and exploitation.

Consider, for example, the domain of clinical trials. When evaluating potentially hazardous medical
treatments, researchers can proactively deploy safeguards such as preemptive medications or con-
sider purchasing specialized insurance packages to shield against possible negative consequences.
However, these protective measures come with costs, which may be modeled as either fixed re-
grets or fixed rewards in the context of the clinical study’s cumulative regret. In these scenarios,
researchers have the option to observe the outcomes of a treatment while abstaining from incurring
the associated random regret through these costly prearranged measures. Opting for abstention can
promote more responsible decision-making and reduce the overall cumulative regret of the study.

Building upon this challenge, we introduce an innovative extension to the canonical multi-armed
bandit model that incorporates abstention as a legitimate strategic option. At each time step, the
agent not only selects which arm to pull but also decides whether to abstain. Depending on how
the abstention option impacts the cumulative regret, which is the agent’s primary optimization ob-
jective, our abstention model offers two complementary settings, namely, the fixed-regret setting
where abstention results in a constant regret, and the fixed-reward setting where abstention yields a
deterministic reward. Collectively, these settings provide the agent with a comprehensive toolkit for
adeptly navigating the complicated landscape of online decision-making.
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Main contributions. Our main results and contributions are summarized as follows:

(i) In Section 2, we provide a rigorous mathematical formulation of the multi-armed bandit model
with abstention. Our focus is on cumulative regret minimization across two distinct yet com-
plementary settings: fixed-regret and fixed-reward. These settings give rise to divergent perfor-
mance metrics, each offering unique analytical insights. Importantly, both settings encompass
the canonical bandit model as a particular case.

(ii) In the fixed-regret setting, we judiciously integrate two abstention criteria into a Thompson
Sampling-based algorithm proposed by Jin et al. (2023). This integration ensures compati-
bility with the abstention option, as elaborated in Algorithm 1. The first abstention criterion
employs a carefully constructed lower confidence bound, while the second is tailored to mit-
igate worst-case scenarios. We establish both asymptotic and minimax upper bounds on the
cumulative regret. Furthermore, we derive corresponding lower bounds, thereby demonstrat-
ing that our algorithm attains asymptotic and minimax optimality simultaneously.

(iii) In the fixed-reward setting, we introduce a general strategy, outlined in Algorithm 2. This
method is capable of transforming any algorithm that is both asymptotically and minimax
optimal in the canonical model to one that also accommodates the abstention option. Remark-
ably, this strategy maintains its universal applicability and straightforward implementation
while provably achieving both forms of optimality—asymptotic and minimax.

(iv) To empirically corroborate our theoretical contributions, we conduct a series of numerical
experiments in Section 5. These experiments substantiate the effectiveness of our algorithms
and highlight the performance gains achieved through the inclusion of the abstention option.

1.1 RELATED WORK

Canonical multi-armed bandits. The study of cumulative regret minimization in canonical multi-
armed bandits has attracted considerable scholarly focus. Two dominant paradigms for evaluating
optimality metrics emerge: asymptotic optimality and minimax optimality. Briefly, the former con-
siders the behavior of algorithms as the time horizon approaches infinity for a specific problem
instance, while the latter seeks to minimize the worst-case regret over all possible instances. A
diverse array of policies have been rigorously established to achieve asymptotic optimality across
various settings. Notable examples include UCB2 (Auer et al., 2002), DMED (Honda & Takemura,
2010), KL-UCB (Cappé et al., 2013), and Thompson Sampling (Agrawal & Goyal, 2012; Kaufmann
et al., 2012). In the context of the worst-case regret, MOSS (Audibert & Bubeck, 2009) stands out
as the pioneering method that has been verified to be minimax optimal. Remarkably, KL-UCB++

(Ménard & Garivier, 2017) became the first algorithm proved to achieve both asymptotic and min-
imax optimality. Very recently, Jin et al. (2023) introduced Less-Exploring Thompson Sampling,
an innovation that boosts computational efficiency compared to classical Thompson Sampling while
concurrently achieving asymptotic and minimax optimality. For a comprehensive survey of bandit
algorithms, we refer to Lattimore & Szepesvári (2020).

Machine learning with abstention. Starting with the seminal works of Chow (1957; 1970), the
concept of learning with abstention (also referred to as rejection) has been extensively explored in
various machine learning paradigms. These include, but are not limited to, classification (Herbei &
Wegkamp, 2006; Bartlett & Wegkamp, 2008; Cortes et al., 2016), ranking (Cheng et al., 2010; Mao
et al., 2023), and regression (Wiener & El-Yaniv, 2012; Zaoui et al., 2020; Kalai & Kanade, 2021).

Within this broad spectrum of research, our work is most directly related to those that explore the
role of abstention in the context of online learning. To the best of our knowledge, Cortes et al. (2018)
firstly incorporated the abstention option into the problem of online prediction with expert advice
(Littlestone & Warmuth, 1994). In their model, at each time step, each expert has the option to either
make a prediction based on the given input or abstain from doing so. When the agent follows the
advice of an expert who chooses to abstain, the true label of the input remains undisclosed, and the
learner incurs a known fixed loss. Subsequently, Neu & Zhivotovskiy (2020) introduced a different
abstention model, which is more similar to ours. Here, the abstention option is only available to
the agent. Crucially, the true label is always revealed to the agent after the decision has been made,
regardless of whether the agent opts to abstain. Their findings suggest that equipping the agent with
an abstention option can significantly improve the guarantees on the worst-case regret.
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Figure 1: Interaction protocol for multi-armed bandits with fixed-regret and fixed-reward abstention.

Although set in different contexts, these existing works consistently demonstrate the value of incor-
porating abstention into online decision-making processes, underscoring the urgent need to analyze
and quantify its benefits in the field of multi-armed bandits.

2 PROBLEM SETUP

Multi-armed bandits with abstention. We consider a K-armed bandit model, enhanced with an
additional option to abstain from accepting the stochastic instantaneous reward prior to its observa-
tion. Let µ ∈ U := RK denote a specific bandit instance, where µi represents the unknown mean
reward associated with pulling arm i ∈ [K]. For simplicity, we assume that arm 1 is the unique
optimal arm, i.e., 1 = argmaxi∈[K] µi, and we define ∆i := µ1 − µi as the suboptimality gap for
each arm i ∈ [K].

At each time step t ∈ N, the agent chooses an arm At from the given arm set [K], and, simul-
taneously, decides whether or not to abstain, indicated by a binary variable Bt. Regardless of the
decision to abstain, the agent observes a random variable Xt from the selected arm At, which is
drawn from a Gaussian distribution N (µAt , 1) and independent of observations obtained from the
previous time steps. Notably, the selection of both At and Bt might depend on the previous decisions
and observations, as well as on each other. More formally, let Ft := σ(A1, B1, X1, . . . , At, Bt, Xt)
denote the σ-field generated by the cumulative interaction history up to and including time t. It
follows that the pair of random variables (At, Bt) is Ft−1-measurable.

The instantaneous regret at time t is determined by both the binary abstention variable Bt and the
observation Xt. Based on the outcome of the abstention option, we now discuss two complemen-
tary settings. In the fixed-regret setting, the abstention option incurs a constant regret. Opting for
abstention (Bt = 1) leads to a deterministic regret of c > 0, in contrast to the initial regret linked to
arm At when not selecting abstention (Bt = 0), which is given by µ1 −Xt.

Alternatively, in the fixed-reward setting, the reward of the abstention option is predetermined to be
c ∈ R.1 Since the abstention reward c may potentially surpass µ1, the best possible expected reward
at a single time step is µ1 ∨ c := max{µ1, c}. If the agent decides to abstain (Bt = 1), it guarantees
a deterministic reward of c, leading to a regret of µ1 ∨ c − c. Conversely, if Bt = 0, the agent
receives a per-time reward Xt, resulting in a regret of µ1 ∨ c−Xt.

See Figure 1 for a schematic of our model in the two settings.

Regret minimization. Our overarching goal is to design and analyze online algorithms π that
minimize their expected cumulative regrets up to and including the time horizon T .2 The regrets are
formally defined for the two distinct settings as follows:

• Fixed-regret setting:

RRG
µ,c (T, π) := E

[
T∑

t=1

(
(µ1 −Xt) · 1{Bt = 0}+ c · 1{Bt = 1}

)]
. (1)

1With a slight abuse of notation, we employ the symbol c to represent the abstention regret and the absten-
tion reward within their respective settings. The surrounding context, nonetheless, should elucidate the exact
meaning of c.

2In certain real-world applications, the time horizon T may be unknown to the agent. In fact, all of our
proposed methods are inherently anytime in nature, as they do not necessitate prior knowledge of the horizon.
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• Fixed-reward setting:

RRW
µ,c (T, π) := T · (µ1 ∨ c)− E

[
T∑

t=1

(
Xt · 1{Bt = 0}+ c · 1{Bt = 1}

)]
. (2)

An online algorithm π consists of two interrelated components: the arm sampling rule that selects
At, and the abstention decision rule that determines Bt at each time step t ∈ [T ]. Additionally,
we use ΠRG and ΠRW to denote the collections of all online policies for the fixed-regret and fixed-
reward settings, respectively. For the sake of analytical convenience, we also introduce the canonical
regret RCA

µ (T, π) := Tµ1−E
[∑T

t=1 Xt

]
, which disregards the abstention option and remains well-

defined within our abstention model. Furthermore, when there is no ambiguity, we will omit the
dependence of the regret on the policy. For example, we often abbreviate RRG

µ,c (T, π) as RRG
µ,c (T ).

Remark 1. It is worth mentioning that our model is a strict generalization of the canonical multi-
armed bandit model (without the abstention option). Specifically, it particularizes to the canonical
model as the abstention regret c tends to positive infinity in the fixed-regret setting and as the absten-
tion reward c tends to negative infinity in the fixed-reward setting. Nevertheless, the incorporation of
an extra challenge, the abstention decision (denoted as Bt), offers the agent the potential opportunity
to achieve superior performance in terms of either regret.

Other notations. For x, y ∈ R, we denote x ∧ y := min{x, y} and x ∨ y := max{x, y}. For
any arm i ∈ [K], let Ni(t) :=

∑t
s=1 1{As = i} and µ̂i(t) :=

∑t
s=1 Xs1{As = i}/Ni(t) denote

its total number of pulls and empirical estimate of the mean up to time t, respectively. In particular,
we set µ̂i(t) = +∞ if Ni(t) = 0. To count abstention records, we also use N

(0)
i (t) and N

(1)
i (t) to

denote its number of pulls without and with abstention up to time t, respectively. That is, N (0)
i (t) :=∑t

s=1 1{As = i and Bs = 0} and N
(1)
i (t) :=

∑t
s=1 1{As = i and Bs = 1}. Additionally, we

define µ̂is as the empirical mean of arm i based on its first s pulls. Furthermore, we use α, α1, and
so forth to represent universal constants that do not depend on the problem instances (including µ,
c, T , K), with possibly different values in different contexts.

3 FIXED-REGRET SETTING

In this section, we focus on the fixed-regret setting. Specifically, we design a conceptually simple
and computationally efficient algorithm, namely Fixed-Regret Thompson Sampling with Abstention
(or FRG-TSWA), to minimize the cumulative regret while incorporating fixed-regret abstention. To
evaluate the performance of our algorithm from a theoretical standpoint, we establish both instance-
dependent asymptotic and instance-independent minimax upper bounds on the cumulative regret,
as elaborated upon in Section 3.1. Furthermore, in Section 3.2, we provide lower bounds for the
problem of regret minimization in multi-armed bandits with fixed-regret abstention. These findings
substantiate that our algorithm achieves both asymptotic and minimax optimality simultaneously.
The pseudocode for FRG-TSWA is presented in Algorithm 1 and elucidated in the following.

In terms of the arm sampling rule, our algorithm is built upon Less-Exploring Thompson Sampling
(Jin et al., 2023), a minimax optimal enhancement of the celebrated Thompson Sampling algorithm
(Thompson, 1933). We refer to Remark 3 for the reason behind this choice. During the initializa-
tion phase, each arm is sampled exactly once. Following that, at each time t, an estimated reward
ai(t) is constructed for each arm i ∈ [K], which is either drawn from the posterior distribution
N (µ̂i(t − 1), 1/Ni(t − 1)) with probability 1/K or set to be the empirical mean µ̂i(t − 1) other-
wise. Subsequently, the algorithm consistently pulls the arm At with the highest estimated reward.

With regard to the abstention decision rule, we propose two abstention criteria that work in tandem
(as detailed in Step 5 of Algorithm 1). The first criterion is gap-dependent in nature. In particular,
we choose to abstain if there exists an arm i ∈ [K] \ {At} for which the difference between its
lower confidence bound and the empirical mean of the arm At exceeds c. This condition signifies
that the suboptimality gap ∆At is at least c with high probability. The second abstention criterion
is gap-independent and more straightforward. It is motivated from the construction of worst-case
scenarios as detailed in the proof of our lower bound. Under this criterion, we opt for the abstention
option if c ≤

√
K/t, which implies that the abstention regret remains acceptably low at time t in

view of the worst-case scenarios.
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Algorithm 1 Fixed-Regret Thompson Sampling with Abstention (or FRG-TSWA)
Input: Arm set [K] and abstention regret c > 0.

1: Sample each arm once, and choose to abstain (Bt = 1) if and only if
√

K
t ≥ c.

2: Initialize µ̂i(K) and Ni(K) = 1 for all i ∈ [K].
3: for t = K + 1, . . . , T do
4: For each arm i ∈ [K], sample θi(t) ∼ N (µ̂i(t− 1), 1/Ni(t− 1)) and set

ai(t) =

{
θi(t) with probability 1/K

µ̂i(t− 1) with probability 1− 1/K.

5: Pull the arm At = argmaxi∈[K] ai(t), and choose to abstain (Bt = 1) if and only if

max
i∈[K]\{At}

(
µ̂i(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Ni(t− 1)

)
− µ̂At(t− 1) ≥ c or

√
K

t
≥ c.

6: Observe Xt from the arm At, and update µ̂i(t) and Ni(t) for all i ∈ [K].
7: end for

3.1 UPPER BOUNDS

Theorem 1 below provides two distinct types of theoretical guarantees pertaining to our algorithm’s
performance on the cumulative regret RRG

µ,c (T ), which is defined in Equation (1) for the fixed-regret
setting. The complete proof of Theorem 1 is deferred to Appendix C.1.
Theorem 1. For all abstention regrets c > 0 and bandit instances µ ∈ U , Algorithm 1 guarantees
that

lim sup
T→∞

RRG
µ,c (T )

log T
≤ 2

∑
i>1

∆i ∧ c

∆2
i

.

Furthermore, there exists a universal constant α > 0 such that

RRG
µ,c (T ) ≤

{
cT if c ≤

√
K/T

α(
√
KT +

∑
i>1 ∆i) if c >

√
K/T .

Remark 2. The theoretical challenges associated with Theorem 1 revolve around quantifying the
regret that results from inaccurately estimating the suboptimality gaps associated to the abstention
criteria. More precisely, from both asymptotic and worst-case perspectives, it is crucial to establish
upper bounds on E[N (1)

i (T )] for arms i with ∆i < c (which, by definition, includes the best arm),
and on E[N (0)

i (T )] for arms i with ∆i > c. These complexities necessitate a deeper exploration into
the arm sampling dynamics inherent to Less-Exploring Thompson Sampling, and preclude us from
formulating a generalized strategy akin to the upcoming Algorithm 2 for the fixed-reward setting.

Remark 3. As previously highlighted, our model in the fixed-regret setting particularizes to the
canonical multi-armed bandit model as the abstention regret c approaches infinity. Similarly, when
c tends towards infinity, the two abstention criteria are never satisfied, and the procedure of Algo-
rithm 1 simplifies to that of Less-Exploring Thompson Sampling. It is worth noting that this latter
algorithm is not only asymptotically optimal but also minimax optimal for the canonical model. This
is precisely why we base our algorithm upon it, rather than the conventional Thompson Sampling
algorithm, which has been shown not to be minimax optimal (Agrawal & Goyal, 2017).

3.2 LOWER BOUNDS

In order to establish the asymptotic lower bound, we need to introduce the concept of RRG-
consistency, which rules out overly specialized algorithms that are tailored exclusively to specific
problem instances. Roughly speaking, a RRG-consistent algorithm guarantees a subpolynomial cu-
mulative regret for any given problem instance.
Definition 1 (RRG-consistency). An algorithm π ∈ ΠRG is said to be RRG-consistent if for all
abstention regrets c > 0, bandit instances µ ∈ U , and a > 0, RRG

µ,c (T, π) = o(T a).
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Now we present both asymptotic and minimax lower bounds on the cumulative regret in Theorem 2,
which is proved in Appendix C.2.

Theorem 2. For any abstention regret c > 0, bandit instance µ ∈ U and RRG-consistent algo-
rithm π, it holds that

lim inf
T→∞

RRG
µ,c (T, π)

log T
≥ 2

∑
i>1

∆i ∧ c

∆2
i

.

For any abstention regret c > 0 and time horizon T ≥ K, there exists a universal constant α > 0
such that

inf
π∈ΠRG

sup
µ∈U

RRG
µ,c (T, π) ≥ α(

√
KT ∧ cT ).

Comparing the upper bounds on the cumulative regret of our algorithm FRG-TSWA in Theorem 1
with the corresponding lower bounds in Theorem 2, it becomes evident that our algorithm exhibits
both asymptotic and minimax optimality.

Asymptotic optimality. For any abstention regret c > 0 and bandit instance µ ∈ U , the regret of
our algorithm satisfies the following limiting behaviour:

lim
T→∞

RRG
µ,c (T )

log T
= 2

∑
i>1

∆i ∧ c

∆2
i

.

The above asymptotically optimal result yields several intriguing implications. First, the inclusion of
the additional fixed-regret abstention option does not obviate the necessity of differentiating between
suboptimal arms and the optimal one, and the exploration-exploitation trade-off remains crucial. In
fact, to avoid the case in which the cumulative regret grows polynomially, the agent must still asymp-
totically allocate the same proportion of pulls to each suboptimal arm, as in the canonical model.
This assertion is rigorously demonstrated in the proof of the lower bound (refer to Appendix C.2 for
comprehensive details). Nevertheless, the abstention option does indeed reduce the exploration cost
for the agent. Specifically, when exploring any suboptimal arm with a suboptimality gap larger than
c, our algorithm leans towards employing the abstention option to minimize the instantaneous regret.
This aspect is formally established in the proof of the asymptotic upper bound (see Appendix C.1
for further details).

Minimax optimality. In the context of worst-case guarantees for the cumulative regret, we focus
on the dependence on the problem parameters: c, K and T . Notably, the

∑
i>1 ∆i term3 is typi-

cally considered as negligible in the literature (Audibert & Bubeck, 2009; Agrawal & Goyal, 2017;
Lattimore & Szepesvári, 2020). Therefore, Theorem 1 demonstrates that our algorithm attains a
worst-case regret of O(

√
KT ∧ cT ), which is minimax optimal in light of Theorem 2.

A phase transition phenomenon can be clearly observed from the worst-case guarantees, which
dovetails with our intuitive understanding of the fixed-regret abstention setting. When the abstention
regret c is sufficiently low, it becomes advantageous to consistently opt for abstention to avoid the
worst-case scenarios. On the contrary, when the abstention regret c exceeds a certain threshold, the
abstention option proves to be inadequate in alleviating the worst-case regret, as compared to the
canonical model.
Remark 4. Although our model allows for the selected arm At and the abstention option Bt to
depend on each other, the procedure used in both algorithms within this work is to first determine
At before Bt; this successfully achieves both forms of optimality. Nevertheless, this approach might
no longer be optimal beyond the canonical K-armed bandit setting. In K-armed bandits, each arm
operates independently. Conversely, in models like linear bandits, pulling one arm can indirectly
reveal information about other arms. Policies based on the principle of optimism in the face of
uncertainty, as well as Thompson Sampling, fall short of achieving asymptotic optimality in the
context of linear bandits (Lattimore & Szepesvári, 2017). Therefore, the abstention option becomes
particularly attractive if there exists an arm that incurs a substantial regret but offers significant
insights into the broader bandit instance.

3This term is unavoidable when the abstention regret c is sufficiently high, since every reasonable algorithm
has to allocate a fixed number of pulls to each arm.
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Algorithm 2 Fixed-Reward Algorithm with Abstention (or FRW-ALGWA)
Input: Arm set [K], abstention reward c ∈ R, and a base algorithm ALG that is both asymptoti-

cally and minimax optimal for the canonical multi-armed bandit model.
1: Initialize µ̂i(0) = +∞ for all arms i ∈ [K].
2: for t = 1, 2, . . . , T do
3: Pull the arm At chosen by the base algorithm ALG.
4: Choose to abstain (Bt = 1) if and only if µ̂At

(t− 1) ≤ c.
5: Observe Xt from the arm At, and update µ̂i(t) for all i ∈ [K].
6: end for

4 FIXED-REWARD SETTING

In this section, we investigate the fixed-reward setting. Here, the reward associated with the absten-
tion option remains consistently fixed at c ∈ R. When exploring a specific arm, the agent has the
capability to determine whether selecting the abstention option yields a higher reward (or equiva-
lently, a lower regret) solely based on its own estimated mean reward. However, in the fixed-regret
setting, this decision can only be made by taking into account both its own estimated mean reward
and the estimated mean reward of the potentially best arm. In this regard, the fixed-reward setting is
inherently less complex than the fixed-regret setting. As a result, it becomes possible for us to de-
sign a more general strategy Fixed-Reward Algorithm with Abstention (or FRW-ALGWA), whose
pseudocode is presented in Algorithm 2. Despite the straightforward nature of our algorithm, we
demonstrate its dual attainment of both asymptotic and minimax optimality through an exhaustive
theoretical examination in Sections 4.1 and 4.2.

As its name suggests, our algorithm FRW-ALGWA leverages a base algorithm ALG that is asymp-
totically and minimax optimal for canonical multi-armed bandits as its input. For comprehensive
definitions of asymptotic and minimax optimality within the canonical model, we refer the reader
to Appendix A. Notably, eligible candidate algorithms include KL-UCB++ (Ménard & Garivier,
2017), ADA-UCB (Lattimore, 2018), MOTS-J (Jin et al., 2021) and Less-Exploring Thompson
Sampling (Jin et al., 2023). In the operation of our algorithm, at each time step t, the base al-
gorithm determines the selected arm At according to the partial interaction historical information
(A1, X1, A2, X2, . . . , At−1, Xt−1). Subsequently, the algorithm decides whether or not to abstain,
indicated by the binary random variable Bt, by comparing the empirical mean of the arm At, de-
noted as µ̂At

(t− 1), to the abstention reward c.

4.1 UPPER BOUNDS

Recall the definition of the cumulative regret RRW
µ,c (T ), as presented in Equation (2) for the

fixed-reward setting. Theorem 3 establishes both the instance-dependent asymptotic and instance-
independent minimax upper bounds for Algorithm 2; see Appendix D.1 for the proof.

Theorem 3. For all abstention rewards c ∈ R and bandit instances µ ∈ U , Algorithm 2 guarantees
that

lim sup
T→∞

RRW
µ,c (T )

log T
≤ 2

∑
i>1

µ1 ∨ c− µi ∨ c

∆2
i

.

Furthermore, there exists a universal constant α > 0 such that

RRW
µ,c (T ) ≤ α

√
KT +

∑
i∈[K]

(µ1 ∨ c− µi)

 .

Remark 5. It is worth considering the special case where c ≥ µ1, where opting for abstention results
in a reward even greater than, or equal to, the mean reward of the best arm. For this particular case, as
per Theorem 3, since µ1∨c−µi∨c = 0 for all i > 1, our algorithm achieves a regret of o(log T ). This
result, in fact, is not surprising. In contrast to the fixed-regret setting where the regret associated with
the abstention option is strictly positive, in this specific scenario of the fixed-reward setting, selecting
the abstention option is indeed the optimal action at a single time step, regardless of the arm pulled.
Therefore, there is no necessity to distinguish between suboptimal arms and the optimal one, and the
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exploration-exploitation trade-off becomes inconsequential. However, when the abstention reward
is below the mean reward of the best arm, i.e., c < µ1, maintaining a subpolynomial cumulative
regret still hinges on the delicate balance between exploration and exploitation, as evidenced by the
forthcoming exposition of the asymptotic lower bound.

4.2 LOWER BOUNDS

We hereby introduce the concept of RRW-consistency for the fixed-reward setting, in a manner
analogous to the fixed-regret setting. Following this, we present two distinct lower bounds for the
problem of regret minimization in multi-armed bandits with fixed-reward abstention in Theorem 4.
The proof for Theorem 4 is postponed to Appendix D.2.

Definition 2 (RRW-consistency). An algorithm π ∈ ΠRW is said to be RRW-consistent if for all
abstention rewards c ∈ R, bandit instances µ ∈ U , and a > 0, RRW

µ,c (T, π) = o(T a).

Theorem 4. For any abstention reward c ∈ R, bandit instance µ ∈ U and RRW-consistent algo-
rithm π, it holds that

lim inf
T→∞

RRW
µ,c (T, π)

log T
≥ 2

∑
i>1

µ1 ∨ c− µi ∨ c

∆2
i

.

For any abstention reward c ∈ R and time horizon T ≥ K, there exists a universal constant α > 0
such that

inf
π∈ΠRW

sup
µ∈U

RRW
µ,c (T, π) ≥ α

√
KT.

By comparing the upper bounds in Theorem 3 with the lower bounds in Theorem 4, it is firmly
confirmed that Algorithm 2 is both asymptotically and minimax optimal in the fixed-reward setting.

Asymptotic optimality. For any abstention reward c ∈ R and bandit instance µ ∈ U , our algorithm
ensures the following optimal asymptotic behavior for the cumulative regret:

lim
T→∞

RRW
µ,c (T )

log T
= 2

∑
i>1

µ1 ∨ c− µi ∨ c

∆2
i

.

Since it holds generally that µ1 ∨ c − µi ∨ c ≤ ∆i for each arm i > 1, our algorithm effectively
reduces the cumulative regret in the asymptotic regime through the incorporation of the fixed-reward
abstention option.

Minimax optimality. As for the worst-case performance of our algorithm, disregarding the addi-
tive term

∑
i∈[K] (µ1 ∨ c− µi), it achieves an optimal worst-case regret of O(

√
KT ). While this

worst-case regret aligns with that in the canonical multi-armed bandit model, it is noteworthy that
this achievement is non-trivial, demanding meticulous management of the asymptotic regret perfor-
mance in parallel.

Moreover, there is no occurrence of the phase transition phenomenon in the fixed-reward setting.
This absence can be attributed to the intrinsic nature of the fixed-reward abstention option. For
any abstention reward c ∈ R and online algorithm, we can always construct a challenging bandit
instance that leads to a cumulative regret of Ω(

√
KT ), as demonstrated in the proof of the minimax

lower bound in Appendix D.2.

5 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to empirically validate our theoretical insights.
Due to space limitations, we report our results only for the fixed-regret setting here. Results per-
taining to the fixed-reward setting are available in Appendix E. In each experiment, the reported
cumulative regrets are averaged over 2, 000 independent trials and the corresponding standard devi-
ations are displayed as error bars in the figures.

To confirm the benefits of incorporating the abstention option, we compare the performance of our
proposed algorithm FRG-TSWA (Algorithm 1) with that of Less-Exploring Thompson Sampling

8
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Figure 2: Empirical regrets with abstention regret c =
0.1 for different time horizons T .

(Jin et al., 2023), which serves as a base-
line algorithm without the abstention op-
tion. We consider two synthetic bandit in-
stances. The first instance µ† with K = 7

has uniform suboptimality gaps: µ†
1 = 1

and µ†
i = 0.7 for all i ∈ [K] \ {1}.

For the second instance µ‡ with K = 10,
the suboptimality gaps are more diverse:
µ‡
1 = 1, µ‡

i = 0.7 for i ∈ {2, 3, 4},
µ‡
i = 0.5 for i ∈ {5, 6, 7} and µ‡

i = 0.3
for i ∈ {8, 9, 10}. The empirical averaged
cumulative regrets of both methods with
abstention regret c = 0.1 for different time horizons T are presented in Figure 2. To demon-
strate their asymptotic behavior, we also plot the instance-dependent asymptotic lower bound on
the cumulative regret (see Theorem 2) in each sub-figure. It can be observed that FRG-TSWA is
clearly superior compared to the non-abstaining baseline, especially for large values of T . This
demonstrates the advantage of the abstention mechanism. With regard to the growth trend, as the
time horizon T increases, the curve corresponding to FRG-TSWA closely approximates that of the
asymptotic lower bound. This suggests that the expected cumulative regret of FRG-TSWA matches
the lower bound asymptotically, thereby substantiating the theoretical results presented in Section 3.
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Figure 3: Empirical regrets with time horizon T =
10, 000 for different abstention regrets c.

To illustrate the effect of the abstention
regret c, we evaluate the performance
of FRG-TSWA for varying values of c,
while keeping the time horizon T fixed
at 10, 000. The experimental results for
both bandit instances µ† and µ‡ are pre-
sented in Figure 3. Within each sub-figure,
we observe that as c increases, the empiri-
cal averaged cumulative regret initially in-
creases but eventually saturates beyond a
certain threshold value of c. These empiri-
cal observations align well with our expec-
tations. Indeed, when provided with com-
plete information about the bandit instance, if the abstention regret c exceeds the largest subopti-
mality gap, the agent gains no advantage in choosing the abstention option when selecting any arm.
However, we remark that the agent lacks this oracle-like knowledge of the suboptimality gaps and
must estimate them on the fly. Consequently, this results in the inevitable selection of the abstention
option, even when the abstention regret c is large.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we consider, for the first time, a multi-armed bandit model that allows for the possi-
bility of abstaining from accepting the stochastic rewards, alongside the conventional arm selection.
This innovative framework is motivated by real-world scenarios where decision-makers may wish
to hedge against highly uncertain or risky actions, as exemplified in clinical trials. Within this en-
riched paradigm, we address both the fixed-regret and fixed-reward settings, providing tight upper
and lower bounds on asymptotic and minimax regrets for each scenario. For the fixed-regret set-
ting, we thoughtfully adapt a recently developed asymptotically and minimax optimal algorithm
by Jin et al. (2023) to accommodate the abstention option while preserving its attractive optimality
characteristics. For the fixed-reward setting, we convert any asymptotically and minimax optimal
algorithm for the canonical model into one that retains these optimality properties when the absten-
tion option is present. Finally, experiments on synthetic datasets validate our theoretical results and
clearly demonstrate the advantage of incorporating the abstention option.

As highlighted in Remark 4, a fruitful avenue for future research lies in expanding the abstention
model from K-armed bandits to linear bandits. An intriguing inquiry is whether the inclusion of the
abstention feature can lead to enhanced asymptotic and minimax theoretical guarantees.
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Tor Lattimore and Csaba Szepesvári. The end of optimism? An asymptotic analysis of finite-armed
linear bandits. In Artificial Intelligence and Statistics, pp. 728–737. PMLR, 2017.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Ranking with abstention. arXiv preprint
arXiv:2307.02035, 2023.
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A ASYMPTOTIC AND MINIMAX OPTIMALITY IN CANONICAL
MULTI-ARMED BANDITS

In the canonical multi-armed bandit model, there is no additional abstention option. Given a bandit
instance µ ∈ U , at each time step t ∈ N, the agent employs an online algorithm π to choose an arm
At from the arm set [K], and then observes a random variable Xt from the selected arm At, which
is drawn from a Gaussian distribution N (µAt , 1) and independent of observations from previous
time steps. The choice of At might depend on the prior decisions and observations. To describe the
setup formally, At is FCA

t−1-measurable, where FCA
t := σ(A1, X1, A2, X2, . . . , At, Xt) represents

the σ-field generated by the cumulative interaction history up to and including time t. Subsequently,
the agent suffers an instantaneous regret of µ1 −Xt.

The agent aims at minimizing the expected cumulative regret over a time horizon T , which is defined
as

RCA
µ (T, π) = Tµ1 − E

[
T∑

t=1

Xt

]
.

We refer to the collection of all online policies for the canonical multi-armed bandit model as ΠCA.
Remark 6. It is worth noting that any algorithm designed for canonical multi-armed bandit model
possesses the capability to decide the arm At to pull at each time step t, based on the partial in-
teraction history (A1, X1, A2, X2, . . . , At−1, Xt−1), within the abstention model. Conversely, any
algorithm tailored for the abstention model in the fixed-regret setting (or in the fixed-reward setting)
can be applied to the canonical multi-armed bandit model, provided that the abstention regret (or
the abstention reward) has been predetermined. Specifically, the algorithm can determine both the
selected arm At and the binary abstention variable Bt, although Bt is purely auxiliary and exerts no
influence on the cumulative regret RCA

µ (T, π).

Lower bounds. Both the asymptotic and minimax lower bounds for the canonical multi-armed
bandit model have been thoroughly established (Lai & Robbins, 1985; Auer et al., 1995). For a
comprehensive overview, refer to Sections 15 and 16 of Lattimore & Szepesvári (2020). Here, we
summarize the results in the following:
Definition 3 (RCA-consistency). An algorithm π ∈ ΠCA is said to be RCA-consistent if for all
bandit instances µ ∈ U and a > 0, RCA

µ (T, π) = o(T a).

Theorem 5. For any bandit instance µ ∈ U and RCA-consistent algorithm π, it holds that

lim inf
T→∞

RCA
µ (T, π)

log T
≥
∑
i>1

2

∆i
.

For any time horizon T ≥ K, there exists a universal constant α > 0 such that

inf
π∈ΠCA

sup
µ∈U

RCA
µ (T, π) ≥ α

√
KT.

Asymptotic and minimax optimality. According to Theorem 5, in the canonical bandit model,
an algorithm π ∈ ΠCA is said to be asymptotically optimal if for all bandit instances µ ∈ U , it
ensures that

lim
T→∞

RCA
µ (T, π)

log T
=
∑
i>1

2

∆i
.

Furthermore, it is said to be minimax optimal if there exists a universal constant α > 0 such that

RCA
µ (T, π) ≤ α

(
√
KT +

∑
i>1

∆i

)
.

To the best of our knowledge, for canonical multi-armed bandits with Gaussian rewards,
KL-UCB++ (Ménard & Garivier, 2017), ADA-UCB (Lattimore, 2018), MOTS-J (Jin et al., 2021)
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and Less-Exploring Thompson Sampling (Jin et al., 2023) exhibit simultaneous asymptotic and min-
imax optimality. As their names suggest, the former two algorithms follow the UCB-style, while the
latter two are rooted in Thompson Sampling.
Remark 7. One valuable byproduct derived from the proof of the asymptotic lower bound in Theo-
rem 5 is that, for any RCA-consistent algorithm π, bandit instance µ ∈ U and suboptimal arm i > 1,
we have

lim inf
T→∞

E[Ni(T )]

log T
≥ 2

∆2
i

.

Therefore, any algorithm that is asymptotically optimal ensures that for all suboptimal arms i > 1,

lim
T→∞

E[Ni(T )]

log T
=

2

∆2
i

.

B AUXILIARY LEMMAS

Lemma 1 (Bretagnolle–Huber inequality (Tsybakov, 2009)). Let P and P′ be two probability distri-
butions on the same measurable space (Ω,F). For any event A ∈ F and its complement Ac = Ω\A,
the following inequality holds:

P(A) + P′(Ac) ≥ 1

2
exp(−KL(P,P′)),

where KL(P,P′) denotes the Kullback–Leibler (KL) divergence between P and P′.

Lemma 2 (Divergence decomposition lemma). Consider both the fixed-regret setting and the fixed-
reward setting. Fix an arbitrary policy π. Let ν = (P1, . . . ,PK) represent the reward distributions
associated with one bandit instance, and let ν′ = (P′

1, . . . ,P′
K) represent the reward distributions

associated with another bandit instance. Define Pν,c as the probability distribution of the sequence
(A1, B1, X1, . . . , AT , BT , XT ) induced by the algorithm π under the abstention regret c in the
fixed-regret setting (or the abstention reward c in the fixed-reward setting) for the bandit instance ν.
Similarly, let Pν′,c denote the same for the bandit instance ν′. Then the KL divergence between Pν,c

and Pν′,c can be decomposed as:

KL (Pν,c,Pν′,c) =
∑
i∈[K]

Eν,c[Ni(T )]KL (Pi,P′
i) .

The proof of Lemma 2 is similar to the well-known proof of divergence decomposition in the canon-
ical multi-armed bandit model (excluding abstention), and is therefore omitted. This proof can be lo-
cated, for instance, in Garivier et al. (2019, Section 2.1) and Lattimore & Szepesvári (2020, Lemma
15.1).

Lemma 3 (Hoeffding’s inequality for sub-Gaussian random variables). Let X1, . . . , Xn be inde-
pendent σ-sub-Gaussian random variables with mean µ. Then for any ε ≥ 0,

P(µ̂ ≥ µ+ ε) ≤ exp

(
−nε2

2σ2

)
and P(µ̂ ≤ µ− ε) ≤ exp

(
−nε2

2σ2

)
where µ̂ := 1

n

∑n
i=1 Xi.

Lemma 4. Let {Xi}i∈N be a sequence of independent σ-sub-Gaussian random variables with mean
µ. Then for any ε > 0 and N ∈ N,

N∑
n=1

P(µ̂n ≥ µ+ ε) ≤ 2σ2

ε2
and

N∑
n=1

P(µ̂n ≤ µ− ε) ≤ 2σ2

ε2

where µ̂n := 1
n

∑n
i=1 Xi.
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Proof of Lemma 4. By symmetry, it suffices to prove the first part. According to Lemma 3, we have

N∑
n=1

P(µ̂n ≥ µ+ ε) ≤
N∑

n=1

exp

(
−nε2

2σ2

)

≤
exp

(
− ε2

2σ2

)
1− exp

(
− ε2

2σ2

)
=

1

exp
(

ε2

2σ2

)
− 1

≤ 2σ2

ε2

where the last inequality follows from the fact that ex − 1 ≥ x for any x ≥ 0.

C ANALYSIS OF THE FIXED-REGRET SETTING

C.1 UPPER BOUNDS

Proof of Theorem 1. Due to the law of total expectation, we can decompose the regret RRG
µ,c (T, π)

as

RRG
µ,c (T, π) = E

[
T∑

t=1

(
(µ1 −Xt) · 1{Bt = 0}+ c · 1{Bt = 1}

)]

= E

[
T∑

t=1

(
(µ1 − µAt) · 1{Bt = 0}+ c · 1{Bt = 1}

)]
= c · E[N (1)

1 (T )] +
∑
i>1

(
∆i · E[N (0)

i (T )] + c · E[N (1)
i (T )]

)
. (3)

For any arm i with ∆i < c (including the best arm), it holds that

E[N (1)
i (T )]

= E

[
T∑

t=1

I {At = i and Bt = 1}

]

≤ E

[
T∑

t=1

I

{
At = i and

√
K

t
≥ c

}]

+ E

[
T∑

t=K+1

I

{
At = i and max

j∈[K]\{i}

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
− µ̂i(t− 1) ≥ c

}]

≤ E

[
T∑

t=1

I

{
At = i and

√
K

t
≥ c

}]

+ E

[
T∑

t=K+1

I

{
At = i and max

j∈[K]

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
≥ µ1

}]

+ E

[
T∑

t=K+1

I {At = i and µ1 − µ̂i(t− 1) ≥ c}

]
(4)
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where the last inequality arises from the observation that when At = i,{
max

j∈[K]\{i}

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
− µ̂i(t− 1) ≥ c

}

⊆

{
max

j∈[K]\{i}

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
≥ µ1

}
∪ {µ1 − µ̂i(t− 1) ≥ c}

⊆

{
max
j∈[K]

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
≥ µ1

}
∪ {µ1 − µ̂i(t− 1) ≥ c} .

For convenience, for any i ∈ [K] such that ∆i < c, we introduce three shorthand notations to
represent the terms in (4):

(♣)i := E
[∑T

t=1 I
{
At = i and

√
K
t ≥ c

}]
(♠)i := E

[∑T
t=K+1 I

{
At = i and maxj∈[K]

(
µ̂j(t− 1)−

√
6 log t+2 log(c∨1)

Nj(t−1)

)
≥ µ1

}]
(■)i := E

[∑T
t=K+1 I {At = i and µ1 − µ̂i(t− 1) ≥ c}

]
.

We will deal with (♣)i and (♠)i later for the two forms of upper bounds.

On the other hand, for the term (■)i, we have

(■)i ≤ E

[
T∑

t=K+1

T−1∑
s=1

I {At = i and µ̂is ≤ µi − (c−∆i) and Ni(t− 1) = s}

]

≤ E

[
T−1∑
s=1

I {µ̂is ≤ µi − (c−∆i)}

]
(5)

≤ 2

(c−∆i)2
. (6)

Line (5) follows from the fact that for all s ∈ [T − 1],

T∑
t=K+1

I {At = i and Ni(t− 1) = s} ≤ 1.

Line (6) is due to Lemma 4.

For any arm i with ∆i > c, since arm 1 ∈ [K] \ {i}, we have

E[N (0)
i (T )]

= E

[
T∑

t=1

I {At = i and Bt = 0}

]

≤ 1 + E

[
T∑

t=K+1

I

{
At = i and

max
j∈[K]\{i}

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
− µ̂i(t− 1) < c and

√
K

t
< c

}]

≤ 1 + E

[
T∑

t=K+1

I

{
At = i and

(
µ̂1(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)

)
− µ̂i(t− 1) < c

}]
.

(7)
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Minimax upper bound. If c ≤
√

K
T , then the abstention option is always invoked because√

K
t ≥

√
K
T ≥ c for all t ∈ [T ]. Consequently, it is straightforward to deduce that

RRG
µ,c (T ) ≤ cT.

Next, consider the case that c >
√

K
T . Compared with the canonical multi-armed bandit model, at a

single time step, the agent in our abstention model incurs a greater (expected) regret only if an arm
i with ∆i < c is pulled and the abstention option is selected. Thus, we have

RRG
µ,c (T ) ≤ RCA

µ (T ) +
∑

i:∆i<c

(c−∆i) · E[N (1)
i (T )]. (8)

Due to the minimax optimality of Less-Exploring Thompson Sampling (Jin et al., 2023), there exists
a universal constant α1 > 0 such that

RCA
µ (T ) ≤ α1

(
√
KT +

∑
i>1

∆i

)
. (9)

Recall the upper bound of E[N (1)
i (T )] for arm i with ∆i < c, as given in (4). Subsequently, we will

establish bounds for the following terms:

∑
i:∆i<c

(c−∆i) · (♣)i ,
∑

i:∆i<c

(c−∆i) · (♠)i and
∑

i:∆i<c

(c−∆i) · ((■)i.

For the first term, we have

∑
i:∆i<c

(c−∆i) · (♣)i ≤
∑

i:∆i<c

c · E

[
T∑

t=1

I

{
At = i and

√
K

t
≥ c

}]

≤ c · E

[
T∑

t=1

I

{√
K

t
≥ c

}]

≤ K

c

≤
√
KT. (10)

For the second term, we can obtain

∑
i:∆i<c

(c−∆i) · (♠)i ≤
∑

i:∆i<c

c · (♠)i

≤ c · E

[
T∑

t=K+1

I

{
max
j∈[K]

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
≥ µ1

}]

≤ c ·
∑
j∈[K]

E

[
T∑

t=K+1

I

{
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)
≥ µ1

}]
.
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For all j ∈ [K], by a union bound over all possible values of Nj(t− 1) and Lemma 3, we have

E

[
T∑

t=K+1

I

{
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)
≥ µ1

}]

≤
T∑

t=K+1

t−1∑
s=1

P

(
µ̂js −

√
6 log t+ 2 log(c ∨ 1)

s
≥ µ1

)

≤
T∑

t=K+1

t−1∑
s=1

P

(
µ̂js −

√
6 log t+ 2 log(c ∨ 1)

s
≥ µj

)

≤
T∑

t=K+1

t−1∑
s=1

1

t3(c ∨ 1)

≤
T∑

t=K+1

1

t2c

≤ 1

Kc

(11)

where the last inequality follows from the numerical fact that

T∑
t=K+1

1

t2
≤
∫ ∞

x=K

1

x2
dx =

1

K
.

Thus, we can bound the second term as∑
i:∆i<c

(c−∆i) · (♠)i ≤ c ·
∑
j∈[K]

1

Kc
= 1. (12)

For the third term, in addition to the upper bound of (■)i in (6), we can identify another straightfor-
ward upper bound as follows:

(■)i ≤ E

[
T∑

t=K+1

I {At = i}

]
≤ E[Ni(T )].

By applying these two bounds separately for distinct scenarios,, we have∑
i:∆i<c

(c−∆i) · (■)i ≤
∑

i:0<c−∆i<
√

K
T

(c−∆i) · (■)i +
∑

i:c−∆i≥
√

K
T

(c−∆i) · (■)i

≤
√

K

T

∑
i:0<c−∆i<

√
K
T

E[Ni(T )] +
∑

i:c−∆i≥
√

K
T

2

c−∆i

≤
√

K

T
· T +

∑
i:c−∆i≥

√
K
T

2

√
T

K

≤
√
KT +K · 2

√
T

K

= 3
√
KT. (13)

By plugging Inequalities (10), (12) and (13) into (4), we have∑
i:∆i<c

(c−∆i) · E[N (1)
i (T )] ≤ 1 + 4

√
KT.
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Together with (8) and (9), we can conclude that

RRG
µ,c (T ) ≤ (α1 + 4)

√
KT + α1

∑
i>1

∆i + 1.

Therefore, there must exist a universal constant α > 0 such that

RRG
µ,c (T ) ≤ α

(
√
KT +

∑
i>1

∆i

)
.

This completes the proof of the minimax upper bound.

Asymptotic upper bound. Consider any arm i with ∆i < c (including the best arm). In the
following, we will further elucidate the upper bound of E[N (1)

i (T )] as given in (4) within the asymp-
totic domain.

For the first term (♣)i in (4), we have

(♣)i ≤ E

[
T∑

t=1

I

{√
K

t
≥ c

}]
≤ K

c2
.

For the second term (♠)i, using Inequality (11), we can get

(♠)i ≤ E

[
T∑

t=K+1

I

{
max
j∈[K]

(
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)

)
≥ µ1

}]

≤
∑
j∈[K]

E

[
T∑

t=K+1

I

{
µ̂j(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

Nj(t− 1)
≥ µ1

}]

≤ 1

c
.

Incorporating (6), we obtain

E[N (1)
i (T )] ≤ K

c2
+

1

c
+

2

(c−∆i)2
= o(log T ).

Consider any arm i with ∆i > c. We will further explore the upper bound of E[N (0)
i (T )] in (7).

According to the fact that

{
At = i and

(
µ̂1(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)

)
− µ̂i(t− 1) < c

}

⊆

{
µ̂1(t− 1) +

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)
≤ µ1

}

∪

{
At = i and

(
µ1 − 2

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)

)
− µ̂i(t− 1) ≤ c

}
,
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we have

E[N (0)
i (T )]

≤ 1 + E

[
T∑

t=K+1

I

{
At = i and

(
µ̂1(t− 1)−

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)

)
− µ̂i(t− 1) < c

}]

≤ 1 + E

[
T∑

t=K+1

I

{
µ̂1(t− 1) +

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)
≤ µ1

}]

+ E

[
T∑

t=K+1

I

{
At = i and

(
µ1 − 2

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)

)
− µ̂i(t− 1) < c

}]
︸ ︷︷ ︸

(⋆)i

. (14)

Following a similar argument as in (11), we can derive

E

[
T∑

t=K+1

I

{
µ̂1(t− 1) +

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)
≤ µ1

}]
≤ 1

Kc
. (15)

Now we focus on the last term in (14), which is denoted by (⋆)i.

For any fixed b ∈ (0, 1), there must exist a constant t1(b, µ, c) ≥ K + 1 such that for all t ≥ t1,

2

√
6 log t+ 2 log(c ∨ 1)

(t− 1)b
≤ ∆i − c

2
.

Notice that for all t ≥ t1,{
At = i and

(
µ1 − 2

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)

)
− µ̂i(t− 1) < c

}
⊆
{
N1(t− 1) ≤ (t− 1)b

}
∪

{
At = i and

(
µ1 − 2

√
6 log t+ 2 log(c ∨ 1)

N1(t− 1)

)
− µ̂i(t− 1) < c and N1(t− 1) > (t− 1)b

}

⊆
{
N1(t− 1) ≤ (t− 1)b

}
∪
{
At = i and µ̂i(t− 1) ≥ µ1 +

∆i − c

2

}
.

From the above, we deduce that

(⋆)i ≤ t1 +

T∑
t=t1

P
(
N1(t− 1) ≤ (t− 1)b

)
+ E

[
T∑

t=t1

I
{
At = i and µ̂i(t− 1) ≥ µ1 +

∆i − c

2

}]
.

Using the approach similar to the one used to bound (■)i in (6), we have

E

[
T∑

t=t1

I
{
At = i and µ̂i(t− 1) ≥ µ1 +

∆i − c

2

}]
≤ 8

(∆i − c)2
.

By applying Lemma 5, we can get

(⋆)i ≤ t1(b, µ, c) + β(b, µ,K) +
8

(∆i − c)2

where the term β(b, µ,K) is subsequently defined in Lemma 5.

19



Under review as a conference paper at ICLR 2024

Substituting the above inequality and (15) into (14), we arrive at

E[N (0)
i (T )] ≤ 1 +

1

Kc
+ t1(b, µ, c) + β(b, µ,K) +

8

(∆i − c)2

= o(log T ).

Due to the asymptotic optimality of Less-Exploring Thompson Sampling (Jin et al., 2023), for any
suboptimal arm i, we have

E[Ni(T )] ≤
2 log T

∆2
i

+ o(log T ).

Finally, based on the regret decomposition in (3), we can conclude

RRG
µ,c (T ) = c · E[N (1)

1 (T )] +
∑
i>1

(
∆i · E[N (0)

i (T )] + c · E[N (1)
i (T )]

)
= c · E[N (1)

1 (T )] +
∑
i>1

(∆i ∧ c) · E[Ni(T )]

+
∑
i>1

(
(∆i −∆i ∧ c) · E[N (0)

i (T )] + (c−∆i ∧ c) · E[N (1)
i (T )]

)
=
∑
i>1

(∆i ∧ c) · E[Ni(T )] +
∑

i:∆i<c

(c−∆i) · E[N (1)
i (T )] +

∑
i:∆i>c

(∆i − c) · E[N (0)
i (T )]

≤ (2 log T )
∑
i>1

∆i ∧ c

∆2
i

+ o(log T )

where the second equality is due to the fact that E[N (0)
i (T )] +E[N (1)

i (T )] = E[Ni(T )] for all arms
i ∈ [K].

Therefore, it holds that

lim sup
T→∞

RRG
µ,c (T )

log T
≤ 2

∑
i>1

∆i ∧ c

∆2
i

as desired.

Lemma 5. Consider Algorithm 1. For any b ∈ (0, 1), there exists a constant β(b, µ,K) such that

∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ β(b, µ,K).

Proof of Lemma 5. The proof of Lemma 5 is essentially the same as that of Proposition 5 in Korda
et al. (2013), which was used to analyze the classical Thompson Sampling algorithm. In fact, the
only difference between our arm sampling rule, which is built upon Less-Exploring Thompson Sam-
pling (Jin et al., 2023), and the classical Thompson Sampling is how the estimated reward ai(t) is
constructed for each arm i ∈ [K]. Specifically, in our arm sampling rule, ai(t) is either drawn from
the posterior distribution N (µ̂i(t− 1), 1/Ni(t− 1)) with probability 1/K or set to be the empirical
mean µ̂i(t− 1) otherwise. In classical Thompson Sampling, ai(t) is always drawn from the poste-
rior distribution. Therefore, it suffices to verify the parts concerning the probability distributions of
ai(t); these correspond to Lemmas 9 and 10 in the proof of Proposition 5 in Korda et al. (2013).

It is straightforward to see that Lemma 9 in Korda et al. (2013) is applicable to our algorithm. For
Lemma 10 therein, its counterpart is demonstrated in Lemma 6 below.

After establishing the counterparts of Lemmas 9 and 10 in the proof of Proposition 5 in Korda et al.
(2013), we can extend the same analysis to our specific case. For the sake of completeness, we
provide a proof sketch in the following.

Let τj denote the time of the j-th pull of the optimal arm (i.e., arm 1), with τ0 := 0. Define
ξj := (τj+1 − 1) − τj as the random variable measuring the number of time steps between the

20



Under review as a conference paper at ICLR 2024

j-th and (j + 1)-th pull of the optimal arm. With this setup, we can derive an upper bound for
P
(
N1(t) ≤ tb

)
as:

P
(
N1(t) ≤ tb

)
≤ P

(
∃j ∈

{
0, ..,

⌊
tb
⌋}

: ξj ≥ t1−b − 1
)
≤

⌊tb⌋∑
j=0

P(ξj ≥ t1−b − 1).

Consider the interval Ij :=
{
τj , . . . , τj +

⌈
t1−b − 1

⌉}
. If ξj ≥ t1−b − 1, then no pull of the optimal

arm occurs on Ij .

The subsequent analysis aims to bound the probability that no pull of the optimal arm occurs within
the interval Ij . It relies on two key principles:

• First, for a suboptimal arm, if it has been pulled a sufficient number of times, then, with
high probability, its estimated reward (sample) cannot deviate significantly from its true
mean. This observation is quantitatively characterized in Lemma 10 of Korda et al. (2013),
corresponding to Lemma 6 in our paper.

• Second, for the optimal arm, the probability that its estimated reward (sample) deviates
significantly below its true mean during a long subinterval of Ij is low. This observation
is quantitatively characterized in Lemma 9 of Korda et al. (2013), which directly applies to
our case.

Lemma 6. Consider Algorithm 1. For all t ∈ N, it holds that

P
(
∃ s ≤ t,∃ i > 1 : ai(s) > µi +

∆i

2
, Ni(s− 1) >

128 log t

∆2
i

)
≤ K

t2
.

Proof of Lemma 6. For any fixed s ≤ t and i > 1, we have

P
(
ai(s) > µi +

∆i

2
, Ni(s− 1) >

128 log t

∆2
i

)
≤ P

(
µ̂i(s− 1) > µi +

∆i

4
, Ni(s− 1) >

128 log t

∆2
i

)
+ P

(
ai(s) > µi +

∆i

2
, Ni(s− 1) >

128 log t

∆2
i

, µ̂i(s− 1) ≤ µi +
∆i

4

)
.

(16)

For the first term in (16), by Lemma 3, we can bound it as

P
(
µ̂i(s− 1) > µi +

∆i

4
, Ni(s− 1) >

128 log t

∆2
i

)
≤

t∑
x=

⌈
128 log t

∆2
i

⌉P
(
µ̂ix > µi +

∆i

4
, Ni(s− 1) = x

)

≤
t∑

x=

⌈
128 log t

∆2
i

⌉P
(
µ̂ix > µi +

∆i

4

)

≤
t∑

x=

⌈
128 log t

∆2
i

⌉
1

t4

≤ 1

t3
.
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For the second term in (16), according to the construction of ai(s) in Algorithm 1 and Lemma 3, we
can get

P
(
ai(s) > µi +

∆i

2
, Ni(s− 1) >

128 log t

∆2
i

, µ̂i(s− 1) ≤ µi +
∆i

4

)
≤ P

(
ai(s) > µ̂i(s− 1) +

∆i

4
, Ni(s− 1) >

128 log t

∆2
i

)
≤

t∑
x=

⌈
128 log t

∆2
i

⌉P
(
ai(s) > µ̂i(s− 1) +

∆i

4
, Ni(s− 1) = x

)

≤
t∑

x=

⌈
128 log t

∆2
i

⌉
1

K
· 1

t4

≤ 1

Kt3
.

Thus, for any s ≤ t and i > 1, it holds that

P
(
ai(s) > µi +

∆i

2
, Ni(s− 1) >

128 log t

∆2
i

)
≤ 1

t3
+

1

Kt3
=

K + 1

Kt3
.

Finally, by a union bound, we can conclude

P
(
∃ s ≤ t,∃ i > 1 : ai(s) > µi +

∆i

2
, Ni(s− 1) >

128 log t

∆2
i

)
≤ (K + 1)(K − 1)

Kt2
≤ K

t2
.

C.2 LOWER BOUNDS

Proof of Theorem 2. In the following, we will establish the asymptotic and minimax lower bounds,
respectively.

Asymptotic lower bound. Consider any algorithm π that is RRG-consistent. Sine E[N (0)
i (T )] +

E[N (1)
i (T )] = E[Ni(T )] for all arms i ∈ [K], we can utilize the regret decomposition in (3) to

derive

RRG
µ,c (T, π) ≥

∑
i>1

(
∆i · E[N (0)

i (T )] + c · E[N (1)
i (T )]

)
≥
∑
i>1

(
(∆i ∧ c) · E[Ni(T )]

)
.

Fix any abstention regret c > 0. Then for all bandit instances µ ∈ U and a > 0, it holds that

RCA
µ (T, π) = Tµ1 − E

[
T∑

t=1

Xt

]
=
∑
i>1

(
∆i · E[Ni(T )]

)
≤ max

i>1

∆i

∆i ∧ c
·
∑
i>1

(
(∆i ∧ c) · E[Ni(T )]

)
≤ max

i>1

∆i

∆i ∧ c
·RRG

µ,c (T, π)

= o(T a).
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Therefore, in accordance with Definition 3, the algorithm π is also RCA-consistent for arbitrary
abstention regret c.

Subsequently, for any abstention regret c and bandit instance µ, we have

lim inf
T→∞

RRG
µ,c (T, π)

log T
≥ lim inf

T→∞

∑
i>1 ((∆i ∧ c) · E[Ni(T )])

log T

=
∑
i>1

(∆i ∧ c) · lim inf
T→∞

E[Ni(T )]

log T

≥ 2
∑
i>1

∆i ∧ c

∆2
i

,

where the last inequality follows from the property of RCA-consistent policies as detailed in Re-
mark 7.

This concludes the proof of the instance-dependent asymptotic lower bound.

Minimax lower bound. We extend the proof of the minimax lower bound from the canonical
multi-armed bandit model to the model incorporating fixed-regret abstention.

Consider any fixed abstention regret c > 0, time horizon T ≥ K and algorithm π ∈ ΠRG. We
construct a bandit instance µ ∈ U , where µ1 = ∆ and µi = 0 for all i ∈ [K] \ {1}. Here,
∆ > 0 is some parameter whose exact value will be determined later. We use Pµ,c to represent the
probability distribution of the sequence (A1, B1, X1, . . . , AT , BT , XT ) induced by the algorithm π
for the abstention regret c and bandit instance µ. Since

∑
i=1 Eµ,c[Ni(T )] = T , according to the

pigeonhole principle, there must exist an index j ∈ [K] \ {1} such that

Eµ,c[Nj(T )] ≤
T

K − 1
.

Now we construct another bandit instance µ′ ∈ U , where µ′
1 = ∆, µ′

j = 2∆ and µ′
i =

0 for all i ∈ [K] \ {1, j}. Let Pµ′,c denote the probability distribution of the sequence
(A1, B1, X1, . . . , AT , BT , XT ) induced by the algorithm π for the abstention regret c and bandit
instance µ′.

For the first bandit instance µ, regardless of the abstention option, if N1(T ) ≤ T/2, then the cumu-
lative regret must be at least (∆ ∧ c)T/2. Therefore, we have

RRG
µ,c (T, π) ≥

(∆ ∧ c)T

2
Pµ,c(N1(T ) ≤ T/2).

Similarly, for the second bandit instance µ′, we can obtain

RRG
µ′,c(T, π) ≥

(∆ ∧ c)T

2
Pµ′,c(N1(T ) > T/2).

By combining the aforementioned two inequalities and applying Lemma 1, we obtain the following:

RRG
µ,c (T, π) +RRG

µ′,c(T, π) ≥
(∆ ∧ c)T

2
(Pµ,c(N1(T ) ≤ T/2) + Pµ′,c(N1(T ) > T/2))

≥ (∆ ∧ c)T

4
exp (−KL (Pµ,c,Pµ′,c)) .

Leveraging Lemma 2 and the KL divergence between Gaussian distributions, we can derive

KL (Pµ,c,Pµ′,c) = Eµ,c[Nj(T )]
(2∆)2

2
≤ 2T∆2

K − 1
.

Altogether, we can arrive at

RRG
µ,c (T, π) +RRG

µ′,c(T, π) ≥
(∆ ∧ c)T

4
exp

(
− 2T∆2

K − 1

)
.
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Now, we set ∆ =
√

K
T ∧ c, which leads to

RRG
µ,c (T, π) +RRG

µ′,c(T, π) ≥
√
KT ∧ cT

4
exp

−
2T (

√
K
T ∧ c)2

K − 1


≥

√
KT ∧ cT

4
exp

(
− 2K

K − 1

)
≥ exp(−4)

4
(
√
KT ∧ cT ).

Consequently, either RRG
µ,c (T, π) or RRG

µ′,c(T, π) is at least exp(−4)
8 (

√
KT ∧ cT ), which completes

the proof of the instance-independent minimax lower bound.

D ANALYSIS OF THE FIXED-REWARD SETTING

D.1 UPPER BOUNDS

Proof of Theorem 3. Utilizing the law of total expectation, we can decompose the regret RRW
µ,c (T, π)

in the following:

RRW
µ,c (T, π) = T · (µ1 ∨ c)− E

[
T∑

t=1

(
Xt · 1{Bt = 0}+ c · 1{Bt = 1}

)]

= T · (µ1 ∨ c)− E

[
T∑

t=1

(
µAt

· 1{Bt = 0}+ c · 1{Bt = 1}
)]

=
∑
i∈[K]

(
(µ1 ∨ c− µi) · E[N (0)

i (T )] + (µ1 ∨ c− c) · E[N (1)
i (T )]

)
. (17)

Recall that we define µ̂i(t) = +∞ if Ni(t) = 0 for all arms i ∈ [K]. Thus, for any arm i with
µi > c, we can obtain

E[N (1)
i (T )] = E

[
T∑

t=1

I {At = i and Bt = 1}

]

= E

[
T∑

t=1

I {At = i and µ̂i(t− 1) ≤ c}

]

≤ E

[
T∑

t=1

T−1∑
s=0

I {At = i and µ̂is ≤ c and Ni(t− 1) = s}

]

= E

[
T∑

t=1

T−1∑
s=1

I {At = i and µ̂is ≤ c and Ni(t− 1) = s}

]

≤ E

[
T−1∑
s=1

I {µ̂is ≤ c}

]

≤ 2

(µi − c)2

where the penultimate inequality is derived from an argument analogous to that in (5), and the last
inequality is a consequence of Lemma 4.
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Similarly, for any arm i with µi < c, we have

E[N (0)
i (T )] = E

[
T∑

t=1

I {At = i and Bt = 0}

]

= E

[
T∑

t=1

I {At = i and µ̂i(t− 1) > c}

]

≤ E

[
T∑

t=1

T−1∑
s=0

I {At = i and µ̂is > c and Ni(t− 1) = s}

]

≤ 1 + E

[
T∑

t=1

T−1∑
s=1

I {At = i and µ̂is > c and Ni(t− 1) = s}

]

≤ 1 +
2

(c− µi)2
.

Asymptotic upper bound. First, we consider the scenario where µ1 ≤ c. In this case, based on
the regret decomposition in Equation (17), we can bound the regret as follows:

RRW
µ,c (T ) =

∑
i∈[K]

(c− µi) · E[N (0)
i (T )]

=
∑

i:µi<c

(c− µi) · E[N (0)
i (T )] (18)

≤
∑

i:µi<c

(
c− µi +

2

c− µi

)
= o(log T ).

Next, we consider the scenario where µ1 > c. Due to the asymptotic optimality of the base algo-
rithm, for any suboptimal arm i, we have

E[Ni(T )] ≤
2 log T

∆2
i

+ o(log T ).

Thus, we can bound the regret as:
RRW

µ,c (T )

=
∑
i∈[K]

(
(µ1 − µi) · E[N (0)

i (T )] + (µ1 − c) · E[N (1)
i (T )]

)
=
∑
i∈[K]

(
(µ1 − µi ∨ c+ µi ∨ c− µi) · E[N (0)

i (T )] + (µ1 − µi ∨ c+ µi ∨ c− c) · E[N (1)
i (T )]

)
=
∑
i∈[K]

(
(µ1 − µi ∨ c) · E[Ni(T )] + (µi ∨ c− µi) · E[N (0)

i (T )] + (µi ∨ c− c) · E[N (1)
i (T )]

)
=
∑
i>1

(µ1 − µi ∨ c) · E[Ni(T )] +
∑

i:µi<c

(c− µi) · E[N (0
i (T )] +

∑
i:µi>c

(µi − c) · E[N (1)
i (T )]

≤ (2 log T )
∑
i>1

µ1 − µi ∨ c

∆2
i

+
∑

i:µi<c

(
c− µi +

2

c− µi

)
+
∑

i:µi>c

2

µi − c
+ o(log T )

= (2 log T )
∑
i>1

µ1 − µi ∨ c

∆2
i

+ o(log T )

where the third equality is due to the fact that E[N (0)
i (T )] + E[N (1)

i (T )] = E[Ni(T )] for all arms
i ∈ [K].

Altogether, in both scenarios, it holds that

lim sup
T→∞

RRW
µ,c (T )

log T
≤ 2

∑
i>1

µ1 ∨ c− µi ∨ c

∆2
i

.
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Minimax upper bound. First, if µ1 ≤ c, by utilizing the regret decomposition in Equation (18),
we have

RRW
µ,c (T ) =

∑
i:µi<c

(c− µi) · E[N (0)
i (T )]

=
∑

i:0<c−µi<
√

K
T

(c− µi) · E[N (0)
i (T )] +

∑
i:c−µi≥

√
K
T

(c− µi) · E[N (0)
i (T )]

≤
√

K

T

∑
i:0<c−µi<

√
K
T

E[N (0)
i (T )] +

∑
i:c−µi≥

√
K
T

(
c− µi +

2

c− µi

)

≤
√

K

T
· T +

∑
i:c−µi≥

√
K
T

(
c− µi + 2

√
T

K

)

≤
√
KT +

∑
i∈[K]

(c− µi) +K · 2
√

T

K

= 3
√
KT +

∑
i∈[K]

(µ1 ∨ c− µi) .

(19)

Next, if µ1 > c, then the best possible (expected) reward at a single time step is µ1, which coincides
with the canonical multi-armed bandit problem. Consequently, compared with canonical multi-
armed bandits, at a single time step, the agent in our problem incurs a greater (expected) regret only
if an arm i with µi > c is pulled and the abstention option is chosen. Thus, we have

RRW
µ,c (T ) ≤ RCA

µ (T ) +
∑

i:µi>c

(µi − c) · E[N (1)
i (T )].

Due to the minimax optimality of the base algorithm, there exists a universal constant α1 > 0 such
that

RCA
µ (T ) ≤ α1

(
√
KT +

∑
i>1

∆i

)
.

Furthermore, using a similar argument as in (19), we can derive∑
i:µi>c

(µi − c) · E[N (1)
i (T )]

=
∑

i:0<µi−c<
√

K
T

(µi − c) · E[N (1)
i (T )] +

∑
i:µi−c≥

√
K
T

(µi − c) · E[N (1)
i (T )]

≤
√
KT +

∑
i:µi−c≥

√
K
T

2

µi − c

≤ 3
√
KT.

Therefore, we can bound the regret as

RRW
µ,c (T ) ≤ (α1 + 3)

(
√
KT +

∑
i>1

∆i

)

= (α1 + 3)

√
KT +

∑
i∈[K]

(µ1 ∨ c− µi)

 .

As a result, the desired minimax upper bound holds in both scenarios.

26



Under review as a conference paper at ICLR 2024

D.2 LOWER BOUNDS

Proof of Theorem 4. The proof structure for Theorem 4 closely parallels that of Theorem 2 in
Appendix C.2, although certain specific details contain significant variations. Therefore, we will
streamline the shared components and elaborate on the distinctions.

Asymptotic lower bound. Consider any RRW-consistent algorithm π and bandit instance µ ∈ U .
The case that c ≥ µ1 is trivial, as RRW

µ,c (T, π) is non-negative, and µ1 ∨ c− µi ∨ c = 0 for all i > 1.
Thus, it suffices to demonstrate that for any abstention reward c < µ1,

lim inf
T→∞

RRW
µ,c (T, π)

log T
≥ 2

∑
i>1

µ1 − µi ∨ c

∆2
i

.

When c < µ1, we can establish a lower bound on RRW
µ,c (T, π) as follows:

RRW
µ,c (T, π) =

∑
i∈[K]

(
(µ1 − µi) · E[N (0)

i (T )] + (µ1 − c) · E[N (1)
i (T )]

)
≥
∑
i>1

(
(µ1 − µi) · E[N (0)

i (T )] + (µ1 − c) · E[N (1)
i (T )]

)
≥
∑
i>1

(
(µ1 − µi ∨ c) · E[Ni(T )]

)
.

Therefore, we only need to show for all suboptimal arms i > 1,

lim inf
T→∞

E[Ni(T )]

log T
≥ 2

∆2
i

. (20)

However, unlike the asymptotic lower bound part of the proof of Theorem 2, we cannot apply
the properties of RCA-consistency here, as RRW-consistency does not imply RCA-consistency in
general. Instead, we will demonstrate the desired result (20) directly.

Fix an index j > 1 and take ε > 0. We now proceed to create an alternative bandit instance µ′ ∈ U ,
where µ′

j = µ1 + ε and µ′
i = µi for all i ∈ [K] \ {j}. Note that for the new bandit instance, it holds

that maxi∈[K] µ
′
i = µ′

j > µ1 > c. To distinguish between the two scenarios, we will refer to the
probability distribution associated with the sequence (A1, B1, X1, . . . , AT , BT , XT ), generated by
the algorithm π for the abstention reward c and the original bandit scenario µ, as Pµ,c, and for the
new bandit instance µ′, we denote the corresponding distribution as Pµ′,c.

A straightforward computation yields

RRW
µ,c (T, π) ≥

(µ1 − µi ∨ c)T

2
Pµ,c(Nj(T ) > T/2)

and

RRW
µ′,c(T, π) ≥

εT

2
Pµ′,c(Nj(T ) ≤ T/2).

Employing a similar approach to the one used in the minimax lower bound part of the proof of
Theorem 2, utilizing Lemmas 1 and 2, we can derive:

RRW
µ,c (T, π) +RRW

µ′,c(T, π) ≥
((µ1 − µi ∨ c) ∧ ε)T

2
(Pµ,c(Nj(T ) > T/2) + Pµ′,c(Nj(T ) ≤ T/2))

≥ ((µ1 − µi ∨ c) ∧ ε)T

4
exp (−KL (Pµ,c,Pµ′,c))

=
((µ1 − µi ∨ c) ∧ ε)T

4
exp

(
−Eµ,c[Nj(T )]

(∆j + ε)2

2

)
.
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By rearranging the above inequality and taking the limit inferior, we have

lim inf
T→∞

E[Nj(T )]

log T
≥ 2

(∆j + ε)2

1 + lim sup
T→∞

log

(
(µ1−µi∨c)∧ε

4
(
RRW

µ,c (T,π)+RRW
µ′,c(T,π)

))
log T


=

2

(∆j + ε)2

(
1− lim sup

T→∞

log
(
RRW

µ,c (T, π) +RRW
µ′,c(T, π)

)
log T

)
.

Recall the definition of RRW-consistency. For all a > 0, both RRW
µ,c (T, π) and RRW

µ′,c(T, π) are on
the order of o(T a), and hence,

lim sup
T→∞

log
(
RRW

µ,c (T, π) +RRW
µ′,c(T, π)

)
log T

≤ a.

By letting both a and ε approach zero, we can establish the desired result (20), thereby concluding
the proof of the asymptotic lower bound.

Minimax lower bound. The construction employed in the fixed-reward setting here is analogous
to the one utilized in the proof of Theorem 2.

Consider any fixed abstention reward c ∈ R, time horizon T ≥ K and algorithm π ∈ ΠRW.
Let ∆ > 0 be a parameter to be determined later. We construct a bandit instance µ ∈ U , where
µ1 = ∆+ c and µi = c for all i ∈ [K] \ {1}. Note that there must exist an index j ∈ [K] \ {1} such
that Eµ,c[Nj(T )] ≤ T

K−1 . We then construct another bandit instance µ′ ∈ U , where µ′
1 = ∆ + c,

µ′
j = 2∆+ c and µ′

i = c for all i ∈ [K] \ {1, j}.

Similarly, by applying Lemmas 1 and 2, we can derive that

RRW
µ,c (T, π) +RRW

µ′,c(T, π) ≥
∆T

2
(Pµ,c(N1(T ) ≤ T/2) + Pµ′,c(N1(T ) > T/2))

≥ ∆T

4
exp (−KL (Pµ,c,Pµ′,c))

=
∆T

4
exp

(
−Eµ,c[Nj(T )]

(2∆)2

2

)
≥ ∆T

4
exp

(
− 2T∆2

K − 1

)
.

By choosing ∆ =
√

K
T , we have

RRW
µ,c (T, π) +RRW

µ′,c(T, π) ≥
exp(−4)

8

√
KT.

Consequently, either RRW
µ,c (T, π) or RRW

µ′,c(T, π) is at least exp(−4)
8

√
KT .

Therefore, we have established the instance-independent minimax lower bound.

E ADDITIONAL NUMERICAL RESULTS

E.1 RESULTS FOR THE FIXED-REWARD SETTING

In this part, we present the empirical results pertaining to the fixed-reward setting. Specifically, we
examine the empirical performances of two particular realizations of our algorithm FRW-ALGWA
(as outlined in Algorithm 2): FRW-TSWA and FRW-UCBWA. The former uses Less-Exploring
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Figure 4: Empirical regrets with abstention reward c = 0.9 for different time horizons T .

Thompson Sampling (Jin et al., 2023) as its base algorithm, while the latter employs KL-UCB++

(Ménard & Garivier, 2017). Note that KL-UCB++ is not an anytime algorithm; that is, it requires
the prior knowledge of the time horizon T as an input parameter. In the following experiments, we
continue to utilize the two bandit instances µ† and µ‡, as previously defined in Section 5.

In a manner analogous to our methodology for the fixed-regret setting, we adopt the original versions
of Less-Exploring TS and KL-UCB++ as baseline algorithms without the abstention option. The
experimental results of the different methods with abstention reward c = 0.9 for different time
horizons T are presented in Figure 4. Additionally, we plot the instance-dependent asymptotic
lower bound (ignoring the limit in T ) on the cumulative regret (see Theorem 4) within each sub-
figure. From Figure 4, we have the following observations:

• Both realizations of our algorithm, FRW-TSWA and FRW-UCBWA, exhibit marked su-
periority over the two non-abstaining baselines.

• Concerning the observed growth trend, as the time horizon T increases, the performance
curves for both FRW-TSWA and FRW-UCBWA approximate the asymptotic lower bound
closely. This behavior indicates that the expected cumulative regrets of FRW-TSWA and
FRW-UCBWA attain the instance-dependent lower bound asymptotically, validating the
theoretical findings discussed in Section 4.

• While both FRW-TSWA and FRW-UCBWA represent implementations of our general
algorithm and share identical theoretical guarantees, FRW-TSWA demonstrates superior
empirical performance. This is particularly evident in the first instance µ†, suggesting its
enhanced applicability for real-world applications.

Next, we examine the impact of the abstention reward c by assessing the performance of FRW-
TSWA and FRW-UCBWA for different c, while keeping the time horizon T fixed at 10, 000. The
experimental results for bandit instances µ† and µ‡ are shown in Figure 5.

Within each sub-figure, a pattern emerges. As the abstention reward c increases, the empirical
average cumulative regret initially remains relatively stable and starts to decline once c crosses a
certain threshold, eventually stabilizing around a small value. These observations are consistent with
our theoretical expectations. Specifically, when the abstention reward c is lower than the smallest
mean reward among the arms, the agent derives no benefit from opting for the abstention action over
selecting an arm. On the other hand, when the abstention reward c exceeds the highest mean reward
of the arms, abstention becomes the optimal decision and its reward is even superior to choosing the
best arm. In this specific scenario, it is possible to achieve a regret of o(log T ); see Remark 5 for
further insights.
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Figure 5: Empirical regrets with time horizon T = 10, 000 for different abstention rewards c.

E.2 RANDOM INSTANCES

In this subappendix, we present additional numerical experiments, using random instances with
large numbers of arms. The construction of these random instances mirrors the method in Jin et al.
(2023). Specifically, for a given number of arms denoted by K ≥ 10, we set µ1 = 1 and µi = 0.7
for i ∈ {2, 3, . . . , 10}, while µi ∼ Unif[0.3, 0.5] for i ∈ [K] \ [10].
For the sake of simplicity in presentation, we focus on the fixed-regret setting, examining two
choices of K, namely, K = 20 and K = 30. The empirical averaged cumulative regrets with
abstention regret c = 0.1 for different time horizons T are shown in Figure 6, while the experi-
mental results with time horizon T = 10, 000 for different abstention rewards c are illustrated in
Figure 7.

It is evident that the findings in Figures 6 and 7 closely resemble those in Figures 2 and 3. Notably,
FRW-TSWA outperforms Less-Exploring TS which is not tailored to the setting with the abstention
option.
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Figure 6: Empirical regrets with abstention regret c = 0.1 for different time horizons T .
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Figure 7: Empirical regrets with time horizon T = 10, 000 for different abstention regrets c.
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