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Abstract— Manipulators can be added to legged robots,
allowing them to interact with and change their environ-
ment. Legged mobile manipulation planners must consider
how contact forces generated by these manipulators affect the
system. Current planning strategies either treat these forces as
immutable during planning or are unable to optimize over these
contact forces while operating in real-time. This paper presents
the Stability and Task Oriented Receding-Horizon Motion
and Manipulation Autonomous Planner (STORMMAP) that is
able to generate continuous plans for the robot’s motion and
manipulation force trajectories that ensure dynamic feasibility
and stability of the platform, and incentivizes accomplishing
manipulation and motion tasks specified by a user. A variety
of simulated experiments on a quadruped with a manipulator
mounted to its torso demonstrate the versatility of STOR-
MMAP. In contrast to existing state of the art methods, the
approach described in this paper generates continuous plans
in under ten milliseconds, an order of magnitude faster than
previous strategies.

I. INTRODUCTION

Legged robots offer unique advantages when compared
to wheeled or aerial robots when autonomously perform-
ing tasks in complex terrains while accommodating non-
trivial payloads. To improve the utility of legged robots,
additional appendages, such as arms, can be integrated into
the platform, thereby providing manipulation capabilities.
The addition of manipulators can enable legged platforms
to interact with and alter their environments; for example, to
clear obstacles which may be otherwise impassable.

In fact, manipulation capabilities have been implemented
on a number of existing legged platforms. The torque-
controllable quadruped Anymal [1] was outfitted with a
Kinova Jaco six DoF manipulator [2] to accomplish a variety
of tasks [3]. The hydraulically-actuated quadruped (HyQ)
robot [4][5] and the Boston Dynamics’ SpotMini also have
manipulation capabilities. For humanoid robots such as Digit
[6], Toro [7], and Boston Dynamic’s Atlas, arms are an
inherent part of their humanoid physiology.

The addition of manipulation appendages introduces ad-
ditional forces that must be accounted for during planning.
For instance, if these interaction forces are unaccounted for
while assessing the stability of the platform, the forces that
enable manipulation may unduly contribute to instability and
subsequent failure.

1Authors are with Robotics and Optimization for Analysis of Human Motion Lab,
University of Michigan, USA

2Authors are with the Robotic Systems Laboratory, ETH Zürich, Zürich 8092,
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Fig. 1: Block diagram for the real-time dynamic legged mobile manipulation
planner STORMMAP. (1) The user specifies desired motion and manipula-
tion tasks for the robot to complete. (2) A sequence of support polygons is
generated for one gait cycle to be used for the ZMP stability criterion. (3) A
motion trajectory and manipulation force plan is computed using nonlinear
optimization. (4) This plan accomplishes the motion and manipulation tasks
if it can do so while maintaining dynamic feasibility and stability. (5) The
robot’s controller then calculates the joint torques and contact forces at the
feet to achieve the generated plan.

The existing literature in planning for legged robotic
systems with manipulators can be divided into two cate-
gories. The first set of approaches, which we refer to as
static techniques, are focused on planning the platform’s
motion while assuming that the forces at the end-effector are
unalterable during planning. Static planning either accounts
for this constant expected manipulation force in the dynamics
of the platform [8], [9] or treats the new contact created by
the manipulator as an additional point affecting the structure
of the robot’s support [10]–[12]. These static methods gen-
erally either result in motion plans which sacrifice dynamic
feasibility or are unable to compute a feasible motion plan
while satisfying the imposed constraints.

The second set of approaches, which we refer to as
dynamic techniques, focus on leveraging the additional ap-
pendages to improve the stability of the overall system by
solving for both the contact locations and contact forces of
these new appendages. Such strategies have been used to
construct plans to traverse complex terrain [13]–[15] and
often leverage mixed-integer optimization to plan foot- and
hand-holds [16], [17]. By planning for the contact locations
and forces alongside the motion trajectories, these dynamic
strategies can use the manipulator to stabilize the robot while
completing manipulation tasks. However, dynamic strategies
suffer from either long computational times associated with
the complex nature of planning for the contact locations, or
utilize coarse time discretizations to speed up computations.

The contribution of this paper is the introduction of a
real-time dynamic planning strategy, the Stability and Task
Oriented Receding-Horizon Motion and Manipulation Au-
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tonomous Planner (STORMMAP) for legged mobile ma-
nipulation. Plans are generated for a time horizon which
is 80 times longer than their computational time, allowing
these plans to account for disturbances and to be generated
in a receding-horizon fashion. STORMMAP jointly plans
for both the motion trajectory of the robot and the contact
force at a manipulator’s end-effector given a contact location.
To the best of our knowledge, this is the fastest dynamic
planning strategy in the literature based on planning speed
by an order of magnitude [13]–[15], [17], [18].

The paper is organized as follows: We first introduce the
robot model and contextualize the use of a legged mobile
manipulation planner in Section II. In Section III we formu-
late the parameterization used to reduce the computational
complexity of the optimization problem. Details regarding
the nonlinear optimization problem used for STORMMAP
are laid out in Section IV. We demonstrate the versatility of
STORMMAP on the Anymal platform [1] which is equipped
with a Kinova Jaco 6 DoF arm [2] at its front. The planner
is validated in a variety of experiments described in Section
V, which consist of both manipulation tasks and instability-
inducing scenarios. We include a baseline motion planner for
comparison that does not consider the manipulation forces
when planning. Finally, we offer concluding remarks in
Section VI.

II. PROBLEM SETUP

This section introduces the model of the robot and mo-
tivates the use of a legged mobile manipulation planner to
generate motion trajectories and manipulation force plans.
Let the generalized coordinates, q, be a vector of continuous
functions of time that describe the configuration of a robot,
u be a vector of differentiable functions of time, and u̇ be
their time derivatives, each with the following forms:

q =

qbPqbR
qj

 u =

vbωb
q̇j

 u̇ =

abω̇b
q̈j

 (1)

qbP and qbR are functions of time describing the robot’s
center-of-mass (CoM) position and body rotation, respec-
tively, vb and ωb are functions of time describing the robot’s
linear and angular velocity, respectively, ab and ω̇b are
functions of time describing the robot’s linear and angular
accelerations, respectively, and qj are functions of time
describing the nj actuated joint positions of the robot. We
assume that position of the robot, qbP , is parameterized using
Cartesian coordinates.

The high-fidelity model for a legged robot with a ma-
nipulator derived using the projected Newton-Euler equation
with the constraint compliant Lagrange formulation [19, Eq.
4.55a] can be written as follows:

M(q(t))u̇(t) + b(q(t),u(t)) = ST τ (t) + J(t)Tf(t) (2)

where at time t, M(q(t)) is the mass matrix, b(q(t),u(t))
is the vector of Coriolis, centrifugal and gravity terms, τ (t)
are the torques acting in the direction of the generalized
coordinates, S is the selection matrix for the actuated joints,

f(t) are the contact forces acting on the robot, and J(t) is the
contact Jacobian matrix. We make the following assumption
about this model:

Assumption 1. There exists a controller which uses (2) to
calculate the joint torques and contact forces for the robot
to achieve some desired base acceleration, ab, and a desired
manipulation force, fm, that is a subset of the set of contact
forces, f .

Various techniques have been proposed in the literature to
construct a controller that satisfies this assumption [1], [3],
[5], [9], [17], [20], [21].

The goal of our planner is to generate trajectories for
qbP , vb, ab, and fm over a time interval [0, T ] that are
dynamically feasible, maintain stability, and can accomplish
a pre-defined motion or manipulation task, if possible. We
formulate this planner using the following nonlinear opti-
mization problem:

min
qbP

,vb,ab,fm
Cost(qbP ,vb,ab,fm) (3a)

s.t. Motion Spline Junctions(qbP ,vb) (3b)
Initial Spline Point(qbP ,vb) (3c)
Friction Pyramid(ab,fm) (3d)
ZMP Stability(qbP ,ab,fm) (3e)
Force Limits(fm) (3f)
Free Motion Direction(fm) (3g)

We achieve a smooth motion trajectory by constraining the
position and velocity of the robot to be continuous (3b) and
constrain the initial position and velocity of the optimized
trajectory to be equivalent to the measured value at the start
of the optimization (3c). The friction pyramid models the
relationship between the forces at the contact locations and
the accelerations of the robot to ensure dynamic feasibility
of the generated plans (3d). The stability of the platform
is maintained in the presence of manipulation forces using
the ZMP stability model [22] that includes these forces (3e).
Lastly, the manipulation force direction is specified using
(3f) and are also prohibited in free motion directions (3g).
The cost is used to incentivize the completion of tasks.

In practice, this optimization problem is solved by dis-
cretizing the functions that appear as decision variables at
pre-specified sampling times. The accuracy of the approxi-
mation is dependent on the chosen time discretization, with a
finer discretization leading to a more accurate approximation
but more parameters, thereby increasing the solution space
of the optimization and the computational time required to
solve the problem. We overcome this curse of dimensionality
by following the example set in [1], [3] and parameterize
the plan using quintic splines. We reformulate (3) using
the spline parameterization which results in a nonlinear
optimization problem whose average computational time is
under 10 milliseconds. The speed of the optimization is such
that we can use STORMMAP to plan in a receding horizon
fashion as the planning horizon is longer than the time it
takes to compute a plan.

4934

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on October 01,2024 at 07:55:16 UTC from IEEE Xplore.  Restrictions apply. 



III. SPLINE PARAMETERIZATION

This section describes the parameterization used to encode
the motion and manipulation force trajectories as quintic
splines. The time-dependent CoM trajectory can be param-
eterized using a set of quintic spline parameters. Spline
parameters for the motion trajectory are denoted by α while
those for manipulation force are denoted by β. For instance,
the spline parameterization for the x direction of the motion
trajectory is

x(t) = tᵀ(t)αx, ẋ(t) = ṫ
ᵀ
(t)αx, ẍ(t) = ẗ

ᵀ
(t)αx, (4)

where αx = [αx,5, αx,4, αx,3, αx,2, αx,1, αx,0]
ᵀ and t =

[t5, t4, t3, t2, t, 1]ᵀ. The same parameterization is used for
the manipulation force at the end effector. We can describe
the full motion or manipulation force trajectory as:x(t)y(t)

z(t)

 = T (t)

αxαy
αz

 (5)

where T (t) = diag(tᵀ(t), tᵀ(t), tᵀ(t)).
Next, we account for the hybrid dynamics of legged

robotic systems. To account for the contact transitions at the
feet during walking, we consider the following:

Assumption 2. Given a user-specified desired velocity,
which is assumed constant over the motion trajectory, a
set of foot contact locations can be computed using the
linear inverted pendulum model [23]. This contact sequence
is calculated for one gait cycle with a velocity-dependant
time horizon. A new support polygon is generated for each
lift-off and touch-down event of the feet, and using a dynamic
trotting gait, this yields a sequence of five support polygons
over a gait cycle.

A single piecewise quintic spline is used per support polygon
in the generated sequence described in Assumption 2. This
means that for each optimization, we solve for the parameters
of five splines associated with the motion trajectory. These
splines are indexed using i and each has a domain [t

(i)
0 , t

(i)
f ].

We concatenate the spline parameters for an entire motion
trajectory composed of a series of piecewise splines into a
single vector α.

To expand on Assumption 2, we form a desired motion
trajectory given the current position of the robot and the user-
specified constant desired velocity. We evaluate this desired
motion trajectory over the entire optimization horizon as
follows:

Definition 3. Let πα denote the desired position trajectory
of the robot, with π̇α and π̈α the desired velocity and
acceleration trajectories, respectively. We evaluate πα by
first setting πα(0) to the measured position of the robot
and calculating πα(T ) by integrating the constant desired
velocity from Assumption 2 over the optimization horizon
[0, T ]. The desired velocity trajectory is set to the constant
user-specified velocity and the desired acceleration trajectory
is set to zero.

To account for the contact transitions at the manipulator,
we make the following assumption:

Assumption 4. The contact locations and times of contact
for the manipulator are known a priori to the planner.
Contact occurs when the manipulator has at least one
direction of constrained motion, and contact is broken when
all directions at the manipulator are in free motion.

Note that the contact locations and times of contact for the
manipulator can be either specified by the user or by an
external algorithm. When contact occurs or is broken, we call
this a contact transition. We denote the number of contact
transitions that occur over the optimization horizon as nm.
Similar to the motion trajectory, we construct a sequence of
force splines to describe the force across a time horizon.
We use one force spline to describe the force before a
transition, indexed as j with the domain of each spline equal
to [t

(j)
0 , t

(j)
f ), and one force spline for the force after the

transition, indexed by j + 1. This allows for a discontinuity
in the force at the transition. As in the case of the motion
trajectory, we concatenate all of the spline parameters for
the manipulation force trajectory into a single vector that we
denote by β.

When possible, we want the generated manipulation force
plan to achieve some user-specified manipulation task. To
define such a task we assume the following:

Assumption 5. For a manipulation task, we are given a
desired manipulation force and contact location.

We also define the set of force events which represent the
time-ordered set of desired manipulation tasks:

Definition 6. Let a force event π(j)
β denote the desired

manipulation force over a range [t
(j)
0 , t

(j)
f ) which occurs

before the jth contact transition. The set of force events
is the set of all such force events arranged sequentially,
denoted as πβ = {π(j)

β |j ∈ J}, such that, combined, they
span the range of the optimization horizon [0, T ]. Here,
J ∈ 1, ..., nm + 1.

Using the spline parameterization for the motion trajectory
and manipulation force, we rewrite the optimization problem
in (3) to optimize over the set of spline parameters.

IV. OPTIMIZATION

This section describes the formulation of the cost functions
and constraints of the nonlinear optimization problem (3).
The vector of motion and force spline parameters mapping to
the state trajectories is the optimization variable. In practice,
it is challenging to validate a constraint over a continuous
time interval. We therefore discretize the time based on the
following assumption:

Assumption 7. Take each piecewise motion and force spline
and sample them at six evenly spaced time intervals, includ-
ing the initial and final point of the spline.

We denote the set of sample times as St. This discretiza-
tion is needed, as we cannot enforce constraints over an
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entire trajectory. The fineness of this discretization makes
it unlikely that the generated continuous trajectories will
violate a constraint between time samples. This discretization
does not increase the solution space of problem (3) due the
the spline parameterization, even though the same number of
constraints are used for both the original and parameterized
optimizations.

The remainder of this section details the formulation of
the nonlinear optimization problem used to generate motion
and manipulation force plans. The costs of the optimization
problem in (3) are described in Section IV-A, while the
equality and inequality constraints are formulated in Sections
IV-B and IV-C, respectively.

A. Cost

The cost in the optimization problem (3) is assumed to be
a positive definite quadratic form. In particular, the quadratic
cost, Q, and linear cost, b, take the following form:

Q = diag(Q(1)
α +Qαim , · · · , Q(5)

α , Q
(1)
β +Qβim , · · ·Q

(nm)
β )

bᵀ = [b(1)ᵀα + bᵀαim , · · · , b
(5)ᵀ
α , b

(1)ᵀ
β + bᵀβim , · · · , b

(nm)ᵀ
β ]

(6)

where Q(i)
α ∈ R6×6 and b(i)α ∈ R6×1 are the quadratic and

linear costs for the ith motion spline, and Q
(j)
β ∈ R6×6

and b
(j)
β ∈ R6×1 are the quadratic and linear costs for

the jth force spline. The costs Q(1)
αim and b(1)αim minimize

the difference between the initial acceleration of the motion
trajectory and the measured acceleration, while Q

(1)
βim

and
b
(1)
βim

minimize the difference between the initial force and
measured force.

The cost per motion spline is a linear combination of
several time-dependent costs and one time-independent cost.
We compute the quadratic and linear cost terms for each
motion spline as:

Q(i)
α = Q(i)

acc +
∑
ts∈St

(Q(i)
απ (ts) +Q(i)

αd
(ts))

b(i)α =
∑
ts∈St

(b(i)απ (ts) + b
(i)
αd
(ts)

(7)

where Q
(i)
απ is a cost to incentivize a desired task, Q(i)

αd

penalizes deviations between subsequent plans and Q
(i)
acc

penalizes large accelerations over the spline. An equivalent
calculation to (7) is used for the cost per force spline, with
individual costs denoted using β. The specific elements of (7)
are more formally defined in the remainder of this subsection.

1) Desired Motion and Manipulation Tasks: We want the
generated motion and manipulation force plans to achieve
desired tasks, when feasible. To incentivize these tasks, we
use the desired motion trajectory, πα, and its derivatives
(Definition 3), along with the set of force events, πβ ,
representing the desired manipulation tasks (Definition 6).
We minimize the difference between values sampled from the
motion and manipulation force plans and their respective de-
sired trajectories at each sampling time ts in a least-squares
manner. An example for the motion splines follows, where i

is the ith motion spline corresponding to the sampling time:

α(i)ᵀQ(i)
απ (ts)α

(i) + b(i)απ (ts)α
(i) =

∥∥∥T (ts)α(i) − πt(ts)
∥∥∥
2
+

+
∥∥∥Ṫ (ts)α(i) − π̇t(ts)

∥∥∥
2
+

+
∥∥∥T̈ (ts)α(i) − π̈t(ts)

∥∥∥
2

(8)

An equivalent formulation is used to calculate the costs for
the jth force spline, Q(j)

βπ
(ts) and b(j)βπ (ts).

2) Deviation from Previous Plans: Because the optimiza-
tion problem we are solving is nonlinear, each time we solve
it, we initialize the solver using the solution found in the
previous iteration. Note, we solve the optimization problem
using an SQP solver. Given td, the time which has elapsed
since the start of the previous plan, and a sampled time, ts,
we minimize the difference between the current plan and the
previous successfully computed plan using least squares:

α(i)ᵀQ(i)
αd
(ts)α

(i) + b(i)αd(ts)α
(i) =

∥∥∥T (ts)α(i) − T (ts + td)α
(i)
prev

∥∥∥
2
+

+
∥∥∥Ṫ (ts)α(i) − Ṫ (ts + td)α

(i)
prev

∥∥∥
2
+

+
∥∥∥T̈ (ts)α(i) − T̈ (ts + td)α

(i)
prev

∥∥∥
2

(9)

An equivalent formulation exists for the force spline costs
Q

(j)
βd

(ts) and b(j)βd (ts).
3) Initial and Measured State Values: Large differences

between the initial acceleration and manipulation force of
the optimized plan and measured accelerations, a∗b , and
manipulation forces, f∗m, can cause jumps that may be
infeasible to achieve. Minimizing the difference between the
initial and measured values can prevent these jumps:

α(1)ᵀQαimα
(1)ᵀ + bαim(ts)α

(1) =
∥∥∥T̈ (0)α(1) − a∗b

∥∥∥
2

(10)

β(1)ᵀQβimβ
(1)ᵀ + bβim(ts)β

(1) =
∥∥∥T (0)β(1) − f∗m

∥∥∥
2

(11)

These quadratic and linear costs are used in (6) for the first
motion and force spline only.

4) Minimize Acceleration: We want the generated motion
trajectory to be as close to the user-specified trajectory, which
has a constant velocity, as possible. Thus, we minimize
the accelerations of the generated plan. Using the method
adopted from [24] and implemented in [25], [26], we derive
the quadratic cost by squaring and integrating the acceler-
ation over the time duration of each spline and solve for

the central term Q
(i)
acc =

∫ t(i)f n

t
(i)
0

ẗ
ᵀ
ẗ dt . This implementation

minimizes the cost over the entire motion spline. For a more
thorough treatment of this cost, see [25], [26]. Note, this
additional cost is only used for the motion splines.

B. Equality Constraints

Three equality constraints are used in the optimization
problem (3). They ensure the piecewise motion splines are
connected and continuous in their first derivative (3b), that
the optimized initial position and velocity are equal to the
measured values (3c), and that manipulation forces cannot
be applied in a direction of free motion (3g). To ensure
feasibility of the optimization problem, we include slack
variables for each constraint.
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(a) Pushing a table using the baseline planner. (b) Pushing a table using STORMMAP. (c) Forces acting on the manipulator while using
STORMMAP to push the table.

Fig. 2: Using the baseline planner, Anymal cannot push a table while walking forwards. STORMMAP is able to accomplish both the manipulation and
motion task. To make the task harder a random, unknown disturbance is applied to Anymal perpendicular to the direction of motion. Since forces in the y
direction were not constrained for this task, STORMMAP mitigates this disturbance by applying an opposing force to the table. Forces shown are acting
on the robot.

1) Motion Spline Junctions: Recall from Assumption 2
that a sequence of piecewise motion splines are used to
account for the hybrid nature of the system. To ensure these
splines connect and are continuous in the first derivative, we
formulate the following equality for (3b):[

T (t
(i)
f ) T (t

(i+1)
0 )

Ṫ (t
(i)
f ) Ṫ (t0

(i+1))

][
α(i)

−α(i+1)

]
= 02×1 (12)

2) Initial Spline Point: If the initial position and velocity
of the optimized motion trajectory are not equivalent to the
measured values, this would cause large initial accelerations
during implementation. To prevent this, we ensure that the
initial point of the first motion spline at time zero is equal to
the measured position of the robot, r∗. Likewise, we ensure
the initial velocity is set to the measured velocity, v∗, which
leads to the constraint (3c):[

T (0)

Ṫ (0)

]
α(1) =

[
r∗

v∗

]
(13)

This constraint is only for the first point of the optimized
motion trajectory, and thus this constraint only applies to the
first motion spline.

3) Free Motion Direction: To maintain dynamic feasi-
bility, we ensure forces cannot be applied in directions for
which there is free motion by setting these forces equal to
zero. This is done by specifying the direction of free motion
through a selection matrix S(j) = diag(S

(j)
x , S

(j)
y , S

(j)
z ),

where (3g) is then:

S(j)β(j) = 06×1, (14)

where each component S(j)
i ∈ R6×6 is defined as follows:

S
(j)
i =

{
I6×6 for free-motion
06×6 otherwise

(15)

C. Inequality Constraints

The inequality constraints ensure that the generated mo-
tion trajectory and manipulation plans remain dynamically
feasible and stable. This is done using the friction pyramid
model (3d) and ZMP stability criterion (3e). Additionally,
we prevent the manipulator from applying a force in the
direction of free motion (3g).

1) Friction Pyramid: Feasibility of the motion and manip-
ulation plan requires the robot’s contact forces can generate
the desired accelerations without slipping. The friction pyra-
mid model [27] used in (3d), a linearized approximation of
the friction cone model that also includes the forces at the
manipulator’s end-effector, can describe this condition:

1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ

ab(ts) +

1 0 −µ
1 0 −µ
0 1 −µ
0 1 −µ

fm(ts) ≤


µmg
µmg
µmg
µmg

 (16)

where m is the whole-body mass of the robot, g is the
gravitational constant −9.81ms2 , and µ is the coefficient of
friction. Forces at the manipulator can be used to increase
the feasible accelerations of the base if the tangential forces
at the feet cannot accommodate these accelerations. This
constraint applies to each sample time ts ∈ St.

2) ZMP Stability: One method of ensuring stability of a
legged system is by using the ZMP stability criterion, which
simplifies the robot model to that of an inverted pendulum
[22]. This constraint requires that the ZMP remain within the
support polygon for all time. Similar to the method employed
by [8], [9], we include the manipulation force into the ZMP
derivation and evaluate the constraint at each sample time
ts ∈ St:

rzmp(ts) =
n(ts)×τ (ts)
n(ts)·f(ts) (17)

f(ts) = m(g − ab(ts)) + fm(ts) (18)

τ (ts) =qbP (ts)×m(g − ab(ts)) . . .
+(qbP (ts) + CIcrc−m)× fm(ts)

(19)

where, at time ts, n(ts) is the normal to the ground, f(ts)
the force exerted by the robot onto the environment (18), and
τ (ts) is the resultant moment (19), m the robot’s whole-body
mass, g = [0, 0, g]ᵀ, CIc(ts) the rotation matrix between the
inertial frame and the body frame, and rc−m(ts) the position
of the CoM to the manipulation force center in the body
frame which is assumed constant over the planning horizon.

Let d(ts) = [a(ts), b(ts),04×1] and c(ts) represent the
vectorized line variables of the support polygon at sample
time ts. The ZMP constraint (3e) is satisfied if:

d(ts)rzmp(ts) + c(ts) ≤ 04×1 (20)

We can see from (19) that this constraint is nonlinear.
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3) Force Limit: Force direction is specified using hard
bounds on the force to specify the manipulator is required
to pull or push on the environment. Requiring the force to
be either greater than or less than zero dictates whether the
manipulation force is pushing or pulling on the environment,
respectively. For each ts ∈ St, one can represent (3f) as:

f−lim ≤ fm(ts) ≤ f+
lim. (21)

V. SIMULATED EXPERIMENTS

This section demonstrates the performance of the algo-
rithm proposed in this paper in simulation on the Anymal
robot. We describe the implementation of STORMMAP in
Section V-A. Section V-B considers an experiment in which
simultaneous motion and manipulation tasks are specified.
Section V-C considers an instability-prone scenario in which
the robot must rely upon the manipulator to remain stable.
Finally, Section V-D describes the computational time of
STORMMAP across these experiments. These two experi-
ments and several others are shown in the related video 1.

A. Implementation

To solve the nonlinear optimization problem in (3), this
paper relies on sequential quadratic programming (SQP),
active-set method. This method was included within the
Anymal software and relies upon the Quadprog++ [28]
library. A series of experiments are run to show object
manipulation and stabilizing behaviours using the Anymal
platform [1] with a 6 DOF Kinova Jaco [2] robotic arm
mounted on its base. The controller to realize the plans
generated by the solution to (3) uses the robot model in (2)
with hierarchical null space projection [3] to control the joint
torques of the robot. We compare a subset of the experiments
with a baseline planner used on Anymal [26], [29]. This
planner does not consider manipulation forces when planning
the motion trajectory. Experiments are run using the Gazebo
simulator on a desktop computer with an i5-4590 processor
with 16GB of RAM. Lastly, because we solve the planning
problem in a receding horizon fashion, we use the previously
successful plan as an initial guess for the SQP solver.

B. Manipulation Task

To test the manipulation capabilities of the STORMMAP,
the robot is required to move a table across a room as
illustrated in Fig. 2. A lateral force of 50N is required
to push the table, and the coefficient of friction between
the hard plastic feet of the robot and the hardwood floor
is set at µ = 0.3. Note that the planner is given this
coefficient of friction. To make this task more difficult we
apply a disturbance to the robot’s torso. This disturbance is
perpendicular to the robot’s motion and is applied 4 seconds
after it begins pushing. The direction and magnitude of the
disturbance are unknown to the planner. Results for the table
pushing experiment using STORMMAP are depicted in Fig.
2b. From the force graph in Fig. 2c we see a disturbance
force of 15N applied to the base in the y-direction, shown

1Supplementary video can be found here: https://youtu.be/A9cBz8uujAs

in red. During this disturbance, STORMMAP modifies the
manipulation force plan to counteract this disturbance force,
and continues to apply this force to bring the robot back
in-line with the table. Using the baseline Anymal motion
planner for this experiment, the robot is able to push the table
forward initially, but is unable to maintain an appropriate
forward velocity (Fig. 2a). After several seconds of pushing,
the manipulator reaches the limit of its reachable space and
is unable to push the table further.

C. Stability-Oriented Scenario

While STORMMAP can be used to accomplish manip-
ulation tasks, it can also provide stability to the robot in
otherwise challenging scenarios. In this experiment, the robot
grabs onto a railing and walks across a slippery floor at a
constant desired speed. During the experiment, the manipu-
lator can slide along the railing and apply forces tangential
to but not along the railing. STORMMAP optimizes for the
manipulation forces at the end-effector in both the y and
z directions. The force in the y direction keeps the ZMP
within the support polygon while reducing the necessary
sway of the base. The force in the z direction also changes the
position of the ZMP and keeps it within the support polygon.
Additionally, the robot is also able to increase its effective
weight by pushing upward on the railing, allowing the robot
to exert larger tangential forces at the feet to accelerate
forward without having its feet slip on the surface. No forces
are applied in the x direction, as we have specified this as a
direction of free motion in the constraint in (14).

D. Time Performance

The planning horizon was approximately 0.8 seconds
across every test. The optimization took on average 5 ms to
compute motion trajectories and manipulation force plans,
and rarely exceeding a planning time of 10 ms.

The speed of the optimization is such that the STOR-
MMAP is able to run in a receding-horizon fashion. Once
a plan is successfully computed, it is stored and used for
the robot’s controller and the computation of a new plan
starts. STORMMAP is, to the best of our knowledge, an
order of magnitude faster compared with other planners from
the literature based on planning speed [13]–[15], [17], [18].

VI. DISCUSSION AND CONCLUSION

This paper describes a legged mobile manipulation plan-
ner, STORMMAP, which can compute plans for both the
motion trajectory of the robot as well as the manipulation
forces it exerts. This is done faster than previous dynamic
planning strategies and can run in real-time. By formulating
the planner as a nonlinear optimization problem with pre-
specified contact locations for the manipulator’s end-effector,
we can plan dynamically feasible motions and forces while
ensuring the stability of the platform.

In the future we will include a parallel planner to optimize
for the contact locations of the manipulator. Additionally, we
will test STORMMAP on a physical robot.
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