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ABSTRACT

Differential privacy (DP) protects sensitive data during neural network training, but
standard methods like DP-Adam suffer from high memory overhead due to per-
sample gradient clipping, limiting scalability. We introduce DP-GRAPE (Gradient
RAndom ProjEction), a DP training method that significantly reduces memory
usage while maintaining utility on par with first-order DP approaches. DP-GRAPE
is motivated by our finding that privatization flattens the gradient singular value
spectrum, making SVD-based projections (as in GaLore Zhao et al. (2024)) un-
necessary. Consequently, DP-GRAPE employs three key components: (1) random
Gaussian matrices replace SVD-based subspaces, (2) gradients are privatized after
projection, and (3) projection is applied during backpropagation. These contribu-
tions eliminate the need for costly SVD computations, enable substantial memory
savings, and lead to improved utility. Despite operating in lower-dimensional sub-
spaces, our theoretical analysis shows that DP-GRAPE achieves a privacy-utility
trade-off comparable to DP-SGD. Our extensive empirical experiments show that
DP-GRAPE can reduce the memory footprint of DP training without sacrificing
accuracy or training time. In particular, DP-GRAPE reduces memory usage by
over 63% when pre-training Vision Transformers and over 70% when fine-tuning
RoBERTa-Large as compared to DP-Adam, while achieving similar performance.
We further demonstrate that DP-GRAPE scales to fine-tuning large models such
as OPT with up to 6.7 billion parameters, a scale at which DP-Adam fails due to
memory constraints.

1 INTRODUCTION

While deep neural networks have shown enormous performance in Computer Vision and Natural
Language Processing, they can be vulnerable to attacks that reveal training instances (Fredrikson
et al., 2015; Carlini et al., 2021; Mireshghallah et al., 2022). This poses risks when training on
sensitive data, such as personal or medical records. Differential privacy (DP) offers a principled way
to protect privacy of individual samples (Dwork et al., 2006b; 2014). In neural network training,
methods such as DP-SGD and DP-Adam enforce DP by clipping per-sample gradients and adding
Gaussian noise calibrated to the desired privacy level (Abadi et al., 2016).

In addition to privacy, training large models efficiently requires careful memory management. Stan-
dard optimizers such as Adam demand substantial memory to store parameters, activations, gradients,
and optimizer states—posing a challenge for models with billions of parameters, especially on
Table 1: Comparison of benefits of different memory-saving methods for DP training. We consider a method
“high-utility" if it can achieve close to the utility of DP-Adam, see Section 5.2.

Method High-Utility Pre-training Extra Computation Low-Memory
Optimizer States

Total Number
of Steps to Converge

Bu et al. (2021) × ✓ JL Projections No Medium
Ghost Clipping ✓ ✓ Extra Backward Pass No Medium
Book-Keeping ✓ ✓ Extra Partial Gradients No Medium
Zeroth-order DP × × - Yes Large
DP-LoRA × × - Yes Medium
DP-GRAPE ✓ ✓ Low-overhead Random Projection Yes Medium
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memory-limited GPUs. To address this, recent work has explored low-rank training methods in
non-private settings. LoRA reduces optimizer memory by constraining weight updates to low-rank
matrices (Hu et al., 2021), while GaLore projects layer gradients onto SVD-derived subspaces (Zhao
et al., 2024). To avoid costly SVD computations at scale, alternatives such as randomized SVD
(Pasand & Bashivan, 2024), Gaussian random projections (Hao et al., 2024), and Stiefel manifold
methods (He et al., 2024) have been proposed.

When both privacy and memory constraints are present, training becomes even more challenging.
DP-SGD and DP-Adam introduce significant overhead by requiring per-sample gradient clipping,
with memory usage scaling linearly with model and batch size—often becoming the dominant cost.
Ghost clipping reduces this cost by using an extra backward pass to compute sample gradient norms
without instantiating full gradients (Lee & Kifer, 2021; Li et al., 2021), but it adds compute overhead
and does not reduce optimizer state memory. Book-Keeping (Bu et al., 2023) removes the extra pass
using additional tricks, but increases memory usage by storing partial gradients and still offers no
savings for optimizer states. As we will see, both of these methods are orthogonal to our approach
and can be combined for further memory reduction with our method.

Other strategies have also been explored: Approximating gradient norms via random projections
reduces memory but yields poor privacy guarantees at low projection dimensions (Bu et al., 2021).
DP-LoRA combines LoRA with differential privacy to reduce trainable parameters, but it is not
applicable for pre-training and falls short of DP-Adam in fine-tuning (Yu et al., 2021a) (also see
Table 3). Zeroth-order methods such as DP-ZO (Tang et al., 2024) and DPZero (Zhang et al., 2024)
are memory-efficient but generally underperform first-order DP methods in NLP fine-tuning and
cannot be used for pre-training. In addition, zeroth-order methods require a large number of steps
to converge even for non-private training (Malladi et al., 2023; Li et al., 2025). We summarize the
trade-offs of these methods in Table 1, including utility, pre-training compatibility, added computation,
and optimizer memory usage.

Another related line of work projects gradients onto subspaces obtained from auxiliary non-sensitive
data (Yu et al., 2021b; Zhou et al., 2020; Gu et al., 2023). While this approach can improve model
utility, it requires having non-sensitive data available, and previous works have not exploited the
potential memory benefits of gradient projection to enable scaling to larger models.

To enable memory-efficient DP training for large models without sacrificing utility, we propose
DP-GRAPE. It projects sample gradients onto lower-dimensional subspaces using random Gaussian
matrices during backpropagation, reducing memory usage for both sample gradients and optimizer
states. Our main contributions are:

• We demonstrate that privatization flattens the singular value spectrum of gradients, motivating the
use of random projections (as in (Hao et al., 2024)) rather than SVD-based projections (as in (Zhao
et al., 2024)).

• We establish that projecting gradients before privatization is critical for achieving high utility and
memory efficiency. DP-GRAPE uses the principle of privatizing the projected gradients in lower
dimensional space to achieve significant memory efficiency gains and improved utility over a naïve
approach that privatizes gradients before projection.

• We provide a set of novel analyses of the privacy-utility guarantee for the proposed DP-GRAPE
with projection matrices having random but unbounded entries. The theoretical result indicates that
DP-GRAPE enjoys the same utility guarantee as DP-SGD.

• Our experiments demonstrate the efficiency and high utility of the proposed algorithm. In particular,
compared to DP-Adam, our algorithm achieves similar performance with significantly less memory
usage (e.g., 24.4GB compared with 78.1GB when training RoBERTa-Large). Compared to recent
memory-efficient DP training methods such as DP-ZO and DP-LoRA, our algorithm can be used
for pre-training, while the others are restricted to fine-tuning tasks only. Furthermore, DP-GRAPE
requires significantly fewer iterations to converge than zeroth-order DP methods, reducing training
time by more than 6 times.

Concurrently with our work, D2P2-SGD (Jiang et al., 2024) introduced random gradient projection in
the DP setting, with a focus on tighter theoretical error bounds rather than memory efficiency. A key
distinction is that DP-GRAPE projects gradients before privatization, enabling substantial memory
savings and improved practical utility, as demonstrated in Section 5.1.
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2 BACKGROUND

Notations & Definitions Throughout the paper, we consider minimizing a loss function f over the
dataset X of size n with samples {ξ1, . . . , ξn}. We assume the loss is parameterized as a model with
L layers, and the ℓth layer holds trainable parameters as a matrix Wℓ ∈ Rmℓ×nℓ of size mℓ × nℓ.
The total number of parameters is d =

∑L
ℓ=1 mℓnℓ. The problem we seek to solve is:

min
{Wℓ}L

ℓ=1

1

n

n∑
i=1

f({Wℓ}Lℓ=1; ξi) (1)

Without loss of generality, we assume mℓ ≤ nℓ for all layers. When training the model with iterative
methods (e.g., DP-SGD), we denote the total number of training steps as T and index the steps with
(·)t, the batch size as B , and index the samples with (·)i.
Let Gt

ℓ,i = ∇W t
ℓ
f({W t

ℓ }Lℓ=1; ξi) be the gradient for sample i at iteration t for layer ℓ, and {Gt
ℓ,i}Bi=1

be the collection of all sample gradients in the batch. We denote the concatenated gradients of all
the layers at iteration t for sample i as Gt

i =
[
vec(Gt

1,i)
⊤ · · · vec(Gt

L,i)
⊤]⊤, where vec(Gt

ℓ,i)
is the vectorized sample gradient for sample i at layer ℓ (a column vector of length mℓnℓ). The
clipping operation used to bound the norm of per-sample gradients is defined as clip(Gt

i, C) =
min(1, C

∥Gt
i∥2

)Gt
i for sample gradient Gt

i and clipping threshold C > 0.

For methods that project gradients, we denote the projection matrix for layer ℓ as Pℓ ∈ Rmℓ×r, where
r is the projection dimension. LetNsℓ(0,

1
r ) ∈ Rmℓ×r be a matrix with entries i.i.d. from a Gaussian

distribution with mean 0 and variance 1
r , generated using seed sℓ. When drawing from a normal

distribution without a particular seed (such as when adding noise to gradients), we omit the seed. We
denote the projected gradient as R = PTG, and the privatized one as R̃.

Differential Privacy Differential privacy ensures that an algorithm’s output does not change
significantly when a single training sample is removed, protecting individual data. Formally, for
neighboring datasets X and X ′ differing by one sample, a randomized algorithm A : D → O, where
D is the set of all possible datasets and O is the set of all possible outcomes, is (ε, δ)-DP if (Dwork
et al., 2006a):

P (A(X) ∈ O) ≤ eεP (A(X ′) ∈ O) + δ. (2)
A common way to make a function h : X → Rd differentially private is to add Gaussian noise scaled
to the function’s ℓ2 sensitivity: ∆2h := supX,X′∥h(X)− h(X ′)∥2 :

Theorem 2.1 (Dwork et al. (2014)). Given a function h : X 7→ Rd with ℓ2 sensitivity ∆2h,
a dataset X , and ε, δ > 0, the randomized algorithm A(X) = h(X) + z, where z ∼
N
(
0, ∆2h

ε

√
2 log

(
1.25
δ

)
Id

)
, is (ε, δ)-DP.

Differentially Private Optimization To train a differentially private neural network, noise is added
to the gradients of each sample during training, rather than to the outputs. Since the gradients’ ℓ2
sensitivity is often unbounded, they are clipped to a constant C to limit the maximum norm. This
gradient clipping, followed by the addition of noise calibrated to the desired privacy level, can be
applied to any gradient-based optimization method such as SGD or Adam to achieve (ε, δ)-DP (Abadi
et al., 2016). See Appendix A for the full DP-Adam algorithm. However, gradient privatization
can reduce model utility. Additionally, clipping per-sample gradients requires computing individual
gradients for each sample (rather than just the gradient averaged over all samples in the batch as
in non-private training), increasing memory usage from d to Bd. For large models, this forces
either a smaller batch size (which may reduce utility) or more gradient accumulation steps (which
significantly increases the total training time).

Memory-Efficient Training with Gradient Projection One approach to reduce memory usage of
training is to project gradients onto lower-dimensional subspaces, allowing optimizer states (e.g., the
moment estimates in Adam) to be stored in the subspace. This reduces the memory usage of optimizer
states from

∑
ℓ mℓnℓ to r

∑
ℓ nℓ, significantly saving memory when r ≪ mℓ. Various projection

methods have been proposed, including using the SVD of layer gradients and random matrices. In
GaLore (Zhao et al., 2024), gradients are projected onto subspaces spanned by the top r left singular

3
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vectors from an SVD of the previous layer gradient, with projection matrix P t
ℓ = U [:, : r]. FLoRA

(Hao et al., 2024) instead uses a Gaussian matrix for P t
ℓ , where (P t

ℓ )i,j ∼ N (0, 1
r ). Alternatively, He

et al. (2024) use a uniform distribution on the Stiefel manifold to generate P t
ℓ .

3 METHODOLOGY

Our approach adapts memory-efficient training methods that use gradient projections such as Ga-
Lore Zhao et al. (2024) and Flora Hao et al. (2024) to the DP setting. Integrating gradient projection
with DP introduces two important design choices: the type of projection (e.g., SVD-based or random),
and the order of operations (privatizing gradients before or after projection). We systematically
evaluate these choices. Since SVD-based projection derives subspaces from the gradients, to maintain
privacy the gradients must be privatized before computing the SVD. However, as shown in Fig. 1,
privatization (i.e., clipping and noise addition) flattens the singular value spectrum, destroying any
low-rank structure that the SVD aims to capture. This motivates the use of random projections, which
can be applied before privatization and is computationally cheaper. For an empirical comparison,
we consider an algorithm that privatize gradients before SVD-based projection, which we call naïve
DP-GaLore due to its similarity to GaLore, and an algorithm that privatizes after random projection,
which is DP-GRAPE.

3.1 NAÏVE DP-GALORE

Naïve DP-GaLore computes the SVD of per-sample gradients and applies privatization before
projection (see Appendix B for details). However, this approach inherits the high memory cost
of storing per-sample gradients of DP-SGD or DP-Adam, offering little improvement over them.
In addition, computing SVDs for each layer becomes computationally expensive for large models.
Finally, clipping full-dimensional gradients—rather than their projected versions—leads to degraded
utility, as discussed in Section 5.1.

3.2 OUR ALGORITHM

DP-GRAPE, uses random projection instead of the SVD and applies privatization of gradients after
projection. This greatly reduce per-sample gradient memory and lead to significantly better utility
(see Section 5.1) as compared to naïve DP-GaLore.

We describe our training method in Algorithm 1, with the projected Adam update in Algorithm 2. For
simplicity of presentation, we consider a model with ℓ linear layers, each parameterized by a matrix
of size mℓ × nℓ; nonlinear layers are handled as in DP-Adam (i.e., without projection). Each training
iteration consists of a backward pass (steps 2–11), gradient privatization (steps 12–13), and optimizer
and weight updates (step 14). To reduce memory, per-sample gradients are projected layer-by-layer
during the backward pass (to avoid having the per-sample gradients for each layer being instantiated
all at once). The projected gradients are then privatized and used for the projected Adam update.

Our use of random projections rather than the SVD is motivated by empirical observations about
the effect of privatization on the singular values. As shown in Fig. 1, while the non-private gradient
exhibits some low-rank structure, the combination of clipping and adding noise at levels needed
to achieve typically-used levels of DP (e.g., C = 1.0 and σ = 0.5, 2.0) flattens the spectrum of
singular values, destroying the low-rank structure. Furthermore, the use of random projections confers
additional computational benefits since SVDs for the gradient matrix of each layer do not need to be
computed, and projection matrices do not have to be stored for each layer since they can be cheaply
generated from a random seed on-the-fly using torch.randn (Paszke et al., 2019).

3.3 MEMORY REQUIREMENTS

Compared to DP-Adam, DP-GRAPE reduces memory usage by storing projected sample gradients
and using lower-dimensional moments in Adam. Table 2 compares the memory requirement of
gradients, optimizer states, and projectors for non-private Adam and GaLore, DP-Adam, naïve
DP-GaLore, and DP-GRAPE. Notably, DP-GRAPE achieves the largest savings by reducing sample
gradient memory from B

∑L
ℓ=1 mℓnℓ (in DP-Adam and naïve DP-GaLore) to Br

∑L
ℓ=1 nℓ, since

4
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Table 2: Memory usage of gradients, optimizer states, and projectors (if used) during training with batch size B
for different first-order non-DP and DP methods for an L-layer model of sizes {mℓ × nℓ}. “Gradient” indicates
the batch gradient for non-DP methods and all of the sample gradients for the batch for DP method. For GaLore,
Naïve DP-GaLore, and DP-GRAPE, r denotes the projection dimension.

Method Gradient Optimizer States Projectors

Adam (non-private)
∑L

ℓ=1 mℓnℓ 2
∑L

ℓ=1 mℓnℓ -

GaLore (non-private)
∑L

ℓ=1 mℓnℓ 2r
∑L

ℓ=1 nℓ r
∑L

ℓ=1 mℓ

DP-Adam B
∑L

ℓ=1 mℓnℓ 2
∑L

ℓ=1 mℓnℓ -

Naïve DP-GaLore B
∑L

ℓ=1 mℓnℓ 2r
∑L

ℓ=1 nℓ r
∑L

ℓ=1 mℓ

DP-GRAPE Br
∑L

ℓ=1 nℓ 2r
∑L

ℓ=1 nℓ rmax{mℓ}Lℓ=1

r ≪ mℓ. Similar to GaLore, it also reduces optimizer memory from 2
∑L

ℓ=1 mℓnℓ to 2r
∑L

ℓ=1 nℓ.
Additionally, using random projections instead of SVD reduces projector memory to rmax{mℓ}Lℓ=1.

4 ANALYZING THE PRIVACY-UTILITY TRADEOFF

We provide the privacy and convergence guarantee of our proposed algorithm below.

Theorem 4.1 (Informal). Given a Γ lipschtiz and λ smooth (potentially non-convex) objective
function f(·; ξ) : Rd → R for all ξ ∈ X, for any 0 < ε ≤ 2 ln(2/δ) and δ ∈ (0, 1), Algorithm 1 is

(ε, δ)-DP if σ =
2C
√

T log(1/δ)

nϵ . Moreover, there exist a set of hyper-parameters η,B,C such that

when T = 2
√
2dnε

r
√

L log(1/δ)
, the output of Algorithm 1, Wτ , for a simple SGD update rule satisfies

E
[
∥∇F (Wτ )∥2

]
= Õ

(√
Ld log(1/δ)

nε

)
,

where the expectation is taken over all previous sampled batches, random matrices, the additive
noise, and sampling of the final parameter vector.

Algorithm 1 DP-GRAPE

Require: Dataset X = {ξ1, . . . , ξn}, initial weights {W 0
ℓ }Lℓ=1, learning rate η, subspace dimension

r, subspace change frequency F , batch size B, clipping parameter C, noise level σ, total steps T
1: for t = 1, 2, . . . , T do
2: for ℓ = L,L− 1, . . . , 1 do
3: {Gt

ℓ,i}Bi=1 ← ∇W t
ℓ
f({W t

ℓ }Lℓ=1; {ξi}Bi=1)
4: if t mod F = 0 then
5: Generate new stℓ
6: else
7: stℓ ← st−1

ℓ
8: end if
9: P t

ℓ ← Nstℓ
(0, 1

r ) ∈ Rmℓ×r

10: Rt
ℓ,i ← (P t

ℓ )
⊤Gt

ℓ,i , i = 1, . . . , B
11: end for
12: Rt ←

∑B
i=1 clip(Rt

i, C)

13: R̃t ← 1
B (Rt +N (0, C2σ2I) ∈ Rr

∑L
ℓ=1 nℓ)

14: {W t+1
ℓ }Lℓ=1 = Update({W t

ℓ }Lℓ=1, {R̃t
ℓ}Lℓ=1, {stℓ}Lℓ , η)

15: end for
16: Pick τ uniformly at random from {1, 2, · · · , T}.
17: Return {W τ

ℓ }Lℓ=1

The formal statement of this theorem is Theorem D.10, with assumptions detailed in Appendix D.We
follow our result with some remarks that help clarify the implications of our findings and its relevance
to our setting.
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Algorithm 2 Adam Update with Projected Moments

Require: Model parameters {W 0
ℓ }Lℓ=1, current projected first-order moments {M t−1

ℓ ∈ Rr×nℓ}Lℓ=1,
current projected second-order moments {V t−1

ℓ ∈ Rr×nℓ}Lℓ=1, projector seeds {stℓ}Lℓ=1, step size
η, decay rates β1, β2, iteration t, numerical stability constant ϕ

αt ← η

√
1−βt

2

1−βt
1

for ℓ = 1, 2, . . . , L do
M t

ℓ ← β1M
t−1
ℓ + (1− β1)R̃

t
ℓ

V t
ℓ ← β2V

t−1
ℓ + (1− β2)(R̃

t
ℓ)

2

P t
ℓ ← Nstℓ

∈ Rmℓ×r

W t
ℓ ←W t−1

ℓ − αt · P t
ℓ (

Mt
ℓ√

V t
ℓ +ϕ

)

end for
Return {W t

ℓ }Lℓ=1, {M t
ℓ}Lℓ=1, {V t

ℓ }Lℓ=1

Remark 1. For the case of a constant number of layers L, we recover the expected stationarity gap

(up to log terms) of DP-SGD, O
(√

d log(1/δ)

nε

)
Wang et al. (2017), which is near optimal for the

non-convex case (Arora et al., 2023). This is a practically valid setting because the number of layers
is constant compared to the number of model parameters d. For instance, Llama-3 has d = 405B
while L = 128 (Grattafiori et al., 2024).

Remark 2. In addition to the favorable scaling with respect to the number of layers, the dependence
of the expected stationarity gap on the number of projections r is minor and captured in the log
terms. In fact, the log term decreases as r increases up to a certain point (See Appendix D). However,
the increase in random projections significantly lowers (by a factor of r) the time required for the
algorithm to converge.

These observations provide a broader context for our comparison with Zhang et al. (2024), which
offers the first memory-efficient DP optimization guarantee. In the smooth case, their finite-difference
step can be interpreted as a special case of our framework with rank-1 (r = 1) projection. Our
analysis thus generalizes theirs to arbitrary r ≥ 1. However, their approach samples projection vectors
uniformly from the unit sphere, requiring normalization of high-dimensional Gaussian vectors—an
operation shown to be a bottleneck in DP optimization due to the cost of computing norms (Bu et al.,
2021). This overhead applies not only to gradients but also to random vectors used in projections,
particularly when applied block-wise.

This exposes a key challenge: Gaussian-based projections have unbounded norm in the worst case,
and clipping exacerbates this by increasing the expected norm of surviving samples. One potential
solution involves truncating the Gaussian vector’s components to lie within finite symmetric bounds
(while adjusting for unbiasedness), ensuring convergence per the framework used in Zhang et al.
(2024). However, this approach still incurs similar computational overheads as clipping - whether in
terms of memory or runtime - due to the need to truncate each vector entry.
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Figure 1: Left: singular values si of layer gradient matrices with different clipping parameter C and noise
levels σ, averaged across all layers of ViT-Base during training on CIFAR-10. Right: singular values of gradient
matrices for OPT 1.3B during fine-tuning on SST-2. C = ∞ indicates no clipping. See Appendix C.1 for details.
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Figure 2: Vision Transformer pre-training results for MNIST, CIFAR-10, and CIFAR100 at different ε privacy
levels, and memory usage for different methods during training with varying batch size, with non-private Adam
for comparison. See Appendix C.1 for detailed results in table form and experiment setup.

Through careful analysis, we demonstrate that sampling vectors with unbounded worst-case norms
does not adversely affect convergence due to the exponential decay of tail probabilities, even in ex-
pectation. This insight allows us to exploit the efficient generation of standard normal vectors without
requiring additional processing, thus addressing the computational challenges while maintaining
theoretical guarantees.

5 EXPERIMENTS

We conduct experiments across three tasks to evaluate the performance of DP-GRAPE and compare
it against other DP methods: 1) Pre-training - training a VIT-base model from scratch on image
classification tasks; 2) Fine-tuning - fine-tuning a RoBERTa-Large model on text classification tasks;
3) Scalability - demonstrating the scalability of DP-GRAPE by successfully fine-tuning OPT models
ranging from 1B to 6.7B parameters. Detailed experiment settings are provided in Appendix C.

5.1 VISION TRANSFORMER TRAINING

To evaluate the effectiveness of DP-GRAPE on pretraining tasks, we train Vision Transformer models
(base model, 85M parameters) from scratch on MNIST (Deng, 2012), CIFAR10, and CIFAR100
(Krizhevsky et al., 2009). To compare the performance and memory usage, we also train models using
DP-Adam and naïve DP-GaLore, as discussed in Section 3.1 (for pretraining, DP-LoRA and DP-Zero
are not typically used, so we do not include comparisons). For all methods, we select the best clipping
threshold and learning rate from a grid search, and then use those hyperparameters to train models for
each method at ε = 1, 2, 4, 8 privacy levels, with δ = 1

n . We do not use any additional public data or
data augmentation. We discuss the experimental setup in detail in Appendix C.1.

Utility: Figure 2 shows both the final test accuracies for the different methods and datasets at varied
privacy levels and the memory usage for each method across different batch sizes, with non-private
Adam for comparison. See Appendix C.1 for a full table of results. We find that while the naïve
DP-GaLore approach performs significantly worse than DP-Adam, with an average decrease in
accuracy across the different privacy levels of 12.1% on MNIST, 7.8% on CIFAR-10, and 4.1% on
CIFAR-100, DP-GRAPE achieves comparable performance to DP-Adam. Averaged across privacy
levels, DP-GRAPE improves over DP-Adam by 1.3% on MNIST, decreases by 2.5% on CIFAR-10,
and decreases by 0.6% on CIFAR-100. While the accuracy of the models pre-trained with DP are
relatively low, there are various strategies for improving performance, including data augmentation
techniques (De et al., 2022; Bao et al., 2023) and training with limited public data (Bu et al., 2024).
However, in order to directly compare DP-Adam, the naïve DP-GaLore, and DP-GRAPE, we do not
integrate these techniques. In Appendix C.1, we also include results for fine-tuning on CIFAR-10 and
CIFAR-100, where we find that DP-GRAPE achieves similar accuracy as DP-Adam on CIFAR-10
and achieves significantly better accuracy on CIFAR-100.

Memory Usage: While achieving nearly the same accuracy as DP-Adam, DP-GRAPE uses signifi-
cantly less memory during training. When training on CIFAR-10 using a 24GB GPU, DP-GRAPE
allows a maximum batch size of around 165, while DP-Adam only allows for a maximum batch size
of about 50. Consequently, given a fixed memory budget, DP-GRAPE achieves a 25% increase in
throughput compared with DP-Adam, as shown in Table 7 in Appendix C.1.
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Table 3: Mean and standard error of final test accuracy over three different seeds for few-shot (k = 512)
fine-tuning of RoBERTa-Large on different datasets, for different DP and non-private methods. The best DP
result for each privacy level and dataset is in bold. See Appendix C.2 for experiment details.

Task SST-2 SST-5 SNLI MNLI RTE TREC

AdamW (non-private) 93.1± 0.3 56.6± 0.3 86.4± 0.8 81.4± 0.9 83.6± 1.6 95.9± 0.2
DP-Adam (ε = 6) 91.6± 1.2 49.0± 0.3 81.5± 1.4 76.3± 0.9 77.3± 1.1 89.9± 0.8
DP-Adam (ε = 2) 90.5± 1.5 47.5± 0.5 74.6± 1.0 70.3± 0.8 72.8± 0.9 85.0± 0.5

LoRA (non-private) 93.3± 0.4 55.3± 1.0 85.9± 0.7 82.2± 0.7 84.2± 0.4 94.6± 0.4
DP-LoRA (ε = 6) 91.0± 1.3 48.8± 0.5 81.0± 1.5 72.8± 1.8 74.7± 1.3 89.2± 0.8
DP-LoRA (ε = 2) 90.2± 1.2 47.1± 0.4 74.7± 1.6 65.7± 0.9 69.2± 1.1 83.2± 2.3

MeZO (non-private) 92.5± 0.3 50.8± 0.8 80.4± 0.6 69.2± 0.3 72.8± 1.0 88.9± 0.1
DPZero (ε = 6) 92.2± 0.3 49.3± 0.6 77.8± 1.0 67.4± 0.3 71.9± 0.9 87.6± 0.9
DPZero (ε = 2) 91.8± 0.1 47.1± 0.9 73.6± 0.9 62.7± 0.9 70.4± 0.7 82.0± 1.6

DP-GRAPE (ε = 6) 93.3± 0.4 49.1± 0.1 83.5± 0.4 76.7± 0.4 76.4± 0.8 92.7± 1.0
DP-GRAPE (ε = 2) 92.6± 0.5 44.5± 0.4 79.6± 0.4 68.8± 1.2 72.8± 0.9 88.1± 2.2

Zero-Shot 79.0 35.5 50.2 48.8 51.4 32.0

5.2 ROBERTA FINE-TUNING

We evaluate DP-GRAPE on NLP fine-tuning tasks by fine-tuning RoBERTa-Large models (355M
parameters) (Liu, 2019) from Hugging Face1 on different sentence classification tasks. Our experi-
mental setup is the same as in Malladi et al. (2023) and Zhang et al. (2024): we use a few-shot setting
with 512 samples for each class in all of the datasets. We fine-tune models with DP-GRAPE at both
(ε = 2, δ = 1e − 5) and (ε = 6, δ = 1e − 5) privacy. We detail our hyperparameter selection in
Appendix C.

Utility: Table 3 shows the results for DP-GRAPE along with other DP and non-private baselines.
DP-GRAPE achieves a higher average test accuracy at both ε = 2 and ε = 6 than DPZero on all
but one of the six datasets we tested on. On average, across the six datasets and two privacy levels,
DP-GRAPE improves upon the test accuracy of DPZero by 3.7%. Furthermore, DP-GRAPE is
competitive with DP-Adam, improving on it by an average of 1.0% over the different datasets and
privacy levels.

Memory Usage: In addition to achieving comparable utility, DP-GRAPE uses less memory than
DP-Adam, which we illustrate in Fig. 3. When fine-tuning on SST-2 with a batch size of 40, DP-Adam
uses 78.1 GB of memory, while DP-GRAPE uses only 24.4 GB of memory, a 68.7% reduction. While
DPZero is very memory efficient, it takes about 10 times as many iterations to converge, which we
illustrate in Fig. 5 in Appendix C.2. Consequently, for the same experimental setup we use to generate
the test results, DPZero takes almost 3 times as long as DP-GRAPE to run (Table 10). As compared
to the Vision Transformer pre-training, there is a bigger gap in memory usage between DP-GRAPE
and non-private Adam, which is due to gradients from the embedding layers and language modeling
head not being projected. In Appendix C.2 we also show the effect of varying the subspace dimension
r on the total memory usage of DP-GRAPE.

5.3 OPT FINE-TUNING

To assess the scalability of DP-GRAPE to larger models, we use it to fine-tune OPT models (Zhang
et al., 2022) with 1.3B, 2.7B, and 6.7B parameters from Hugging Face2 on both classification and
generation tasks. We use the same setup as in Malladi et al. (2023) and Zhang et al. (2024). For
details, see Appendix C.3. Table 4 and Table 12 show the results for DP-GRAPE and baselines for
the classification and generation tasks, respectively.

Scaling to Larger Models: While fine-tuning all parameters of the 6.7B model on any of the datasets
with DP-Adam or even non-private Adam on a single 80GB GPU is impossible, DP-GRAPE scales

1Link to the checkpoint: https://huggingface.co/FacebookAI/roberta-large
2Link to the checkpoints: https://huggingface.co/collections/facebook/

opt-66ed00e15599f02966818844
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Figure 3: Maximum memory usage for fine-tuning RoBERTa-Large on SST-2 and OPT models on SQuAD
using Adam, DP-Adam, DPZero, and DP-GRAPE with varying batch size. See Appendix C.2 and Appendix C.3
for details.

Table 4: Mean and standard error of final test accuracy over three different seeds for few-shot (k = 1000)
fine-tuning of OPT models on SST-2 and BoolQ classification tasks, for different DP and non-private methods.
The best DP result for each privacy level and dataset is in bold. OOM indicates out-of-memory on an 80GB
GPU with a batch size of 1 and gradient accumulation. See Appendix C.3 for experiment details.

Model OPT-1.3B OPT-2.7B OPT-6.7B
Task SST-2 BoolQ SST-2 BoolQ SST-2 BoolQ

MeZO (non-private) 88.2± 0.9 63.2± 0.8 91.9± 0.5 65.3± 1.3 93.0± 0.2 67.4± 2.3

DPZero (ε = 6) 88.2± 1.1 62.4± 0.8 91.5± 1.7 65.4± 1.6 92.6± 0.7 66.8± 1.6
DPZero (ε = 2) 86.8± 1.7 61.6± 1.1 90.5± 0.9 63.7± 0.7 90.6± 1.3 63.7± 0.7

DP-Adam (ε = 6) 91.2± 0.2 62.3± 0.4 93.2± 0.1 62.9± 0.4 OOM OOM
DP-Adam (ε = 2) 85.9± 0.8 59.8± 0.7 92.4± 0.04 62.5± 0.3 OOM OOM

DP-GRAPE (ε = 6) 90.8± 0.5 62.5± 0.3 93.0± 0.5 62.7± 0.6 94.2± 0.3 63.4± 0.8
DP-GRAPE (ε = 2) 90.5± 0.3 62.0± 0.4 92.5± 0.3 61.6± 1.3 91.2± 0.2 63.7± 0.2

Zero-Shot 53.6 45.3 56.3 47.7 61.2 59.4

to the 6.7B model. We show the memory usage for DP-GRAPE and comparison methods with
different model sizes in Fig. 3. DP-GRAPE achieves better utility than DPZero on 18 of the 24 total
combinations of model sizes, datasets, and privacy levels, and better utility than DP-Adam on 9 of 16
total combinations (excluding the 6.7B model). Furthermore, because DP-GRAPE requires 10 times
fewer iterations to converge as DP-Zero, it reduces the total fine-tuning time for the 6.7B model on
SQuAD using a single H100 GPU by more than 6 times, as shown in Table 13.

6 CONCLUSION

DP-GRAPE is a memory-efficient DP training method that achieves utility comparable to standard
first-order DP methods while significantly reducing the memory usage of per-sample gradients and
optimizer states. We experimentally verify DP-GRAPE on a variety of tasks including pre-training
Vision Transformers, fine-tuning RoBERTa-Large on text classification tasks, and fine-tuning OPT
models of different sizes on text classification and generation tasks. For the OPT fine-tuning, DP-
GRAPE is able to scale to the model size of 6.7B, while DP-Adam is infeasible even with a batch size
of 1. Theoretically, DP-GRAPE achieves a similar privacy-utility trade-off to DP-SGD. Techniques
like Ghost Clipping (Li et al., 2021) and Book-Keeping (Bu et al., 2023), which reduce memory
by avoiding per-sample gradient instantiation, can be combined with DP-GRAPE to further lower
memory usage at the cost of increased per-iteration time. Since they only affect gradient computation
and not the optimization algorithm, the utility-privacy trade-off of DP-GRAPE remains unchanged.
Other potential improvements to DP-GRAPE include adapting the projection dimension across
layers based on a selection criterion and utilizing non-Gaussian projection matrices, such as those
sampled from a Stiefel manifold. Overall, by reducing resource requirements, DP-GRAPE empowers
resource-constrained communities and institutions to build and leverage large models while ensuring
data privacy, democratizing access to privacy-preserving AI.
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REPRODUCIBILITY STATEMENT

We have provided the source code for DP-GRAPE and all of the experiments from this manuscript in
the supplementary materials. In Appendix C.1, Appendix C.2, and Appendix C.3, we provide detailed
explanations of how each experiment was run, the hyperparameters we used for each experiment,
and the procedures we used to select the hyperparameters. Furthermore, the code contains scripts
that can be used to reproduce each experiment. We describe the computational resources we used in
Appendix C.5. All datasets we used are publicly available.
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A DP-ADAM

Here, we detail the standard DP-Adam algorithm (with flat clipping) using our notation.

B GALORE AND NAÏVE DP-GALORE

Here, we detail the GaLore algorithm introduced by Zhao et al. (2024) and the naïve version of
DP-GaLore that we discuss in Section 3.1. For naïve DP-GaLore, gradients are privatized prior to
projection and before the SVD updates, so that the subspaces obtained from the SVD can be used in
subsequent iterations with no privacy loss.
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Algorithm 3 DP-Adam

Require: Dataset X = {ξ1, . . . , ξn}, model parameters {W 0
ℓ }Lℓ=1, learning rate η, decay rates

β1, β2, batch size B, total iterations T
1: for t = 1, 2, . . . , T do
2: for ℓ = L,L− 1, . . . , 1 do
3: {Gt

ℓ,i}Bi=1 ← ∇W t
ℓ
f({W t

ℓ }Lℓ=1; {ξi}Bi=1)
4: end for
5: G̃t ← 1

B (
∑B

i=1 clip(Gt
i, C) +N (0, C2σ2I) ∈ Rd)

6: αt ← η

√
1−βt

2

1−βt
1

7: for ℓ = 1, 2, . . . , L do
8: M t

ℓ ← β1M
t−1
ℓ + (1− β1)G̃

t
ℓ

9: V t
ℓ ← β2V

t−1
ℓ + (1− β2)(G̃

t
ℓ)

2

10: W t
ℓ ←W t−1

ℓ − αt · ( Mt
ℓ√

V t
ℓ +ϕ

)

11: end for
12: end for
13: Return {WT

ℓ }Lℓ=1

Algorithm 4 GaLore

Require: Dataset X = {ξ1, . . . , ξn}, model parameters {W 0
ℓ }Lℓ=1, learning rate η, subspace dimen-

sion r, subspace change frequency F , batch size B, total iterations T
1: for t = 1, 2, . . . , T do
2: for ℓ = L,L− 1, . . . , 1 do
3: Gt

ℓ ← ∇W t
ℓ
f({W t

ℓ }Lℓ=1; {ξi}Bi=1)
4: if t mod F = 0 then
5: U, S, V ← SVD(Gt

ℓ)
6: P t

ℓ ← U [:, : r]
7: else
8: P t

ℓ ← P t−1
ℓ

9: end if
10: Rt

ℓ ← (P t
ℓ )

⊤Gt
ℓ

11: end for
12: {W t+1

ℓ }Lℓ=1 = Update({W t
ℓ }Lℓ=1, {Rt

ℓ}Lℓ=1, {P t
ℓ }Lℓ=1, η)

13: end for
14: Return {WT

ℓ }Lℓ=1
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Algorithm 5 Naïve DP-GaLore

Require: Dataset X = {ξ1, . . . , ξn}, model parameters {W 0
ℓ }Lℓ=1, learning rate η, subspace dimen-

sion r, subspace change frequency F , batch size B, clipping parameter C, noise level σ, total
iterations T

1: for t = 1, 2, . . . , T do
2: for ℓ = L,L− 1, . . . , 1 do
3: {Gt

ℓ,i}Bi=1 ← ∇W t
ℓ
f({W t

ℓ }Lℓ=1; {ξi}Bi=1)
4: end for
5: G̃t ← 1

B (
∑B

i=1 clip(Gt
i, C) +N (0, C2σ2I) ∈ Rd)

6: for ℓ = L,L− 1, . . . , 1 do
7: if t mod F = 0 then
8: U, S, V ← SVD(G̃t

ℓ)
9: P t

ℓ ← U [:, : r]
10: else
11: P t

ℓ ← P t−1
ℓ

12: end if
13: R̃t

ℓ ← (P t
ℓ )

⊤G̃t
ℓ

14: end for
15: {W t+1

ℓ }Lℓ=1 = Update({W t
ℓ }Lℓ=1, {R̃t

ℓ}Lℓ=1, {P t
ℓ }Lℓ=1, η)

16: end for
17: Return {WT

ℓ }Lℓ=1

C EXPERIMENT DETAILS

C.1 VISION TRANSFORMER TRAINING

We use the same grid search for all three methods, selecting the clipping parameter C from {0.1, 1, 10}
and the learning rate from {1e− 4, 5e− 4, 1e− 3, 5e− 3}. For the grid-search, we split the training
set of each dataset randomly into 80% training and 20% testing data and select the combination of C
and learning rate which achieves the highest validation accuracy during training. We use a privacy
level of (ε = 2, δ = 1

n ) for the grid search. The best hyperparameters are then used to train models
on the entire training set at the different privacy levels ε = 1, 2, 4, 8, which are evaluated on the
original testing set. Table 5 lists the selected C and learning rate for each method and dataset. For all
experiments (both the grid search and final training runs), we use a total batch size of 1000 (which
is achieved through gradient accumulation) and train for 60 epochs. In Table 6 we list the best test
accuracy during training for each method on the different datasets and privacy levels.

Table 5: Clipping parameter C and learning rate selected from grid search for each method and dataset for
Vision Transformer pre-training.

Method C Learning Rate

MNIST CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100

DP-Adam 10.0 0.1 1.0 1e-3 1e-3 5e-4
Naïve DP-GaLore 1.0 1.0 0.1 5e-4 5e-4 1e-3

DP-GRAPE 0.1 1.0 10.0 5e-3 1e-3 1e-3

For the memory experiment with results shown in Fig. 2, we train for 5 steps and
record the maximum memory reserved by PyTorch (Paszke et al., 2019) using the
torch.cuda.max_memory_reserved() function, for a range of batch sizes. For all sizes,
we use a gradient accumulation step so that accumulated gradients are included in the memory
accounting.

To generate the timing results shown in Table 7, we train each method for 1 epoch and then extrapolate
the time taken to complete 60 epochs of training. We match the setup we use to generate the results
in Fig. 2, with a total batch size of 1000 that is achieved by gradient accumulation. For Adam
and DP-GRAPE we use a physical batch size of 500 (which uses 63.0GB and 70.6GB of memory,
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Table 6: Vision Transformer pretraining results for MNIST, CIFAR-10, and CIFAR100 at different privacy
levels (best test accuracy during training).

Task MNIST CIFAR-10 CIFAR-100

DP-Adam (ε = 1) 60.2 40.4 11.7
DP-Adam (ε = 2) 71.9 44.9 14.5
DP-Adam (ε = 4) 75.5 49.8 16.8
DP-Adam (ε = 8) 80.2 52.4 20.7

Naïve DP-GaLore (ε = 1) 48.2 32.5 8.1
Naïve DP-GaLore (ε = 2) 55.6 38.1 10.4
Naïve DP-GaLore (ε = 4) 63.5 42.6 13.1
Naïve DP-GaLore (ε = 8) 72.0 44.3 15.6

DP-GRAPE (ε = 1) 63.9 39.1 11.2
DP-GRAPE (ε = 2) 71.7 42.9 13.9
DP-GRAPE (ε = 4) 76.5 46.3 17.3
DP-GRAPE (ε = 8) 80.9 49.2 19.0

Table 7: Number of samples processed per second during training and total train time for Vision Transformer
on CIFAR-10 (using 1 H100 GPU).

Method Throughput (Samples/s) Total Training Time (hours)

Adam (non-private) 379 2.2

DP-Adam 219 3.8
Naïve DP-GaLore 217 3.8
DP-GRAPE 273 3.1

respectively), and for DP-Adam and Naïve DP-GaLore we use a physical batch size of 200 (which
uses 83.9 and 83.7GB of memory, respectively).

The memory and timing experiments were conducted on a single H100 GPU.

To create the plot of singular values shown in Fig. 1, we record the top 64 (corresponding to the
projection dimension we use for all Vision Transformer experiments) singular values for each layer
during the first step of training with a batch size of 1000, with possible clipping and different noise
levels σ applied to the gradients prior to computing the SVD.

We also fine-tune a pretrained checkpoint of ViT-Base on CIFAR10 and CIFAR100 3. For these
experiments, we again use a grid search over the training set for all three methods to select the
clipping parameter C from {0.1, 1, 10} and the learning rate from {1e− 5, 5e− 5, 1e− 4, 5e− 4}.
Using the best hyperparameters for each method, we then fine-tune on the entire training set at the
different privacy level ε = 1, 2, 4, 8 and evaluate on the original testing set. Table 8 lists the selected
C and learning rate for each method and dataset. For both the hyperparameter search and the final
fine-tuning, we use a total batch size of 1000 and train for 20 epochs. Table 9 lists the final results
(best test accuracy) for each method and dataset at different privacy levels.

Table 8: Clipping parameter C and learning rate selected from grid search for each method and dataset for
Vision Transformer fine-tuning.

Method C Learning Rate

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

DP-Adam 10.0 10.0 1e-4 5e-4
Naïve DP-GaLore 10.0 1.0 5e-4 5e-4

DP-GRAPE 0.1 1.0 5e-4 5e-4

3Link to the checkpoint: https://huggingface.co/google/vit-base-patch16-224
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Table 9: Vision Transformer fine-tuning results for CIFAR-10, and CIFAR100 at different privacy levels (best
test accuracy during training).

Task CIFAR-10 CIFAR-100

DP-Adam (ε = 1) 97.2 49.7
DP-Adam (ε = 2) 97.5 70.6
DP-Adam (ε = 4) 98.1 77.3
DP-Adam (ε = 8) 98.2 80.8

Naïve DP-GaLore (ε = 1) 96.4 65.6
Naïve DP-GaLore (ε = 2) 97.0 78.8
Naïve DP-GaLore (ε = 4) 97.5 83.8
Naïve DP-GaLore (ε = 8) 97.7 85.5

DP-GRAPE (ε = 1) 97.0 81.4
DP-GRAPE (ε = 2) 97.9 85.4
DP-GRAPE (ε = 4) 97.8 86.9
DP-GRAPE (ε = 8) 98.2 88.1

C.2 ROBERTA FINE-TUNING

We follow the same experimental setup and build off of the same codebase as used by Zhang
et al. (2024) and Malladi et al. (2023) to fine-tune RoBERTa-Large (Liu, 2019) on datasets that
cover sentiment analysis (SST-2, SST-5), natural language inference (SNLI, MNLI, RTE), and topic
classification (TREC). For all datasets, we use a few-shot setting with 512 samples per class, and
1000 total test samples. We first complete a grid search to find reasonable values for the projection
dimension r, the projection update frequency F , the learning rate η, the DP clipping parameter C, and
the total number of training steps T , for the SST-2 and MNLI datasets, evaluating on the development
set for seed 100. Based on these experiments, we select r = 16, F = 100, η = 1e−4, and T = 1000.
Using these values, we run a search for only the clipping parameter for the remaining datasets,
selecting from {0.1, 0.5, 1.0, 5.0, 10.0, 20.0} (again evaluating on the development set for seed 100).
The grid search and clipping parameter search are done with (ε = 6, δ = 1e− 5) privacy. The best C
value from this search is 0.5 for SST-2, 20.0 for SST-5, 0.1 for SNLI, 10.0 for MNLI, 0.5 for RTEm
and 0.5 for TREC. Using the best C value, we run the final results for each dataset on the seeds 13,
21, and 42 (which contain different samplings of the full datasets), at both (ε = 2, δ = 1e− 5) and
(ε = 6, δ = 1e − 5) privacy for each, and record the average final test accuracy over the 3 seeds
for each dataset and privacy level. We train with a batch size of 64 for all experiments, which may
be achieved using gradient accumulation. The results for AdamW (non-private), DP-Adam, LoRA
(non-private), DP-LoRA, MeZO (non-private), and DPZero come from Zhang et al. (2024).

For the memory experiment with results shown in in Fig. 3, we train for 30 steps
and record the maximum memory reserved by PyTorch (Paszke et al., 2019) using the
torch.cuda.max_memory_reserved() function, for a range of batch sizes. For all sizes,
we use a gradient accumulation step for the first-order methods so that accumulated gradients are
included in the memory accounting. We also repeat the memory experiment for DP-GRAPE with
varying subspace dimension r, with results shown in Fig. 4.

To get the timing results shown in Table 10, we time how long the RoBERTa fine-tuning takes on SST-
2 takes using an H100 GPU for DP-Adam, DPZero, and DP-GRAPE, using the same experimental
setup as we use to get the final results for different. The total batch size is set to 64. For DP-Adam, a
batch size of 64 does not fit, so we use a physical batch size of 32 and gradient accumulation. For all
methods, we fine-tune for 50 steps. The total train time for each method is inferred from the time for
50 steps, assuming 1000 total steps for DP-Adam and DP-GRAPE and 10000 total steps for DPZero.

The memory and timing experiments were conducted on a single H100 GPU.

To generate the convergence plot shown in Fig. 5, we fine-tune RoBERTa-Large on SST-2 using
DP-GRAPE and DPZero (Zhang et al., 2024), and measure the development set accuracy every 50
steps. For DP-GRAPE, we exactly match the experimental setup used to generate the results in
Table 3. For DPZero, we use the same setup and implementation as given in the official GitHub
implementation.
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Figure 4: Maximum memory usage for fine-tuning RoBERTa-Large with DP-GRAPE using different subspace
dimensions r, with comparisons to Adam, DP-Adam, and DPZero.

Table 10: Throughput and total training time for fine-tuning on SST-2 with RoBERTa-Large with a total batch
size of 64 on an H100 GPU. Total training time is based on 1000 total steps for DP-Adam and DP-GRAPE (the
same total number of steps we use to generate the results in Table 3) and 10000 total steps for DPZero, (the
number of steps reported to generate the final results in Zhang et al. (2024).

Method Throughput
(Samples/s)

Total Train
Time (hours)

DP-Adam 71.7 0.6
DPZero 268.1 1.7
DP-GRAPE 75.9 0.6

C.3 OPT FINE-TUNING

For the OPT experiments, we also follow the same experimental setup and build off the same codebase
as used by Zhang et al. (2024) and Malladi et al. (2023) to fine-tune OPT models with 1.3B, 2.7B,
and 6.7B parameters on SST-2, BoolQ, and SQuAD, and DROP. We use a few-shot (1000 total
training samples) setting for all datasets, and 1000 total samples for testing. Due to the increased
computational requirements needing for fine-tuning as compared to the RoBERTa models, we search
only for the best clipping parameter C from the choices {0.1, 1.0, 5.0, 20.0} for each model and
dataset. Table 11 shows the C we select for each model size and dataset for DP-Adam, and DP-
GRAPE. For DP-GRAPE, we set η = 1e− 4, F = 100, T = 2000, and r = 16, 32, 64 for the 1.3B,
2.7B, and 6.7B models, respectively. For DP-Adam, we set η = 1e− 5 and T = 3000 after noting
that a smaller learning rate and increased number of training steps is more stable. We train with a
batch size of 8 for all experiments, which may be achieved by gradient accumulation.

For the memory experiment, we train for 30 steps and record the maximum memory reserved by
PyTorch (Paszke et al., 2019) using the torch.cuda.max_memory_reserved() function.
For all sizes, we use a gradient accumulation step for the first-order methods so that accumulated
gradients are included in the memory accounting.

The memory and timing experiments were conducted on a single H100 GPU.

For the timing experiment, we use the same experimental setup for each method as we use to generate
the final results. We record the time taken to complete the first 30 steps of training, and use that to
estimate the throughput (number of samples processed per second) and the total training time based
on the total number of steps used to generate the final results listed in Table 4 and Table 12 (2000
steps for DP-GRAPE, 3000 steps for DP-Adam, and 20,000 steps for DPZero, as listed in Zhang et al.
(2024).
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Figure 5: Convergence (as measured by development set accuracy) when fine-tuning RoBERTa-Large on SST-2
for DP-GRAPE and DPZero, with runs for three different random seeds used to generate few-shot datasets
shown.

Table 11: Clipping parameter C selected for each 1.3B/2.7B/6.7B OPT models and different datasets, for
DP-Adam and DP-GRAPE. DP-Adam runs out of memory for the 6.7B models on all datasets.

SST-2 BoolQ SQuAD DROP

DP-Adam 20.0/20.0/− 5.0/20.0/− 5.0/5.0/− 5.0/20.0/−
DP-GRAPE 20.0/20.0/1.0 20.0/20.0/5.0 0.1/0.1/0.1 0.1/0.1/1.0

Table 12: Mean and standard error of final f1 score over three different seeds for few-shot (k = 1000) fine-
tuning of OPT models on SQuAD and DROP generation tasks, for different DP and non-private methods. The
best DP result for each privacy level and dataset is in bold. OOM indicates out of memory on an 80GB GPU
with a batch size of 1 and gradient accumulation.

Model OPT-1.3B OPT-2.7B OPT-6.7B
Task SQuAD DROP SQuAD DROP SQuAD DROP

MeZO (non-private) 73.5± 1.2 24.4± 0.2 76.3± 0.8 25.5± 1.2 79.7± 1.1 28.8± 0.7

DPZero (ε = 6) 72.6± 0.8 24.7± 1.0 75.7± 1.5 24.6± 0.5 79.5± 0.9 28.4± 1.3
DPZero (ε = 2) 70.1± 1.6 23.9± 1.2 71.9± 1.2 23.1± 0.9 77.1± 1.0 27.6± 0.7

DP-Adam (ε = 6) 76.9± 0.2 25.9± 1.2 81.4± 0.7 26.3± 1.1 OOM OOM
DP-Adam (ε = 2) 74.1± 0.2 25.2± 1.8 77.8± 0.4 24.9± 0.7 OOM OOM

DP-GRAPE (ε = 6) 77.2± 0.1 26.1± 1.3 82.0± 0.3 25.5± 1.2 79.5± 0.2 28.2± 1.3
DP-GRAPE (ε = 2) 76.7± 0.7 25.0± 1.1 79.2± 0.7 24.1± 0.3 77.6± 0.4 27.8± 0.6

Zero-Shot 26.8 11.1 29.8 9.7 36.5 17.8
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Table 13: Throughput and total training time for fine-tuning on SQuAD with OPT models with a total batch
size of 8 on an H100 GPU. Total training time is based on 2000 total steps for DP-GRAPE, 3000 total steps
for DP-Adam (both are the same total number of steps we use to generate the results in Table 12) and 20000
total steps for DPZero, (the number of steps reported to generate the final results in Zhang et al. (2024). OOM
indicates out of memory on an 80GB GPU with a batch size of 1 and gradient accumulation.

Model OPT-1.3B OPT-2.7B OPT-6.7B
Throughput
(Samples/s)

Total Train
Time (hours)

Throughput
(Samples/s)

Total Train
Time (hours)

Throughput
(Samples/s)

Total Train
Time (hours)

DPZero 14.8 3.0 8.6 5.2 4.1 11.0
DP-Adam 9.6 0.7 4.4 1.5 OOM OOM
DP-GRAPE 10.7 0.4 5.6 0.8 2.5 1.8
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C.4 HYPERPARAMETER RECOMMENDATIONS

Although we performed somewhat extensive hyperparameter searches for our different experiments,
in many cases, large searches may be computationally infeasible, so here we give general recom-
mendations for selecting a learning rate, subspace dimension r, subspace change frequency F , and
clipping parameter C when training with DP-GRAPE. For the learning rate, we found that a good
range for fine-tuning with DP-GRAPE was between 1e-4 and 1e-3 (slightly larger than DP-Adam).
In general, based on our experiments and previous works which use gradient projection, practitioners
should use a larger subspace dimension r for pre-training than for fine-tuning, and they should use a
larger r for larger models. For example, for non-private GaLore Zhao et al. (2024), r = 128 was used
for pre-training a 60M Llama model, while r = 512 was used for pre-training a 1B Llama model,
and r = 4 or r = 8 was used for fine-tuning a RoBERTa-Base model [1]. We used a similar range for
r with respect to the different models sizes we applied DP-GRAPE to. A subspace change frequency
of F = 100 worked well for all of the fine-tuning experiments. We recommend practitioners do a
search over clipping values between roughly C = 0.1 and C = 100, as the best clipping parameter
can vary for different tasks.

C.5 COMPUTATIONAL RESOURCES

We run all experiments on a single H100 GPU (although up to 4 were used at any one time to run
separate experiments in parallel).

D PRIVACY AND CONVERGENCE ANALYSIS

In this section, we provide a formal statement of Theorem 4.1 discussed in the main paper and its
proof. Before the formal statement, we would like to give a more general version of the DP-GRAPE
algorithm discussed in the main paper. Instead of considering a partition of gradients in DP-GRAPE
which denotes each as gradients corresponding to a layer, we consider any general partition of the
gradient vector in which we would independently project each part. This serves as a generalization as
one can also introduce partitioning that is not necessarily demarcated by layers but may be something
different (like the first column vector across layers). The generalized version of DP-GRAPE is given
by Algorithm 6.

Algorithm 6 Generalized Version of DP-GRAPE

Require: Dataset X = {ξ1, . . . , ξn}, batch size B, number of blocks (layers) L which is a partition
U1,U2, · · · ,UL such that U1 ∪ U2 ∪ · · · ∪ UL = [d] |Uℓ| = mℓnℓ (hence d =

∑L
ℓ=1 mℓnℓ),

initialization w0 ∈ Rd, number of iterations T , stepsize η > 0, clipping threshold C > 0, privacy
parameters ε > 0, δ ∈ (0, 1).

1: Compute privacy noise variance σ =
2C
√

T log(1/δ)

nϵ
2: for t = 0, 1, · · · , T − 1 do
3: Sample B data-points Xt = {ξtj}Bj=1 uniformly from X .
4: for ℓ = 1, · · · , L do
5: For i ∈ [r], sample ptℓ,i i.i.d from N

(
0, 1

r Imℓ

)
and define P t

ℓ = [ptℓ,1 · · · ptℓ,r] ∈ R|Uℓ|×r.

6: For j ∈ [B], compute projected gradient Rt
ℓ,j ← P t

ℓ
⊤
(∇f(wt; ξ

t
j)[Uℓ]).

7: end for
8: for ℓ ∈ [L] do
9: Define Rt

j = [Rt
1,j , · · · , Rt

L,j ] ∈ Rr×L

10: Privatize projected gradient R̃t[Uℓ] = 1
B

∑B
j=1 clip(R

t
j , C)[Uℓ] + zt, where zt ∼

N (0, σ2Ir).
11: Update parameters: wt+1[Uℓ] ← wt[Uℓ]− ηP t

ℓ R̃
t[Uℓ]

12: end for
13: end for
14: Return wτ for τ sampled uniformly at random from {0, 1, · · · , T − 1}.

We now give a brief overview of how Algorithm 6 works. We start with a fixed partition of the
gradient vector, calling each partition a block. In DP-GRAPE, each block corresponds to a layer.
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At each step, Algorithm 6 samples a batch of B data points and computes a block-wise random
projection of gradients using r Gaussian vectors. It then aggregates gradients across blocks, clips
them, and adds Gaussian noise to ensure DP. Finally, the previously sampled r vectors are used to
map updates back to the d-dimensional space, and parameters are updated. This is repeated for T
rounds.

Algorithm 6 is a more generalized version of DP-GRAPE, where each Uℓ for ℓ ∈ [L] represents
indices in the flattened gradient vector corresponding to layer ℓ. Thus, |Uℓ| = mℓnℓ. By replacing
blocks with layer gradients, we see that projecting each block corresponds to projecting each layer’s
gradient. However, Algorithm 6 differs slightly from DP-GRAPE by using r different projections of
the flattened layer-wise gradients instead of left/right projections of gradient matrices. The method in
DP-GRAPE has lower variance, leading to a similar upper bound on convergence.

To facilitate our analysis, we make the following assumptions:
Assumption D.1 (Per-Sample Lipschitzness). The loss f(·; ξ) is Γ-Lipschitz for all ξ ∈ X , i.e. for
all w1, w2 ∈ Rd ∥f(w1; ξ)− f(w2; ξ)∥ ≤ Γ ∥w1 − w2∥.
Assumption D.2 (Smoothness). The average loss F (w) := 1

n

∑n
i=1 f(w; ξi) is λ-smooth for every

given dataset X i.e. for all w1, w2 ∈ Rd, ∥∇F (w1)−∇F (w2)∥ ≤ λ ∥w1 − w2∥.
Assumption D.3 (Finiteness of Optimal Value). F ∗ := minw∈Rd F (w) is finite.

Remark 3. It is important to note that these assumptions are standard in the analysis of private
non-convex optimization (Lowy et al., 2024; Zhang et al., 2024).

Before presenting the complete proof of our theorem, we would like to define the following notations
for the ease of stating our proofs.

Notations and Lemmas: For a set A ⊆ X , we define f(w;A) = 1
|A|
∑

ξ∈A f(w; ξ). By this defini-
tion, F (w) = f(w;X). Moreover, for a vector a ∈ Rd and an ordered set P = {p1, p2, · · · , pq} ⊆
[d], we define a[P ] := (a[p1], a[p2], · · · a[pq]) ∈ Rq where a[i] represents the ith index of the vector
a. We assume that indexing starts from 1. ∥·∥ represents the ℓ2 norm while ∥·∥F represents the
Frobenius norm. We now state some lemmas which would be useful throughout the proof.
Lemma D.4. Consider any random variable X ≥ 0 and an event Q, then we have that

E[X|Q] ≤ E[X]

P(Q)

Proof. This directly follows from the law of total probability and the non-negativity of X
E[X] = E[X|Q]P(Q) + E[X|Qc]P(Qc) ≥ E[X|Q]P(Q)

which proves the given claim.

Lemma D.5 (Greene (2003)). Consider X ∼ N (0, σ2) then we have that

E[X2|X ≥ K] = σ2

[
1 +

1

P[X ≥ K]
√
2π

e−
K2

2σ2

]
Lemma D.6. Consider any random variable X and a set Q such that {X : X ≥ t} ⊂ Q, then we
get that

E[X|Q] ≤ E[X|X ≥ t]

Proof. Using law of total probability, we get
E[X|Q] = E[X|Q,X ≥ t]P(X ≥ t|Q) + E[X|Q,X < t]P(X < t|Q).

Since, {X : X ≥ t} ⊂ Q, we have that E[X|Q,X ≥ t] = E[X|X ≥ t]. By conditioning, we have
that E[X|Q,X < t] < t ≤ E[X|X ≥ t] proving the given claim.

Lemma D.7 (Lin et al. (2020)). Let {al}l∈[n] be an arbitrary collection of vectors such that∑n
l=1 al = 0. Further, let S be a uniformly random subset of [n] of size m. Then,

E

∥∥∥∥∥ 1

m

∑
l∈S

al

∥∥∥∥∥
2

=
n−m

(n− 1)m

1

n

n∑
l=1

∥al∥2 ≤
1{m<n}

m n

n∑
l=1

∥al∥2.
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Lemma D.8 (Zhang et al. (2024)). Let u, v be uniformly sampled from the standard d-dimensional
Gaussian, let a ∈ Rd be some fixed vector independent of u, and H ∈ Rd×d be some fixed matrix
independent of u. We have that

(i) E[u] = 0 and E[uu⊤] = Id.

(ii) Eu[(u
⊤a)u] = a and Eu[(u

⊤a)2 ∥u∥2] = d ∥a∥2.

Lemma D.9 (Theorem 1 of Abadi et al. (2016)). There exist constants c1 and c2 so that given the
number of steps T, batch size B, and sensitivity ∆, for any ε < c1

B2

n2 T , the Gaussian Mechanism with
noise level σ applied for T steps is (ϵ, δ)-differentially private for any δ > 0 if we choose

σ ≥ c2
B∆

√
T log(1/δ)

nϵ
.

Privacy-Utility Tradeoff: Now, we state the main convergence result:

Theorem D.10 (Formal version of Theorem 4.1). For any ε > 0 and δ ∈ (0, 1), Algorithm 6 is
(ε, δ)-DP. Under Assumptions D.1, D.2, D.3 and the fact that max0≤t≤T |F (wt)− F ∗| ≤ D, there
exist a set of parameters such that the output wτ satisfies

E ∥∇F (wτ )∥2 ≤

(
λ
√
LD +

(
2 + 2

√
L log

((
5Γ2 +

64dDλ

r

)
2
√
2Ldn2ε√
log(1/δ)

))
Γ2

)
4
√
2d log(1/δ)

nε
.

Proof. Privacy Guarantee. The proof of privacy follows by the fact that the sensitivity when one
data point is replaced is given by ∆ = 2C

B . Then we use Lemma D.9 with a sampling factor of B
n and

explicitly get the constants from Bassily et al. (2019) to get the value of σ =
2C
√

T log(1/δ)

nϵ in the
algorithm for ε ≤ 2B2T

n2 .

Remark 4. Note that in the above definition, we use the replace-one notion of sensitivity. But,
the sensitivity for add-one/remove-one notion of DP still remains the same as the that we have
mentioned above. For completion, we provide a short proof. Consider the per-sample vectors
to be v1, · · · , vB . Then, the sensitivity of the add-one/remove-one notion of DP would be ∆ =∣∣∣ 1
n+1

∑n+1
i=1 vi − 1

n

∑n
i=1 vi

∣∣∣ = ∣∣∣ vn+1

n+1 −
1

n(n+1)

∑n
j=1 vj

∣∣∣ ≤ 2C
n . Thus, we get that the sensitivity

upper bound for the replace-one and add/remove one notion of DP is exactly the same.

Remark 5. Note that we are essentially using a sub-sampled Gaussian mechanism in our algorithm
which also satisfies other notions of DP such as Truncated Concentrated DP Bun et al. (2018) and
Gaussian DP Dong et al. (2022). Hence, we can convert the bounds in terms of the parameters for
different notions of privacy by getting the variance of the Gaussian noise in those parameters.

Utility guarantee. We focus on the utility guarantee on E ∥∇F (wτ )∥2. Before going into the
details of the proof, we would like to define some notations which would make things easier for
us in the proof. For A ⊆ X Define ∇f(w;A)[Uℓ] = ∇ℓf(w;A) and w.l.o.g. take ∇f(w,A) =
(∇1f(w;A)T ,∇2f(w;A)T , · · · ,∇Lf(w;A)T )T ∈ Rd. The same can be extended for F (w) =
f(w;X).

For any t ∈ {0, · · · , T −1}, i ∈ [r], j ∈ [n], and ℓ ∈ [L] consider the term
((

ptℓ,i

)⊤
∇ℓf(wt; ξj)

)2

.

Since ptℓ,i ∼ N
(
0, 1

r Imℓ

)
. By Lipschitzness of f(wt; ξj) and the fact that Uℓ ⊆ [d], we have

that
((

ptℓ,i

)⊤
∇ℓf(wt; ξj)

)2

=
∥∇ℓf(wt;ξj)∥2

r

(
V t
ℓ,i,j

)2
≤ Γ2

r

(
V t
ℓ,i,j

)2
where V t

ℓ,i,j ∼ N (0, 1).

Let Qt
ℓ,i,j be the event such that

∣∣∣V t
ℓ,i,j

∣∣∣ ≤ C√
LΓ

. Let Qt =
⋂r

i=1

⋂n
j=1

⋂L
ℓ=1 Q

t
ℓ,i,j . Thus, the

probability that clipping does not happen at one iteration is greater than P(Qt). We also denote
Q =

⋂T−1
t=0 Qt. Hence, Q̄ =

⋃T−1
t=0

⋃r
i=1

⋃n
j=1

⋃L
ℓ=1 Q̄

t
ℓ,i,j and for some V ∼ N (0, 1) we have that
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P
[∣∣∣V t

ℓ,i,j

∣∣∣ ≥ C√
LΓ

]
= P

[
|V | ≥ C√

LΓ

]
for some V ∼ N (0, 1). By the union bound, we have that

P(Q̄) ≤ TLnrP
[
|V | ≥ C√

LΓ

]
.

To simplify the notation, we let G(xt) represent

Gℓ(wt) =
1

n

n∑
j=1

r∑
i=1

ptℓ,i
(
ptℓ,i
)⊤∇ℓf(wt; ξj) =

r∑
i=1

ptℓ,i
(
ptℓ,i
)⊤∇ℓF (wt),

For all ℓ ∈ [L], let Ĝℓ(wt;Xt) =
1
BP t

ℓ

(∑B
j=1 clip(R

t
j , C)[ℓ]

)
and let

Gℓ(wt;Xt) =
1

B

B∑
j=1

r∑
i=1

ptℓ,i
(
ptℓ,i
)⊤∇ℓf(wt;x

t
j).

Note that the definition of Gℓ is agnostic to whether clipping happens of not. But, conditioned on the
event that clipping does not happen (Q), we have that Ĝℓ(wt;Xt) = Gℓ(wt;Xt).

Algorithm 6 becomes Xt ∼ Unif(X), wt+1[Uℓ] = wt[Uℓ] − η(Ĝℓ(wt;Xt) + P t
ℓ zt) un-

der the above notation. Let Ĝ(wt;Xt) = (Ĝ1(wt;Xt)
⊤, · · · , ĜL(wt;Xt)

⊤)⊤ and Pt =[
(P t

1)
⊤
, · · · , (P t

L)
⊤
]⊤
∈ Rd×r. Then, by smoothness of F (w), we get that

F (wt+1) ≤ F (wt)− η∇F (wt)
⊤(Ĝ(wt;Xt) + Ptzt) +

η2λ

2

∥∥∥Ĝ(wt;Xt) + Ptzt

∥∥∥2 .
The event Qt depends on the randomness in P<(t+1) := {P0, · · · , Pt}, X<(t+1) = {X0, · · · , Xt}
and z<t := {z0, z1, · · · , zt−1}. Note that the noise zt sampled from N (0, σ2Ir) is independent
of P<(t+1), X<(t+1), z<t, wt, and the dataset X . Given that event Qt happens, it implies that
we do not clip which implies that Ĝ(wt;Xt) = G(wt;Xt). Combining this with the fact that we
clip per-sample, we get EX<(t+1)

[Ĝ(wt;Xt)|Qt] = EX<(t+1)
[G(wt;Xt)|Qt] = EX<t

[G(wt)|Qt].
Conditioned on the event Qt and taking expectation with respect to z<(t+1), X<(t+1) and P<(t+1),
we have that
Ez<(t+1),X<(t+1),P<(t+1)

[F (wt+1)|Qt] ≤ Ez<(t+1),X<(t+1),P<(t+1)
[F (wt)|Qt]−

ηEz<(t+1),X<(t+1),P<(t+1)

[
∇F (wt)

⊤(Ĝ(wt;Xt) + Ptzt)
∣∣∣Qt

]
+

η2λ

2
Ez<(t+1),X<(t+1),P<(t+1)

[∥∥∥Ĝ(wt;Xt) + Ptzt

∥∥∥2∣∣∣∣Qt

]
= Ez<t,X<t,P<t

[FS(xt)|Qt]

− η Ez<t,X<tP<(t+1)

[
∇F (wt)

⊤G(wt)
∣∣Qt

]︸ ︷︷ ︸
1

+
η2λ

2
Ez<t,X<(t+1),P<(t+1)

[
∥G(wt;Xt)∥2

∣∣∣Qt

]
︸ ︷︷ ︸

2

+
η2λ

2
Ez<(t+1),X<t,P<(t+1)

[
z⊤t P⊤

t Ptzt
∣∣Qt

]︸ ︷︷ ︸
3

.

(3)

For term 1 , we get that

Ez<t,X<t,P<(t+1)

[
∇F (wt)

⊤Ĝ(wt)
∣∣∣Qt

]
=

L∑
ℓ=1

Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
∣∣Qt

]
.
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By the law of total probability and Lemma D.8, since Pt is independent of wt, for each ℓ ∈ [L] we
know that
Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
∣∣Qt

]
P(Qt) + Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
∣∣ Q̄t

]
P(Q̄t)

= Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
]
= Ez<t,X<t,P<t

[
∥∇ℓF (wt)∥2

]
,

Rearranging terms, we thus obtain that

Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
∣∣Qt

]
=

Ez<t,X<t,P<t ∥∇ℓF (wt)∥2

P(Qt)
−

Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
∣∣ Q̄t

]
P(Q̄t)

P(Qt)

(4)

.

Using the definition of our event Q̄t =
⋃r

i=1

⋃n
j=1

⋃L
ℓ=1 Q̄

t
ℓ,i,j , we have that Q̄t

ℓ,i,j ⊂ Q̄t. Thus, we
have that,

Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
∣∣Q̄t

]
=

r∑
i=1

Ez<t,X<t,P<(t+1)

[
(
(
ptℓ,i
)⊤∇ℓF (wt))

2
∣∣∣Q̄t

]
≤ 1

n

n∑
j=1

r∑
i=1

Ez<t,X<t,P<(t+1)

[
(
(
ptℓ,i
)⊤∇ℓf(wt; ξj))

2
∣∣∣Q̄t

]
=

1

nr

n∑
j=1

r∑
i=1

∥∇ℓf(wt; ξj)∥2 Ez<t,X<t,P<(t+1)

[(
V t
ℓ,i,j

)2∣∣∣Q̄t

]
≤ 1

rn

n∑
j=1

r∑
i=1

∥∇ℓf(wt; ξj)∥2 E
[(
V t
ℓ,i,j

)2∣∣∣Q̄t
ℓ,i,j

]
=

1

rn

n∑
j=1

r∑
i=1

∥∇ℓf(wt; ξj)∥2 E
[(
V t
ℓ,i,j

)2∣∣∣∣∣∣V t
ℓ,i,j

∣∣ ≥ C√
LΓ

]

=
1

n

n∑
j=1

∥∇ℓf(wt; ξj)∥2
1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2

 .

(5)

The first equality uses the definition of Gℓ, the second inequality is Young’s Inequality, the third
equality uses the fact that a⊤Z ∼ N (0, ∥a∥2) for Z ∼ N (0, Id) and a ∈ Rd independent of Z.

The fourth and inequality uses Lemma D.6 with X as
(
V t
ℓ,i,j

)2
. The fifth equality uses the fact that(

V t
ℓ,i,j

)2
≥ C2

LΓ2 is equivalent to
∣∣∣V t

ℓ,i,j

∣∣∣ ≥ C√
LΓ

. The sixth equality used Lemma D.5. Combining 5
with 4, we obtain that

Ez<t,X<t,P<(t+1)

[
∇ℓF (wt)

⊤Gℓ(wt)
∣∣Qt

]
≥

Ez<t,X<t,P<t
∥∇ℓF (wt)∥2

2P(Qt)

− 1

n

n∑
j=1

∥∇ℓf(wt; ξj)∥2 P(Q̄t)

P(Qt)

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2

 .
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Thus, taking the sum over all ℓ ∈ [L], we get that

Ez<t,X<t,P<(t+1)

[
∇F (wt)

⊤G(wt)
∣∣Qt

]
≥

L∑
ℓ=1

Ez<t,X<t,P<t ∥∇ℓF (wt)∥2

2P(Qt)

− 1

n

n∑
j=1

L∑
ℓ=1

∥∇ℓf(wt; ξj)∥2 P(Q̄t)

P(Qt)

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2


=

Ez<t,X<t,P<t
∥∇F (wt)∥2

2P(Qt)

− 1

n

n∑
j=1

∥∇f(wt; ξj)∥2 P(Q̄t)

P(Qt)

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2


≥

Ez<t,X<t,P<t
∥∇F (wt)∥2

2P(Qt)
− Γ2P(Q̄t)

P(Qt)

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2



(6)

The second equality comes from the fact that the full gradient of the model is just concatenated
version of the layer wise gradients. The third inequality follows from the per-sample Lipschitzness
assumption D.1.

For term 2 , by the definition of G(wt;Xt) and using Lemma D.4, we have

Ez<t,X<(t+1),P<(t+1)

[
∥G(wt;Xt)∥2

∣∣∣Qt

]
≤

L∑
ℓ=1

Ez<t,X<(t+1),P<(t+1)

[
∥Gℓ(wt;Xt)∥2

]
P(Qt)

Ez<t,X<(t+1),P<(t+1)

[
∥Gℓ(wt;Xt)∥2

]
≤ 2Ez<t,X<t,P<(t+1)

[∥Gℓ(wt)∥2]+

2Ez<t,X<(t+1),P<(t+1)
[∥Gℓ(wt;Xt)−Gℓ(wt)∥2]

= 2Ez<t,X<t,P<(t+1)

∥∥∥∥∥
r∑

i=1

(
ptℓ,i
)T ∇ℓF (wt)p

t
ℓ,i

∥∥∥∥∥
2
+

2Ez<t,X<(t+1),P<(t+1)

∥∥∥∥∥
r∑

i=1

(
ptℓ,i
)T

(∇ℓf(wt;Xt)−∇ℓF (wt))p
t
ℓ,i

∥∥∥∥∥
2


=

(
d+ r − 1

r

)
Ez<t,X<t,P<t

[∥∇ℓF (wt)∥2]+(
d+ r − 1

r

)
Ez<t,X<(t+1),P<t [∥∇ℓf(wt;Xt)−∇ℓF (wt)∥2]

≤ 2d

r
Ez<t,X<t,P<t

[∥∇ℓF (wt)∥2] +
2d ∥∇ℓF (wt)∥2 1{B<n}

rB

Thus, taking the sum and using the fact that
∑L

ℓ=1 ∥∇ℓF (wt)∥2 = ∥∇F (wt)∥2 ≤ Γ2, we get that

Ez<t,X<(t+1),P<(t+1)

[
∥G(wt;Xt)∥2

∣∣∣Qt

]
≤ 2d

rP(Qt)
Ez<t,X<t,P<t

[∥∇F (wt)∥2] +
8dΓ2

1{B<n}

rBP(Qt)
(7)
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For term 3 , Pt is essentilly a d× r matrix of independentN
(
0, 1

r

)
entries. Since the identity matrix

is positive semi-definite, using Lemma D.4 and Lemma D.8 we get that

Ez<(t+1),X<t,P<(t+1)

[
z⊤t P⊤

t Ptzt
∣∣Qt

]
≤

Ez<(t+1),X<t,P<(t+1)

[
z⊤t P⊤

t Ptzt
]

P(Qt)

=
σ2Ez<t,X<t,P<(t+1)

[
Tr(P⊤

t Pt)
]

P(Qt)

=
σ2Ez<t,X<t,P<(t+1)

[∑r
i=1 ∥pti∥

2
]

P(Qt)

=
σ2d

P(Qt)
.

(8)

Plugging (6), (7) and (8) back into (3), we obtain that
Ez<(t+1),X<(t+1),P<(t+1)

[F (wt+1)|Qt] ≤ Ez<t,X<t,P<t
[F (wt)|Qt]

− η

2

(
1− 2dλη

r

)
Ez<t,ξ<t,U<t

∥∇F (wt)∥2

P(Qt)

+
ηΓ2P(Q̄t)

P(Qt)

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2


+

4dη2Γ2λ1m<n

BrP(Qt)
+

η2λσ2d

2P(Qt)

Assuming 2dλη
r ≤ 1 and choosing η ≤ r

4dλ , we have that

Ez<(t+1),X<(t+1),P<(t+1)
∥∇F (wt)∥2 ≤

4Ez<(t+1),X<(t+1),P<(t+1)
[F (wt)− F (wt+1)|Qt]P(Qt)

η

+ 2ληdσ2 +
16dη1B<nΓ

2λ

Br

+ 4ηΓ2

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2

 P(Q̄).

Recall Qt is the event that clipping does not happen at iteration t and Q is the event that clipping does
not happen for every iteration, hence Qt ∩Q = Q. By the law of total probability and the assumption
that |F (wt)− F ∗| ≤ D for every t, we have that
Ez<(t+1),X<(t+1)P<(t+1)

[F (wt)− F (wt+1)|Qt]P(Qt) = Ez<T ,X<T ,P<T
[F (wt)− F (wt+1)|Qt]P(Qt)

= Ez<T ,X<T ,P<T

[
F (wt)− F (wt+1)

∣∣∣Qt ∩Q
]
P(Qt ∩Q)

+Ez<T ,X<T ,P<T

[
F (wt)− F (wt+1)

∣∣∣Qt ∩ Q̄
]
P(Qt ∩ Q̄)

≤ Ez<T ,X<T ,P<T
[F (wt)− F (wt+1)|Q]P(Q) + 2D P(Q̄).

As a result, we have that

Ez<(t+1),X<(t+1),P<(t+1)
∥∇F (wt)∥2 ≤

4Ez<T ,X<T ,P<T
[F (wt)− F (wt+1)|Q]P(Q)

η

+ 2ληdσ2 +
16η1B<nΓ

2λ

Br

+

4dηΓ2

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2

+
8D

η

 P(Q̄).
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Taking expectation with respect to all randomness, i.e., E = Ez<T ,ξ<T ,u<T
, summing up from t = 0

to T − 1, and dividing both sides by T , we have that

E ∥∇F (wτ )∥2 =
1

T

T∑
t=1

Ez<t,ξ<t,u<t ∥∇F (wt)∥2

≤ 4E[F (w0)− F (wT )|Q]P(Q)

ηT
+

8ληT d log(1/δ)

n2ε2
C2 +

16dη1B<nΓ
2λ

Br

+

4ηΓ2

1 + 1

P
[
|V | ≥ C√

LΓ

]√
2π

e−
C2

2LΓ2

+
8D

η

 P(Q̄)

≤ 4E[F (w0)− F (wT )|Q]P(Q)

ηT
+

8ληT d log(1/δ)

n2ε2
C2 +

16dη1B<nΓ
2λ

Br

+

(
4ηΓ2

[
P
[
|V | ≥ C√

LΓ

]
+

1√
2π

e−
C2

2LΓ2

]
+

8D

η
P
[
|V | ≥ C√

LΓ

])
TLnr

≤ 4E[F (w0)− F (wT )|Q]P(Q)

ηT
+

8ληT d log(1/δ)

n2ε2
C2

+
16dη1B<nΓ

2λ

Br
+

(
4

[
2 +

1√
2π

]
ηΓ2 +

16D

η

)
TLnre−

C2

2LΓ2

Considering the choice of parameters to be

ηT =
nε

λ
√
2Ld log(1/δ)

, η =
r

4dλ
, T =

2
√
2dnε

r
√
L log(1/δ)

,

C = Γ

√√√√2L log

((
5r

4dλ
Γ2 +

64dDλ

r

)
2
√
2Ldn2ε√
log(1/δ)

)
,

B ≥ max

(√
r

8n

(
L log(1/δ)

2d

)1/4

,
nε

2
√
2d log(1δ)

)
,

we get that,

E ∥∇F (wτ )∥2 ≤

(
λ
√
LD +

(
2 + 2

√
L log

((
5Γ2 +

64dDλ

r

)
2
√
2Ldn2ε√
log(1/δ)

))
Γ2

)
4
√
2d log(1/δ)

nε
.
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