

000 SCOUTING FOR POTENTIAL LLMS: A PRELIMINARY 001 ASSESSMENT OF DOMAIN ADAPTABILITY FOR SUPER- 002 VISED FINE-TUNING

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Large Language Models (LLMs) have demonstrated remarkable performance
 014 across diverse tasks, but their effectiveness in domain-specific applications de-
 015 pends on how well the Supervised Fine-Tuning (SFT) data aligns with the model’s
 016 pre-trained knowledge. Since SFT doesn’t always improve performance, develop-
 017 ers must resort to costly trial-and-error to find optimal model-dataset matches. To
 018 address this problem, we introduce **Potential Scout**, a lightweight framework that
 019 diagnoses a model’s suitability for SFT without training. Our method builds a
 020 **Thinking Curve Matrix (TCM)** that tracks how hidden representations evolve
 021 across transformer layers when processing SFT samples. From TCM, we derive
 022 two diagnostic indicators: **Activation Growth Score**, which captures how well
 023 the model distinguishes semantic differences, and **Layer Coverage Score**, which
 024 measures representational stability within the model. Combined with these indi-
 025 cators and pre-SFT benchmark scores, we designed two complementary scouting
 026 modes: **In-dataset Scout** uses prior SFT experience on the same dataset, while
 027 **Cross-dataset Scout** works on entirely new datasets. Across 18 LLMs and 8
 028 datasets, Potential Scout identifies top-performing candidates in minutes, substan-
 029 tially reducing the search space for SFT and eliminating extensive exploratory
 030 experiments in model selection.

031 1 INTRODUCTION

033 Large language models (LLMs) have expanded rapidly beyond language generation, enabling ap-
 034 plications across numerous fields. To complete these tasks, LLMs need several capabilities, such as
 035 reasoning and domain-specific knowledge (Besta et al., 2025; Zhong et al., 2024; Zhao et al., 2024a).
 036 One strategy to grant these capabilities to small-scale LLMs is supervised fine-tuning (SFT) using
 037 task-specific data (Liu et al., 2024a; Guo et al., 2025). Recent studies show that smaller models can
 038 acquire these capabilities by fine-tuning with high-quality data (Huang et al., 2024; Min et al., 2024;
 039 Ye et al., 2025).

040 However, fine-tuning does not always guarantee benchmark score improvements, even when using
 041 relevant data for SFT. Excellent models sometimes perform worse after SFT, while weaker models
 042 can achieve substantial gains. This phenomenon is illustrated across different benchmarks in Fig-
 043 ure 1. On the MATH500 benchmark, Qwen2.5-Math-1.5B shows a slight improvement after SFT
 044 with the LIMO dataset, while the larger Qwen2.5-3B suffers a performance drop, although its scale
 045 is larger than the math model (Ye et al., 2025; Yang et al., 2024a;b). Similarly, on GSM8K, although
 046 DeepSeek-Math-7B-Instruct showed the weakest pre-SFT performance, it achieved the largest rel-
 047 ative improvement (+235%) and ultimately recorded the highest post-SFT accuracy (Cobbe et al.,
 048 2021; Zhihong Shao, 2024). These results suggest that compatibility between prior knowledge of
 049 the model and the SFT data is a key factor in fine-tuning. However, users typically lack access
 050 to pretraining corpora, making it difficult to assess this alignment (Yan et al., 2024). This often
 051 forces users to resort to costly trial-and-error approaches, which require exhaustive SFT training
 052 and evaluation across multiple candidate models to identify the optimal LLM.

053 To address this issue, we introduce **Potential Scout**, a scouting framework that assesses the potential
 for fine-tuning by analyzing how hidden states evolve across transformer layers in response to SFT

Figure 1: Evaluation before and after SFT on two benchmarks, showing that alignment between a model’s prior knowledge and the SFT data is a key factor in fine-tuning success. (a) MATH500 results after SFT with the LIMO (math reasoning) dataset. Although Qwen2.5-Math-1.5B shows a slight improvement, the larger Qwen2.5-3B suffers a performance drop. (b) GSM8K results after SFT with the GSM8K training set. Notably, DeepSeek-Math-7B, despite having the weakest pre-SFT performance, achieves the largest relative improvement (+235%) and the highest post-SFT accuracy, while models with stronger initial performance show more modest gains.

data samples through a Thinking Curve (TC). The TC represents a trajectory of change in semantic representation for a single query as it passes through consecutive model layers. To systematically explore these patterns, we construct a **Thinking Curve Matrix (TCM)** that captures several queries from the same dataset and records their hidden states layer by layer.

From the TCM, we compute two scouting indicators: **Activation Growth Score (AGS)** and **Layer Coverage Score (LCS)**. **AGS** indicates the power of semantic expansion through layers, based on the findings that fine-tuned models show a stronger layer-wise feature specialization (Nadipalli, 2025; Zhao et al., 2024b). **LCS** quantifies a stability of semantic differentiation across queries at each layer, based on studies showing that domain-specialized models exhibit more structured representational patterns (Zhou & Srikumar, 2021; Phang et al., 2021).

Combined with pre-SFT benchmark scores, these indicators enable post-SFT performance prediction through two **scouting modes**: (1) **In-dataset Scout**, which uses past SFT experience on the same dataset to assess candidate models, and (2) **Cross-dataset Scout**, which works on entirely new datasets where no SFT results exist. Through evaluation across 18 LLMs and 8 datasets, we show that *Potential Scout* correctly identifies about 70% of top-performing models, reducing selection time from days of training to minutes of analysis. By transforming model selection into a systematic diagnostic process, *Potential Scout* eliminates extensive exploratory experiments and **accelerates the development of specialized LLMs across diverse domains**. The contributions of this work are summarized as follows:

- **Preliminary Assessment for Model Selection:** We propose a scouting framework that enables the identification of promising models before SFT, reducing costly and extensive training and testing by analyzing internal representation.
- **Sample-Efficient Evaluation:** Our method requires only a small fraction of dataset samples (e.g., 5%, corresponding to 15 to 350 instances), allowing reliable prediction of the fine-tuning potential with minimal computational overhead (7 to 8 minutes per model).
- **Dual Scouting Approaches:** In-dataset Scout utilizes dataset-specific experience to achieve 70% Top-7 precision among 18 candidate models, and Cross-dataset Scout enables model selection in entirely new datasets with 70% Top-9 precision.

2 RELATED WORK

2.1 EFFICIENT SUPERVISED FINE-TUNING

SFT has been widely used to adapt LLMs for specific domains, but its high computational cost has driven extensive research on efficiency. One major approach is knowledge distillation, where smaller student models replicate larger teachers through output distribution matching (Hinton et al., 2015; Ba & Caruana, 2014; Romero et al., 2014). Recent work explores SFT distillation, where students

108 are fine-tuned on teacher-synthesized data (Li & Mooney, 2024; Chen et al., 2024) or self-generated
 109 corpora (Wang et al., 2022; Li et al., 2023). A second approach focuses on parameter-efficient fine-
 110 tuning (PEFT), which adapts LLMs by training only a fraction of parameters while freezing most
 111 weights. Hu et al. (2022) introduce low-rank updates achieving near full fine-tuning performance
 112 with minimal overhead, Dettmers et al. (2023) combines 4-bit quantization with LoRA for memory
 113 efficiency, and subsequent work explores sub-4-bit quantization and adapter architectures like LLM-
 114 Adapters (Kim et al., 2023; Hu et al., 2023). Data selection methods form a third field of research,
 115 improving efficiency by curating informative training samples. Liu et al. (2024b) distills domain
 116 knowledge through sample re-weighting, Yang et al. (2024c) uses small proxy model trajectories for
 117 selection guidance, Chen et al. (2025) maximizes information gain in semantic space for instruction
 118 tuning, and Pan et al. (2024) employs gradient-based criteria for quality and diversity. While these
 119 approaches significantly reduce SFT costs, they assume the target model is already chosen. Our
 120 work addresses a complementary problem: **how to identify the best model candidates for SFT**
 121 **using a training-free method.**

122 2.2 ANALYZING HIDDEN REPRESENTATIONS IN LLMs

124 While prior studies have focused on modifying models through pruning or editing, we analyze hid-
 125 den activations to assess dataset-specific information organization and rank candidate models by
 126 their fine-tuning potential. As LLMs have grown in size and complexity, understanding their inter-
 127 nal behavior has become essential to improve interpretability, efficiency, and transferability. Many
 128 studies have explored hidden representations to make LLMs efficient by uncovering some redun-
 129 dancy from each layer (Michel et al., 2019; Liang et al., 2025; Pons et al., 2024; Lu et al., 2024).
 130 Similarity-based approaches, such as CKA, CCA, and SVCCA (Kornblith et al., 2019; Raghu et al.,
 131 2017), have been proposed to analyze layer-wise alignment for pruning or distillation purposes.
 132 Some studies have considered whether it is possible to edit knowledge of LLMs by intervening in
 133 specific internal components, rather than retraining the entire model such as ROME (Meng et al.,
 134 2022) and PMET (Li et al., 2024). Additionally, recent work has shown that LLMs can exhibit
 135 distinct hidden state patterns depending on their specialized domain. Garcia et al. (2025) demon-
 136 strate that inputs from different domains (e.g., mathematics, law, medicine) produce consistent and
 137 separable activation trajectories across layers.

138 3 METHODOLOGY

140 Our framework operates through a three-stage process, as demonstrated in Figure 2. First, we extract
 141 two diagnostic indicators, **Activation Growth Score** and **Layer Coverage Score**, from candidate
 142 models using SFT dataset samples, combined with baseline performance from pre-SFT benchmarks
 143 (Figure 2-a). Second, we optimize our dual scouting system using these features: In-dataset Scout
 144 for familiar datasets and Cross-dataset Scout for new domains (Figure 2-b). Finally, both scouts
 145 generate potential rankings that predict fine-tuning success, as shown in the MBPP and GSM8K
 146 prediction results (Figure 2-c).

148 3.1 THINKING CURVE MATRIX

150 To quantify how models process dataset-specific information, we design the Thinking Curve Matrix
 151 (TCM), which systematically captures layer-wise representational changes across multiple queries.
 152 This matrix serves as the foundation for extracting our predictive features by revealing both individ-
 153 ual query processing patterns and cross-query consistency within a dataset. The TCM construction
 154 begins with measuring dispersion scores that quantify the spread of hidden state representations,
 155 then tracking layer-wise trajectories, and finally organizing these measurements into a structured
 156 matrix format.

157 Giraldo et al. (2014) introduced a matrix-based entropy measure that quantifies the dispersion
 158 of high-dimensional vectors by analyzing eigenvalue distributions. Motivated by this approach,
 159 we measure matrix compression levels across transformer layers using eigenvalue-based analysis.
 160 Skean et al. (2024) reported that transformers exhibit a V-shaped trajectory, first compressing in-
 161 puts, then re-expanding for finer semantics. For token embeddings $H \in \mathbb{R}^{T \times D}$, we compute the
 Gram matrix $G = HH^\top$, extract eigenvalues $\{\lambda_i\}_{i=1}^T$, and normalize them into proportions p_i . To

Figure 2: Overview of Potential Scout for identifying promising SFT models. **(a)** Thinking Curve Matrices (TCM) capture hidden-state trajectories to derive AGS and LCS along with benchmark scores. **(b)** These indicators, stored in a Scouting Report, are used to optimize scouts for predicting performance changes. **(c)** IDS applies when sufficient SFT experience on a dataset exists in Scouting Report, while CDS utilizes other datasets when such information is absent. **(c-1, c-2)** Predicted performance strongly correlates with actual post-SFT performance.

measure the dispersion score, which quantifies the level of semantic differentiation at each layer, the dispersion score is:

$$d(H) = \frac{1 - \sum_{i=1}^T p_i^2}{1 - \frac{1}{T} + \varepsilon}. \quad (1)$$

The numerator captures the dispersion by converting concentration measures, while the denominator normalizes across different sequence lengths. Higher values indicate a greater representational spread, with $d(H) \in [0, 1]$. Then, we define the **Thinking Curve** (TC) as the dispersion trajectory across all layers: $TC = (d(H^{(1)}), d(H^{(2)}), \dots, d(H^{(L)}))$, where $H^{(\ell)}$ represents the hidden state at layer ℓ . As models have different depths, we interpolate all curves to a uniform length of $K = 25$, maintaining the original patterns with $R^2 > 0.95$ quality. We then collect TC from multiple inputs to create the **Thinking Curve Matrix** (TCM). This matrix reveals both how individual inputs are processed and how consistently the model handles similar queries.

3.2 ACTIVATION GROWTH SCORE

Individual TC from the TCM on the GSM8K dataset are visualized as shown in Figure 3. The figure shows TC curves from 30 random samples per model, illustrating their compression-expansion patterns. We measure the **Activation Growth Score** (AGS) of the semantic expansion by computing the slope of the thinking curves after compression. For each sample, we identify the layer of maximum compression (marked with dots in Figure 3) and compute the second half slope of the expansion range, where x represents the dispersion score at each layer. The AGS value is then averaged

216 across all N samples in the dataset:
 217

$$218 \quad \text{AGS} = \frac{1}{N} \sum_{i=1}^N \frac{x_i^{(\ell)} - x_i^{(k)}}{\ell - k}, \quad k = \text{middle layer of the expansion segment.} \quad (2)$$

$$219$$

$$220$$

221 where $x_i^{(\ell)}$ and $x_i^{(k)}$ are the dispersion scores for sample i at layers ℓ and k respectively. We use the
 222 second half of this expansion segment because previous work shows that dataset-specific expansion
 223 emerges mainly in later layers (Garcia et al., 2025; Geva et al., 2020), and this segment also exhibits
 224 more pronounced differences between individual samples, making it more informative for distin-
 225 guishing model capabilities. As shown in Figure 3, we compute AGS only from layers to the right
 226 of the vertical blue boundary marking the midpoint between the compression minimum and the final
 227 layer. Fine-tuning increases representational differentiation in higher layers (Zhao et al., 2024b), so
 228

229
 230 Figure 3: Thinking Curves (TC) of various models on the GSM8K dataset. For each model, we
 231 plot curves from 30 randomly selected samples, showing how internal representations evolve across
 232 layers. Markers indicate the layer index where each curve reaches its minimum value.
 233

234 higher AGS indicates stronger expansion capacity, while weaker slopes represent underdeveloped
 235 representational structures that are more likely to benefit from SFT.
 236

237 3.3 LAYER COVERAGE SCORE

238 We measure the **Layer Coverage Score (LCS)** of semantic expansion by computing the coefficient
 239 of variation (CV) across columns of the TCM. This captures how consistently a model processes
 240 different queries from the same dataset at each layer. Following the same segmentation approach
 241 as AGS computation, we focus on the second half of the tail region to capture the most informative
 242 expansion phase. For each layer i in the selected segment from layer k to ℓ , we compute the coeffi-
 243 cient of variation across all N queries, where $d_j^{(i)}$ represents the dispersion score of query j at layer
 244 i . The final LCS is the average CV across all layers in the segment:
 245

$$246 \quad \text{LCS} = \frac{1}{\ell - k} \sum_{i=k}^{\ell} \frac{\sigma(d_1^{(i)}, d_2^{(i)}, \dots, d_N^{(i)})}{\mu(d_1^{(i)}, d_2^{(i)}, \dots, d_N^{(i)}) + \varepsilon} \quad (3)$$

$$247$$

248 This approach is motivated by recent findings that fine-tuning restructures and organizes knowl-
 249 edge by increasing **cohesion within similar knowledge clusters** and improving separation between
 250 processing pathways (Zhou & Srikumar, 2021; Doimo et al., 2024). This structural reorganization
 251 underlies performance improvements (Zhao et al., 2024b). Models that process similar queries in-
 252 consistently have greater potential to improve during fine-tuning. As shown in Figure 4, layers with
 253 widely spread values indicate such inconsistency across queries. The same segmentation boundary
 254 (indicated by the vertical blue line in Figure 3) is used for LCS, and all computations are performed
 255 only on layers to the right of this boundary.
 256

257 A lower LCS indicates that the model processes queries more uniformly across the dataset. How-
 258 ever, models with higher variability in their representational patterns actually demonstrate greater
 259 fine-tuning potential, as this inconsistency provides substantial room for the organizational restruc-
 260 turing that drives fine-tuning improvements. Combined with AGS, these two indicators allow us to
 261 comprehensively evaluate a model’s fine-tuning potential for specific datasets.
 262

Figure 4: Coefficient of Variation (CV) across layers 19, 21, and 23 for Falcon3-7B-Inst model on GSM8K. Orange dots represent individual query processing, while shaded areas show variance around the mean. Higher spread indicates inconsistent processing of similar queries.

3.4 POTENTIAL RANKING VIA LINEAR REGRESSION

In-dataset Scout (IDS) We fit an ordinary least squares regression model to predict the relative improvement after SFT from AGS (g), LCS (c), and pre-SFT performance (b_{pre}). For each model i and dataset j , the improvement is modeled as

$$\Delta_{ij} = \frac{\text{post}_{ij} - \text{pre}_{ij}}{\text{pre}_{ij}} = \beta_0^{(j)} + \beta_g^{(j)} g_{ij} + \beta_c^{(j)} c_{ij} + \beta_b^{(j)} b_{\text{pre},ij} + \epsilon. \quad (4)$$

The coefficients $\beta^{(j)}$ are estimated separately for each dataset j . IDS therefore learns dataset-specific regressions that relate our indicators to fine-tuning gains and becomes stable once roughly ten model observations are available. However, because IDS must be trained separately for each dataset, it cannot be applied to a completely new dataset with no SFT history.

Cross-dataset Scout (CDS) The IDS approach has a critical limitation: it requires separate training for each dataset, making it impractical for new datasets with no fine-tuning history. To address this cold-start problem and enable cross-dataset generalization, we extend IDS using a Linear Mixed Model as a **Cross-dataset Scout (CDS)** that leverages information from multiple datasets.

$$\Delta_{ij} = \beta_0 + \beta_g g_{ij} + \beta_c c_{ij} + \beta_b b_{\text{pre},ij} + \gamma_j + \epsilon, \quad \gamma_j \sim \mathcal{N}(0, \sigma_\gamma^2). \quad (5)$$

$$\gamma_{\text{unseen}} = 0 \quad \text{for unseen datasets.}$$

The variables Δ , g , c , and b_{pre} denote the improvement, AGS, LCS, and pre-SFT performance for each model–dataset pair. The term γ_j is a dataset-specific random intercept, modeled as $\mathcal{N}(0, \sigma_\gamma^2)$, which captures systematic differences across datasets. The fixed effects $(\beta_g, \beta_c, \beta_b)$ describe relationships between our indicators and fine-tuning gains that generalize across datasets. For unseen datasets, we make predictions using only the fixed-effects component by setting $\gamma_{\text{unseen}} = 0$, allowing CDS to transfer knowledge from previous datasets and operate effectively in cold-start scenarios.

Overall Prediction Pipeline Our pipeline follows a simple four-step process. (1) Extract AGS, LCS, and pre-SFT performance for each candidate model. (2) Use IDS or CDS to predict the model’s expected relative improvement. (3) Estimate its post-SFT performance by applying the predicted gain to the pre-SFT score. (4) Rank all models based on these estimated post-SFT performances. This unified pipeline is used for both IDS and CDS.

4 EXPERIMENTS

4.1 SETUP

All experiments are conducted on two NVIDIA A100 GPUs (80GB each). We evaluated **18 open-source LLMs** using two scales: 9 small-scale models (1–1.5B) and 9 mid-scale models (7–8B), including both general-purpose and domain-specialized instruction-tuned models. The small group includes Qwen2.5 (general, math, coder) (Yang et al., 2024a;b; Hui et al., 2024),

324 LLaMA-3.2-1B (Grattafiori et al., 2024; Meta AI, 2024), Falcon-3-1B (Team, 2024), AMD-OLMo-
 325 1B-SFT (Liu et al., 2024c), OLMo-2-1B (OLMo et al., 2024), Gemma-3-1B (Team et al., 2025),
 326 and DeepSeek-Coder-1.3B (Guo et al., 2024). The middle group covers Qwen2.5 (general, math,
 327 coder), LLaMA-3.1-8B, Falcon-3-7B, OLMo-2-7B, and DeepSeek (general, math, coder) (Bi et al.,
 328 2024; Shao et al., 2024). With these models, we evaluate across three categories of benchmarks:
 329 **math** (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021; Lewkowycz et al., 2022),
 330 MathQA (Amini et al., 2019)), **coding** (MBPP (Austin et al., 2021), LeetCodeDataset (Xia et al.,
 331 2025)), and **general QA** (CoQA (Reddy et al., 2019), OpenBookQA (Mihaylov et al., 2018), ARC-
 332 Challenge (Clark et al., 2018)).

334 4.2 COMPLEMENTARY MEASUREMENTS AND COMPUTATIONAL EFFICIENCY

336 **Predictor Complementarity** To assess whether combining all three measurements improves pre-
 337 diction capability, we evaluated their joint performance against individual measurements. The com-
 338 bined regression model consistently achieves the highest correlation with SFT improvement, pro-
 339 ducing statistically significant relationships $p < 0.05$ in 5 out of 8 datasets with strong correlations:
 340 GSM8K $\rho = 0.622$, MathQA $\rho = 0.658$, MBPP $\rho = 0.742$, LeetCode $\rho = 0.471$, and CoQA
 341 $\rho = 0.517$, as shown in Table 1. While individual measurements exhibit domain-specific effec-
 342 tiveness, their combination substantially enhances predictive capability, for example, CoQA corre-
 343 lation increases from 0.357 (best individual predictor) to 0.517 (combined model). VIF analysis
 344 confirms that all measurements maintain scores below 5, indicating minimal multicollinearity (see
 345 Appendix B). The regression coefficients broadly align with our expectations. Most β_g values are
 346 negative, suggesting weaker semantic expansion correlates with higher SFT potential. The β_c coef-
 347 ficients are positive in 6 out of 8 datasets, indicating that processing inconsistency generally signals
 348 improvement opportunities. Similarly, most $\beta_{b_{pre}}$ values are negative, supporting the intuition that
 349 lower baseline performance predicts greater improvement potential.

350 Table 1: Pearson correlation coefficients (corr), p -values (p-val), and IDS coefficients (β) for indi-
 351 vidual predictors and their combination. The highest correlation per dataset is in **bold**; the second-
 352 highest is underlined. The β values are the optimized weights combining all three predictors in IDS.
 353 All indicates the correlation and p -value when using all three predictors jointly.

Dataset	AGS		LCS		b_{pre}		All		β (All)		
	corr	p-val	corr	p-val	corr	p-val	corr	p-val	β_g	β_c	$\beta_{b_{pre}}$
GSM8K	0.048	0.851	0.316	0.202	<u>0.516</u>	0.028	0.622	0.006	-0.53	+0.57	-0.45
MATH	0.170	0.499	<u>0.328</u>	0.184	0.202	0.421	0.417	0.085	-0.11	+0.44	-0.24
MathQA	0.003	0.989	0.081	0.748	<u>0.648</u>	0.004	0.658	0.003	-0.15	+0.19	-0.65
MBPP	0.011	0.964	0.092	0.717	<u>0.713</u>	0.001	0.742	0.001	+0.10	+0.13	-0.75
LeetCode	0.182	0.470	0.058	0.819	<u>0.440</u>	0.067	0.471	0.048	-0.36	+0.29	-0.39
CoQA	<u>0.357</u>	0.146	0.262	0.294	0.254	0.308	0.517	0.028	-0.40	-0.08	-0.40
OpenBookQA	<u>0.254</u>	0.309	0.196	0.435	0.025	0.923	0.279	0.262	-0.23	-0.12	-0.14
ARC-Challenge	0.182	0.470	0.019	0.941	<u>0.224</u>	0.371	0.360	0.143	-0.41	+0.42	+0.28

367 **Sampling Efficiency** To balance computational
 368 cost with measurement reliability, we evaluated how
 369 sampling rates affect our quantitative indicators. Both
 370 AGS and LCS achieve a coefficient of variation (CV)
 371 around 0.1 across sampling rates, which means that
 372 the indicators remain stable even with limited data.
 373 We used datasets that range from 300 to 7,000 sam-
 374 ples, where sampling 5% translates into 15 to 350
 375 absolute samples, which proves sufficient for reliable
 376 measurement. As summarized in Table 2, using 5%
 377 sampling requires only 7-8 minutes per model with a
 single forward pass for hidden state collection.

378 Table 2: Computation time per model (minutes). Benchmark refers to a full evaluation,
 379 and Potential Scout indicates using a sam-
 380 pled subset and one forward pass to com-
 381 pute AGS and LCS.

Method	Sampling	Time(m)
Benchmark	–	10 to 180
	1%	1 to 3
Potential Scout	5%	7 to 8
	10%	10 to 15

378
379

4.3 GENERALIZATION ACROSS MODELS AND DATASETS

380
381
382
383
384
385
386
387

We evaluated Potential Scout’s generalization performance within and across datasets using Top-K precision metrics, as shown in Figure 5. For IDS, we performed K-fold cross-validation within each dataset, splitting models into training and testing folds to predict relative improvement using OLS regression. For CDS, we employed Leave-One-Dataset-Out cross-validation with Mixed-Effects Linear Models, training on all datasets except one, and predicting for the held-out dataset to simulate completely new dataset scenarios. Both approaches used these predictions to estimate post-SFT scores, then ranked models accordingly and measured how well the predicted top-K performers overlapped with actual top-K models.

402
403
404
405
406
407
408

Figure 5: In-dataset vs. Cross-dataset Scout Performance. Top-K precision comparison between (a) IDS for datasets with existing SFT experience and (b) CDS for entirely new datasets. While both struggle with Top-1 precision, IDS achieves 70% accuracy at Top-7 and CDS at Top-9 with 18 LLMs. The results demonstrate that effective model scouting remains feasible even without prior SFT experience, though cross-dataset generalization requires consideration of dataset compatibility.

409
410
411
412
413
414
415
416
417

Both approaches struggle with Top-1 prediction, but achieve reasonable performance at moderate k values. Among the 18 candidate models, IDS achieves 70% precision at Top-7, while CDS reaches a similar precision at Top-9. This indicates that while identifying the best model remains challenging, both methods reliably select a small set of high-performing candidates. IDS demonstrates strong performance across most datasets, with precision often reaching 1.0 at higher k values. Exceptions such as GSM8K and MBPP show lower precision at small k but improve substantially as k increases, suggesting that once post-SFT scores are available for several models in a dataset, IDS can accurately identify the remaining top performers with minimal additional evaluation.

418
419
420
421
422

CDS shows the more challenging scenario of predicting performance on completely new datasets. Although generally achieving lower precision than IDS with greater variability, it still provides valuable model selection guidance. Performance variation reflects the importance of dataset compatibility—effectiveness depends on how well training datasets align with target dataset characteristics, requiring careful consideration of dataset similarity for cross-dataset generalization.

423
424

4.4 OPTIMAL K SELECTION AND TRANSITION STRATEGY

425
426
427
428
429
430

CDS enables predictions for completely new datasets by using experience from other datasets. However, once sufficient SFT experience accumulates within the target dataset, building a dataset-specific IDS becomes more beneficial, as IDS provides better performance and stability as demonstrated in Figure 5. This raises two practical questions: when should we transition from CDS to IDS, and what prediction depth (k) reliably captures the best-performing model regardless of the total number of candidates.

431

To address these questions, we systematically experimented with the performance of IDS in different models’ pool sizes and prediction depths. For each dataset, we randomly sampled 6-12 models, used

450 Figure 6: Mean Reciprocal Rank (MRR) performance of IDS across different model pool sizes and
451 prediction depths (k). The horizontal dashed lines represent average CDS performance baselines.

452

453

454 most for training and one for validation, then measured the ranking accuracy using Mean Reciprocal
455 Rank (MRR), where values closer to 1 indicate that the top-performing model is ranked higher. We
456 repeated this process 30 times for statistical reliability.

457 The results reveal two key patterns in Figure 6. First, MRR consistently converges at $k=3$ across
458 most datasets, indicating that top-3 predictions are sufficient to identify top-1 within available model
459 pools. Second, IDS performance depends critically on training set size: with only 6 models, IDS
460 struggles to outperform CDS, especially for LeetCode and OpenBookQA. However, with 12 models,
461 IDS exceeds or closely approaches CDS baselines across most datasets.

462 Our parallel experiments with CDS using different training dataset combinations showed no consist-
463 ent improvement when adding more datasets, often leading to performance degradation (detailed
464 analysis in Appendix C). This reinforces that dataset compatibility matters more than quantity for
465 cross-dataset knowledge transfer. Based on these findings, we recommend a practical three-stage
466 strategy: (1) use CDS initially for completely new datasets, (2) transition to IDS with $k=3$ once
467 approximately 10 model observations are available, and (3) for borderline cases (8-10 models),
468 combine both approaches for more robust guidance.

469 5 CONCLUSION

470

471

472 In this work, we propose **Potential Scout**, a framework that fundamentally changes how we se-
473 lect models for fine-tuning by analyzing their internal semantic processing capabilities. Our key
474 insight shows that we can diagnose a model’s fine-tuning potential through its **Thinking Curve
475 Matrix (TCM)**, which reveals how effectively the model expands and stabilizes semantic repre-
476 sentations. Our two diagnostic indicators capture complementary aspects of model readiness: *Activa-
477 tion Growth Score* reveals whether a model can meaningfully differentiate semantic nuances, while
478 *Layer Coverage Score* shows whether it reliably processes diverse inputs. These indicators provide
479 a principled way to assess whether a model’s internal architecture suits domain adaptation. Our dual
480 scouting approach addresses a practical reality: prediction strategies can adapt according to available
481 SFT experience. **In-dataset Scout** utilizes empirical patterns when prior experience exists, while
482 **Cross-dataset Scout** assesses completely new domains by transferring diagnostic insights across
483 datasets. The contribution of this work can transform model selection from extensive exploratory
484 experiments into efficient, data-driven diagnostics. Potential Scout enables developers to identify
485 promising candidates in minutes with much less effort than full days of training, thus reducing the
time and cost of selecting optimal models and supporting the efficient development of specialized
LLM assistants.

486
487
ETHICS STATEMENT488
489
The research carried out in this paper is fully in compliance with the ICLR Code of Ethics.490
491
REPRODUCIBILITY STATEMENT492
493
494
495
496
497
For our submission, we have uploaded the complete source code as supplementary material. The
code includes comprehensive documentation detailing the implementation of the Thinking Curve
Matrix (TCM), *Activation Growth Score* and *Layer Coverage Score* indicators calculation, and both
IDS and CDS scouting approaches. The codebase contains detailed instructions for dataset prepara-
tion, model evaluation, and metric computation across all tested domains and models.498
499
REFERENCES500
501
Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. *arXiv preprint arXiv:1905.13319*, 2019.503
504
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. *arXiv preprint arXiv:2108.07732*, 2021.507
508
Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? *Advances in neural information
processing systems*, 27, 2014.509
510
Maciej Besta, Julia Barth, Eric Schreiber, Ales Kubicek, Afonso Catarino, Robert Gerstenberger,
Piotr Nyczyk, Patrick Iff, Yueling Li, Sam Houlston, et al. Reasoning language models: A
blueprint. *arXiv preprint arXiv:2501.11223*, 2025.513
514
Xiao Bi, Deli Chen, Guanting Chen, Shanhua Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. *arXiv preprint arXiv:2401.02954*, 2024.516
517
Xiaoshu Chen, Sihang Zhou, Ke Liang, and Xinwang Liu. Distilling reasoning ability from large
language models with adaptive thinking. *arXiv preprint arXiv:2404.09170*, 2024.518
519
Yicheng Chen, Yining Li, Kai Hu, Zerun Ma, Haochen Ye, and Kai Chen. Mig: Automatic data
selection for instruction tuning by maximizing information gain in semantic space. *arXiv preprint
arXiv:2504.13835*, 2025.522
523
Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.525
526
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
2021.529
530
Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.532
533
Diego Doimo, Alessandro Serra, Alessio Ansuini, and Alberto Cazzaniga. The representation land-
scape of few-shot learning and fine-tuning in large language models. *Advances in Neural Infor-
mation Processing Systems*, 37, 2024.535
536
Mirian Hipolito Garcia, Camille Couturier, Daniel Madrigal Diaz, Ankur Mallick, Anastasios Kyri-
lidis, Robert Sim, Victor Ruhle, and Saravan Rajmohan. Exploring how llms capture and represent
domain-specific knowledge. *arXiv preprint arXiv:2504.16871*, 2025.538
539
Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. *arXiv preprint arXiv:2012.14913*, 2020.

540 Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C Principe. Measures of entropy from data
 541 using infinitely divisible kernels. *IEEE Transactions on Information Theory*, 61(1):535–548,
 542 2014.

543

544 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 545 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 546 of models. *arXiv preprint arXiv:2407.21783*, 2024.

547

548 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
 549 Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
 550 the rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.

551

552 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 553 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 554 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

555

556 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 557 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 558 2021.

559

560 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
 561 preprint arXiv:1503.02531*, 2015.

562

563 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 564 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

565

566 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 567 Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
 568 of large language models. *arXiv preprint arXiv:2304.01933*, 2023.

569

570 Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern, Shijie Xia, Yi-
 571 wei Qin, Weizhe Yuan, and Pengfei Liu. O1 replication journey—part 2: Surpassing o1-preview
 572 through simple distillation, big progress or bitter lesson? *arXiv preprint arXiv:2411.16489*, 2024.

573

574 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 575 Bowen Yu, Keming Lu, et al. Qwen2.5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 576 2024.

577

578 Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon,
 579 and Dongsoo Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-
 580 bit integer quantization. *Advances in Neural Information Processing Systems*, 36:36187–36207,
 581 2023.

582

583 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 584 network representations revisited. In *International conference on machine learning*, pp. 3519–
 585 3529. PMLR, 2019.

586

587 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 588 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 589 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
 590 guage models, 2022.

591

592 Jierui Li and Raymond Mooney. Distilling algorithmic reasoning from llms via explaining solution
 593 programs. *arXiv preprint arXiv:2404.08148*, 2024.

594

595 Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason Weston, and
 596 Mike Lewis. Self-alignment with instruction backtranslation. *arXiv preprint arXiv:2308.06259*,
 597 2023.

598

599 Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model edit-
 600 ing in a transformer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 601 pp. 18564–18572, 2024.

594 Xun Liang, Hanyu Wang, Huayi Lai, Simin Niu, Shichao Song, Jiawei Yang, Jihao Zhao, Feiyu
 595 Xiong, Bo Tang, and Zhiyu Li. Seap: Training-free sparse expert activation pruning unlock the
 596 brainpower of large language models. *arXiv preprint arXiv:2503.07605*, 2025.

597

598 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 599 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 600 *arXiv:2412.19437*, 2024a.

601 Jiaheng Liu, Chenchen Zhang, Jinyang Guo, Yuanxing Zhang, Haoran Que, Ken Deng, Jie Liu,
 602 Ge Zhang, Yanan Wu, Congnan Liu, et al. Ddk: Distilling domain knowledge for efficient large
 603 language models. *Advances in Neural Information Processing Systems*, 37:98297–98319, 2024b.

604 Jiang Liu, Jialian Wu, Prakamya Mishra, Zicheng Liu, Sudhanshu Ranjan, Pratik Prabhanjan
 605 Brahma, Yusheng Su, Gowtham Ramesh, Peng Sun, Zhe Li, Dong Li, Lu Tian, and Emad Bar-
 606 soum. Amd-olmo: A series of 1b language models trained from scratch by amd on amd instinct™
 607 mi250 gpus., October 2024c. URL <https://huggingface.co/amd/AMD-OLMo>.

608

609 Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W Mahoney, and Yaoqing Yang.
 610 Alphapruning: Using heavy-tailed self regularization theory for improved layer-wise pruning of
 611 large language models. *Advances in Neural Information Processing Systems*, 37:9117–9152,
 612 2024.

613 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 614 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.

615

616 Meta AI. Introducing llama 3 and more at meta’s connect 2024: Bringing generative
 617 ai to vision, edge and mobile devices, 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>. Accessed: 2025-
 618 04-15.

619

620 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? *Advances*
 621 *in neural information processing systems*, 32, 2019.

622 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 623 electricity? a new dataset for open book question answering. In *EMNLP*, 2018.

624

625 Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
 626 Wang, Xiaoxue Cheng, Huatong Song, et al. Imitate, explore, and self-improve: A reproduction
 627 report on slow-thinking reasoning systems. *arXiv preprint arXiv:2412.09413*, 2024.

628 Suneel Nadipalli. Layer-wise evolution of representations in fine-tuned transformers: Insights from
 629 sparse autoencoders. *arXiv preprint arXiv:2502.16722*, 2025.

630

631 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 632 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*
 633 *arXiv:2501.00656*, 2024.

634

635 Xingyuan Pan, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, and Shanbo Cheng. G-dig: To-
 636 wards gradient-based diverse and high-quality instruction data selection for machine translation.
 637 *arXiv preprint arXiv:2405.12915*, 2024.

638

639 Jason Phang, Haokun Liu, and Samuel R Bowman. Fine-tuned transformers show clusters of similar
 640 representations across layers. *arXiv preprint arXiv:2109.08406*, 2021.

641

642 Ian Pons, Bruno Yamamoto, Anna H Reali Costa, and Artur Jordao. Effective layer pruning through
 643 similarity metric perspective. In *International Conference on Pattern Recognition*, pp. 423–438.
 644 Springer, 2024.

645

646 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
 647 canonical correlation analysis for deep learning dynamics and interpretability. *Advances in neural*
 648 *information processing systems*, 30, 2017.

649

650 Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
 651 challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266, 2019.

648 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
 649 Yoshua Bengio. Fitnets: Hints for thin deep nets. *arXiv preprint arXiv:1412.6550*, 2014.

650

651 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 652 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 653 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

654 Oscar Skean, Md Rifat Arefin, Yann LeCun, and Ravid Shwartz-Ziv. Does representation matter?
 655 exploring intermediate layers in large language models. *arXiv preprint arXiv:2412.09563*, 2024.

656

657 Falcon-LLM Team. The falcon 3 family of open models, December 2024. URL <https://huggingface.co/blog/falcon3>.

658

659 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 660 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 661 report. *arXiv preprint arXiv:2503.19786*, 2025.

662

663 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 664 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 665 *arXiv preprint arXiv:2212.10560*, 2022.

666

667 Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
 668 Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms.
 669 *arXiv preprint arXiv:2504.14655*, 2025.

670

671 Yuzi Yan, Jialian Li, Yipin Zhang, and Dong Yan. Exploring the llm journey from cognition to
 672 expression with linear representations. *arXiv preprint arXiv:2405.16964*, 2024.

673

674 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 675 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 676 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 677 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 678 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 679 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint
 680 arXiv:2412.15115*, 2024a.

681

682 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 683 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 684 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024b.

685

686 Yu Yang, Siddhartha Mishra, Jeffrey Chiang, and Baharan Mirzasoleiman. Smalltolarge (s2l): Scal-
 687 able data selection for fine-tuning large language models by summarizing training trajectories of
 688 small models. *Advances in Neural Information Processing Systems*, 37:83465–83496, 2024c.

689

690 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 691 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

692

693 Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua
 694 Luo, and Kaifu Zhang. Marco-01: Towards open reasoning models for open-ended solutions.
 695 *arXiv preprint arXiv:2411.14405*, 2024a.

696

697 Zheng Zhao, Yftah Ziser, and Shay B Cohen. Layer by layer: Uncovering where multi-task learning
 698 happens in instruction-tuned large language models. *arXiv preprint arXiv:2410.20008*, 2024b.

699

700 Qihao Zhu Runxin Xu Junxiao Song Mingchuan Zhang Y.K. Li Y. Wu Daya Guo Zhihong Shao,
 701 Peiyi Wang. Deepseekmath: Pushing the limits of mathematical reasoning in open language
 702 models, 2024. URL <https://arxiv.org/abs/2402.03300>.

703

704 Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
 705 Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of openai o1: Opportunities and challenges
 706 of agi. *arXiv preprint arXiv:2409.18486*, 2024.

707

708 Yichu Zhou and Vivek Srikumar. A closer look at how fine-tuning changes bert. *arXiv preprint
 709 arXiv:2106.14282*, 2021.

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) in this research as general-purpose tools for writing enhancement and literature discovery. Specifically, we employed LLMs to: **Writing assistance:** We used LLMs to improve the clarity and fluency of our manuscript, including proofreading, grammar checking, and suggesting alternative phrasings for better readability. **Literature discovery:** LLMs helped us identify relevant research papers and understand connections between different works in the field. However, we independently verified and critically evaluated all cited works before inclusion. We conducted the fundamental research contributions entirely without LLM involvement in the creative or analytical processes. **All fundamental aspects of this research, including the conception of Potential Scout, the design of the Thinking Curve Matrix, the scouting methodology and all analyses, were independently developed by the authors without any contribution from LLMs.**

B VARIANCE INFLATION FACTOR (VIF) ANALYSIS

We standardized all predictors (AGS, LCS, and b_{pre}) to zero mean and unit variance prior to regression. Then, we computed the variance inflation factor (VIF) for each dataset to verify that the three predictors can be used together in regression. As shown in Figure 7, all variables remain below the conventional threshold of 5, demonstrating that the predictors are sufficiently independent for joint use in regression modeling.

Figure 7: Variance inflation factor (VIF) analysis across datasets for the three predictors (AGS, LCS, and b_{pre}).

C ADDITIONAL RESULTS: CDS WITH VARYING TRAINING DATASETS

We further analyzed CDS performance when varying the number of training datasets (m). As shown in Figure 8, simply increasing training datasets does not improve performance. In datasets such as **GSM8K**, **MATH**, **LeetCode**, **CoQA**, and **ARC-Challenge**, adding more datasets yields little to no improvement. More critically, for **GSM8K** and **MBPP**, performance actually decreases with additional datasets. These results indicate that CDS works poorly when unrelated datasets are combined. The **quality and compatibility** of datasets matter far more than quantity, confirming that effective cross-dataset supervision requires careful selection of related datasets rather than larger pools of unrelated sources.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773

Figure 8: CDS MRR with varying numbers of training datasets (m) across different values of k .