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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable performance
across diverse tasks, but their effectiveness in domain-specific applications de-
pends on how well the Supervised Fine-Tuning (SFT) data aligns with the model’s
pre-trained knowledge. Since SFT doesn’t always improve performance, develop-
ers must resort to costly trial-and-error to find optimal model-dataset matches. To
address this problem, we introduce Potential Scout, a lightweight framework that
diagnoses a model’s suitability for SFT without training. Our method builds a
Thinking Curve Matrix (TCM) that tracks how hidden representations evolve
across transformer layers when processing SFT samples. From TCM, we derive
two diagnostic indicators: Activation Growth Score, which captures how well
the model distinguishes semantic differences, and Layer Coverage Score, which
measures representational stability within the model. Combined with these indi-
cators and pre-SFT benchmark scores, we designed two complementary scouting
modes: In-dataset Scout uses prior SFT experience on the same dataset, while
Cross-dataset Scout works on entirely new datasets. Across 18 LLMs and 8
datasets, Potential Scout identifies top-performing candidates in minutes, substan-
tially reducing the search space for SFT and eliminating extensive exploratory
experiments in model selection.

1 INTRODUCTION

Large language models (LLMs) have expanded rapidly beyond language generation, enabling ap-
plications across numerous fields. To complete these tasks, LLMs need several capabilities, such as
reasoning and domain-specific knowledge (Besta et al., 2025; Zhong et al., 2024; Zhao et al., 2024a).
One strategy to grant these capabilities to small-scale LLMs is supervised fine-tuning (SFT) using
task-specific data (Liu et al., 2024a; Guo et al., 2025). Recent studies show that smaller models can
acquire these capabilities by fine-tuning with high-quality data (Huang et al., 2024; Min et al., 2024;
Ye et al., 2025).

However, fine-tuning does not always guarantee benchmark score improvements, even when using
relevant data for SFT. Excellent models sometimes perform worse after SFT, while weaker models
can achieve substantial gains. This phenomenon is illustrated across different benchmarks in Fig-
ure 1. On the MATH500 benchmark, Qwen2.5-Math-1.5B shows a slight improvement after SFT
with the LIMO dataset, while the larger Qwen2.5-3B suffers a performance drop, although its scale
is larger than the math model (Ye et al., 2025; Yang et al., 2024a;b). Similarly, on GSM8K, although
DeepSeek-Math-7B-Instruct showed the weakest pre-SFT performance, it achieved the largest rel-
ative improvement (+235%) and ultimately recorded the highest post-SFT accuracy (Cobbe et al.,
2021; Zhihong Shao, 2024). These results suggest that compatibility between prior knowledge of
the model and the SFT data is a key factor in fine-tuning. However, users typically lack access
to pretraining corpora, making it difficult to assess this alignment (Yan et al., 2024). This often
forces users to resort to costly trial-and-error approaches, which require exhaustive SFT training
and evaluation across multiple candidate models to identify the optimal LLM.

To address this issue, we introduce Potential Scout, a scouting framework that assesses the potential
for fine-tuning by analyzing how hidden states evolve across transformer layers in response to SFT
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Figure 1: Evaluation before and after SFT on two benchmarks, showing that alignment between a
model’s prior knowledge and the SFT data is a key factor in fine-tuning success. (a) MATH500
results after SFT with the LIMO (math reasoning) dataset. Although Qwen2.5-Math-1.5B shows a
slight improvement, the larger Qwen2.5-3B suffers a performance drop. (b) GSM8K results after
SFT with the GSM8K training set. Notably, DeepSeek-Math-7B, despite having the weakest pre-
SFT performance, achieves the largest relative improvement (+235%) and the highest post-SFT
accuracy, while models with stronger initial performance show more modest gains.

data samples through a Thinking Curve (TC). The TC represents a trajectory of change in semantic
representation for a single query as it passes through consecutive model layers. To systematically
explore these patterns, we construct a Thinking Curve Matrix (TCM) that captures several queries
from the same dataset and records their hidden states layer by layer.

From the TCM, we compute two scouting indicators: Activation Growth Score (AGS) and Layer
Coverage Score (LCS). AGS indicates the power of semantic expansion through layers, based on the
findings that fine-tuned models show a stronger layer-wise feature specialization (Nadipalli, 2025;
Zhao et al., 2024b). LCS quantifies a stability of semantic differentiation across queries at each layer,
based on studies showing that domain-specialized models exhibit more structured representational
patterns (Zhou & Srikumar, 2021; Phang et al., 2021).

Combined with pre-SFT benchmark scores, these indicators enable post-SFT performance predic-
tion through two scouting modes: (1) In-dataset Scout, which uses past SFT experience on the
same dataset to assess candidate models, and (2) Cross-dataset Scout, which works on entirely
new datasets where no SFT results exist. Through evaluation across 18 LLMs and 8 datasets, we
show that Potential Scout correctly identifies about 70% of top-performing models, reducing se-
lection time from days of training to minutes of analysis. By transforming model selection into
a systematic diagnostic process, Potential Scout eliminates extensive exploratory experiments and
accelerates the development of specialized LLMs across diverse domains. The contributions of
this work are summarized as follows:

• Preliminary Assessment for Model Selection: We propose a scouting framework that
enables the identification of promising models before SFT, reducing costly and extensive
training and testing by analyzing internal representation.

• Sample-Efficient Evaluation: Our method requires only a small fraction of dataset sam-
ples (e.g., 5%, corresponding to 15 to 350 instances), allowing reliable prediction of the
fine-tuning potential with minimal computational overhead (7 to 8 minutes per model).

• Dual Scouting Approaches: In-dataset Scout utilizes dataset-specific experience to
achieve 70% Top-7 precision among 18 candidate models, and Cross-dataset Scout enables
model selection in entirely new datasets with 70% Top-9 precision.

2 RELATED WORK

2.1 EFFICIENT SUPERVISED FINE-TUNING

SFT has been widely used to adapt LLMs for specific domains, but its high computational cost has
driven extensive research on efficiency. One major approach is knowledge distillation, where smaller
student models replicate larger teachers through output distribution matching (Hinton et al., 2015;
Ba & Caruana, 2014; Romero et al., 2014). Recent work explores SFT distillation, where students
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are fine-tuned on teacher-synthesized data (Li & Mooney, 2024; Chen et al., 2024) or self-generated
corpora (Wang et al., 2022; Li et al., 2023). A second approach focuses on parameter-efficient fine-
tuning (PEFT), which adapts LLMs by training only a fraction of parameters while freezing most
weights. Hu et al. (2022) introduce low-rank updates achieving near full fine-tuning performance
with minimal overhead, Dettmers et al. (2023) combines 4-bit quantization with LoRA for memory
efficiency, and subsequent work explores sub-4-bit quantization and adapter architectures like LLM-
Adapters (Kim et al., 2023; Hu et al., 2023). Data selection methods form a third field of research,
improving efficiency by curating informative training samples. Liu et al. (2024b) distills domain
knowledge through sample re-weighting, Yang et al. (2024c) uses small proxy model trajectories for
selection guidance, Chen et al. (2025) maximizes information gain in semantic space for instruction
tuning, and Pan et al. (2024) employs gradient-based criteria for quality and diversity. While these
approaches significantly reduce SFT costs, they assume the target model is already chosen. Our
work addresses a complementary problem: how to identify the best model candidates for SFT
using a training-free method.

2.2 ANALYZING HIDDEN REPRESENTATIONS IN LLMS

While prior studies have focused on modifying models through pruning or editing, we analyze hid-
den activations to assess dataset-specific information organization and rank candidate models by
their fine-tuning potential. As LLMs have grown in size and complexity, understanding their inter-
nal behavior has become essential to improve interpretability, efficiency, and transferability. Many
studies have explored hidden representations to make LLMs efficient by uncovering some redun-
dancy from each layer (Michel et al., 2019; Liang et al., 2025; Pons et al., 2024; Lu et al., 2024).
Similarity-based approaches, such as CKA, CCA, and SVCCA (Kornblith et al., 2019; Raghu et al.,
2017), have been proposed to analyze layer-wise alignment for pruning or distillation purposes.
Some studies have considered whether it is possible to edit knowledge of LLMs by intervening in
specific internal components, rather than retraining the entire model such as ROME (Meng et al.,
2022) and PMET (Li et al., 2024). Additionally, recent work has shown that LLMs can exhibit
distinct hidden state patterns depending on their specialized domain. Garcia et al. (2025) demon-
strate that inputs from different domains (e.g., mathematics, law, medicine) produce consistent and
separable activation trajectories across layers.

3 METHODOLOGY

Our framework operates through a three-stage process, as demonstrated in Figure 2. First, we extract
two diagnostic indicators, Activation Growth Score and Layer Coverage Score, from candidate
models using SFT dataset samples, combined with baseline performance from pre-SFT benchmarks
(Figure 2-a). Second, we optimize our dual scouting system using these features: In-dataset Scout
for familiar datasets and Cross-dataset Scout for new domains (Figure 2-b). Finally, both scouts
generate potential rankings that predict fine-tuning success, as shown in the MBPP and GSM8K
prediction results (Figure 2-c).

3.1 THINKING CURVE MATRIX

To quantify how models process dataset-specific information, we design the Thinking Curve Matrix
(TCM), which systematically captures layer-wise representational changes across multiple queries.
This matrix serves as the foundation for extracting our predictive features by revealing both individ-
ual query processing patterns and cross-query consistency within a dataset. The TCM construction
begins with measuring dispersion scores that quantify the spread of hidden state representations,
then tracking layer-wise trajectories, and finally organizing these measurements into a structured
matrix format.

Giraldo et al. (2014) introduced a matrix-based entropy measure that quantifies the dispersion
of high-dimensional vectors by analyzing eigenvalue distributions. Motivated by this approach,
we measure matrix compression levels across transformer layers using eigenvalue-based analysis.
Skean et al. (2024) reported that transformers exhibit a V-shaped trajectory, first compressing in-
puts, then re-expanding for finer semantics. For token embeddings H ∈ RT×D, we compute the
Gram matrix G = HH⊤, extract eigenvalues {λi}Ti=1, and normalize them into proportions pi. To
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Figure 2: Overview of Potential Scout for identifying promising SFT models. (a) Thinking Curve
Matrices (TCM) capture hidden-state trajectories to derive AGS and LCS along with benchmark
scores. (b) These indicators, stored in a Scouting Report, are used to optimize scouts for predicting
performance changes. (c) IDS applies when sufficient SFT experience on a dataset exists in Scouting
Report, while CDS utilizes other datasets when such information is absent. (c-1, c-2) Predicted
performance strongly correlates with actual post-SFT performance.

measure the dispersion score, which quantifies the level of semantic differentiation at each layer, the
dispersion score is:

d(H) =
1−

∑T
i=1 p

2
i

1− 1
T + ε

. (1)

The numerator captures the dispersion by converting concentration measures, while the denomina-
tor normalizes across different sequence lengths. Higher values indicate a greater representational
spread, with d(H) ∈ [0, 1). Then, we define the Thinking Curve (TC) as the dispersion trajectory
across all layers: TC =

(
d(H(1)), d(H(2)), . . . , d(H(L))

)
, where H(ℓ) represents the hidden

state at layer ℓ. As models have different depths, we interpolate all curves to a uniform length of
K = 25, maintaining the original patterns with R2 > 0.95 quality. We then collect TC from mul-
tiple inputs to create the Thinking Curve Matrix (TCM). This matrix reveals both how individual
inputs are processed and how consistently the model handles similar queries.

3.2 ACTIVATION GROWTH SCORE

Individual TC from the TCM on the GSM8K dataset are visualized as shown in Figure 3. The figure
displays curves from 30 randomly selected samples for each model, revealing that all models exhibit
characteristic compression-expansion behavior but with varying semantic expansion capabilities.
We measure the Activation Growth Score (AGS) of the semantic expansion by computing the
slope of the thinking curves after compression. For each sample, we identify the layer of maximum
compression (marked with dots in Figure 3) and compute the second half slope of the expansion
range, where x represents the dispersion score at each layer. The AGS value is then averaged across
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all N samples in the dataset:

AGS =
1

N

N∑
i=1

x
(ℓ)
i − x

(k)
i

ℓ− k
(2)

where x
(ℓ)
i and x

(k)
i are the dispersion scores for sample i at layers ℓ and k respectively. We use

the second half of this expansion segment because previous work shows that dataset-specific expan-
sion emerges mainly in later layers (Garcia et al., 2025; Geva et al., 2020), and this segment also
exhibits more pronounced differences between individual samples, making it more informative for
distinguishing model capabilities.

Figure 3: Thinking Curves (TC) of various models on the GSM8K dataset. For each model, we
plot curves from 30 randomly selected samples, showing how internal representations evolve across
layers. Markers indicate the layer index where each curve reaches its minimum value.

Pre-trained models initially have uniform and weakly differentiated representations, but fine-tuning
induces stronger separation and specialization in these higher layers (Zhao et al., 2024b). There-
fore, higher AGS indicates a greater capacity for semantic expansion, while weaker slopes represent
underdeveloped representational structures that are more likely to benefit from SFT.

3.3 LAYER COVERAGE SCORE

We measure the Layer Coverage Score (LCS) of semantic expansion by computing the coefficient
of variation (CV) across columns of the TCM. This captures how consistently a model processes
different queries from the same dataset at each layer. Following the same segmentation approach
as AGS computation, we focus on the second half of the tail region to capture the most informative
expansion phase. For each layer i in the selected segment from layer k to ℓ, we compute the coeffi-
cient of variation across all N queries, where d

(i)
j represents the dispersion score of query j at layer

i. The final LCS is the average CV across all layers in the segment:

LCS =
1

ℓ− k

ℓ∑
i=k

σ(d
(i)
1 , d

(i)
2 , . . . , d

(i)
N )

µ(d
(i)
1 , d

(i)
2 , . . . , d

(i)
N ) + ε

(3)

This approach is motivated by recent findings that fine-tuning restructures and organizes knowledge
by increasing cohesion within similar knowledge clusters and improving the separation between
different processing pathways (Zhou & Srikumar, 2021; Doimo et al., 2024). This structural reor-
ganization underlies performance improvements (Zhao et al., 2024b). Models that process similar
queries in very different ways have greater potential to improve during fine-tuning. As shown in
Figure 4, this variability is evident across three layers in GSM8K for the Falcon3-7B-Inst model.
Each orange dot represents how one query was processed, with the shaded areas indicating the mean
and standard deviation of processing patterns within each layer. When dots are spread out (like in
layer 19), it means that the model handles similar queries inconsistently.

A lower LCS indicates that the model processes queries more uniformly across the dataset. How-
ever, models with higher variability in their representational patterns actually demonstrate greater
fine-tuning potential, as this inconsistency provides substantial room for the organizational restruc-
turing that drives fine-tuning improvements. Combined with AGS, these two indicators allow us to
comprehensively evaluate a model’s fine-tuning potential for specific datasets.
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Figure 4: Coefficient of Variation (CV) across layers 19, 21, and 23 for Falcon3-7B-Inst model
on GSM8K. Orange dots represent individual query processing, while shaded areas show variance
around the mean. Higher spread indicates inconsistent processing of similar queries.

3.4 POTENTIAL RANKING VIA LINEAR REGRESSION

In-dataset Scout (IDS) We fit an ordinary least squares regression model as an In-dataset Scout
(IDS) to predict the relative improvement after SFT, using AGS (g) and LCS (c) along with pre-
SFT benchmark performance (bpre) that represents the current performance of the model. For each
candidate model i (i = 1, . . . , N) and dataset j (j = 1, . . . ,M), the relative improvement rate is
defined as

∆ij =
postij − preij

preij
= β

(j)
0 + β(j)

g gij + β(j)
c cij + β

(j)
b bpre,ij + ϵ. (4)

The coefficients β(j) are estimated separately for each dataset j. Thus, IDS effectively learns dataset-
specific regression models, which capture how each feature relates to fine-tuning improvements
within that dataset. However, this design implies that a new dataset with no training experience
cannot benefit from the knowledge gained on other datasets.

Cross-dataset Scout (CDS) The IDS approach has a critical limitation: It requires separate train-
ing for each dataset, making it impractical for new datasets where no prior fine-tuning data is avail-
able. To address this cold-start problem and enable cross-dataset generalization, we extend our
approach using Linear Mixed Models as a Cross-dataset Scout (CDS) that can utilize experiences
from multiple datasets:

∆ij =
postij − preij

preij
= β0 + βggij + βccij + βbbpre,ij + γj + ϵ, γj ∼ N (0, σ2

γ). (5)

The variables ∆, g, c, and bpre represent measurements for each model-dataset combination, while γj
is a dataset-specific random intercept that captures unique characteristics of dataset j. The random
effect γj follows a normal distribution N (0, σ2

γ), which allows the model to account for dataset-level
variations. The fixed effects (βg , βc, βb) capture universal relationships between our indicators and
fine-tuning performance that hold across all datasets. When applying this model to new datasets,
we make predictions using only fixed effects (setting γj = 0), which allows us to use knowledge
accumulated from previous datasets without requiring any dataset-specific training data. This ap-
proach eliminates the need for extensive exploratory experiments in new datasets while maintaining
predictive accuracy through cross-dataset generalization.

4 EXPERIMENTS

4.1 SETUP

All experiments are conducted on two NVIDIA A100 GPUs (80GB each). We evaluated 18
open-source LLMs using two scales: 9 small-scale models (1–1.5B) and 9 mid-scale models
(7–8B), including both general-purpose and domain-specialized instruction-tuned models. The
small group includes Qwen2.5 (general, math, coder) (Yang et al., 2024a;b; Hui et al., 2024),
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LLaMA-3.2-1B (Grattafiori et al., 2024; Meta AI, 2024), Falcon-3-1B (Team, 2024), AMD-OLMo-
1B-SFT (Liu et al., 2024c), OLMo-2-1B (OLMo et al., 2024), Gemma-3-1B (Team et al., 2025),
and DeepSeek-Coder-1.3B (Guo et al., 2024). The middle group covers Qwen2.5 (general, math,
coder), LLaMA-3.1-8B, Falcon-3-7B, OLMo-2-7B, and DeepSeek (general, math, coder) (Bi et al.,
2024; Shao et al., 2024). With these models, we evaluate across three categories of benchmarks:
math (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021; Lewkowycz et al., 2022),
MathQA (Amini et al., 2019)), coding (MBPP (Austin et al., 2021), LeetCodeDataset (Xia et al.,
2025)), and general QA (CoQA (Reddy et al., 2019), OpenBookQA (Mihaylov et al., 2018), ARC-
Challenge (Clark et al., 2018)).

4.2 COMPLEMENTARY MEASUREMENTS AND COMPUTATIONAL EFFICIENCY

Predictor Complementarity To assess whether combining all three measurements improves pre-
diction capability, we evaluated their joint performance against individual measurements. The com-
bined regression model consistently achieves the highest correlation with SFT improvement, pro-
ducing statistically significant relationships p < 0.05 in 5 out of 8 datasets with strong correlations:
GSM8K ρ = 0.622, MathQA ρ = 0.658, MBPP ρ = 0.742, LeetCode ρ = 0.471, and CoQA
ρ = 0.517, as shown in Table 1. While individual measurements exhibit domain-specific effec-
tiveness, their combination substantially enhances predictive capability, for example, CoQA corre-
lation increases from 0.357 (best individual predictor) to 0.517 (combined model). VIF analysis
confirms that all measurements maintain scores below 5, indicating minimal multicollinearity (see
Appendix B). The regression coefficients broadly align with our expectations. Most βg values are
negative, suggesting weaker semantic expansion correlates with higher SFT potential. The βc coef-
ficients are positive in 6 out of 8 datasets, indicating that processing inconsistency generally signals
improvement opportunities. Similarly, most βbpre values are negative, supporting the intuition that
lower baseline performance predicts greater improvement potential.

Table 1: Pearson correlation coefficients (corr), p-values (p-val), and IDS coefficients (β) for indi-
vidual predictors and their combination. The highest correlation per dataset is in bold; the second-
highest is underlined. The β values are the optimized weights combining all three predictors in IDS.
All indicates the correlation and p-value when using all three predictors jointly.

Dataset AGS LCS bpre All β (All)

corr p-val corr p-val corr p-val corr p-val βg βc βbpre

GSM8K 0.048 0.851 0.316 0.202 0.516 0.028 0.622 0.006 -0.53 +0.57 -0.45
MATH 0.170 0.499 0.328 0.184 0.202 0.421 0.417 0.085 -0.11 +0.44 -0.24
MathQA 0.003 0.989 0.081 0.748 0.648 0.004 0.658 0.003 -0.15 +0.19 -0.65
MBPP 0.011 0.964 0.092 0.717 0.713 0.001 0.742 0.001 +0.10 +0.13 -0.75
LeetCode 0.182 0.470 0.058 0.819 0.440 0.067 0.471 0.048 -0.36 +0.29 -0.39
CoQA 0.357 0.146 0.262 0.294 0.254 0.308 0.517 0.028 -0.40 -0.08 -0.40
OpenBookQA 0.254 0.309 0.196 0.435 0.025 0.923 0.279 0.262 -0.23 -0.12 -0.14
ARC-Challenge 0.182 0.470 0.019 0.941 0.224 0.371 0.360 0.143 -0.41 +0.42 +0.28

Table 2: Computation time per model (min-
utes). Benchmark refers to a full evaluation,
and Potential Scout indicates using a sam-
pled subset and one forward pass to com-
pute AGS and LCS.

Method Sampling Time(m)
Benchmark – 10 to 180

Potential Scout
1% 1 to 3
5% 7 to 8

10% 10 to 15

Sampling Efficiency To balance computational
cost with measurement reliability, we evaluated how
sampling rates affect our quantitative indicators. Both
AGS and LCS achieve a coefficient of variation (CV)
around 0.1 across sampling rates, which means that
the indicators remain stable even with limited data.
We used datasets that range from 300 to 7,000 sam-
ples, where sampling 5% translates into 15 to 350
absolute samples, which proves sufficient for reliable
measurement. As summarized in Table 2, using 5%
sampling requires only 7-8 minutes per model with a
single forward pass for hidden state collection.
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4.3 GENERALIZATION ACROSS MODELS AND DATASETS

We evaluated Potential Scout’s generalization performance within and across datasets using Top-K
precision metrics, as shown in Figure 5. For IDS, we performed K-fold cross-validation within each
dataset, splitting models into training and testing folds to predict relative improvement using OLS
regression. For CDS, we employed Leave-One-Dataset-Out cross-validation with Mixed-Effects
Linear Models, training on all datasets except one, and predicting for the held-out dataset to simulate
completely new dataset scenarios. Both approaches used these predictions to estimate post-SFT
scores, then ranked models accordingly and measured how well the predicted top-K performers
overlapped with actual top-K models.

Figure 5: In-dataset vs. Cross-dataset Scout Performance. Top-K precision comparison between
(a) IDS for datasets with existing SFT experience and (b) CDS for entirely new datasets. While
both struggle with Top-1 precision, IDS achieves 70% accuracy at Top-7 and CDS at Top-9 with 18
LLMs. The results demonstrate that effective model scouting remains feasible even without prior
SFT experience, though cross-dataset generalization requires consideration of dataset compatibility.

Both approaches struggle with Top-1 prediction, but achieve reasonable performance at moderate k
values. Among the 18 candidate models, IDS achieves 70% precision at Top-7, while CDS reaches a
similar precision at Top-9. This indicates that while identifying the best model remains challenging,
both methods reliably select a small set of high-performing candidates. IDS demonstrates strong
performance across most datasets, with precision often reaching 1.0 at higher k values. Exceptions
such as GSM8K and MBPP show lower precision at small k but improve substantially as k increases,
suggesting that once post-SFT scores are available for several models in a dataset, IDS can accurately
identify the remaining top performers with minimal additional evaluation.

CDS shows the more challenging scenario of predicting performance on completely new datasets.
Although generally achieving lower precision than IDS with greater variability, it still provides valu-
able model selection guidance. Performance variation reflects the importance of dataset compati-
bility—effectiveness depends on how well training datasets align with target dataset characteristics,
requiring careful consideration of dataset similarity for cross-dataset generalization.

4.4 OPTIMAL K SELECTION AND TRANSITION STRATEGY

CDS enables predictions for completely new datasets by using experience from other datasets.
However, once sufficient SFT experience accumulates within the target dataset, building a dataset-
specific IDS becomes more beneficial, as IDS provides better performance and stability as demon-
strated in Figure 5. This raises two practical questions: when should we transition from CDS to
IDS, and what prediction depth (k) reliably captures the best-performing model regardless of the
total number of candidates.

To address these questions, we systematically experimented with the performance of IDS in different
models’ pool sizes and prediction depths. For each dataset, we randomly sampled 6-12 models, used

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Mean Reciprocal Rank (MRR) performance of IDS across different model pool sizes and
prediction depths (k). The horizontal dashed lines represent average CDS performance baselines.

most for training and one for validation, then measured the ranking accuracy using Mean Reciprocal
Rank (MRR), where values closer to 1 indicate that the top-performing model is ranked higher. We
repeated this process 30 times for statistical reliability.

The results reveal two key patterns in Figure 6. First, MRR consistently converges at k=3 across
most datasets, indicating that top-3 predictions are sufficient to identify top-1 within available model
pools. Second, IDS performance depends critically on training set size: with only 6 models, IDS
struggles to outperform CDS, especially for LeetCode and OpenBookQA. However, with 12 models,
IDS exceeds or closely approaches CDS baselines across most datasets.

Our parallel experiments with CDS using different training dataset combinations showed no consis-
tent improvement when adding more datasets, often leading to performance degradation (detailed
analysis in Appendix C). This reinforces that dataset compatibility matters more than quantity for
cross-dataset knowledge transfer. Based on these findings, we recommend a practical three-stage
strategy: (1) use CDS initially for completely new datasets, (2) transition to IDS with k=3 once
approximately 10 model observations are available, and (3) for borderline cases (8-10 models),
combine both approaches for more robust guidance.

5 CONCLUSION

In this work, we propose Potential Scout, a framework that fundamentally changes how we se-
lect models for fine-tuning by analyzing their internal semantic processing capabilities. Our key
insight shows that we can diagnose a model’s fine-tuning potential through its Thinking Curve
Matrix (TCM), which reveals how effectively the model expands and stabilizes semantic represen-
tations. Our two diagnostic indicators capture complementary aspects of model readiness: Activa-
tion Growth Score reveals whether a model can meaningfully differentiate semantic nuances, while
Layer Coverage Score shows whether it reliably processes diverse inputs. These indicators provide
a principled way to assess whether a model’s internal architecture suits domain adaptation. Our dual
scouting approach addresses a practical reality: prediction strategies can adapt according to available
SFT experience. In-dataset Scout utilizes empirical patterns when prior experience exists, while
Cross-dataset Scout assesses completely new domains by transferring diagnostic insights across
datasets. The contribution of this work can transform model selection from extensive exploratory
experiments into efficient, data-driven diagnostics. Potential Scout enables developers to identify
promising candidates in minutes with much less effort than full days of training, thus reducing the
time and cost of selecting optimal models and supporting the efficient development of specialized
LLM assistants.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) in this research as general-purpose tools for writing en-
hancement and literature discovery. Specifically, we employed LLMs to: Writing assistance: We
used LLMs to improve the clarity and fluency of our manuscript, including proofreading, grammar
checking, and suggesting alternative phrasings for better readability. Literature discovery: LLMs
helped us identify relevant research papers and understand connections between different works in
the field. However, we independently verified and critically evaluated all cited works before inclu-
sion. We conducted the fundamental research contributions entirely without LLM involvement in
the creative or analytical processes. All fundamental aspects of this research, including the con-
ception of Potential Scout, the design of the Thinking Curve Matrix, the scouting methodology
and all analyses, were independently developed by the authors without any contribution from
LLMs.

B VARIANCE INFLATION FACTOR (VIF) ANALYSIS

We standardized all predictors (AGS, LCS, and bpre) to zero mean and unit variance prior to regres-
sion. Then, we computed the variance inflation factor (VIF) for each dataset to verify that the three
predictors can be used together in regression. As shown in Figure 7, all variables remain below the
conventional threshold of 5, demonstrating that the predictors are sufficiently independent for joint
use in regression modeling.

Figure 7: Variance inflation factor (VIF) analysis across datasets for the three predictors (AGS, LCS,
and bpre).

C ADDITIONAL RESULTS: CDS WITH VARYING TRAINING DATASETS

We further analyzed CDS performance when varying the number of training datasets (m). As shown
in Figure 8, simply increasing training datasets does not improve performance. In datasets such as
GSM8K, MATH, LeetCode, CoQA, and ARC-Challenge, adding more datasets yields little to no
improvement. More critically, for GSM8K and MBPP, performance actually decreases with addi-
tional datasets. These results indicate that CDS works poorly when unrelated datasets are combined.
The quality and compatibility of datasets matter far more than quantity, confirming that effective
cross-dataset supervision requires careful selection of related datasets rather than larger pools of
unrelated sources.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 8: CDS MRR with varying numbers of training datasets (m) across different values of k.
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