
Pre-Training on a Data Diet: Identifying Sufficient Examples for Early Training†

Mansheej Paul * 1 Brett W. Larsen * 1 Surya Ganguli 1 2 Jonathan Frankle 3 4 5 Gintare Karolina Dziugaite 6 7

Abstract
A striking observation about iterative magnitude
pruning (IMP; Frankle et al. 2020a) is that—after
just a few hundred steps of dense training—the
method can find a sparse sub-network that can be
trained to the same accuracy as the dense network.
However, the same does not hold at step 0, i.e.,
random initialization. In this work, we seek to un-
derstand how this early phase of pre-training leads
to a good initialization for IMP through the lens
of the data distribution. Empirically we observe
that, holding the number of pre-training iterations
constant, training on a small fraction of (randomly
chosen) data suffices to obtain an equally good
initialization for IMP. We additionally observe
that by pre-training only on “easy” training data
we can decrease the number of steps necessary
to find a good initialization for IMP compared
to training on the full dataset or a randomly cho-
sen subset. Combined, these results provide new
insight into the role played by data in the early
phase of training.

1. Introduction
Modern deep neural networks are often trained in the
massively over-parameterized regime. Though these net-
works can eventually be pruned, quantized, or distilled into
smaller networks, the resources required for the initial over-
parameterized training poses a challenge to the democrati-
zation and sustainability of AI. This raises a fundamental
question: under what circumstances can we efficiently train
sparse networks? Recent work on the lottery ticket hypoth-
esis (Frankle & Carbin, 2018; Frankle et al., 2020a) has
shown that, after just a few hundred steps of pre-training,

*Equal contribution †Full paper: https://arxiv.org/
abs/2206.01278 1Stanford 2Meta AI 3MIT 4Mosaic ML
5Harvard 6Google Brain 7Mila; McGill. Correspondence
to: Mansheej Paul <mansheej@stanford.edu>, Brett W.
Larsen <bwlarsen@stanford.edu>, Gintare Karolina Dziugaite
<gkdz@google.com>.

First Workshop of Pre-training: Perspectives, Pitfalls, and Paths
Forward at ICML 2022, Baltimore, Maryland, USA, PMLR 162,
2022. Copyright 2022 by the author(s).

Iteration k

Iteration k

Iteration T

Prune and Rewind

Iteration 0

Iteration T

Iteration k Iteration T

Pruning Round 1

Final Mask

Prune and Rewind

Phase 1: Pre-training

Phase 3: Sparse Training

Phase 2: M
ask Search

Figure 1. Three phases of iterative magnitude pruning (IMP) with
weight rewinding (Frankle et al., 2020a). A dense network is
trained in the pre-training phase for tr iterations, where tr is
referred to as the rewinding iteration, and wtr is the state of the
network at the rewinding point. The mask search phase produces a
sparse sub-network at a desired sparsity level by iteratively training,
pruning the smallest magnitude weights, and rewinding to wtr .
The sparse training phase trains the final sparse sub-network to
convergence, starting with weights wtr .

a dense network contains a sparse sub-network that can be
trained without any loss in performance. Finding this sparse
sub-network currently requires multiple rounds of training
to convergence, pruning, and rewinding to the pre-train
point, a procedure termed iterative magnitude pruning (IMP,
Figure 1; Frankle & Carbin (2018); Frankle et al. (2020a)),
Remarkably, even after all these rounds of training, we do
not find trainable sparse sub-networks if we rewind to the
random initialization; thus, the first few hundred steps of
dense network training are essential for finding sparse net-
works through IMP. In this work, we seek to understand this
very short but critical phase of pre-training. In particular,
we investigate the effect of training data and number of steps
used during pre-training on the accuracy achieved by IMP.

Contributions. We find empirical evidence for the follow-
ing statements:

• In the pre-training phase, only a small fraction of the
data is required to find a matching initialization for
IMP: On standard benchmarks, across all sparsity levels
we evaluated, we find that we can match accuracy by
training on a small fraction of all of the available train-
ing data, selected randomly. (As we vary the amount of

https://arxiv.org/abs/2206.01278
https://arxiv.org/abs/2206.01278

Pre-Training on a Data Diet

training data in pre-training phase, the number of train-
ing iterations is held fixed.) Note that this observation
changes if random label noise is introduced, in which
case it becomes important to select easy (small EL2N
score) examples.

• The length of the pre-training phase can be reduced
if we train only on the easiest examples: Informally,
training on a small subset of “easy-to-learn” training ex-
amples produces a better rewinding point than training
on all data for the same number of iterations.

2. Background, Methods, and Related Work
We consider standard neural network training on image
classification. Let S = {(xn,yn)}Nn=1 denote training data,
let wt ∈ RD denote model parameters (weights) of the
neural network, and let w1,w2, . . . be the iterates of (some
variant) of SGD, minimizing the training loss, i.e., average
cross-entropy loss over the training data. For a given training
example xn, let f(w,x) ∈ RK denote the logit outputs of
the network for weights w and p(w,x) = σ(f(w,x)) be
the probability vector returned by passing the logits through
the softmax operation σ. By the loss (error) landscape, we
mean the training loss (error), viewed as a function of the
parameters. By training and test error, we mean the average
0-1 classification loss.

Lottery ticket sub-networks. The lottery ticket hypothesis
(Frankle & Carbin, 2018) states that any standard neural
network “contains [at initialization] a sub-network that is ini-
tialized such that—when trained in isolation—it can match
the test accuracy of the original network after training for
at most the same number of iterations.” Although such
matching sub-networks (those that can train to completion
on their own and reach full accuracy by following the same
procedure as the unpruned network) are not known to exist
in general at random initialization, they have been shown to
exist after pre-training the dense network for a short amount
of time (Phase 1 in Figure 1) before pruning (Frankle et al.,
2020a; Yu et al., 2020; Chen et al., 2020; Vischer et al.,
2021; Kalibhat et al., 2020).

Empirical evidence for this phenomenon comes via a proce-
dure that finds such sub-networks retroactively after training
the entire network. This procedure, called Iterative Magni-
tude Pruning (IMP, Figure 1; Frankle et al., 2020a) is based
on standard iterative pruning procedures (Han et al., 2015)
and is outlined in Algorithm 1.

This procedure reveals the accuracy of pre-training the dense
network for tr iterations, pruning, and training the pruned
network thereafter. Phase 2 can be understood as an (expen-
sive) oracle for choosing weights to prune at tr. Although
IMP is too expensive to use as a practical way to speed up
training, it provides a window into a possible minimal num-

Algorithm 1 IMP rewinding to step tr and N iterations.
1: Create a network with randomly initialization w0 ∈ Rd.
2: Initialize pruning mask to m = 1d.
3: Train w0 for tr steps to wtr

4: for n ∈ {1, . . . , N} do
5: Train the pruned network m ⊙ wtr to completion. (⊙ is

the element-wise product)
6: Prune the lowest magnitude 20% of weights after training.

Let m[i] = 0 if the corresponding weight is pruned.
7: end for
8: Train the final network m⊙wtr . Measure its accuracy.

ber of parameters and operations necessary to successfully
train a network to completion in practice. In our work, we
extend this line of thinking, pursuing the minimal amount
of data necessary to find and train these sub-networks. This
is especially tantalizing due to the potential positive interac-
tions between sparsity and minimizing the data necessary
for training. The result is a deeper inquiry into the minimal
recipe for successful training and, thereby, into the funda-
mental nature of neural network learning in practice. In
this respect, the closest work to ours is an experiment in a
larger compendium by Frankle et al. (2020b) showing that
the standard pre-training phase could be replaced by a much
longer self-supervised phase.

There are many other ways to obtain pruned neural networks
(e.g., Janowsky, 1989; LeCun et al., 1990; Han et al., 2015;
Zhu & Gupta, 2017; Evci et al., 2020). The distinctive
aspect of work on the lottery ticket hypothesis (and the one
that makes it the right starting point for our inquiry) is that
its goal is to uncover a minimal path from initialization to
a trained network, regardless of the cost of doing so. The
aforementioned procedures target real-world efficiency for
training and/or inference.

Ranking training examples. We define “easy/hard data”
as the data that is ranked low/high, respectively, by the
EL2N score introduced by Paul et al. (2021). EL2N scores
depend on the margin early in training and, loosely speaking,
higher average margin early in training means lower impor-
tance for generalization of the final trained model. This
connection to margin suggests that easy data is learned first
(has higher margin early in training, maintained throughout
the rest of training). EL2N scores were derived from the
size of the loss gradient and are thus are highly correlated
with the magnitude of the gradient.

Definition 2.1 (EL2N Score). The EL2N score of a training
sample (x,y) at iteration t is defined as E∥p(wt,x)− y∥2,
where the expectation is taken over wt conditioned on the
training data.

In our experiments (Section 3), we vary the data that is
accessible in the pre-training phase of IMP defined above.
We either choose the data subset at random while preserving
class balance, or based on the EL2N scores.

Pre-Training on a Data Diet

CIFAR-10 + ResNet-20
Subset Size 3200 (6.4%), = 400

Full Model Accruacy
All Data

(Rewind It. 0)
All Data

(Rewind It.)
All Data

(Rewind It.)
Random Subset
(Rewind It.)

Easiest Examples
(Rewind It.)

Hardest Examples
(Rewind It.)

CIFAR-100 + ResNet-32
Subset Size 2048 (4.1%), = 800

CINIC-10 + ResNet-56
Subset Size 51.2k (28.4%), = 800

Figure 2. For a given rewind step tr = t∗/2, training on a small fraction of random data during the pre-training phase of IMP leads to
matching initializations (compare the solid green with circles and dashed orange curves) across dataset, network, and hyperparameter
configurations. Using just the easiest training examples during this phase produces a matching initialization for rewind point t∗ in just
t∗/2 steps (compare the solid red with triangles and dashed blue curves). Pre-training on the hardest examples is detrimental to the
performance of the initialialization (solid pink curve with crosses). IMP with rewinding to initialization (dashed yellow curve) and the
dense model (dashed grey curve) are used as baselines. For each dataset + network configuration, we present the best performing easy
data subset size. For a sweep across subset sizes, see Figure 4 and Appendix B.

3. Training Data and IMP Pre-Training
As can be seen in Figure 2, when training sparse networks
using IMP with rewind step tr = 0, the final test accu-
racy of the sparse networks falls off rapidly with increasing
sparsity. However, as we increase the rewind step tr, the
network performance improves across all sparsity levels
and at a rewind step t∗, the network performs as well as or
better than the dense network at high sparsities. Informally,
training the dense network for t∗ steps creates a matching
initialization for IMP. But what does the network learn in
these first t∗ steps? In this section, we take the first step
towards answering this question by investigating which sub-
sets of the training data are sufficient for finding a matching
initialization. In order to compare networks trained on dif-
ferent subsets of data for different numbers of iterations, we
introduce the notion of a matching initialization with the
following definitions.

Definition 3.1. Let wS
t be the dense network weights after

training on a subset of the training data S until rewind step t.
Then for two data subsets {S, S′}, rewind times {t, t′} and
a given range of sparsities, wS′

t′ is said to dominate (weakly
dominate) wS

t if sparse networks obtained from IMP with
wS′

t′ as the initialization achieve better (no-worse) accuracy
than those obtained from IMP with wS

t as the initialization.

For a network trained on the full dataset for t steps, we write
wt. In Figure 2, we see that wt∗ dominates wt∗/2 which in
turn dominates w0. We investigate which data subsets S and
rewind steps t lead to networks wS

t that dominate wt∗ and
wt∗/2—such networks are called matching initializations.

Definition 3.2. A dense network wS
t is a matching initial-

ization for rewind time t∗ if wS
t weakly dominates wt∗ .

We empirically find that certain surprisingly small subsets
S and rewind step tr < t∗ lead to matchining initializations
fore rewind time t∗.

Experimental design. To evaluate the effect of the training
subset size and composition on the quality of the pre-trained
initialization, we train ResNet-20/ResNet-32/ResNet-56 on
subsets of CIFAR-10/CIFAR-100/CINIC-10, respectively.
The subset size M is varied and subsets are chosen as fol-
lows: (i) M randomly selected examples, distributed equally
among all classes; (ii) the easiest M examples; (iii) the hard-
est M examples. The easiest examples are those with the
smallest EL2N scores and the hardest are the examples with
the largest EL2N scores (Paul et al., 2021).

Due to the significant computational demands of performing
IMP with multiple pre-training schemes and replicates, we
focus on a targeted set of pre-training iterations tr. In partic-
ular, we study the pre-training iteration tr = t∗ where train-
ing on all examples leads IMP to find spare sub-networks
that perform as well as the dense network for a large range
of sparsities (t∗ = 400 for CIFAR-10 and 800 for CIFAR-
100 and CINIC-10). We also study the more challenging
pre-training iteration of tr = t∗

2 , where pre-training on
all data does not yield a matching initialization. When M
examples are not enough to train for tr iterations without
replacement, we make multiple passes over the M examples
as necessary. Figure 2 shows the best performing easy data
subset for each dataset across the full range of sparsities;
Figure 4 shows the performance across subset size at three
fixed sparsities.

Randomly chosen examples. Pre-training the dense net-
works on small, randomly chosen subsets S can lead to
initializations for IMP, wS

tr , that dominate initializations
wtr trained on the entire training set for the same number
of steps. In Figure 2 we see that for all dataset + network
combinations, pre-training the dense network on a small
random subset (solid green curve with circles; sizes rang-
ing from 4.1% for CIFAR-100 to 28.4% for CINIC-10) for
tr = t∗/2 leads to initializations that (weakly) dominate

Pre-Training on a Data Diet

Full Model Accruacy
All Data

(Rewind It. 0)
All Data

(Rewind It.)
All Data

(Rewind It.)
Random Subset
(Rewind It.)

Easiest Examples
(Rewind It.)

Hardest Examples
(Rewind It.)

CIFAR-10 + ResNet-20
10% Randomized Labels During Pre-Training

CIFAR-10 + ResNet-20
50% Randomized Labels During Pre-Training

Figure 3. Pre-training on a random subset or all data is not robust to label noise during this initial phase of IMP. However, pre-training
with the easiest data as scored by EL2N scores computed from the corrupted dataset is robust. In both the left (10% randomized labels)
and right (50% randomized labels), pre-training on the easiest data for t∗/2 iterations dominates all other pre-training schemes, including
training on all data for t∗ iterations. Results for additional subset sizes are included in Appendix B.

those that were obtained from training the network for the
same number of steps on all the data. This observation leads
to a surprising suggestion: in these experiments, the subset
size is smaller than the total number of images seen during
the pre-training phase; for the particular goal of finding a
matching initialization of IMP, multiple passes through the
same small dataset can be more beneficial than seeing more
random data.

Easiest examples (lowest EL2N scores). By pre-training
on just the easiest examples (identified by lowest EL2N
scores, solid red curve with triangles in Figure 2), we can
obtain matching initializations in fewer steps compared to
training on the full dataset. In Figure 2, we see that for all
three dataset and network combinations and for the subset
sizes shown, the initialization obtained from training on
the easiest examples for tr = t∗/2 steps leads to matching
initializations for t∗.

Hardest examples (highest EL2N scores). Conversely,
pre-training on the hardest examples (solid pink curve
with crosses in Figure 2) yields worse accuracies than pre-
training on all examples or a random subset. In fact, on
CIFAR-10 the hardest examples perform barely better than
using no pre-training at all. Interestingly, when training a
dense network, these hardest examples are crucial for ob-
taining a network with good generalization properties (Paul
et al., 2021). This suggests that while the hard example
may be key later in training, repeated passes through easier
examples should be the focus during the very early stages
of training to quickly find a good initialization for IMP.

Randomized labels during pre-training. Pre-training on
all data or a random subset is not robust to corruption with
random label noise (Zhang et al., 2016) during the pre-
training phase. As seen in Figure 3, the higher the percent-
age of randomized labels, the lower the performance of

these data subsets, and in particular, the pre-trained rewind-
ing point becomes no better than a random initialization
when 50% of the labels are randomized. On the other hand,
training on easiest data with EL2N scores computed on the
corrupted dataset is robust to this noise (solid red curve with
triangles in Figure 3). This is because examples with ran-
domized labels are hard (Paul et al., 2021) according to this
metric, and thus the easiest examples will select a subset of
largely uncorrupted data.

Summary. Taken together, our results suggest that, finding
a matching initialization for IMP at rewinding step t∗ is an
interesting problem in which “more data, more training” is
not optimal; it is neither necessary to train on all the data nor
to train for the full t∗ steps. In fact, we can get away with
training on a surprisingly small dataset for as little as half
the number of steps if we make multiple passes through the
right examples, in this case the easiest examples as defined
by the lowest EL2N scores.

4. Discussion
Recent empirical evidence has shown that deep neural net-
work optimization proceeds in several distinct phases of
training (Frankle et al., 2020b; Fort et al., 2020). Under-
standing the role that data plays in these different phases
can help us characterize what is being learned during them.
Since data loading is often a bottleneck, this understand-
ing also has the potential to enable a more efficient scheme
where the early part of training focuses on a small fraction
of the overall training set while the remaining data is loaded
in. Though this work does not provide an improved algo-
rithm for obtaining sparse networks, we believe our results
provide guidance for researchers pursuing algorithms that
perform pruning early in training (i.e. finding sparse masks
without training to convergence).

Pre-Training on a Data Diet

Acknowledgements
The experiments for this paper were funded by Google
Cloud research credits. S.G. thanks the James S. McDon-
nell and Simons Foundations, NTT Research, and an NSF
CAREER Award for support while at Stanford. This work
was done in part while G.K.D. was visiting the Simons Insti-
tute for the Theory of Computing. The authors would like
to thank Daniel M. Roy for feedback on multiple drafts.

References
Baldock, R., Maennel, H., and Neyshabur, B. Deep learning

through the lens of example difficulty. Advances in Neural
Information Processing Systems, 34, 2021.

Chen, T., Frankle, J., Chang, S., Liu, S., Zhang, Y., Wang,
Z., and Carbin, M. The lottery ticket hypothesis for pre-
trained bert networks. 2020.

Darlow, L. N., Crowley, E. J., Antoniou, A., and Storkey,
A. J. Cinic-10 is not imagenet or cifar-10. arXiv preprint
arXiv:1810.03505, 2018.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning, pp. 2943–
2952. PMLR, 2020.

Fort, S., Dziugaite, G. K., Paul, M., Kharaghani, S., Roy,
D. M., and Ganguli, S. Deep learning versus kernel
learning: an empirical study of loss landscape geometry
and the time evolution of the neural tangent kernel. arXiv
preprint arXiv:2010.15110, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Linear mode connectivity and the lottery ticket hypothesis.
In Proc. Int. Conf. Machine Learning (ICML), 2020a.

Frankle, J., Schwab, D. J., and Morcos, A. S. The early
phase of neural network training. In International Confer-
ence on Learning Representations, 2020b. URL https:
//openreview.net/forum?id=Hkl1iRNFwS.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning
both weights and connections for efficient neural net-
work. In Advances in Neural Information Processing
Systems, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Janowsky, S. A. Pruning versus clipping in neural networks.
Physical Review A, 39(12):6600, 1989.

Kalibhat, N. M., Balaji, Y., and Feizi, S. Winning lot-
tery tickets in deep generative models. arXiv preprint
arXiv:2010.02350, 2020.

Krizhevsky, A., Nair, V., and Hinton, G. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html, 55:5,
2014.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In Advances in neural information processing
systems, pp. 598–605, 1990.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning on
a data diet: Finding important examples early in training.
arXiv preprint arXiv:2107.07075, 2021.

Vischer, M. A., Lange, R. T., and Sprekeler, H. On lottery
tickets and minimal task representations in deep rein-
forcement learning. arXiv preprint arXiv:2105.01648,
2021.

Yu, H., Edunov, S., Tian, Y., and Morcos, A. S. Play-
ing the lottery with rewards and multiple languages:
lottery tickets in rl and nlp. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1xnXRVFwH.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. CoRR, abs/1611.03530, 2016.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017.

https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=S1xnXRVFwH
https://openreview.net/forum?id=S1xnXRVFwH

Pre-Training on a Data Diet

A. Experimental Details
Code. The code used to run the experiments is available at: https://github.com/mansheej/lth_diet

Datasets. We used CIFAR-10, CIFAR-100 (Krizhevsky et al., 2014), and CINIC-10 (Darlow et al., 2018) in our exper-
iments. For CINIC-10, we combine the training and validation sets into a single training set with 180,000 images. The
standard test set of 90,000 images is used for testing. Each dataset is normalized by its per channel mean and standard
deviation over the training set. All datasets get the same data augmentation: pad by 4 pixels on all sides, random crop to
32×32 pixels, and left-right flip image with probability half.

Models. In these experiments we use ResNet-20, ResNet-32, ResNet-56 (He et al., 2016). These are the low-resolution
CIFAR variants of ResNets from the original paper. The variants of the network used are specified in the figures.

Randomized Labels. The labels were randomized during the pre-training phase only by first selecting 10%/50% of
the training uniformly at random and then drawing a new label uniformly from the 10 classes of CIFAR-10. Note that
because this procedure can result in an example being reassinged the correct label, on average only 9%/45% of the labels are
corrupted by this procedure. The dataset is corrupted once and then resused across all subset sizes and replicates.

The EL2N scores used to determine the subset of easiest data were computed by training on the corrupted dataset. As seen
in Figure 5 of (Baldock et al., 2021), the network typically learns the correct label early in training for corrupted data points.
As a result, the corrupted examples will be ranked as difficult by the EL2N scores as verified in (Paul et al., 2021). Thus, the
noisy labels are filtered out by pre-training on the examples with the lowest EL2N scores.

Hyperparameters. Networks were trained with stochastic gradient descent (SGD). t∗ was chosen for each dataset such
that tr = t∗ produces a matching initialization when trained with all data; the pre-training learning rate was chosen based on
which of the set {0.1, 0.2, 0.4} produced the best performance at t∗. The full hyperparameters are provided in Table 1.

Table 1. Hyperparameters Used for Experiments.

CIFAR-10 CIFAR-100 CINIC-10
ResNet Variant ResNet-20 ResNet-32 ResNet-56

Batch Size 128 128 256
Pre-training Learning Rate 0.4 0.4 0.1

Learning Rate 0.1 0.1 0.1
Momentum 0.9 0.9 0.9

Weight Decay 0.0001 0.0001 0.0001
Learning Rate Decay Factor 0.1 0.1 0.1

Learning Rate Decay Milestones 31200, 46800 31200, 46800 15625, 23440
Total Training Iterations 62400 62400 31250

IMP Weight Pruning Fraction 20% 20% 20%

EL2N score computation To calculate EL2N scores for a dataset, we follow the process outlined in (Paul et al., 2021). In
particular, we do the following:

1. Independently train K = 10 networks from different random initializations for t iterations.

2. For each example and each network, we calculate the L2 norm of the error vector defined as ∥p(x)− y∥2 where y is
the one-hot encoding of the label, and p(x) are the softmax outputs of the network evaluated on example x.

3. For each example, the EL2N score is the average of the error vector L2 norm across the K networks.

To calculate these scores, we use ResNet-20 and t = 7800 iterations for CIFAR-10, ResNet-32 and t = 7800 iterations for
CIFAR-100, and ResNet-56 and t = 8000 iterations for CINIC-10.

https://github.com/mansheej/lth_diet

Pre-Training on a Data Diet

Compute Resources. The experiments were performed on virtual Google Cloud instances configured with 4 NVIDIA
Tesla A100 GPUs. Each experiment replicate was run on a single A100 GPU. The approximate compute time for a full run
of IMP was 8 hours for CIFAR-10, 12 hours for CIFAR-100, and 10 hours for CINIC-10.

B. Full Results
Here we present the full set of experiments performed for the results in the main text. Figure 4, Figure 5, and Figure 6 show
the results for performing IMP pre-training with different data subsets across a range of different subset sizes. Figure 7
shows the result for performing IMP pre-training with the dataset corrupted by randomized label noise (the original dataset
is then used for the mask search and sparse training phase).

Full Model Accruacy
All Data

(Rewind It. 0)
All Data

(Rewind It.)
All Data

(Rewind It.)
Random Subset
(Rewind It.)

Easiest Examples
(Rewind It.)

Hardest Examples
(Rewind It.)

CIFAR-10 + ResNet-20
 = 400

CIFAR-100 + ResNet-32
 = 800

CINIC-10 + ResNet-56
 = 800

16.8% Weights Remaining
(8 Pruning Rounds)

10.7% Weights Remaining
(10 Pruning Rounds)

6.9% Weights Remaining
(12 Pruning Rounds)

Figure 4. A summary of the the dependence on subset size for the style of experiments described in Figure 2. The first column represents
the performance across subset size for the fixed sparsity 16.8% weights remaining or 8 rounds of pruning. The subsequent columns show
the same for 10.7% (10 pruning rounds) and 6.9% (12 pruning rounds) respectively. The horizontal lines correspond to baseline runs at
rewind steps 0, t∗/2, and t∗ using all the data. For CINIC-10 (bottom row), rewind step 0 and the hardest data subsets are not visible in
some cases because their accuracies fall below the range displayed.

Pre-Training on a Data Diet

Subset Size 256 Subset Size 512 Subset Size 1024

Subset Size 2048 Subset Size 3200 Subset Size 6400

Full Model Accruacy
All Data

(Rewind It. 0)
All Data

(Rewind It. 400)
All Data

(Rewind It. 800)
Random Subset
(Rewind It. 400)

Smallest EL2N Scores
(Rewind It. 400)

Largest EL2N Scores
(Rewind It. 400)

(a) CIFAR-100, ResNet-32, t∗ = 800, t∗/2 = 400.

Subset Size 256 Subset Size 512 Subset Size 1024

Subset Size 3200 Subset Size 6400 Subset Size 12.8k

Subset Size 2048

Subset Size 25.6k

Full Model Accruacy All Data (Rewind It. 0) All Data (Rewind It. 200) All Data (Rewind It. 400) Random Subset (Rewind It. 200) Smallest EL2N Scores (Rewind It. 200) Largest EL2N Scores (Rewind It. 400)

(b) CIFAR-10, ResNet-20, t∗ = 400, t∗/2 = 200.

Figure 5. Extended results for Figure 2 and Figure 4 across all subset sizes considered on CIFAR-10 and CIFAR-100. For each dataset,
pretraining was performed with all data for t∗/2 steps (dashed orange curve) and t∗ steps (dashed blue curve. Performing IMP as an
initialization is included as a baseline (dashed yellow curve). IMP pre-training was then performed with three different data subsets for
t∗/2 steps: random examples (solid green curve with circles), easiest examples (solid red curve with triangles), and hardest examples
(solid pink curve with crosses). For both CIFAR-100 and CIFAR-10, a learning rate of 0.4 and batch 128 was used during the pre-training
period.

Pre-Training on a Data Diet

Subset Size 12.8k Subset Size 25.6k Subset Size 51.2k

Full Model Accruacy
All Data

(Rewind It. 0)
All Data

(Rewind It. 200)
All Data

(Rewind It. 400)
Random Subset
(Rewind It. 200)

Smallest EL2N Scores
(Rewind It. 200)

Largest EL2N Scores
(Rewind It. 200)

(a) CINIC-10, ResNet-56, t∗ = 400, t∗/2 = 200.

Subset Size 12.8k Subset Size 25.6k Subset Size 51.2k Subset Size 102.4k

Full Model Accruacy All Data (Rewind It. 0) All Data (Rewind It. 400) All Data (Rewind It. 800) Random Subset (Rewind It. 400) Smallest EL2N Scores (Rewind It. 400) Largest EL2N Scores (Rewind It. 400)

(b) CINIC-10, ResNet-56, t∗ = 800, t∗/2 = 400.

Figure 6. Extended results for Figure 2 and Figure 4 across all subset sizes considered on CINIC-10. For each dataset, pretraining was
performed with all data for t∗/2 steps (dashed orange curve) and t∗ steps (dashed blue curve. Performing IMP as an initialization is
included as a baseline (dashed yellow curve). IMP pre-training was then performed with three different data subsets for t∗/2 steps:
random examples (solid green curve with circles), easiest examples (solid red curve with triangles), and hardest examples (solid pink
curve with crosses). For CINIC-10, a learning rate of 0.1 and batch 256 was used during the pre-training period.

Subset Size 512 Subset Size 1024 Subset Size 3200Subset Size 2048

Full Model Accruacy All Data (Rewind It. 0) All Data (Rewind It. 200) All Data (Rewind It. 400) Random Subset (Rewind It. 200) Smallest EL2N Scores (Rewind It. 200) Largest EL2N Scores (Rewind It. 400)

50
%

 R
an

do
m

iz
ed

 L
ab

el
s

10
%

 R
an

do
m

iz
ed

 L
ab

el
s

Figure 7. Extended results for Figure 3. In the top row, pre-training is performed on the dataset with 10% randomly corrupted labels;
in the bottom row, pre-training is performed with 50% randomly corrupted labels. The corruption is performed once and then is held
the same across subset sizes and replicates. Here t∗ = 400, and the random and easy data subsets are trained for t∗/2 = 200 steps.
Pre-training was performed with a learning rate of 0.4 and batch size of 128.

