Under review as a conference paper at ICLR 2025

CoDEDPO: ALIGNING CODE MODELS WITH SELF
GENERATED AND VERIFIED SOURCE CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Code generation models have shown significant potential for programming tasks.
However, existing training methods like supervised fine-tuning face key limita-
tions: they do not effectively teach models to prioritize correct over incorrect
solutions in ambiguous situations, nor do they effectively optimize the runtime
efficiency of the generated code. To address these challenges, we propose Cod-
eDPO, a framework that integrates preference learning into code generation to
improve two key code preference factors: code correctness and efficiency. Cod-
eDPO employs a novel dataset construction method, utilizing a self-generation-
and-validation mechanism that simultaneously generates and evaluates code and
test cases. The underlying assumption is that test cases executable by multiple
code snippets provide more reliable validation, and code that passes more tests
is more likely to be correct. Through this self-validation process, our PageRank-
inspired algorithm iteratively updates the ranking score of each code snippet, ul-
timately creating a code preference optimization dataset based on correctness and
efficiency. CodeDPO is flexible and scalable, generating diverse preference op-
timization data without depending on powerful models such as GPT-4. Through
comprehensive evaluations of five widely used benchmarks, CodeDPO demon-
strates significant improvements in correctness and efficiency compared to exist-
ing methods. Our experiments prove that CodeDPO enhances the capabilities of
LLMs in code generation and provides a robust foundation for conducting code
preference optimization in more complex and challenging real-world scenarios. []_-]

1 INTRODUCTION

In recent years, code generation models have gained significant attention for their potential to au-
tomate software development. Models such as GPT-4 (GPT-4| [2023), Claude, and open-source
alternatives like Phi (Gunasekar et al.,[2023|Abdin et al., 2024), DeepSeekCoder (Guo et al., [2024)),
and StarCoder (Li et al.} 2023}, |Lozhkov et al.| 2024) have demonstrated the capability of LLMs to
handle complex code generation tasks. However, one of the ongoing challenges lies in boosting the
correctness and efficiency of the generated code.

To improve code generation models, a common approach is supervised fine-tuning (SFT) (Zhang
et al.| [2023b), where models are trained on pairs of instructions and correct code snippets. While
SFT improves the overall quality of the generated code, it falls short in teaching models to con-
sistently prefer correct solutions over incorrect ones (Hong et all 2024). Figure [I] illustrates the
likelihood of generating code with varying correctness and efficiency during SFT training. When
we adopt SFT training on those correct solutions, as the likelihood of preferred outputs increases,
the probability of generating undesirable outputs also rises, leading to performance saturation.

To address these limitations, recent research has turned to direct preference optimization (DPO)
(Rafailov et al.,2024)), a method designed for alignment based on pairwise preference data. DPO al-
lows models to rank different outputs and choose preferable solutions (e.g., more factual or helpful).
While DPO has shown success in reasoning tasks like mathematics (Lai et al., 2024;|Wu et al.| 2024)),
its application in code generation remains under-explored. Unlike natural language tasks, code gen-
eration requires objective metrics, such as executability, which poses challenges for directly applying

'Code and additional details are available: https://anonymous.4open.science/r/CodeDPO/

https://anonymous.4open.science/r/CodeDPO/

Under review as a conference paper at ICLR 2025

SFT Logp Changes CodeDPO Logp Changes
P A NP VNAN AT
-20 -30
$-30 S —a0| ",
2 g
%‘40 —— SFT: Correct Code §‘5° —— CodeDPO: Correct Code
T | SFT: Inefficiency Code Y el T CodeDPO: Inefficiency Code
SFT: Incorrect Code CodeDPO: Incorrect Code
~%060 200 360 400 500 600 0 160 200 300 400 560 600
Training Step Training Step

Figure 1: Log probabilities for code with varying correctness and efficiency during Phi-2-2.7B
model training on our constructed dataset. The traditional SFT strategy struggles to teach models to
prefer correct solutions over incorrect or slow ones. In contrast, our CodeDPO approach effectively
optimizes for both correctness and efficiency.

DPO. In this paper, we first define code preference based on two key factors—Correctness and
efficiency. Correctness refers to whether the code solves the problem accurately, while efficiency
measures how quickly the code runs. Existing methods (Gee et al., 2024} [Zhang et al.| [2024) rely
heavily on high-quality test cases to assess correctness. However, these approaches struggle to fully
address correctness and efficiency, facing limitations such as restricted data diversity, an imbalance
between positive and negative samples, and insufficient focus on optimizing code efficiency.

In this paper, we introduce CodeDPO, a novel framework that integrates preference learning into
code model training to optimize both correctness and efficiency. CodeDPO constructs the dataset
from real-world code repositories using a self-generation-and-validation mechanism, where code
and test cases are simultaneously generated and evaluated. We assume that tests executable by
more code snippets are more reliable, and code that passes more tests is more likely to be cor-
rect. To implement this, CodeDPO uses a mutual verification process: each receives an initial self-
validation score, which is iteratively updated using a PageRank-inspired (Page, |1999) algorithm.
This algorithm adjusts the credibility of each code snippet and tests by considering their relations in
cross-verification, prioritizing solutions based on correctness and efficiency. The final preference-
optimized dataset is then used to train various code models using the DPO learning algorithm. A
key advantage of CodeDPO is its flexibility. Unlike existing methods that rely on high-quality test
cases or powerful models to generate them, CodeDPO does not depend on these resources. Its self-
generation and validation mechanism supports the scalable creation of diverse and robust preference
optimization data. This allows our framework to optimize code models for real-world scenarios
where high-quality test data may be sparse.

CodeDPO can serve as a crucial step in the post-training phase of code models. We conduct ex-
periments on five popular benchmarks such as HumanEval (Chen et al., 2021)), HumanEval+ (Liu
et al., [2024a), MBPP (Austin et al., [2021), MBPP+, and DS-1000 (Lai et al.,[2023)) with CodeDPO,
demonstrating its superiority over existing methods. Notably, we develop a top-performing 6.7B
model by building on an existing SFT strategy (Guo et al.}[2024; Wei et al.,|2023) and further enhanc-
ing it with our CodeDPO approach, achieving an impressive 83.5% pass rate on HumanEval. We
also conduct ablation studies to investigate the impact of our self-generation-and-validation mecha-
nism and other preference optimization settings. Our findings confirm that CodeDPO enhances the
code generation capabilities of LLMs while providing a solid foundation for further research into
optimizing code generation for both correctness and efficiency.

2 RELATED WORK

2.1 LARGE LANGUAGE MODELS FOR CODE

Code generation, which automates writing source code from natural language (NL) descriptions, is
gaining significant attention. LLMs have shown strong capabilities in this area due to their large-
scale training on diverse datasets, such as OpenAl’s GPT-4 (GPT-4, 2023), StarCoder (L1 et al.,
2023} |[Lozhkov et al., [2024), Code Llama (Roziere et al., 2023)), and DeepSeekCoder (Guo et al.,
2024). These models are often fine-tuned further, such as through instruction-supervised fine-tuning
(SFT), to maximize their coding potential. Since gathering high-quality data is difficult, researchers

Under review as a conference paper at ICLR 2025

score: 1->2.7 Jozdx1.8, 1.1
AN D D
$(r| [$0] | S0 G
|Code,| [Code,| Code,|
L . U |Code J!
O E a upjz:leufjfeessrcsac,;re DPO on correctness & efficiency
‘ — I
D D D ®
? ? ? : Effici imizati
Step 1: Data Seed Construction D Q Q step 3.:;f}:c:n;xt?::l:::non |Code X!
Test | Test | Test |
Iu - lu 2 lu 2 Step 4: Model Optimization

score: 1->2.2 1->1.4 1->1

Step 2: Correctness Optimization
with Self-validation score

Figure 2: Our CodeDPO involves four steps: @ Data Seed Construction with real-world source
code; ® Correctness Optimization with self-validation score (in this figure we set 7" to 2 and d to
0.5. For simplicity, the final score in the figure is rounded to one decimal place. Details are shown
in Appendix [H.3.1); ® Efficiency Optimization with execution time on credible tests; @ Model
Optimization Training.

use self-instruct methods to generate synthetic instruction data from powerful models like GPT-
4 (Wang et al.| 2022; Taori et al., |2023}; |Chaudharyl, 2023). Evol-Instruct (Luo et al., 2023) uses
more complex prompts for better data generation. OSS-instruct (Wei et al., |2023) allows LLMs
to get inspired from real-world code snippets for better quality in coding tasks. While these SFT
methods boost code quality, it does not fully train models to prefer correct solutions over incorrect
ones (Hong et al.| 2024)). Updating training strategies is critical for improving these code models to
handle various coding tasks.

2.2 PREFERENCE OPTIMIZATION FOR CODE MODELS

Preference optimization techniques have recently been used to help LLMs prefer better outputs over
weaker ones in various natural language tasks (Rafailov et al.|[2024). The Direct Preference Opti-
mization (Rafailov et al.,[2024) has been widely applied to LLM alignment due to its convenience
and effectiveness. Its objective is defined as:
71'9(3—171) | x) 7"9(yl | I)
e G rm e o))

Compared with the SFT loss, the DPO loss introduces a preference-based mechanism. Instead
of merely maximizing the likelihood of ground truth data, as in SFT, DPO optimizes the model to
align with human preferences by leveraging both preferred responses (y,,, winning) and dispreferred
responses (y;, losing). While DPO has proven effective in reasoning tasks like mathematics (Lai
et al., 2024)), its use in code generation is still under-explored. Code generation requires objective
measures of correctness and efficiency, unlike natural language tasks where preferences are often
more subjective. Some works have simply explored PO. Code-Optimize (Gee et al., [2024) builds
its dataset from the MBPP-train subset, which includes just 384 problems. PLUM uses GPT-4 to
generate tests, which are then used to validate and rank code solutions. PLUM currently achieves
state-of-the-art performance in preference optimization for code models. However, PLUM (Zhang
et al., 2024) faces some limitations. It uses a limited number of tests to validate the code, and
the resulting dataset is imbalanced due to its validation method, which means it can only use KTO
(Ethayarajh et al., [2024) for training. Additionally, PLUM does not consider the code efficiency.
This paper introduces CodeDPO, which does not rely on external test cases or powerful models
for dataset generation. Our approach uses a self-generation and validation mechanism to create
balanced preference pairs, aiming to optimize both correctness and efficiency.

3 CoODEDPO: SELF-VERIFIED PERFORMANCE OPTIMIZATION CODE
GENERATION FRAMEWORK

CodeDPO is designed to integrate preference learning into code generation models, improving both
the correctness and efficiency of the generated code. As shown in Figure [2, our method involves

Under review as a conference paper at ICLR 2025

four key steps: @ Data Seed Construction with real-world source code: We first collect a data
seed from open-source code repositories and generate programming task prompts. @ Correctness
Optimization with self-validation score: We generate code and tests simultaneously, using a self-
generation-and-validation loop to build a dataset for correctness optimization. The self-validation
score is iteratively updated based on whether the generated code passes the tests. We assume that
tests executable by multiple code snippets are more reliable, and code that passes more tests is more
likely to be correct. As illustrated in the figure, after two iterations, the score of code-1 changes from
1to 1.75 to 2.6875 (~2.7 in the figure), as it passes more reliable tests and receives higher scores
with each update, indicating a greater likelihood of correctness. @ Efficiency Optimization with
execution time: We measure execution time on selected credible test sets to build the dataset for
efficiency optimization. In the figure, we select test-1 and test-2 as the credible test set to measure
the execution time of each code snippet. @ Model Optimization Training: We collect the dataset
from the previous two stages and use Direct Preference Optimization (DPO) to train various code
models.

3.1 DATA SEED CONSTRUCTION

The data seed construction for CodeDPO is the first step for initiating the preference learning process
to generate programming task prompts. We adopt a method inspired by OSS-instruct (Wei et al.,
2023} [2024))°, which extracts key programming concepts from open-source code repositories. These
concepts serve as the foundation for generating various programming task prompts. For example, a
code snippet that performs sorting operations might highlight concepts such as sorting algorithms,
data structure traversal, and time complexity. From these concepts, we generate code generation
prompts. The data seed thus allows the model to explore a wide range of scenarios.

3.2 CORRECTNESS OPTIMIZATION WITH SELF-GENERATION AND VALIDATION

Central to CodeDPO is the self-generation-and-validation loop, which enables the model to itera-
tively update the code correctness rank through mutual validation of code and test cases (Chen et al.,
202252023 Zhang et al.|[2023a). The process begins by generating multiple candidate code snippets
based on a prompt. Simultaneously, corresponding test cases are generated to evaluate these snip-
pets. The validation loop follows these steps: 1. Code Generation: Given an instruction, the model
generates a set of candidate code snippets C = {¢, ¢, ...,cn}. 2. Test Case Generation: Test
cases T = {t1,ta, ..., t;, } are generated in parallel to validate the candidate snippets. 3. Validation
Process: Each code snippet is executed against the generated test cases. The validation outcomes
are used to update the self-validation scores for both the code snippets and the test cases.

Ranking Code Snippets and Test Cases Using Self-Validation Scores To rank both code snip-
pets and tests, we employ a PageRank-inspired (Pagel |1999) iterative algorithm. Initially, each code
and test is assigned a self-validation score of 1. Over a fixed number of iterations 7' = 10, these
scores are updated based on the performance of the snippets and test cases during validation.

The self-validation score for code snippets and test cases is updated using the following formulas:

Score;(c;) = (1 — d) x Scores—1(¢;) + d % Z Score;—1(t;) x Link(t;, ¢;) (1
t.

J

Score.(t;) = (1 —d) x Score;_1(t;) +d x Z Score;—1(c;) x Link(c;, ;) (2)

ci

Where d is the damping factor, and Link(¢;, ¢;) indicates whether a code snippet c; passes the test
case t;. This iterative process is repeated until convergence. After T iterations, the final rankings
reflect the quality of the code snippets and test cases based on the correctness.

We follow the implementation provided at https://github.com/bigcode-project/
starcoder2-self-align/tree/fd0af77e2773b14696c7ceal02a472£9e99d9cde3l.

https://github.com/bigcode-project/starcoder2-self-align/tree/fd0af77e2773b14696c7cea02a472f9e99d9c4e3
https://github.com/bigcode-project/starcoder2-self-align/tree/fd0af77e2773b14696c7cea02a472f9e99d9c4e3

Under review as a conference paper at ICLR 2025

3.3 EXECUTION EFFICIENCY OPTIMIZATION

In addition to ensuring correctness, CodeDPO integrates execution efficiency optimization to ensure
that our approach generates functionally correct and efficient code. During the self-validation loop,
the execution time for each code snippet is recorded. However, not all test cases accurately reflect
the efficiency of the code. To address this, we use the top-performing code from the correctness
optimization phase as a reference, assuming the test cases it passes are credible. The total execu-
tion time for each code snippet is then measured based on the subset of these credible tests. Code
snippets that pass these credible test cases with lower execution times are assigned higher efficiency
scores. Finally, we collect both fast and slow code snippets as part of the training dataset for execu-
tion efficiency optimization, which is used for further training, encouraging the model to prioritize
solutions that are accurate and optimized for speed during code generation.

3.4 FINAL DATASET AND MODEL OPTIMIZATION

The final dataset is built from the previous two optimization dataset construction stages, accounting
for correctness and execution time. This dual-optimization approach ensures that our CodeDPO
dataset can train models to generate not only accurate code but also efficient solutions, addressing
both functional and performance challenges in real-world coding tasks. We filter out samples whose
ranking scores are identical or too close. The final dataset consists of 93k correctness optimization
samples and 21k efficiency optimization samples. Each sample includes a unique code problem
prompt with a preferred and a rejected solution. We carefully avoid overlap between the data seeds of
correctness and efficiency samples, ensuring that the constructed dataset captures various problems
and instructions. In the subsequent training, we combine both correctness and efficiency data to
optimize the model in both aspects simultaneously.

In our experiments, we apply Direct Preference Optimization (DPO) (Rafailov et al., 2024) across
various code models to facilitate optimization learning. To enhance the stability and robustness
of the training process, we employ RPO (Pang et al., [2024; [Liu et al., |2024b) format loss, which
essentially consists of a weighted SFT loss on the chosen preferences together with the original
DPO loss, which is defined as: L = Lppo + Lspr. CodeDPO is plug-and-play and can be applied
to nearly all code models, regardless of their type or training stage. We utilize both base models
and SFT models as the backbone for further training. Our goal is to demonstrate that CodeDPO has
the potential to enhance code models at different stages of their training, even for models that have
undergone extensive training or fine-tuning. The setup details are provided in Section 4.2}

4 EXPERIMENT SETUP

In this study, we aim to investigate the following research questions:

RQ1: Does CodeDPO improve the correctness of generated code compared to baseline models
on standard benchmarks? How does CodeDPO compare with other code preference optimiza-
tion baselines? We evaluate the pass rate of CodeDPO on benchmarks such as HumanEval (Chen
et al., [2021), HumanEval+ (Liu et al., 2024a), MBPP (Austin et al., 2021), MBPP+, and DS-1000
(Lai et al.,[2023)). We further compare the performance of CodeDPO with other baselines (Gee et al.}
2024} Zhang et al.,|2024)) that also utilize preference optimization techniques.

RQ2: Does CodeDPO enhance the execution efficiency of generated code? We measure the
execution efficiency of code generated by CodeDPO compared to baseline models.

RQ3: What is the impact of the self-generation-and-validation algorithm on CodeDPO’s
performance? We perform ablation studies by removing or modifying the self-generation-and-
validation mechanism to assess its contribution to the overall performance.

RQ4: How does the choice of preference optimization strategy affect CodeDPQO’s effective-
ness? We evaluate different preference optimization strategies, including Direct Preference Opti-
mization (DPO), Kahneman-Tversky Optimization (KTO) (Ethayarajh et al.,|2024])), and Supervised
Fine-Tuning (SFT), to understand their impact on the model’s performance.

RQS: How does data scaling influence the performance of CodeDPO? We investigate data scal-
ing for CodeDPO by varying the amount of training data to show how data size affects its ability.

Under review as a conference paper at ICLR 2025

4.1 BACKBONE LLMs

We evaluate several widely used LLMs in the code generation domain for our experiments, cov-
ering both base models and SFT models at different training stages. For base models, we apply
CodeDPO to Phi-2 (2.7B) (Gunasekar et al.,[2023)), DeepSeekCoder-base (1.3B, 6.7B) (Guo et al.,
2024), and StarCoder2-base (7B) (Lozhkov et al.,[2024). Additionally, we evaluate our method on
several fine-tuned SFT models (Wei et al.|[2023), including Magicoder-CL-7B, Magicoder-S-CL-
7B, Magicoder-DS-6.7B, and Magicoder-S-DS-6.7B, which are fine-tuned based on CodeLlama-
7B and DeepSeekCoder-base-6.7B using state-of-the-art SFT techniques.

While applying the PO phase after SFT is generally recommended (Rafailov et al., 2024)), we ex-
tend our evaluation to base models as they can generate more diverse code snippets and offer more
significant potential for improvement (Wang et al.| 2024). Since CodeDPQO’s optimization focuses
on objective metrics such as code correctness and efficiency, it contrasts with other natural language
tasks where preferences are often more subjective. This does not require our backbone model to
have a strong ability to follow subjective instructions, allowing CodeDPO to be directly applied to
base models. We choose all these popular models as the backbone of our experiments to optimize
correctness and execution efficiency.

4.2 TRAINING AND INFERENCE SETTINGS

For dataset construction, in order to balance generation speed and cost efficiency, we use
DeepSeekCoder-v2 as the data generation model. For each problem prompt, we sample 15 code
solutions and test cases from this model with temperature = 1.5. To construct the preference
optimization dataset, we set 7" to 10 and d to 0.85 for the self-validation score. Our practice shows
that this parameter configuration quickly yields a stable ranking score. In this paper, we focus on
constructing a Python dataset. The total cost of our dataset construction process is nearly 808$.

For training, we train each code model for 10 epochs and select the best-performing model based on
the lowest validation loss. We utilize a learning rate of 5e-6 with a linear scheduler and warm-up.
The maximum sequence length is set to 2048 tokens.

For inference, we use greedy search decoding for code generation. All evaluations use the frame-
work from bigcode-evaluation-harness (Ben Allal et al., 2022). We use 16 A100 GPUs for all
experiments.

5 RESULTS AND ANALYSES

5.1 CoODE CORRECTNESS (RQ1)

To answer RQ1, we evaluate the model performance on five widely-used code generation bench-
marks: HumanEval, HumanEval+, MBPP, MBPP+, and DS-1000. Following the standard train-
ing process (base model — SFT — DPO), we first record the performance of the base model, SFT
model, and DPO-aligned model on DeepSeekCoder-6.7B, as shown in Table |1} With the enhance-
ment of our CodeDPO, the final model achieves an 83.5% pass rate on HumanEval. Notably, even af-
ter high-quality SFT training, CodeDPO still achieves additional performance improvements. Cod-
eDPO plays a crucial role in the post-training phase of code models, significantly boosting overall
performance.

Model | HumanEval | HumanEval+ | MBPP | MBPP+
DeepSeekCoder-6.7B-base 47.60 39.60 70.20 56.60
+ SFT (with MagiCoder-OSS-instruct) 73.17 68.29 76.72 66.67
+ SFT + Our CodeDPO 83.54 76.22 80.70 70.93

Table 1: Pass rates (%) of code models at different stages on HumanEval(+) and MBPP(+). We track
the performance of the base model, SFT model, and DPO-aligned model on DeepSeekCoder-6.7B.
Our CodeDPO shows additional improvements, even after high-quality SFT training.

Under review as a conference paper at ICLR 2025

We further evaluate the performance of CodeDPO alongside baselinesﬂ on a wide range of mod-
els, including four base models and four SFT models. As shown in Table [2, CodeDPO achieves
the best performance on both HumanEval(+) and MBPP(+). Compared to the baseline models in
the first row of each block, we observe that CodeDPO delivers significant improvements across all
models, regardless of their initial performance. Notably, we achieve a 36.1% relative improvement
on StarCoder2-7B. Additionally, CodeDPO shows remarkable gains on the more challenging Hu-
manEval+, demonstrating its robustness under stricter evaluation. Thanks to CodeDPO’s data con-
struction strategy, we can build a reliable preference dataset that helps the model favour high-quality
outputs, leading to more robust and reliable code generation.

For DS-1000, as shown in Table [3} we further evaluate CodeDPO across different libraries. We did
not incorporate prior knowledge of specific Python libraries in our data construction. Thanks to our
approach’s flexibility, we can create a wide variety of programming problems and corresponding
code pairs. While we observe slight performance drops in the Torch and TensorFlow settings, this
may be due to the relatively low percentage of these libraries in our dataset construction. However,
CodeDPO demonstrates overall performance improvements over their respective baselines. It is
important to note that DS-1000 differs from benchmarks like HumanEval and MBPP in data format
and the coding skills it assesses. The dataset generation process for DS-1000 ensures that it is
excluded from nearly all models’ training sets, making the improvements we observe on DS-1000
reliable. These results show that CodeDPO does more than just adapt to standard coding benchmarks
like HumanEval. It proves that CodeDPO can enhance the model’s coding capabilities in more
complex and diverse scenarios.

5.2 CODE EFFICIENCY (RQ2)

To address RQ2, we follow existing methods (Shypula et al.,|2024)) by measuring the execution time
of the generated code and calculating the speed-up ratio. We also evaluate the percentage of opti-
mized code before and after applying CodeDPO, where a program is considered optimized if it is
at least 10% faster than its baseline. These metrics are based on the intersection of solved problems
before and after applying CodeDPO. We select HumanEval+ and MBPP+ for evaluation because
they significantly expand the diversity of test cases, making them more reliable for measuring the
execution efficiency of the generated code under a variety of edge cases. Since runtime environ-
ments can affect measurements, we repeat each evaluation five times and show the distribution in
Figure [3] It is clear that CodeDPO consistently improves code performance. The speed-up ratio
shows that our method speeds up the code by 1.25 to 1.45 times. The range in the figure highlights
that most measurements cluster around a significant performance boost. Additionally, the percent-
age of optimized code indicates that after applying CodeDPO, around 20%-45% of generated code
solutions have been improved, confirming its effectiveness in enhancing code efficiency.

Runtime Speedup for HumanEval+ Runtime Speedup for MBPP+
1.6 15
x x
o 157 o 14
3 =]
D14 T 13
[[
l% 131 % 2 !
Phi-2‘-2.7B D ¢ oder-1.3B D ¢ oder-6.7B Phi»zl-2.7B DeepSeekICoder-l.BB DeepSeekICoder-GJB
Opt for HumanEval+ Opt for MBPP+
50
304
X 40+ X
° °
o 30 O 204
=
Phi-2‘»2.7B DeepSeekICoder-1.3B DeepSeekICoder-GJB Phi»Zl-2.7B DeepSeek'Coder-l.BB DeepSeekICoder-GJB
(a) HumanEval+ (b) MBPP+

Figure 3: Runtime Speedup and Percentage of Optimized Code on HumanEval+ and MBPP+.

3The baselines have not yet published their datasets. We reproduced the Code-Optimize experiment based
on the reported settings. For PLUM, we report results from their paper using models identical to ours, which is
why some models do not include PLUM results.

Under review as a conference paper at ICLR 2025

Model | HumanEval | HumanEval+ | MBPP | MBPP+
SFT Model \

MagiCoder-CL-7B 51.21 48.78 65.60 55.82
Our CodeDPO 60.36 54.87 70.93 59.15
Code-Optimise 48.78 46.95 67.17 57.14
MagiCoder-S-CL-7B 67.07 61.59 69.58 60.58
Our CodeDPO 74.39 71.95 71.43 61.40
Code-Optimise 64.63 54.88 69.42 60.15
PLUM 73.80 69.50 71.40 60.80
MagiCoder-DS-6.7B 57.93 53.66 75.93 64.02
Our CodeDPO 67.07 62.80 81.70 68.92
Code-Optimise 57.93 51.83 76.19 64.91
PLUM 71.30 65.90 79.60 66.70
MagiCoder-S-DS-6.7B 73.17 68.29 76.72 66.67
Our CodeDPO 83.54 76.22 80.70 70.93
Code-Optimise 68.90 64.63 78.20 67.92
PLUM 80.50 73.80 80.40 69.30
Base Model \

Phi-2-2.7B 48.78 46.34 65.34 54.49
Our CodeDPO 57.32 51.83 69.05 56.88
Code-Optimise 49.39 47.56 67.42 55.80
DeepSeekCoder-1.3B 31.53 28.65 57.40 48.67
Our CodeDPO 42.07 38.04 61.37 53.43
Code-Optimise 34.15 30.49 59.15 49.87
DeepSeekCoder-6.7B 47.60 39.60 70.20 56.60
Our CodeDPO 59.75 51.83 72.18 60.01
Code-Optimise 47.56 37.20 72.18 57.64
PLUM 56.70 48.80 72.90 58.90
StarCoder2-7B 35.40 29.90 54.40 45.60
Our CodeDPO 48.17 34.15 58.40 49.37
Code-Optimise 32.32 28.05 58.90 47.89
PLUM 46.30 39.60 60.40 49.10

Table 2: Pass rate (%) of CodeDPO compared to baseline models on HumanEval and MBPP.

5.3 ABLATION STUDIES

5.3.1 SELF GENERATION AND VALIDATION ALGORITHM (RQ3)

Correlation between self-validation scores and actual code accuracy using HumanEval ground
truth tests To evaluate the effectiveness of our self-generation-and-validation algorithm, we ex-
amine the correlation between self-validation scores and actual code accuracy. We use a benchmark
with pre-existing ground truth test cases, such as HumanEval, for this preliminary experiment. For
each problem in HumanEval, we sample 15 code solutions and tests following the setting in Section
and then use different strategies to rank these generated codes. To evaluate the rank quality, we
execute with the ground truth for each code to get the actual code accuracy. Then, we calculate the
correlation between our self-validation scores and actual code accuracy.

We consider three experimental strategies: @ Self-validation score, which refers to our original
method. @ Filter with all tests, which assumes all generated test cases are correct and uses them
to judge code correctness. This approach creates passed/non-passed pairs, similar to the baseline
PLUM (though PLUM uses GPT-4 for test generation, while we use a more cost-effective model).
® Sort by number of passed tests, which counts the number of passed tests for each code among
all generated tests, using the code with the most and least passed tests as the comparison pair. This
principle is commonly employed in post-processing methods, such as CodeT (Chen et al.|(2022).

Under review as a conference paper at ICLR 2025

Model | plot155) | np(220) | pd(291) | torch (68) | scipy (106) | sk(115) | t@4s) | Average
SFT Model \

Magic-CL-7B 54.8 16.4 16.5 17.6 23.6 29.6 33.3 25.5
Our CodeDPO 574 37.3 22.7 22.1 35.8 31.3 31.1 34.0
Magic-S-CL-7B 52.3 43.2 30.6 47.1 34.9 46.1 44.4 40.7
Our CodeDPO 58.7 44.5 31.3 38.2 40.6 42.6 33.3 41.3
Magic-DS-6.7B 55.5 37.7 28.2 25.0 34.0 45.2 | 333 37.1
Our CodeDPO 59.4 40.5 29.2 23.5 39.6 42.6 31.1 38.7
Magic-S-DS-6.7B 53.5 49.5 30.6 47.1 35.8 53.0 | 40.0 42.9
Our CodeDPO 59.4 50.5 319 39.7 41.5 47.8 333 43.7
Base Model \

Phi-2-2.7B 42.6 33.6 15.5 16.2 17.0 11.3 17.8 23.5
Our CodeDPO 49.0 33.6 16.5 14.7 20.8 14.8 13.3 25.3
DSC-1.3B 36.8 19.5 10.0 14.7 10.4 174 11.1 17.5
Our CodeDPO 34.8 23.6 10.7 14.7 20.8 13.9 8.9 18.9
DSC-6.7B 52.3 35.5 20.6 19.1 24.5 374 22.2 31.1
Our CodeDPO 56.8 36.4 21.6 17.6 34.0 34.8 20.0 32.8
StarCoder2-7B 54.2 37.7 18.6 25.0 31.1 23.5 35.6 314
Our CodeDPO 56.8 38.2 18.9 20.6 39.6 25.2 31.1 32.6

Table 3: Pass rate (%) of CodeDPO on DS-1000 across seven libraries using greedy decoding.

Table E] presents the Spearman, Kendall’s Tau, and Normalized Discounted Cumulative Gain
(NDCG) metrics for the different ranking strategies. Our experiments show that the self-validation
score is highly correlated with actual code accuracy, and its ranking closely reflects true code qual-
ity, making it a reliable metric for preference optimization. In contrast, filtering by all tests heavily
depends on the quality of the test generation model. While baselines like PLUM ensure high-quality
test generation using GPT-4, our more economical approach highlights that using all tests indis-
criminately can introduce noise, as lower-quality tests skew the final ranking and poison the dataset.
Sorting by the number of passed tests treats all tests equally important. However, due to the inherent
uncertainty in generated tests, this method can be vulnerable to low-quality tests. Our proposed
self-validation method employs a mutual reinforcement mechanism to update the credibility of both
code and tests, effectively mitigating these issues.

Method | Spearman | Kendall’s Tau | NDCG
Self-validation score | 0.8598 | 0.8047 | 0.9653
Filter with all tests 0.6114 0.6114 0.8753
Sort by # of passed tests 0.7724 0.7250 0.9162

Table 4: Correlation between self-validation score and actual code accuracy on HumanEval.

Impact of self-validation score on model performance We apply these strategies to construct
datasets and evaluate the final model performance in code generation. Table [5] presents the model
performance across various dataset construction strategies. In addition, we introduce a new strat-
egy—random selection—which randomly selects two code solutions from the generated code as
the preference pair. The experiment results demonstrate that the self-generation-and-validation al-
gorithm plays an essential role in ensuring the correctness and reliability of the preference dataset
construction, significantly improving the performance of our CodeDPO framework.

5.3.2 IMPACT OF PO TRAINING STRATEGY (RQ4)

We explore the impact of different preference optimization strategies (DPO, KTO, and SFT) on
model performance. For training, the SFT strategy uses the best code solution from our constructed

Under review as a conference paper at ICLR 2025

Model | HumanEval | HumanEval+ | MBPP | MBPP+
Phi-2-2.7B 48.78 46.34 65.34 54.49
Our CodeDPO 57.32 51.83 69.05 56.88
Filter with all tests 49.39 48.17 69.17 55.13
Sort by # of passed tests 50.60 49.39 67.16 54.88
Random selection 22.56 18.90 45.11 36.59
DeepSeekCoder-1.3B 31.53 28.65 57.40 48.60
Our CodeDPO 42.07 38.04 61.37 53.43
Filter with all tests 34.75 29.89 57.40 48.80
Sort by # of passed tests 37.19 31.09 58.39 50.37
Random selection 21.34 18.29 48.94 38.35

Table 5: Ablations of our self validation score on the trained model performance.

dataset. In our KTO strategy, we replace DPO with KTO in our framework. As shown in Figure[]
the traditional SFT strategy struggles to guide the model in preferring correct solutions over incorrect
or slower ones during training. The results in Table [6] demonstrate that DPO performs best among
these strategies. Benefiting from our dataset construction method, we can obtain well-balanced
preference pairs, enhancing the contrastive mechanism in DPO.

Model | HumanEval | HumanEval+ | MBPP | MBPP+
Phi-2-2.7B 48.78 46.34 65.34 54.49
SFT 55.49 49.22 66.87 55.76
Our CodeDPO 57.32 51.83 69.05 56.88
Our CodeKTO 54.88 51.22 64.91 53.63
DeepSeekCoder-1.3B-base 31.53 28.65 57.40 48.67
SFT 39.02 35.36 59.45 50.26
Our CodeDPO 42.07 38.04 61.37 53.43
Our CodeKTO 40.85 35.98 59.65 50.13
DeepSeekCoder-6.7B-base 47.60 39.60 70.20 56.60
SFT 56.09 46.95 70.18 56.88
Our CodeDPO 59.75 51.83 72.18 60.01
Our CodeKTO 54.88 49.39 71.93 58.65

Table 6: Comparison of preference optimization strategies (DPO vs. KTO vs. SFT).
5.4 DATA SCALING LAW FOR CODEDPO (RQ5)

To address RQS, we explore how scaling the training data affects CodeDPO’s performance. As
shown in Table|[/| increasing the data consistently improves model performance, but these improve-
ments gradually plateau as the dataset size grows. In our experiments, we carefully balance per-
formance gains and training costs, ensuring optimal results with CodeDPO. Details are shown in

Appendix [A]
6 CONCLUSION

We propose CodeDPO, a preference optimization framework for code models that focuses on both
correctness and efficiency. CodeDPO introduces a novel dataset construction method that utilizes a
self-generation-and-validation mechanism, enabling the simultaneous generation and evaluation of
code and test cases to ensure correctness. Our PageRank-inspired algorithm iteratively updates the
self-validation score of each code snippet, prioritizing solutions based on correctness and efficiency.
Our work technically validates the reliability of self-validation to synthesize preference optimization
data, eliminating the need for complex resources such as pre-existing tests or powerful generation
models. We hope this work opens new avenues for synthesizing data and implementing large-scale
preference optimization for code models.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode—-project/bigcode—evaluation—harness, 2022.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Conference on
Learning Representations, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Leonidas Gee, Milan Gritta, Gerasimos Lampouras, and Ignacio Iacobacci. Code-optimise: Self-
generated preference data for correctness and efficiency. CoRR, abs/2406.12502, 2024. doi: 10.
48550/ARX1V.2406.12502. URL https://doi.org/10.48550/arXiv.2406.12502.

GPT-4. https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo. OpenAl, 2023.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are
all you need. arXiv preprint arXiv:2306.11644,2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Dong Huang, Yuhao Qing, Weiyi Shang, Heming Cui, and Jie M Zhang. Effibench: Benchmarking
the efficiency of automatically generated code. arXiv preprint arXiv:2402.02037, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319—18345.
PMLR, 2023.

11

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://doi.org/10.48550/arXiv.2406.12502
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024a.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet, and
Zhaoran Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an adver-
sarial regularizer. arXiv preprint arXiv:2405.16436, 2024b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173,2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Lawrence Page. The pagerank citation ranking: Bringing order to the web. Technical report, Tech-
nical Report, 1999.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Alexander G Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob R Gardner, Yiming Yang,
Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, et al. Learning
performance-improving code edits. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu—lab/stanford_alpaca), 2023.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen Han,
Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm search
for code generation. arXiv preprint arXiv:2409.03733, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
is all you need. arXiv preprint arXiv:2312.02120, 2023.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng Ding, Naman Jain, Zachary Mueller, Harm
de Vries, Leandro Von Werra, Arjun Guha, and Lingming Zhang. Selfcodealign: Self-alignment
for code generation. arXiv preprint arXiv:2410.24198, 2024.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao Peng. PLUM: preference learning plus test cases
yields better code language models. CoRR, abs/2406.06887, 2024. doi: 10.48550/ARXIV.2406.
06887. URL https://doi.org/10.48550/arXiv.2406.06887.

12

https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2406.06887

Under review as a conference paper at ICLR 2025

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code gener-
ation. In The 61st Annual Meeting Of The Association For Computational Linguistics, 2023a.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023b.

13

Under review as a conference paper at ICLR 2025

A DATA SCALING LAW FOR CODEDPO (RQ5)

We show the experiment results for RQS, which can help us explore how scaling the training data
affects CodeDPO’s performance. We train the model with varying amounts of data—25%, 50%,
and 75%—and evaluate its impact on the model performance. For example, HumanEval scores rise
from 32.92 (25%) to 41.46 (75%), with similar trends observed on MBPP. In our experiments, we
carefully balance performance gains and training costs, ensuring optimal results with CodeDPO.
In further research, we plan to expand the current training scale to explore the extreme limits of
CodeDPO’s performance.

Model | HumanEval | HumanEval+ | MBPP | MBPP+
DeepSeekCoder-1.3B-base | 31.53 \ 28.65 | 57.40 | 48.67
25% 32.92 29.87 55.13 47.87
50% 36.59 31.70 58.14 49.87
75% 41.46 37.80 60.65 52.63
Our CodeDPO | 4207 | 3804 | 6137 | 5343

Table 7: Model Performances with different data scaling in our CodeDPO.

B CoODEDPO DATASET CONSTRUCTION ALGORITHM DESCRIPTION

In order to make it clear, we give a formal algorithm description of the CodeDPO construction
pipeline in Algorithm|[T]

C LLM PROMPTS FOR CODEDPO DATASET CONSTRUCTION

We use the following prompts for dataset seed construction and self-validation. During dataset
construction, we first use code snippets from a randomly selected subset of the Stack v1 dataset as
input and prompt the LLM to generate the concept (LLM Prompt 1). Based on the concept, we then
prompt the LLM to generate the task description (LLM Prompt 2).

For the validation process, we directly prompt the LLM with the task description to generate code
solutions. Additionally, we prompt the LLM to generate only assertion statements as test cases
(LLM Prompt 3). Since our chosen generation LLM is efficient and cost-effective, the entire process
of data generation and construction takes around 40 hours on a server with 32 CPUs.

LLM Prompt 1 for Concept Generation

Extract key programming concepts from a given code snippet collected from the open source
repositories. Present the concepts as a comma separated list.

{Few—shot Examples}

Example 2
Snippet

{Input Code}

Concepts
{need to generate}

.

14

Under review as a conference paper at ICLR 2025

Algorithm 1 CodeDPO Dataset Construction Pipeline
1: procedure CODEDPO(model, instruction, max_iterations)

2 Seed Construction:
3 Extract key programming concepts from source code repositories
4 Generate code generation prompts and corresponding test cases
5: Generate initial dataset (instruction, solutions, testcases)
6 Initialization:
7 Generate initial code snippets C' = {c1, cg, ..., ¢n } from the instruction
8 Generate test cases T' = {t1, t2, ..., tm } corresponding to the instruction
9: Initialize self-validation scores for code snippets and test cases: Score(c;) < 1, Score(t;) < 1
10: Set damping factor d < 0.85
11: 140
12: Self-Validation Loop:
13: while ¢ < max_iterations do
14: for each ¢; € C do
15: Execute ¢; on test cases 1"
16: for each t; € T'do
17: if ¢; passes ¢; then
18: Update Score(c;) using Equation (1)
19: Update Score(t;) using Equation (2)
20: Execution Time Optimization:
21: Record execution time for ¢;
22: if ¢; fails ¢; then
23: Set execution time to max penalty to penalize c¢;
24: end if
25: end if
26: end for
27: end for
28: t—i+1

29: end while
30: Final Dataset Collection:

31: Correctness Optimization:

32: Select top-ranked code ciop and low-ranked code ciow for each instruction
33: Store as dataset entries (instruction, cop, Ciow)

34: Execution Time Optimization:

35: Select fastest code cp,s and slowest code cgow for each instruction

36: Store as dataset entries (instruction, cast, Csiow)

37: return final dataset entries

38: end procedure

LLM Prompt 2 for Task Prompt Generation

Create a set of independent code instructions that are original, different, diverse, and high-
quality, where the properties control an instruction’s category, language, concepts, and dif-
ficulty.

{Few—shot Examples}

Example 2
Property
{Input Concept generated from the previous step}

Instruction
{need to generate}

.

15

Under review as a conference paper at ICLR 2025

LLM Prompt 3 for Test Case Generation

Generate only assertion statements based on the following description. Do not generate any
other code:

{Instruction}

Generated Assertions:
kassert {need to generate} y

D EXPERIMENTS ON CHALLENGING CODE GENERATION TASKS

We conducted additional experiments on LiveCodeBench (Jain et al., 2024), one of the most chal-
lenging benchmarks for competitive coding tasks. The results, summarized below, will be included
in the revised paper along with more model comparisons:

Model Easy Medium Hard
Base Model

DeepSeek-Coder-6.7B 39.9 7.4 0.4
Our CodeDPO 51.9 12.2 0.7
SFT Model

MagiCoder-S-DS-6.7B 48.1 10.7 0.1
Our CodeDPO 53.1 16.3 0.7

Table 8: Performance comparison on LiveCodeBench across difficulty levels.

The results indicate that CodeDPO demonstrates significant performance improvements for both the
base model and the supervised fine-tuning (SFT) model across all difficulty levels. The gains are
particularly notable in the “medium” and "’hard” subsets, which represent some of the most challeng-
ing problems in competitive programming tasks. These subsets often require a deep understanding
of problem requirements and the ability to generalize to unseen scenarios.

These findings underscore the robustness and generalizability of CodeDPO, even in restricted evalu-
ation settings such as LiveCodeBench. This highlights the effectiveness of the proposed framework
for real-world, complex coding tasks.

E EXPERIMENTS ON CHALLENGING CODE EFFICIENCY TASKS

To evaluate code efficiency comprehensively, additional experiments are conducted on EffiBench
(Huang et al] 2024). Since the absolute values of the results may vary depending on the specific
execution environment, the analysis focuses on the relative improvements achieved by CodeDPO.
The results are summarized in the table below and will be included in the revised paper alongside
evaluations on additional models.

The results indicate that CodeDPO significantly reduces execution time and memory usage, both
in absolute terms and after normalization, while maintaining comparable maximum memory usage.
These improvements highlight the effectiveness of CodeDPO in optimizing code for both computa-
tional efficiency and resource usage, ensuring applicability to environments where performance and
memory constraints are critical.

F EXECUTION TIME FOR CODE EFFICIENCY EXPERIMENTS

We present the average execution time (in seconds) for experiments conducted with the Phi-2-2.7B
model. It is important to note that execution times may vary due to differences in computational re-
sources and runtime conditions. To ensure the reliability of our measurements, repeated experiments
are conducted in a stable environment, and the averaged statistics are reported below:

16

Under review as a conference paper at ICLR 2025

Model Total Execution Time Normalized Execution Time
MagiCoder-S-DS-6.7B 0.29 237
After CodeDPO 0.21 1.58
Model Total Max Memory Usage Normalized Max Memory Usage
MagiCoder-S-DS-6.7B 24.71 1
After CodeDPO 23.48 1
Model Total Memory Usage Normalized Memory Usage
MagiCoder-S-DS-6.7B 4.57 2.36
After CodeDPO 3.90 1.93

Table 9: Performance comparison on EffiBench for execution time and memory usage.

Benchmark | Before CodeDPO (s) | After CodeDPO (s) | Average Speedup
HumanEval+ 0.250 0.172 1.45x
MBPP+ 0.189 0.137 1.38x

Table 10: Average execution time and speedup with CodeDPO.

These results demonstrate the consistent improvements in execution efficiency achieved through
CodeDPO, highlighting its practical benefits in reducing runtime.

G ABLATION ON SAMPLE NUMBER FOR CODE AND TEST GENERATION

The choice of the sample number and temperature, as described in Section[#.2] is guided by practical
considerations to balance the diversity of sampled code solutions and test cases. These parameters
are selected based on empirical observations and insights from prior work on data generation. To
further investigate this, we conduct a series of ablation studies to evaluate the impact of varying
sample numbers. Specifically, we tested sample numbers of 5, 15, and 50, with the experimental
setup aligned with the design in Section[5.3:1] Table[TT]presents the Spearman correlation between
the self-validation score and the actual code accuracy on the HumanEval dataset, and then shows
the performance of the Phi-2-2.7B model for varying sample numbers, evaluated on both the Hu-
manEval and HumanEval+ benchmarks. Similar trends are observed for other models. The results
suggest that using sample_num=15 achieves a favorable trade-off between diversity and compu-
tational feasibility. While larger sample numbers provide marginal gains, they come with increased
computational costs.

Sample Number (n) | Spearman Correlation HumanEval (%) | HumanEval+ (%)
5 0.7425 54.88 49.39
15 0.8598 57.32 51.83
50 0.8613 57.90 51.83

Table 11: Spearman correlation and performance of Phi-2-2.7B for different sample numbers.

H DISCUSSION

H.1 COMPARISON OF DATASET STATISTICS

Since some baselines have not released their datasets, we rely on statistics reported in their respective
papers for comparison. Below is a summary of dataset sizes and the number of unique questions, as
both metrics are important—greater diversity in unique questions generally leads to higher dataset
quality.

17

Under review as a conference paper at ICLR 2025

Method Total Samples Unique Questions
CodeDPO 114k 114k
PLUM Up to 120k Up to 1,500
Code-Optimise ~100k (extended in our reproduction) Up to 384

Table 12: Comparison of dataset sizes and unique questions across methods.

For SFT datasets, OSS-Instruct often combines multiple data sources. For example, models like
MagiCoder-S-DS-6.7B and MagiCoder-S-CL-7B are trained using:

SFT Dataset Samples

Magicoder-OSS-Instruct ~75k
Magicoder-Evol-Instruct ~110k
Combined Up to 185k

Table 13: Supervised fine-tuning dataset statistics.

Based on comparisons with other related works, the dataset sizes of CodeDPO appear to be of
the same order of magnitude. CodeDPO provides a significantly higher diversity in unique ques-
tions compared to baselines like PLUM and Code-Optimise, which heavily reuse prompts and have
limited diversity despite similar sample sizes. This diversity ensures a more robust preference opti-
mization process, which is a key advantage over existing approaches.

H.2 OVERLAP AVOIDANCE WITH EXISTING BENCHMARKS

The seed dataset for CodeDPO was randomly selected from the open-source pretraining dataset The
Stack, consisting of approximately 100k functions. This design explicitly considers data decontam-
ination, since the seed dataset has already gone through rigorous data decontamination. It suggests
that our dataset is unlikely to introduce additional data leakage beyond the seeds. To ensure quality,
we applied a simple filtering process using tools like Tree-sitter and Pyright for static analysis and
code formatting.

We intentionally avoided introducing any prior knowledge that might lead to significant overlap
with evaluation benchmarks. We also implemented post-sampling data decontamination, similar
to MagiCoder and StarCoder. However, given the already low overlap, this process only removed
fewer than 30 samples. Thus, we can ensure that there is no risk of the dataset containing examples
highly similar to the test sets.

To assess potential overlap for the final dataset with exisiting benchmarks, we followed the method-
ology used in MagiCoder. Specifically, we calculated the cosine similarity between HumanEval and
the synthetic data generated by different methods. Below are the average similarity scores:

Dataset Avg Similarity Score
Self-Instruct 0.169
Evol-Instruct 0.131
OSS-Instruct 0.105
CodeDPO 0.109

Table 14: Average similarity scores between datasets and HumanEval.

These results demonstrate that CodeDPO has a comparable or even lower overlap with HumanEval
than most other widely used datasets, ensuring the validity and reliability of our evaluation.

18

Under review as a conference paper at ICLR 2025

H.3 IMPLEMENTATION OF THE SELF-VALIDATION SCORES
H.3.1 PYTHON IMPLEMENTATION OF THE SELF-VALIDATION SCORES
To enhance the understanding of the proposed algorithm, we provide a Python implementation illus-

trating the calculation process for the case in Figure [2] (specifically, Step 2 in the figure). The code
demonstrates the iterative calculation of self-validation scores using a simplified example.

Python Implementation of the Self-Validation Scores in Figure 2

import numpy as np

Example task-solution-test matrix
task_sol_test_matrix = [

g, i, OT, # Codel: Testl, Test2
[1, 0, 0], # Code2: Testl
[0, O, 111 # Code3: Test3

]

task_sol_test_matrix = np.array(task_sol_test_matrix)

Initialize solution and test scores (score=1l)
sol_score = np.array([[1, 1, 1]1])
test_score = np.array([[1, 1, 1]11)

Define iterative scoring function
def iter_step_page_rank (solution_scores_t_1, \
test_scores_t_1, beta):
test_scores_t = test_scores_t_1 * (1 - beta) + \
np.einsum ("PCT,PC->PT", task_sol_test_matrix, \
solution_scores_t_1) * beta
solution_scores_t = solution_scores_t_1 * (1 - beta) + \
np.einsum ("PCT,PT->PC", task_sol_test_matrix, \
test_scores_t) * beta
return solution_scores_t, test_scores_t

Perform 2 iterations with beta = 0.5
for i in range (2):
sol_score, test_score = \

iter_step_page_rank (sol_score, test_score, 0.5)

Output final scores
\print (sol_score, test_score))

H.3.2 HANDLING WEAK TEST CASES

Our designed algorithm is robust. The self-validation scores can reflect the confidence of each code
solutions and test cases through the iterative process. Notably, even in the presence of weak test
cases (such as assert True), our method handles them robustly. We have carefully considered
the impact of weak test cases in our design. We address this issue from two perspectives: @ Natural
Suppression of Weak Test Cases in Ranking: Weak test cases are those that almost all code
solutions pass. While they contribute to the overall scores of all code solutions, they do not affect
the relative differences between code solutions in the ranking process. Since the ranking is based
on score differences, weak test cases naturally have minimal impact on the ranking outcomes. @
Filtering Identical or Close Scores: Weak test cases can lead to highly similar scores for multiple
code solutions after repeated score updates, diminishing the ability to differentiate between them. To
address this, as described in Section 3.4, we implement a filtering mechanism that excludes samples
with identical or near-identical ranking scores. This ensures that the influence of weak test cases is
mitigated in the final dataset.

19

Under review as a conference paper at ICLR 2025

For example, assume we have 15 code solutions and 15 test cases generated by the model. @
If a weak test case, such as assert True, is passed by all 15 code samples, its score during each
update step (as computed by Equation 1) will contribute equally to the scores of all code solutions.
As a result, it does not alter the relative ranking of the code solutions. @ If all 15 test cases are
similarly weak, the scores of the code solutions will converge to identical or near-identical values
after several updates. To mitigate this, we apply a post-processing step (Section 3.4) to filter out
such cases, ensuring the integrity of the final rankings. By addressing weak test cases through these
mechanisms, our algorithm achieves robustness and maintains the reliability of its outputs, even in
challenging scenarios.

H.4 FUTURE WORK

Limitations of Current Correctness Evaluation The test-case-driven functional correctness
DPO is still not enough for code model. Current methods for evaluating correctness heavily rely
on high-quality test cases or powerful models (e.g., GPT-4) to generate reliable outputs. To ad-
dress these limitations, our paper introduces a self-validation data generation method that reduces
dependency on such resources while maintaining robustness.

Because our method does not require high-quality test cases or strong external models, it is well-
suited for scaling to larger datasets and can be applied to a wide range of code models. This scal-
ability provides a foundation for improving correctness and efficiency across diverse code tasks.

Incorporating Readability and Security Beyond correctness and efficiency, incorporating read-
ability and security metrics into our extended CodeDPO framework is a natural extension: Metrics
such as comment-to-code ratio, consistent variable naming, and adherence to coding style guides
could be integrated into the preference learning process. For instance, LLMs could act as judges
to evaluate readability alongside correctness. Techniques like static code analysis and detection of
code smell and common vulnerabilities could help identify and penalize insecure patterns during
data construction, contributing to safer code generation. We plan to explore these deeper alignment
objectives in future work.

20

	Introduction
	Related Work
	Large Language Models for Code
	Preference Optimization for Code Models

	CodeDPO: Self-Verified Performance Optimization Code Generation Framework
	Data Seed Construction
	Correctness Optimization with Self-Generation and Validation
	Execution Efficiency Optimization
	Final Dataset and Model Optimization

	Experiment Setup
	Backbone LLMs
	Training and Inference Settings

	Results and Analyses
	Code Correctness (RQ1)
	Code Efficiency (RQ2)
	Ablation Studies
	Self Generation and Validation Algorithm (RQ3)
	Impact of PO Training Strategy (RQ4)

	Data Scaling Law for CodeDPO (RQ5)

	Conclusion
	Data Scaling Law for CodeDPO (RQ5)
	CodeDPO Dataset Construction algorithm description
	LLM Prompts for CodeDPO dataset construction
	Experiments on Challenging Code Generation Tasks
	Experiments on Challenging Code Efficiency Tasks
	Execution Time for Code Efficiency Experiments
	Ablation on Sample Number for code and test generation
	Discussion
	Comparison of Dataset Statistics
	Overlap Avoidance with Existing Benchmarks
	Implementation of the Self-Validation Scores
	Python Implementation of the Self-Validation Scores
	Handling Weak Test Cases

	Future Work

