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ABSTRACT

While there has been substantial success for solving continuous control with actor-
critic methods, simpler critic-only methods such as Q-learning find limited appli-
cation in the associated high-dimensional action spaces. However, most actor-
critic methods come at the cost of added complexity: heuristics for stabilisation,
compute requirements and wider hyperparameter search spaces. We show that a
simple modification of deep Q-learning largely alleviates these issues. By com-
bining bang-bang action discretization with value decomposition, framing single-
agent control as cooperative multi-agent reinforcement learning (MARL), this
simple critic-only approach matches performance of state-of-the-art continuous
actor-critic methods when learning from features or pixels. We extend classical
bandit examples from cooperative MARL to provide intuition for how decoupled
critics leverage state information to coordinate joint optimization, and demonstrate
surprisingly strong performance across a variety of continuous control tasks. 2

Figure 1: Q-learning yields state-of-the-art performance on various continuous control benchmarks.
Simply combining bang-bang action discretization with full value decomposition scales to high-
dimensional control tasks and recovers performance competitive with recent actor-critic methods.
Our Decoupled Q-Networks (DecQN) thereby constitute a concise baseline agent to highlight the
power of simplicity and to help put recent advances in learning continuous control into perspective.

1 INTRODUCTION

Reinforcement learning provides a powerful framework for autonomous systems to acquire complex
behaviors through interaction. Learning efficiency remains a central aspect of algorithm design, with
a broad spectrum spanning sample-efficient model-based off-policy approaches (Ha & Schmidhuber,
2018; Hafner et al., 2019) at one extreme and time-efficient on-policy approaches leveraging parallel
simulation at the other extreme (Rudin et al., 2022; Xu et al., 2021). Particularly in high-dimensional
domains with complicated environment dynamics and task objectives, complex trade-offs between
representational capacity, exploration capabilities, and optimization accuracy commonly arise.

Continuous state and action spaces yield particularly challenging exploration problems due to the
vast set of potential trajectories they induce. Significant research effort has focused on improving
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efficiency through representation learning in the context of model-free abstraction or model-based
planning (Ha & Schmidhuber, 2018; Srinivas et al., 2020; Wulfmeier et al., 2021), guided explo-
ration via auxiliary rewards (Osband et al., 2016; Pathak et al., 2017; Sekar et al., 2020; Seyde et al.,
2022b), or constrained optimization particularly to stabilize learning with actor-critic approaches
(Schulman et al., 2015; Haarnoja et al., 2018; Abdolmaleki et al., 2018). However, recent results
have shown that competitive performance can be achieved with strongly reduced, discretized ver-
sions of the original action space (Tavakoli et al., 2018; Tang & Agrawal, 2020; Seyde et al., 2021).

This opens the question whether tasks with complex high-dimensional action spaces can be solved
using simpler critic-only, discrete action-space algorithms instead. A potential candidate is Q-
learning which only requires learning a critic with the policy commonly following via ε-greedy or
Boltzmann exploration (Watkins & Dayan, 1992; Mnih et al., 2013). While naive Q-learning strug-
gles in high-dimensional action spaces due to exponential scaling of possible action combinations,
the multi-agent RL literature has shown that factored value function representations in combina-
tion with centralized training can alleviate some of these challenges (Sunehag et al., 2017; Rashid
et al., 2018), further inspiring transfer to single-agent control settings (Sharma et al., 2017; Tavakoli,
2021). Other methods have been shown to enable application of critic-only agents to continuous ac-
tion spaces but require additional, costly, sampling-based optimization (Kalashnikov et al., 2018).

We build on insights at the intersection of these methods to show that a surprisingly straightforward
variation of deep Q-learning (Mnih et al., 2013), within the framework of Hypergraph Q-Networks
(HGQN) (Tavakoli et al., 2021), can indeed solve various state- and pixel-based single-agent con-
tinuous control problems at performance levels competitive with state-of-the-art continuous control
algorithms. This is achieved by a combination of extreme action space discretization and full value
decomposition with extensive parameter-sharing, requiring only small modifications of DQN.

To summarize, this work focuses on the following key contributions:

• The DecQN agent as a simple, decoupled version of DQN combining value decomposition
with bang-bang action space discretization to achieve performance competitive with state-
of-the-art continuous control actor-critic algorithms on state- and pixel-based benchmarks.

• The related discussion of which aspects are truly required for competitive performance in
continuous control as bang-bang control paired with actuator decoupling in the critic and
without an explicit policy representation appears sufficient to solve common benchmarks.

• An investigation of time-extended collaborative multi-agent bandit settings to determine
how decoupled critics leverage implicit communication and the observed state distribution
to resolve optimisation challenges resulting from correlations between action dimensions.

2 RELATED WORKS

Discretized Control Continuous control problems are commonly solved with continuous poli-
cies (Schulman et al., 2017; Abdolmaleki et al., 2018; Haarnoja et al., 2018; Hafner et al., 2019;
Yarats et al., 2021). Recently, it has been shown that even discretized policies can yield compet-
itive performance and favorable exploration in continuous domains with acceleration-level control
(Tavakoli et al., 2018; Farquhar et al., 2020; Neunert et al., 2020; Tang & Agrawal, 2020; Seyde
et al., 2021; 2022a). When considering discretized policies, discrete action-space algorithms are a
natural choice (Metz et al., 2017; Sharma et al., 2017; Tavakoli, 2021). Particularly Q-learning based
approaches promise reduced model complexity by avoiding explicit policy representations (Watkins
& Dayan, 1992), although implicit policies in the form of proposal distributions may be required
for scalability (Van de Wiele et al., 2020). We build on perspectives from cooperative multi-agent
RL to tackle complex single-agent continuous control tasks with a decoupled extension of Deep Q-
Networks (Mnih et al., 2013) over discretized action spaces to reduce agent complexity and to better
dissect which components are required for competitive agents in continuous control applications.

Cooperative MARL Conventional Q-learning requires both representation and maximisation over
an action space which exponentially grows with the number of dimensions and does not scale well
to the high-dimensional problems commonly encountered in continuous control of robotic systems.
Significant research in multi-agent reinforcement learning (MARL) has focused on improving scal-
ability of Q-learning based approaches (Watkins & Dayan, 1992). Early works considered indepen-
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dent learners (Tan, 1993), which can face coordination challenges particularly when operating under
partial observability (Claus & Boutilier, 1998; Matignon et al., 2012). Some methods approach these
challenges through different variations of optimistic updates (Lauer & Riedmiller, 2000; Matignon
et al., 2007; Panait et al., 2006), while importance sampling can assist with off-environment learn-
ing (Foerster et al., 2017). Furthermore, different degrees of centralization during both training
and execution can address non-stationarity with multiple actors in the environment (Busoniu et al.,
2006; Lowe et al., 2017; Böhmer et al., 2019). We take a cooperative multi-agent perspective, where
individual actuators within a single robot aim to jointly optimize a given objective.

Value Decomposition One technique to avoid exponential coupling is value function factoriza-
tion. For example, interactions may be limited to subsets of the state-action space represented by a
coordination graph (Guestrin et al., 2002; Kok & Vlassis, 2006). Schneider et al. (1999) consider
a distributed optimization by sharing return information locally, while Russell & Zimdars (2003)
share value estimates of independent learners with a centralized critic. Similarly, Yang et al. (2018)
factorize value functions across interactions with neighbors to determine best response behaviors.
Sunehag et al. (2017) introduced Value-Decomposition Networks (VDNs) to approximate global
value functions as linear combinations of local utility functions under partial observability. Rashid
et al. (2018) extend this to non-linear combinations in QMIX, where a centralized critic further
leverages global state information. Son et al. (2019) propose QTRAN to factorizes a transformation
of the original value function based on a consistency constraint over a joint latent representation.
These insights can further be transferred to the multi-agent actor-critic setting (Wang et al., 2020; Su
et al., 2021; Peng et al., 2021). Our approach scales to complex morphologies by leveraging a linear
factorization over action dimensions within a centralized critic conditioned on the global robot state.

Parameter Sharing Efficiency of learning a factored critic can improve through parameter-
sharing (Gupta et al., 2017; Böhmer et al., 2020; Christianos et al., 2021) and non-uniform priori-
tization of updates (Bargiacchi et al., 2021). In particular, the Hybrid Reward Architecture (HRA)
proposed by Van Seijen et al. (2017) provides a compact representation by sharing a network torso
between individual critics (see also (Chu & Ye, 2017)). We achieve efficient learning at reduced
model complexity through extensive parameter-sharing within a joint critic that splits into local util-
ity functions only at the output neurons, while biasing sampling towards informative transitions
through prioritized experience replay (PER) on the temporal-difference error (Schaul et al., 2015).

Decoupled Policies Stochastic policies for continuous control are commonly represented by Gaus-
sians with diagonal covariance matrix, e.g. (Schulman et al., 2017; Haarnoja et al., 2018; Abdol-
maleki et al., 2018), while we leverage decoupled Categoricals as a discrete counterpart. Fully de-
coupled discrete control via Q-learning was originally proposed by Sharma et al. (2017) to separate
dimensions in Atari. Tavakoli et al. (2021) extend this concept to hypergraph Q-networks (HGQN) to
leverage mixing across higher-order action subspaces (see also Appendix F). Here, we demonstrate
that learning bang-bang controllers, leveraging only extremal actions at the action space boundaries
and inclusion of the zero action for bang-off-bang control (Bellman et al., 1956; LaSalle, 1960),
with full decoupling as a minimal modification to the original DQN agent yields state-of-the-art
performance across feature- and pixel-based continuous control benchmarks. Our investigation pro-
vides additional motivation for existing work and proposes a straightforward if surprising baseline
to calibrate continuous control benchmark performance by pushing simple concepts to the extreme.

3 BACKGROUND

We describe the reinforcement learning problem as a Markov Decision Process (MDP) defined by
the tuple {S,A, T ,R, γ}, where S ⊂ RN and A ⊂ RM denote the state and action space, respec-
tively, T : S×A → S the transition distribution,R : S×A → R the reward mapping, and γ ∈ [0, 1)
the discount factor. We define st and at to be the state and action at time t and represent the policy
by π(at|st). The discounted infinite horizon return is given by Gt =

∑∞
τ=t γ

τ−tR(sτ , aτ ), where
st+1 ∼ T (·|st, at) and at ∼ π(·|st). Our objective is to learn the optimal policy maximizing the
expected infinite horizon return E[Gt] under unknown transition dynamics and reward mappings.
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Figure 2: Decoupled Q-Network (DecQN) with bang-bang actions (2 bins per action dimension).
The network predicts one state-action value for each decoupled action based on the observed state.
During training, selection proceeds either via indexing for the observed actions at the current
timestep (green) or via decoupled maximization along each action dimension at the next timestep.
A simple ε-greedy policy is recovered based on the decoupled argmax over the Q-function.

3.1 POLICY REPRESENTATION

Current state-of-the-art algorithms for continuous control applications commonly consider the actor-
critic setting with the policy modelled as a continuous distribution πφ(at|st) independently from the
value estimator Qθ(st, at), or Vθ(st), both represented by separate neural networks with parame-
ters φ and θ. Recent results have shown that comparable performance can be achieved with these
approaches when replacing the continuous policy distributions by discretized versions (Seyde et al.,
2021), at the potential cost of principled ways to represent stochastic policies. One may then ask
whether we require the actor-critic setting or if simpler discrete control algorithms are sufficient.
Q-learning presents itself as a lightweight alternative by only learning the value function and recov-
ering the policy by ε-greedy or Boltzmann exploration, side-stepping explicit policy gradients.

3.2 DEEP Q-NETWORKS

We consider the framework of Deep Q-Networks (DQN) (Mnih et al., 2013), where the state action
value function Qθ(st, at) is represented by a neural network with parameters θ. The parameters
are updated in accordance with the Bellman equation by minimizing the temporal-difference (TD)
error. We leverage several modifications that accelerate learning and improve stability based on the
Rainbow agent (Hessel et al., 2018) as implemented in Acme Hoffman et al. (2020).

In particular, we leverage target networks for improved stability in combination with double Q-
learning to mitigate overestimation (Mnih et al., 2015; Van Hasselt et al., 2016). We further employ
prioritized experience replay (PER) based on the temporal difference error to bias sampling towards
more informative transitions and thereby accelerate learning (Schaul et al., 2015). Additionally, we
combine rewards over several consecutive transitions into multi-step return to improve stability of
Bellman backups (Sutton & Barto, 2018). A more detailed discussion of these aspects is included in
Appendix G, while we provide ablation studies on individual components in Appendix E.

Combining these modification of the original DQN agent, we optimize the following loss function

L(θ) =
B∑
b=1

Lδ(yt −Qθ(st, at)), (1)

where action evaluation employs the target yt =
∑n−1
j=0 γ

jr(st+j , at+j) + γnQθ−
(
st+n, a

∗
t+n

)
,

action selection uses a∗t+1 = argmaxaQθ(st+1, a), Lδ(·) is the Huber loss and the batch size is B.

4 DECOUPLED Q-NETWORKS

The Rainbow agent (Hessel et al., 2018) from the previous section provides a framework for learning
high-quality discrete control policies. However, conventional Q-learning methods enumerate the
action space and can therefore become inefficient when attempting to scale to high dimensions.
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4.1 MULTI-AGENT PERSPECTIVE

Scaling Q-learning to high-dimensional action spaces has been studied extensively in MARL set-
tings. Particularly in cooperative MARL it is common to consider factorized value functions in
combination with centralized training and decentralized execution (CTDE). Factorization reduces
the effective dimensionality from the perspective of individual agents by learning utility functions
conditioned on local observations. Centralized training considers global information by composing
individual utilities and optimizing for consistent behavior among agents. Decentralized execution
then assumes that the local utility functions are sufficient for optimal distributed action selection.

4.2 FACTORIZED Q-FUNCTION

Inspired by the MARL literature, we consider our agent to be a team of individual actuators that
aim to cooperatively solve the given objective. We further assume that the overall state-action value
function Q(st,at) can be locally decomposed along action dimensions into a linear combination of
M single action utility functions Qjθ(st, a

j
t ). This simply applies the principle of value decomposi-

tion (Sunehag et al., 2017) and fits within the general concept of HGQN-type algorithms (Tavakoli
et al., 2021) as a simplified variation of the base case without a hypergraph as was also leveraged
by Sharma et al. (2017) for Atari. The overall state-action value function is then represented as

Qθ(st,at) =

M∑
j=1

Qjθ(st, a
j
t )

M
, (2)

where each utility function is conditioned on the global robot state to facilitate actuator coordination
via implicit communication as we observe in our experiments. This is further assisted by a high-
degree of parameter sharing within a unified critic (Van Seijen et al., 2017) that only splits to predict
decoupled state-action utilities at the outputs. The linear combination of univariate utility functions
then allows for efficient decomposition of the argmax operator

argmax
at

Qθ(st,at) =

(
argmax

a1t

Q1
θ(st, a

1
t ), . . . , argmax

aMt

QMθ (st, a
M
t )

)
, (3)

where each actuator only needs to consider its own utility function. Global optimization over at then
simplifies into parallel local optimizations over ajt . Training still considers the entire robot state and
all joint actions within the centralized value function, while online action selection is decoupled.
Inserting this decomposition into the Bellman equation yields a decoupled target representation

yt = r(st,at) + γ

M∑
j=1

max
ajt+1

Qjθ(st+1, a
j
t+1)

M
. (4)

We can then insert the factorized value function of Eq. 2 and the decoupled target of Eq. 4 into Eq. 1.
We also considered a composition based on learned weights inspired by QMIX (Rashid et al., 2018).
Our findings suggest that access to the robot state throughout local utility functions outweighs the
potential gains of more complex combinations, see also (Tavakoli et al., 2021) for a more detailed
discussion on monotonic mixing functions. The following section further discusses the importance
of shared observations and state-space coordination based on illustrative matrix games.

5 EXPERIMENTS

The DecQN agent solves various continuous control benchmark problems at levels competitive with
state-of-the-art continuous control algorithms. First, we provide intuition for how DecQN reacts
to coordination challenges based on illustrative matrix games. Then, we show results for learning
state-based control on tasks from the DeepMind Control Suite (Tunyasuvunakool et al., 2020) and
MetaWorld (Yu et al., 2020) - including tasks with action dimension dim(A) = 38 - and compare
to the state-of-the-art DMPO and D4PG agents (Abdolmaleki et al., 2018; Bellemare et al., 2017;
Barth-Maron et al., 2018). We further provide results for pixel-based control on Control Suite tasks
and compare to the state-of-the-art DrQ-v2 and Dreamer-v2 agents (Yarats et al., 2021; Hafner et al.,
2020). Lastly, we discuss qualitative results for learning a velocity-tracking controller on a simulated
Mini Cheetah quadruped in Isaac Gym (Makoviychuk et al., 2021) highlighting DecQN’s versatility.
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Figure 3: DecQN and DQN on cooperative matrix games. Left: a two-step game where agent 1
selects in step 1 which payoff matrix is used in step 2 (top vs. bottom). Learned Q-values of DecQN
indicate that accurate values around the optimal policy are sufficient (ε = 0.5) even when the full
value distribution cannot be represented well (ε = 1.0). Right: matrix game with actions as acceler-
ation input to pointmass (x vs. y). DecQN struggles to solve the 1-step game (no dynamics). In the
multi-step case, DecQN leverages velocity information to coordinate action selection (middle).

5.1 ILLUSTRATIVE EXAMPLES: COORDINATION IN MATRIX GAMES

Representing the critic as a linear decomposition across agents enables scaling to high-dimensional
tasks while limiting the ability to encode the full value distribution (Sunehag et al., 2017; Rashid
et al., 2018). This can induce coordination challenges (Lauer & Riedmiller, 2000; Matignon et al.,
2012). Here, we consider cooperative matrix games proposed by Rashid et al. (2018) and Claus &
Boutilier (1998) to illustrate how DecQN still achieves coordination in a variety of settings.

Two-step game: We look at a 2-player game with three states proposed by Rashid et al. (2018). In
state 1, agent 1 playing action A/B transitions both agents to state 2/3 without generating reward. In
states 2 or 3, the actions of both agents result in the cooperative payout described in Figure 3 (left).
Rashid et al. (2018) showed that a VDN-type decomposition is unable to learn the correct value
distribution under a uniform policy, which our results confirm for DecQN with ε = 1.0 (middle).
However, DecQN solves the task for non-uniform sampling with ε = 0.5 by learning an accurate
value distribution around the optimal policy (right). In online RL settings, agents actively shape the
data distribution and learning to differentiate behavior quality is often sufficient for solving a task.

In the following we consider cooperative 2-player matrix games based on Claus & Boutilier (1998).
We further augment the tasks by point-mass dynamics, where each agent selects acceleration input
along the x or y-axis. We evaluate three variations: ”1-step” resets after 1 step (no dynamics);
”1K-step” resets after 1000 steps (dynamics); ”Optimism” runs ”1K-step” with optimistic updating
inspired by Lauer & Riedmiller (2000). Each agent selects from three actions and we set ε = 0.5.

Figure 4: Climbing game with
action (top) or state space (bot-
tom) reward. Optimism helps
DecQN in action space, while
DecQN matches DQN perfor-
mance under state space reward.

Penalty game: The reward structure is defined in action-
space and provided in Figure 3 (right). The two maxima at
(a1, a2) = {(−1,−1), (+1,+1)} and minima at (a1, a2) =
{(−1,+1), (+1,−1)} induce a Pareto-selection problem that re-
quires coordination. DecQN is unable to consistently solve the
1-step game for high costs k while it does solve the multi-step
variation. In the latter, we find that DecQN coordinates actions
(acceleration) based on state information (velocity). Computing
action outputs over varying velocity inputs indicates a clear cor-
relation in directionality across the unambiguous velocity pair-
ings (middle). This underlines the importance of shared obser-
vations to achieve coordination with decoupled agents.

Climbing game: The reward structure is defined in Figure 4
with action (top) and state space (bottom) rewards. In action
space, Nash equilibria at (a1, a2) = {(−1,−1), (0, 0)} are shad-
owed by action (a1, a2) = {(1, 1)}, which has a higher min-
imum gain should one agent deviate (Matignon et al., 2012).
DecQN often settles at the sub-optimal action (a1, a2) = (0, 0)
to avoid potential cost of unilateral deviation, which can be re-
solved by optimistic updating. However, this can impede learn-
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Figure 5: Performance for state-based control on DeepMind Control Suite and MetaWorld tasks. We
compare DecQN with a discrete bang-off-bang policy to the continuous D4PG and DMPO agents.
Mean and standard deviation are computed over 10 seeds with a single set of hyperparameters.
DecQN yields performance competitive with state-of-the-art continuous control agents, scaling to
high-dimensional Dog tasks via a simple decoupled critic representation and an ε-greedy policy.

ing in domains that require state-space exploration as highlighted for state-space reward (bottom).
We there find DecQN and DQN to achieve similar performance. In fact, the tasks considered in this
paper do not require coordination at the action level but rather in higher-level integrated spaces.

Generally, our objective is learning control of articulated agents, which requires temporarily-
extended coordination in state space. We find that while a decoupled critic may not be able to
represent the full action-value distribution, it is often sufficient to differentiate action quality around
the optimal policy. In particular, centralized learning combined with shared observations enables
actuator coordination even in complex, high-dimensional domains as we observe in the next section.

5.2 BENCHMARKING: CONTINUOUS CONTROL FROM STATE INPUTS

We evaluate performance of the DecQN agent on several continuous control environments from the
DeepMind Control Suite as well as manipulation tasks for the Sawyer robot from MetaWorld. We
consider a Bang-Off-Bang policy encoded via a 3-bin Categorical distribution and use the same set
of hyperparameters across all tasks. Performance mean and standard deviation across 10 seeds are
provided in Figure 5 and we compare to the recent DMPO and D4PG agents, with additional train-
ing details provided in Appendix A. We note that DecQN exhibits very strong performance with
respect to the continuous baselines and sometimes even improves upon them, despite operating over
a heavily-constrained action subspace. This extends even to the high-dimensional Humanoid and
Dog domains, with action dimensions dim(A) = 21 and dim(A) = 38, respectively. Significant
research effort has produced highly capable continuous control algorithms through advances in rep-
resentation learning, constrained optimization and targeted exploration. It is then surprising that a
simple decoupled critic operating over a discretized action space and deployed with only an ε-greedy
policy is able to provide highly competitive performance.

5.2.1 SCALABILITY OF THE DECOUPLED REPRESENTATION

To put the benchmarking results into perspective, we compare DecQN to the non-decoupled DQN
agent for a 3-bin discretization each. DQN conventionally enumerates the action space and scales
exponentially in the action dimensionality, whereas DecQN only scales linearly (see also Figure 2).
According to Figure 6, performance of DecQN and DQN remains comparable on low-dimensional
tasks, however, for high-dimensional tasks the DQN agent quickly exceeds memory limits due to the
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Figure 6: Comparison between DecQN and regular DQN on a selection of Control Suite tasks. De-
coupling enables scaling to complex environments where DQN fails (dotted blue = memory error).
DecQN’s linear scaling further allows for efficient learning of fine-grained control (21 bins, green).

Figure 7: Performance on pixel-based control tasks from the DeepMind Control Suite, comparing
DecQN with bang-bang policy to the continuous DrQ-v2 and Dreamer-v2 agents. We note that
DecQN successfully accommodates the additional representation learning challenges. The best per-
forming runs on Humanoid indicate that DecQN can efficiently solve complex tasks from vision, po-
tentially requiring environment-specific hyperparameter settings or more sophisticated exploration.

large number of output parameters required. This contrast is amplified when significantly increasing
granularity of DecQN’s discretization to 21 bins. Generally, increasing granularity increases the
action space and in turn yields more options to explore. While exploration over finer discretizations
is likely to delay convergence, we observe highly competitive performance with both 3 and 21 bins.

5.3 BENCHMARKING: CONTINUOUS CONTROL FROM PIXEL INPUTS

Table 1: Per-learning iteration
runtime for Quadruped Run

Agent Runtime [s]
DecQN 10.0± 0.1
DrQ-v2 10.7± 0.2
Dreamer-v2 29.0± 0.8

We further evaluate on a selection of visual control tasks to see
whether DecQN’s decoupled discrete approach is compatible with
learning latent representation from visual input. To this end, we
combine DecQN with a convolutional encoder trained under shift-
augmentations as proposed by Yarats et al. (2021). Figure 7 com-
pares DecQN with a bang-bang parameterization (2-bin) to the
state-of-the-art model-free DrQ-v2 and model-based Dreamer-v2
agents. DecQN and Dreamer-v2 employ a fixed set of hyperpa-
rameters across all tasks, while DrQ-v2 leverages a few task-specific variations. We note that
DecQN is highly competitive across several environments while relinquishing some performance
on the complex Humanoid task. Scaling DecQN to efficient learning of latent representation for
high-dimensional systems under action penalties will be an interesting challenge. As the highest
performing runs of DecQN on Humanoid Walk reach competitive performance, we are optimistic
that this will be viable under potential parameter adjustments or more sophisticated exploration
strategies. As both DrQ-v2 and Dreamer-v2 provide limited data on Quadruped Run (3M and 2M
timesteps, respectively), we further re-ran the authors’ code on our hardware and record average tim-
ings for one cycle of data collection and training. We observe favorable runtime results for DecQN
in Table 1 and estimate that code optimization could further reduce timings as observed for DrQ-v2.

5.4 COMMAND-CONDITIONED LOCOMOTION CONTROL

We additionally provide qualitative results for learning a command-conditioned locomotion con-
troller on a simulated Mini Cheetah quadruped to demonstrate the broad applicability of decoupled
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Figure 8: Qualitative results for learning a command-conditioned locomotion controller on a simu-
lated Mini Cheetah. The agent learns to predict position targets for joint-level PD controllers with
the objective of tracking commanded base velocities. We observe good tracking performance for
following references in state-space at the level of PPO, which is a common choice in these settings.

discretized control. We consider a minimal implementation of DecQN in PyTorch simulated with
Isaac Gym. The agent aims to track velocity commands by predicting position targets for the leg
joints, which are then provided to a low-level proportional-derivative (PD) controller. As targets
are generated in joint angle space, we consider a 31-bin discretization. We evaluate the resulting
command-conditioned policy based on tracking performance when following a reference position
trajectory. To this end, velocity commands are generated by a simple proportional controller on the
position error between the reference and the robot base. Figure 8 showcases tracking for two refer-
ences. The circular trajectory has a diameter of 5m and is tracked at a velocity of 1m/s (middle),
while the step trajectory introduces lateral jumps of 0.5m and is tracked at a velocity of 0.7m/s
(right). In both scenarios we observe good tracking performance at levels competitive with the com-
monly used PPO agent (Rudin et al., 2022). The system reacts well even to strong jumps in the
reference with quick recovery in response to slight overshooting. This underlines the versatility of
simple decoupled discrete control, learning policies for various control types including application
of acceleration or velocity control and generating position targets for downstream control systems.

6 CONCLUSION

Recent successes in data-efficient learning for continuous control have been largely driven by actor-
critic algorithms leveraging advances in representation learning, constrained optimization, and tar-
geted exploration. In this paper, we take a step back and investigate how a simple variation of
Q-learning with bang-bang action discretization and ε-greedy exploration compares to current state-
of-the-art algorithms on a variety of continuous control tasks. Decoupled Q-Networks (DecQN)
discretizes the action space, fully decouples individual action dimensions, and frames the single-
agent control problem as a cooperative multi-agent optimization. This is then solved via centralized
training with decentralized execution, where the decoupled critic can be interpreted as a discrete
analog to the commonly used continuous diagonal Gaussian policies. We observe highly compet-
itive performance of DecQN on state-based control tasks while comparing to the state-of-the-art
D4PG and DMPO agents, extend the approach to pixel-based control while comparing to the recent
DrQ-v2 and Dreamer-v2 agents, and demonstrate that the method solves more complex command-
conditioned tracking control on a simulated Mini Cheetah quadruped.

DecQN is highly versatile, learning capable policies across a variety of tasks, input and output
modalities. This is intriguing, as DecQN does not rely on many of the ingredients associated with
state-of-the-art performance in continuous control and completely decouples optimisation and ex-
ploration across the agent’s action dimensions. We provide intuition for how the decoupled critic
handles coordination challenges by studying variations of matrix games proposed in prior work. We
observe that shared access to the global observations facilitates coordination among decoupled ac-
tuators. Furthermore, it is often sufficient for a critic to accurately reflect relative decision quality
under the current state distribution to find the optimal policy. Promising future work includes the
interplay with guided exploration and the investigation of these concepts on physical systems.

There is great value in contrasting complex state-of-the-art algorithms with simpler ones to dissect
the importance of individual algorithmic contributions. Identifying the key ingredients necessary
to formulate competitive methods aides in improving the efficiency of existing approaches, while
providing better understanding and foundations for future algorithm development. To this end, the
DecQN agent may serve as a straightforward and easy to implement baseline that constitutes a strong
lower bound for more sophisticated methods, while raising interesting questions regarding how to
assess and compare continuous control benchmark performance.
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Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In International
Conference on Machine Learning, pp. 980–991. PMLR, 2020.

Lucian Busoniu, Bart De Schutter, and Robert Babuska. Decentralized reinforcement learning con-
trol of a robotic manipulator. In 2006 9th International Conference on Control, Automation,
Robotics and Vision, pp. 1–6. IEEE, 2006.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scal-
ing multi-agent reinforcement learning with selective parameter sharing. In International Confer-
ence on Machine Learning, pp. 1989–1998. PMLR, 2021.

Xiangxiang Chu and Hangjun Ye. Parameter sharing deep deterministic policy gradient for cooper-
ative multi-agent reinforcement learning. arXiv preprint arXiv:1710.00336, 2017.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. AAAI/IAAI, 1998:2, 1998.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
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A TRAINING DETAILS

Experiments on Control Suite and Matrix Game tasks were conducted on a single NVIDIA V100
GPU with 4 CPU cores (state-based) or 20 CPU cores (pixel-based). Experiments in MetaWorld and
Isaac Gym were conducted on a single NVIDIA 2080Ti with 4 CPU cores. Benchmark performance
of DecQN is reported in terms of the mean and one standard deviation around the mean on 10 seeds.
We implemented DecQN within the Acme framework (Hoffman et al., 2020) in TensorFlow. For
the Mini Cheetah (Katz et al., 2019) task we implement a version of DecQN in PyTorch.

Hyperparameters We provide hyperparameter values of DecQN used for benchmarking in Ta-
ble 2. A constant set of hyperparameters is used throughout all experiments, with modifications
to the network architecture for vision-based tasks. For the matrix games, we further set the n-step
parameter to 1 to account for the underlying timescale and direct impact that actions have on both
the state transition and reward. Results for DQN were obtained with the same parameters without
decoupling. The baseline algorithms used the default parameter settings provided in the official
implementations by the original authors, within the Acme library in the case of D4PG and DMPO.

Table 2: DecQN hyperparameters for state- and pixel-based control.
Parameter Value [State] Value [Pixel]

Optimizer Adam Adam
Learning rate 1× 10−4 1× 10−4

Replay size 1× 106 1× 106

n-step returns 3 3
Action repeat 1 1
Discount γ 0.99 0.99
Batch size 256 256
Hidden size 500 1024
Bottleneck size — 100
Gradient clipping 40 40
Target update period 100 100
Imp. sampling exponent 0.2 0.2
Priority exponent 0.6 0.6
Exploration ε 0.1 0.1

Architecture For the state-based experiments, we leverage a fully-connected architecture that in-
cludes a single residual block followed by a layer norm. For the vision-based experiments, we
leverage the convolutional encoder with bottleneck layer from Yarats et al. (2021) followed by two
fully-connected layers. In both cases, a fully-connected output layer predicts the decoupled state-
action values so that the torso up to the final layer remains shared among the decoupled critics.

Action discretization The continuous action space is discretized along each action dimension into
evenly spaced discrete actions including the boundary values. Assuming symmetric action bounds,
for axis i this yields bang-bang control in the case of 2 bins with Anbin=2,i = {−abound,i,+abound,i}
and bang-off-bang control in the case of 3 bins withAnbin=3,i = {−abound,i, 0,+abound,i}, and so on.

Decoupling The decoupling based on value decomposition (Sunehag et al., 2017) only requires
small modifications of the original DQN structure (see also Sharma et al. (2017)). The output layer
size is adapted to predict all state-action utilities for action dimensions na and discrete bins nb
to yield output size [..., nanb], where [...] indicates the batch dimensions. This is reshaped into
[..., na, nb], where the combined state-action value is computed either by indexing with the observed
bin at the current state or maximizing over bins at the next state, followed by a mean over action
dimensions to recover state-action values.

Licenses The Acme library is distributed under the Apache-2.0 license and available on GitHub.
The D4PG and DMPO agents are part of the Acme library, while both DecQN and DQN for con-
tinuous control were implemented within the Acme framework. Both Dreamer-v2 and DrQ-v2 are
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Figure 9: State distribution and action-values for DecQN on the two-step game from Section 5.1. We
consider 3 training stages pre-convergence across 5 seeds. Color indicates cumulative state-action
occurrence, numbers represent predicted mean action values. While the decoupled agent struggles
to represent action values under a uniform distribution (ε = 1.0, bottom), it accurately represents
values under the current policy when directly influencing the state distribution (ε = 0.5, top).

distributed under the MIT license and are available with their benchmarking results on GitHub here
and here, respectively.

B STATE-ACTION DISTRIBUTION: TWO-STEP GAME

Expanding on the discussion of the two-step matrix game in Section 5.1 we provide state-action
distribution data for the DecQN agent in Figure 9. We evaluate three stages of early training before
convergence for 5 seeds. Color of state-action pairings indicates cumulative frequency within replay
memory, while numbers represent mean predicted state-action values. We consider different degrees
of randomness in the policy by varying the ε parameter. It can be noted that the agent fails to
accurately represent the optimal state-action value in state 3 when learning based on a uniform state-
action distribution (bottom row). However, enabling the agent to directly influence the underlying
distribution through its policy results in accurate learning of state-action values around this policy
(top and middle rows). While the decoupled agent may not be able to accurately reflect the full
state-action value function, it can be sufficient to do so over a subspace relevant for solving the task.

C ENVIRONMENTS

A brief overview of the environments evaluated throughout this paper is provide in Table 3, grouped
based on their distributors. In particular, we highlight the dimensionality of the state space S and
action space A as well as the total number of timesteps used for training on each environment. For
the Mini Cheetah task, we note that the number of steps - marked with an ∗ - denotes the approximate
number of steps per environment, where we use 1024 parallel environments within Isaac Gym.

D ADDITIONAL BASELINES

We provide additional baselines on a selection of Control Suite environments in Figure 10. The
baselines consist of a continuous-control algorithm with Categorical head based on MPO from Seyde
et al. (2021), the continuous-control SAC agent from Yarats & Kostrikov (2020), as well as the
critic-only methods QT-Opt and AQL-Seq based on data from Van de Wiele et al. (2020). DecQN is
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Table 3: Description of benchmark environments used throughout the paper.
Suite Task dim(S) dim(A) Steps [State] Steps [Pixel]

Control Suite Ball in Cup Catch 8 2 — 1× 106

Cartpole Swingup 4 1 1× 106 1× 106

Cartpole Swingup Sparse 4 1 2× 106 1× 106

Cheetah Run 18 6 3× 106 1× 106

Dog Run 158 38 5× 106 —
Dog Trot 158 38 5× 106 —
Dog Walk 158 38 5× 106 —
Finger Spin 6 2 2× 106 1× 106

Finger Turn Hard 6 2 2× 106 1× 106

Humanoid Run 54 21 30× 106 —
Humanoid Stand 54 21 10× 106 —
Humanoid Walk 54 21 20× 106 30× 106

Quadruped Run 56 12 5× 106 10× 106

Reacher Hard 4 2 2× 106 1× 106

Walker Run 18 6 3× 106 —
Walker Walk 18 6 1× 106 1× 106

Isaac Gym Mini Cheetah Tracking 48 12 3× 106∗ —

Matrix Games Two Step 3 4 6× 104 —
Penalty 4 9 2× 105 —
Climbing 4 9 2× 105 —

Meta World Assembly 39 4 2× 106 —
Door Open 39 4 2× 106 —
Drawer Open 39 4 2× 106 —
Hammer 39 4 2× 106 —
Pick Place 39 4 2× 106 —
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Figure 10: Comparison of DecQN to MPO with Categorical policy head, continuous SAC, as well
as critic-only QT-Opt and AQL-Seq. DecQN displays state-of-the-art performance without relying
on actor-critic methods or continuous control, while remaining sample-efficient in high-dimensional
action spaces by avoiding sampling-based methods.

Figure 11: Ablations of the DecQN agent on multi-step returns, double Q-learning, and prioritized
experience replay (top to bottom). The agent is robust to changes in individual components while
profiting from PER to select useful interactions on complex multi-phase tasks such as the Humanoid.

competitive with discretized MPO, further underlining that actor-critic methods are not required to
obtain strong benchmark performance. The additional SAC baseline shows improved performance
on Humanoid at the cost of being unable to learn on the Dog task, mirroring results of Hansen et al.
(2022). Generally, we believe that most current state-of-the-art continuous control algorithms are
capable of achieving comparable benchmark performance. However, these results do not appear to
be conditional on using continuous control or actor-critic methods, and can be achieved with much
simpler Q-learning over discretized bang-bang action spaces with constant ε-greedy exploration.
We further provide converged performance of QT-Opt and AQL-Seq. While these methods remain
competitive on low-dimensional tasks, their performance quickly deteriorates for high-dimensional
action spaces due to their reliance on sampling this space.

E ABLATIONS ON RAINBOW COMPONENTS

We provide ablations on three components of the underlying Rainbow agent, namely multi-step re-
turns, double Q-learning, and prioritized experience replay in Figure 11 (rows, respectively). Learn-
ing is generally robust to removal of individual components in light of cumulative reward at con-
vergence, improving learning speed primarily on the more complex tasks. In particular, double
Q-learning and PER provide a boost on the Humanoid task to enable state-of-the-art performance.
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Figure 12: Comparison of DecQN with the original and BDQ loss for 3 (top) and 21 bins (bottom).
Aggregating per-dimension utilities transforms independent into joint learners, yielding significant
improvements in final performance and learning stability particularly for high-dimensional tasks.

Figure 13: Comparison of DecQN and BDQ for 3 (top) and 21 bins (bottom). DecQN provides sig-
nificant advantage on the more complex domains, underlining the importance of design choices such
as strong architectural centralization and value decomposition via single-action utility functions.

F DISCUSSION OF BDQ AND HGQN

In the following, we provide a more detailed discussion of the relation to Branching Dueling Q-
Networks (BDQ) Tavakoli et al. (2018) as well as Hypergraph Q-Networks (HGQN) Tavakoli et al.
(2021) together with associated ablations. Generally, our motivation is to highlight that minimal
changes to the original DQN agent enable state-of-the-art performance on continuous control bench-
marks solely based on bang-bang Q-learning with constant exploration.

The BDQ agent from Tavakoli et al. (2018) considers independent learning of per-dimension state
action values, employing a dueling architecture with separate branches for each action dimension
and exploration based on a Gaussian with scheduled noise in combination with fine-grained dis-
cretizations. DecQN forces a higher degree of centralization by predicting per-dimension state-
action utilities without intermediate branching or dueling heads for joint learning within a value
decomposition, while using constant ε-greedy exploration with a focus on only coarse bang-bang
control. The most important difference is independent learning in comparison to joint learning
based on value decomposition. We provide an ablation of our approach that does not aggregate per-
action dimension values and thereby mimics BDQ’s independent learning in Figure 12. Particularly
for high-dimensional tasks learning a value decomposition can significantly improve performance,
an effect that is amplified when selecting more fine-grained discretizations. We furthermore eval-
uated the original BDQ agent after modifying the default parameters (i.e. batch size, target update
frequency, learning frequency, gradient clipping, exploration strategy, multi-step returns). The re-
sults provided in Figure 13 were obtained based on the best configuration we found by increasing
the batch size and treating each episode as infinite-horizon. While we believe that the results in
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Figure 14: Comparison of DecQN with original and HGQN aggregation. Aggregating via the mean
induces a more favorable scaling of the reward in the TD-error, which we found to enable graceful
scaling to complex task with high-dimensional action spaces to achieve state-of-the-art performance.

Figure 12 offer a more informative comparison, we observe a similar trend regarding scaling to
high-dimensional tasks in both cases.

The hypergraph Q-networks (HGQN) framework from Tavakoli et al. (2021) considers value decom-
position across subsets of action dimensions and introduces higher-order hyperedges between action
groupings. DecQN can therefore be interpreted as an instance of the conceptual HGQN (r=1) for-
mulation that leverages single-action decomposition without higher-order edges as had previously
been investigated with the Atari-based FARAQL agent (Sharma et al., 2017). Our primary focus
is on simplicity and showing how far we can push basic concepts that constitute capable alterna-
tives to more sophisticated recent algorithms. There are further several differences in per-dimension
utility aggregation, architectural choices regarding the use of branching, loss function, exploration
scheduling, as well as in the usage of PER and double Q-learning for continuous control. We pro-
vide a brief ablation on using the mean compared to sum aggregation when computing Bellman
targets in Figure 14. While this appears as a subtle difference, we found that leveraging the mean
yields graceful scaling to complex tasks with high-dimensional action spaces without any parameter
adjustments. This enables state-of-the-art performance across a wide range of environments and
input-output modalities with a single set of hyper-parameters.

Generally, our motivation is not to advocate for a novel algorithm that should be the go-to method for
solving continuous control problems. Our core objective is to highlight that current state-of-the-art
continuous control benchmark performance is at the level of decoupled Q-learning over bang-bang
parameterized action spaces with constant exploration. This requires only minor if well-directed
modification to the original DQN algorithm and yields strong performance for both feature- and
pixel-based observation spaces as well as acceleration-, velocity-, and position-based action spaces.
Our investigation provides additional motivation for existing work while establishing closer connec-
tions to classical MARL coordination challenges, as well as extensive experimental evaluation in
comparison to current state-of-the-art algorithms.

G RAINBOW DQN AGENT

We leverage several modifications of vanilla DQN that accelerate learning and improve stability
based on the Rainbow implementation provided by Acme (Hessel et al., 2018; Hoffman et al., 2020):

Target Network Bootstrapping directly from the learned value function can lead to instabilities.
Instead, evaluating actions based on a target network Qθ−(st, at) improves learning (Mnih et al.,
2015). The target network’s weights θ− are updated periodically to match the online weights θ.

Double Q-learning Direct maximization based on the value target can yield overestimation error.
Decoupling action selection from action evaluation improves stability (Van Hasselt et al., 2016).
Action selection then queries the online network, while action evaluation queries the target network.
Our implementation further leverages two sets of critics, where we bootstrap based on their average
during learning and take their maximum during action selection.

Prioritized Experience Replay Uniform sampling from replay memory limits learning efficiency.
Biasing sampling towards more informative transitions can accelerate learning (Schaul et al., 2015).
The observed temporal difference error can serve as a proxy for expected future information content.
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Figure 15: Comparison of DecQN, DecQN with a distributional C51 critic, and the distributional
IQN agent. The distributional version of DecQN generally yields slightly improved performance at
convergence, while decoupling improves performance over the non-decoupled IQN baseline.

Figure 16: Comparison of DQN, DQN with a distributional C51 critic, and the distributional IQN
agent. Without decoupling, we do not observe benefits of distributional critics in these domains.
Slower convergence on Walker Walk with distributional representations could indicate that the as-
sociated increased parameter count translates to a more difficult optimization problem.

Multi-step Returns Instead of directly bootstrapping from the value function at the next state,
evaluating the reward explicitly over several transitions as part of a multi-step return, such that
Gt:t+n = Rt + · · ·+ γn−1Rt+n−1 + γnVt+n(St+n) can improve learning (Sutton & Barto, 2018).

H CONTROL-AFFINE DYNAMICS AND LINEAR REWARDS

Under deterministic environment dynamics and policy we can simplify the Bellman equation as

Qπ(st, at) = r(st, at) + γV π(st+1). (5)

Consider a reward structure that is linear in the action dimensions with r(st, at) =
∑M
j=0 r

j(st, a
j
t ).

Under given transition tuples and fixed target values, the TD(0) objective can then be formulated as

Qπ(st, at) =

M∑
j=0

(
rj(st, a

j
t ) +

γ

M
V π(st+1)

)
, (6)

which can be solved exactly based on a linear value decomposition Q(st, at) =
∑M
j=0Qj(st, a

j
t ).

Particularly for robotics applications, many common reward structures depend (approximately)
linearly on the next state observation while the system dynamics are control-affine such that
st+1 = f(st) + g(st)at, with f(st) and g(st) only depending on the current state st. While these
are strong assumptions, it may provide intuition for why the problem structures considered here may
be amenable to decoupled local optimization and for the observed highly competitive performance.

I DISTRIBUTIONAL CRITICS

We briefly investigate replacing our deterministic critic with a distributional C51 head (Bellemare
et al., 2017) The decomposition now proceeds at the probability level via logits l =

∑M
j=1 lj/M

during the C51 distribution matching. We do not make any parameter adjustments and compare
performance with and without a distributional critic for both DecQN and DQN in Figures 15 and 16,
respectively, and provide the IQN agent as an extension of the QR-DQN agent for reference (Dabney
et al., 2018a;b). Our empirical evaluation suggests that a distributional critic can slightly increase
performance at convergence and sample-efficiency. Both DecQN and DecQN + C51 yield similar
performance on average with some environment specific variations. Without decoupling, DQN
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Figure 17: Comparison of the distributional versions of DecQN, DQN, and IQN. Decoupling of the
value representation in conjunction with bang-bang action representations plays a key role in scaling
these approaches to high-dimensional continuous control tasks.

Figure 18: DecQN + C51 on tasks where regular DecQN did not perform at least as good as the best
baseline. Adding a distributional critic can further boost performance, underlining the strength and
versatility of this very simple approach (vertical line = current training status due to time constraints).

yields slightly faster convergence than DQN + C51 on Walker Walk which could indicate that the
increased parameter count of distributional critics translates to a more challenging optimization
problem (see also the immediate memory error of non-decoupled distributional agents on Quadruped
Run in Figure 16.) Both DecQN and DQN with or without distributional critic improve performance
over the IQN baseline. We further provide performance of only the distributional agents in Figure 17
for ease of comparison. It is likely that given sufficient tuning the performance of our distributional
variations could be increased even further, while we note that the deterministic DecQN agent already
matches performance of the distributional D4PG and DMPO actor-critic agents. A more extensive
investigation into decoupled distributional Q-learning provides promising avenues for future work.

We note that without any parameter adjustments or tuning, replacing the deterministic critic with
the distributional C51 critic in DecQN significantly boosts performance on the few environments
where DecQN did not perform at least as good as the best baseline. This applies to large bin sizes,
feature inputs and pixel inputs as exemplified in Figure 18 (vertical line in Humanoid Walk from
pixels denotes current training status, subject to time constraints). These results further underline
the versatility and strength of this very simple approach.

J STOCHASTIC ENVIRONMENTS

We extend our study to stochastic versions of a selection of Control Suite tasks. The results in
Section 5.1 indicate that coordination among decoupled actors becomes more difficult if the action
selection of other actors is less stationary from the perspective of each individual actor. To increase
stochasticity, we consider both observation and reward noise represented by additive Gaussian white
noise with standard deviation σnoise = 0.1. Figures 19 and 20 provide results for DecQN, D4PG, and
the distributional DecQN + C51 under observation and reward noise, respectively. While we observe
similar performance of DecQN and D4PG on most tasks, performance of DecQN is visibly reduced
on Humanoid Walk. Humanoid Walk combines several aspects that can hinder exploration, includ-
ing implicit staged reward (first get up, then walk) and action penalties, which likely exacerbate
coordination challenges when combined with stochasticity. We therefore believe that special care
should be taken when applying regular DecQN in environments that have the potential to amplify
the coordination challenges observed in the simple matrix game domains of Section 5.1. Adding
a distributional critic to DecQN allows for better modelling of stochasticity and visibly improves
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Figure 19: Stochastic observation tasks adding Gaussian white noise to the observations (σnoise =
0.1). DecQN appears less robust to observation noise than D4PG, mirroring the findings regarding
coordination challenges under high stochasticity in matrix games of Section 5.1. Adding a distribu-
tional critic improves performance and yields faster convergence than D4PG on Quadruped Run.

Figure 20: Stochastic reward tasks adding Gaussian white noise to the rewards (σnoise = 0.1).
DecQN is less robust to reward noise than the distributional D4PG, mirroring the findings regarding
coordination challenges under high stochasticity in matrix games of Section 5.1. With a distribu-
tional critic, DecQN can directly account for stochastic returns and matches or outperforms D4PG.

performance in stochastic environments, where DecQN + C51 even improves on the distributional
D4PG agent in some environments.
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