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Abstract

Empowering LLMs with the ability to pre-001
cisely understand long contexts is crucial for002
many downstream applications. However, han-003
dling long contexts with conventional trans-004
former architecture requires substantial train-005
ing and inference resources. Existing context006
condensing methods cannot accurately under-007
stand the full context, as there is a considerable008
amount of information loss in the condensing009
process. To address these issues, we present010
FocusLLM, a framework designed to extend011
the fixed context length of any decoder-only012
LLM, allowing the model to focus on relevant013
information from very long sequences. Focus-014
LLM first divides long text input into chunks015
based on the model’s original context length.016
It then employs the dynamic condensing pro-017
cess to distill crucial information from each018
chunk. Ultimately, through the novel parallel019
decoding mechanism, FocusLLM can integrate020
the extracted information into its local context.021
FocusLLM stands out for great training effi-022
ciency and versatility: trained with an 8K in-023
put length and with much less training cost024
than previous methods, FocusLLM exhibits su-025
perior performance across downstream tasks026
and maintains strong language modeling ability027
when handling extensive long texts, even up to028
400K tokens. Our code is available at https:029
//anonymous.4open.science/r/FocusLLM.030

1 Introduction031

The importance of extending the context length032

of large language models (LLMs) cannot be over-033

stated. In numerous applications, ranging from034

complex document analysis to generating coher-035

ent long-form text, the ability to effectively uti-036

lize extended context is critical. For instance, in037

tasks such as document summarization and ques-038

tion answering over lengthy articles, a more ex-039

tensive context allows for a more comprehensive040

understanding and accurate responses. However,041
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Figure 1: A comparison between FocusLLM and pre-
vious context scaling methods on the passkey retrieval
task, including CEPE, LongLLaMA and Activation Bea-
con. Our method extrapolates beyond the original con-
text length of LLaMA, achieving 99% accuracy at a
context length of 400K, with less training cost.

leveraging long contexts in LLMs presents several 042

formidable challenges. (1) The computational com- 043

plexity of transformers (Vaswani et al., 2017) grows 044

quadratically with the sequence length, rendering 045

the training process prohibitively expensive. (2) 046

LLMs exhibit poor extrapolation performance for 047

longer sequences, even after additional fine-tuning 048

(Chen et al., 2023a; Peng et al., 2023). (3) Acquir- 049

ing high-quality long-text datasets, which are es- 050

sential for training and fine-tuning, is exceedingly 051

difficult (Xiong et al., 2023; Wang et al., 2022). 052

To circumvent the substantial costs of directly 053

scaling the window length by continual training on 054

longer inputs, recent work has proposed to drop 055

unimportant tokens and retain important tokens, ei- 056

ther by modifying the attention mechanism (Xiao 057

et al., 2023; Han et al., 2023) or by compressing the 058

context into some specialized tokens (Zhang et al., 059

2024a; Chevalier et al., 2023; Ge et al., 2023), in 060

order to effectively condense long textual informa- 061

tion. However, these methods overlook the fact that 062

token importance changes dynamically during the 063

decoding process: tokens previously considered 064

unimportant may become crucial in later decoding 065

steps. As a result, they share a common drawback, 066

which we refer to as information loss: some tokens 067
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that will be needed in the future have already been068

discarded. For example, in Passkey Retrieval task069

(Mohtashami and Jaggi, 2024) illustrated in Figure070

1, as the context length increases, the compression071

method Activation Beacon fails to retrieve passkey072

pairs that appeared in the earlier context.073

Considering the above issues, the question arises:074

can we extend the context length of an existing LLM075

at a low cost without any information loss? In this076

paper, we propose a training efficient and effec-077

tive solution FocusLLM, which can maintain a078

precise understanding of the whole long context.079

Specifically, FocusLLM first divides a long text080

into chunks based on the model’s original context081

length. Then, the dynamic condensing process is082

applied, which appends dynamic prompts to each083

chunk to extract crucial information, ensuring no084

information loss. Finally, we use parallel decoding085

mechanism to aggregate information from different086

chunks and generate the next token. The origi-087

nal model parameters are kept frozen to maintain088

generalization capabilities, with only a small num-089

ber of trainable parameters introduced for dynamic090

condensing.091

We employ the FocusLLM framework to the092

widely used LLaMA-2-7B model (Touvron et al.,093

2023b), which has a default context length of 4K.094

In terms of efficiency, FocusLLM is trained on095

sequences shorter than 8K tokens and only re-096

quires a training budget of 0.5B tokens. To val-097

idate the effectiveness of FocusLLM, we evaluate098

it across a variety of tasks. Initially, we assessed099

FocusLLM’s language modeling capability. Focus-100

LLM maintains low perplexity on documents com-101

prising 128K tokens and even longer sequences.102

Subsequently, to comprehensively evaluate the ap-103

plicability of FocusLLM in real-world scenarios,104

we utilized two widely used benchmarks: Long-105

bench (Bai et al., 2023) and ∞-Bench (Zhang et al.,106

2024b). Experimental results demonstrate that Fo-107

cusLLM has achieved superior performance on108

both benchmarks, surpassing all baselines includ-109

ing length extrapolation models, continual training110

models, and similar models designed for extreme111

long sequences. The main contributions of this112

paper can be summarized as follows:113

• We propose the FocusLLM framework, which114

leverages novel dynamic condensing and par-115

allel decoding mechanisms to avoid informa-116

tion loss and achieve precise understanding of117

long contexts, as shown in Figure 1.118

• Compared to previous context-scaling meth- 119

ods, FocusLLM achieves remarkable results 120

with high training efficiency by introducing 121

only a small set of trainable parameters and 122

utilizing a training budget of 0.5B tokens. 123

• Through comprehensive evaluation, Focus- 124

LLM outperforms all baselines on down- 125

stream tasks while maintaining low perplexity, 126

demonstrating that it can seamlessly serve as 127

a general-purpose language model. 128

2 Architecture 129

The overall framework of FocusLLM is presented 130

in Figure 2. Each decoder in the figure shares the 131

same model (e.g. LLaMA-2). 132

2.1 Notations 133

Given a long sequence with S tokens {x1, ..., xS}, 134

we segment them into memory tokens 135

{x1, ..., xm} and local context {xm+1, ..., xS}, 136

with the length of local context not exceeding 137

the model’s default context length, denoted as 138

L. Concurrently, we divide the memory tokens 139

into chunks, labeled as C1, C2, ..., Ck, with each 140

chunk’s size also not exceeding L. These chunks 141

can represent distinct documents or a single 142

long document. We define the original decoder 143

model as Fdec and its hidden dimension ddec. To 144

endow the model with the capability for dynamic 145

condensing, we introduce a small set of new 146

parameters, resulting in the modified model F ′
dec. 147

2.2 Dynamic Condensing 148

As highlighted in the introduction, the importance 149

of tokens in the context dynamically changes at 150

each decoding step. Previous work that condenses 151

context using a fixed pattern suffers from the draw- 152

back of information loss. To address this issue, 153

we propose the dynamic condensing mechanism, 154

which consists of two key steps: dynamic prompt 155

injection and candidate token generation. 156

Dynamic Prompt Injection. We append a small 157

fragment of local context (we refer to it as the dy- 158

namic prompt in Figure 2) behind each chunk. The 159

motivation is to aggregate the most critical informa- 160

tion from each chunk for the current decoding step. 161

We can formally define this process as follows: 162

Ĉi ← {Ci;xm+j , ..., xS} i = 1, ..., k; 1 ≤ j ≤ S−m (1) 163

Here j is a hyperparameter that determines the num- 164

ber of local tokens appended to each chunk. We 165
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Figure 2: One decoding step of the FocusLLM framework. A small fragment of the local context (denoted as the
dynamic prompt) is appended to each chunk. The representations of the candidate tokens, obtained through dynamic
condensing and parallel decoding, are then concatenated and integrated back into the local context.

adopt a default length of 512 tokens for inference,166

which is sufficient to encapsulate the necessary lo-167

cal contextual information.168

The last token of the dynamic prompt is used to169

generate candidate tokens, which we will explain170

in detail later. After each decoding step, when171

FocusLLM generates the next token, this token172

will be appended to the dynamic prompt 1. This173

updated dynamic prompt is then used to generate174

new candidate tokens in the next decoding step.175

The dynamic prompt evolves with each decoding176

step, ensuring that the model always has access to177

the most relevant information for the current step.178

Candidate Token Generation. Building on the179

dynamic prompt injection described above, we in-180

troduce candidate tokens to condense the informa-181

tion from each chunk that is crucial for the current182

decoding step. The candidate token is denoted as183

the trainable hidden states corresponding to the last184

local token xS in each chunk Ĉi. To obtain the185

representations of candidate tokens, motivated by186

(Zhang et al., 2024a), we add a new set of train-187

able parameters to the linear projection matrices188

of each layer, while keeping the original model189

parameters frozen to preserve its original decod-190

ing ability. Formally, the trainable parameters for191

dynamic condensing are:192

{W c
Q,W

c
K ,W c

V ,W c
O}l (2)193

where W c
Q, W c

K , W c
V , and W c

O represent the new194

linear projections for the query, key, value, and195

output matrices associated with the candidate token,196

1The first token of the dynamic prompt can be dropped to
maintain its fixed length.

and l denotes the layer number. The output of the 197

candidate token in the self-attention module can be 198

calculated as: 199

Qc ← HcW
c
Q Kc ← HcW

c
K Vc ← HcW

c
V (3) 200

201

Ac ← softmax
(
Qc (K ⊕Kc)

T
)

(4) 202

203
Oc ← VcW

c
O

T Vc ← Ac (V ⊕ Vc)
T (5) 204

where Hc ∈ Rddec is the input hidden state of 205

the candidate token, ⊕ represents the concatenation 206

of matrices, and K,V correspond to the represen- 207

tations of the normal tokens in one chunk. 208

2.3 Parallel Decoding 209

Through the dynamic condensing process de- 210

scribed above, we obtain one candidate token for 211

each chunk. Notably, the process of obtaining the 212

candidate token from each chunk is independent, 213

enabling parallel forwarding for all chunks. Then 214

the key/value representations of the candidate to- 215

kens are concatenated with the tokens in the local 216

context layer by layer, as shown in Figure 2, and are 217

finally processed by a frozen decoder to generate 218

the next token. 219

We formally define the process of simultane- 220

ously generating candidate tokens from different 221

chunks and then aggregating these candidate to- 222

kens to produce the final token as parallel decod- 223

ing. This mechanism not only enables precise un- 224

derstanding of long contexts but also reduces the 225

Transformer’s original O(L2) computational com- 226

plexity to O((L/n)2). A detailed efficiency analy- 227

sis is provided in Appendix A. 228
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3 Training229

Regarding training data, to ensure the generaliz-230

ability of our method and maintain fairness in com-231

parison with the baselines, we leverage RedPajama232

(Together, 2023b) as the training corpus and sample233

examples with sequence lengths varying between234

3K and 8K tokens from it. RedPajama is an open-235

source pre-training dataset for LLaMA-1 (Touvron236

et al., 2023a), which is widely utilized in previ-237

ous work (Zhang et al., 2024a; Yen et al., 2024).238

Detailed statistics are reported in Appendix B.239

Auto-Regressive Loss. Specifically, we train240

the model to predict the next token, and the loss is241

only applied to tokens in the local context, which242

encourages the candidate token to aggregate useful243

information from each chunk.244

min
F ′

dec

−
S−m∑
i=2

log(p(xm+i | c1, . . . , ck, xm+1, . . . , xm+i−1))

(6)245

Here, ci represents the candidate token generated246

by the i-th chunk. Specifically, based on the rela-247

tionship between the memory tokens {x1, ..., xm}248

and the local context {xm+1, ..., xS}, we design249

two loss functions for joint training. i) If the local250

context is a continuation of the memory tokens, we251

term this loss the Continuation Loss, as it trains the252

model to naturally generate new tokens that follow253

the given context. ii) Alternatively, if we randomly254

select L consecutive memory tokens as local con-255

text, we define this loss as the Reconstruction Loss,256

as it trains the model to reconstruct tokens when257

clear contextual information is available. Subse-258

quent experiments demonstrate that both types of259

loss are essential.260

4 Experiments261

In this section, we will conduct a comprehensive262

evaluation of the effectiveness of FocusLLM, span-263

ning both language modeling and a variety of down-264

stream tasks. We refer readers to Appendix C for265

detailed experimental settings including hyperpa-266

rameters due to space constraints.267

4.1 Long-context Language Modeling268

In this section, we evaluate FocusLLM on long-269

context language modeling benchmarks, with text270

lengths ranging from 4K to 128K tokens.271

Datasets. We perform the evaluation on three272

datasets: PG19 (Rae et al., 2019), Proof-Pile (Azer-273

bayev et al., 2023), and CodeParrot (Tunstall et al.,274

2022). These three datasets encompass 100 long275

test cases related to books, arXiv papers, and code 276

repositories, respectively. The results of baseline 277

models are token from (Zhang et al., 2024a) for 278

comparison. Following the setting of (Yen et al., 279

2024), as FocusLLM relies on the last decoder to 280

perform generation, we calculate the perplexity on 281

the last 256 tokens of each sequence, and for the 282

128K length, we filter out documents exceeding 283

128K tokens and evaluate 10 samples due to data 284

scarcity and computational cost. 285

Model. FocusLLM is based on LLaMA-2-7B 286

(chat), hence the models for comparison are all 287

on the same scale, 7B. The baseline models can 288

be categorized into the following types: i) Meth- 289

ods focusing on the modification of positional en- 290

coding, including Positional Interpolation (Chen 291

et al., 2023a), the NTK-Aware Scale ROPE2, and 292

the training-free method StreamingLLM (Xiao 293

et al., 2023), which is based on attention sinks. 294

ii) Fine-tuned methods trained on long inputs, 295

such as LongAlpaca-16K (Chen et al., 2023b), 296

LongChat-32K (Li et al., 2023), and YaRN-128K 297

(Peng et al., 2023). iii) Methods with designed 298

structures specifically for long contexts, includ- 299

ing AutoCompressor-6K (Chevalier et al., 2023), 300

LongLlama (Tworkowski et al., 2024) and Activa- 301

tion Beacon (Zhang et al., 2024a). For instance, 302

Activation Beacon achieves compression of long 303

texts by training the model to represent the informa- 304

tion of a regular text segment with a small number 305

of beacon tokens. 306

Analysis. The results are presented in Table 1. 307

Here are several observations we can make: (1) 308

Compared to the basic LLaMA-2-7B model and 309

some fine-tuning free methods, our model demon- 310

strates superior performance. When extending the 311

context length from 4K to longer, the perplexity 312

becomes lower, indicating that information from 313

a longer context can be effectively utilized. (2) 314

FocusLLM achieves comparable performance to 315

fine-tuned full-attention methods. This result is no- 316

table because our model operates with significantly 317

higher training efficiency. For instance, LongLlama 318

is fine-tuned using 7B tokens with all parameters 319

being trainable. In contrast, FocusLLM uses 1/10 320

of the training budget and 1/3 of the parameters. 321

(3) FocusLLM can maintain language modeling 322

capabilities at lengths much longer than other mod- 323

els while retaining precise comprehension of the 324

2https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/
ntkaware_scaled_rope_allows_llama_models_to_have/
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PG19 Proof-Pile CodeParrot

Method 4K 16K 32K 100K 4K 16K 32K 100K 4K 16K 32K 100K

Llama-2-7B 9.21 >103 >103 OOM 3.47 >103 >103 OOM 2.55 >103 >103 OOM
PI 9.21 19.5 >102 OOM 3.47 5.94 33.7 OOM 2.55 4.57 29.33 OOM
NTK 9.21 11.5 37.8 OOM 3.47 3.65 7.67 OOM 2.55 2.86 7.68 OOM
StreamingLLM 9.21 9.25 9.24 9.32 3.47 3.51 3.50 3.55 2.55 2.60 2.54 2.56

AutoCompre.-6K 11.8 >102 >103 OOM 4.55 >102 >103 OOM 5.43 >102 >103 OOM
YaRN-128K 6.68 6.44 6.38 OOM 2.70 2.47 2.41 OOM 2.17 2.04 2.00 OOM
LongChat-32K 9.47 8.85 8.81 OOM 3.07 2.70 2.65 OOM 2.36 2.16 2.13 OOM
LongAlpaca-16K 9.96 9.83 >102 OOM 3.82 3.37 >103 OOM 2.81 2.54 >103 OOM
LongLlama 9.06 8.83 OOM OOM 2.61 2.41 OOM OOM 1.95 1.90 OOM OOM
Activation Beacon 9.21 8.54 8.56 8.68 3.47 3.42 3.39 3.35 2.55 2.54 2.53 2.55

FocusLLM 9.21 9.19 9.17 10.59 3.47 3.17 3.43 2.57 2.55 2.01 2.27 3.02

Table 1: Language Modeling Assessment: perplexity analysis of various context scaling methods on the PG19,
Proof-Pile, and CodeParrot. FocusLLM successfully maintains low perplexity on extremely long sequences.

entire text. Although models like StreamingLLM325

and Activation Beacon can still achieve lower per-326

plexity by compressing tokens, they are unable to327

recover the previous context information, which328

severely affects their capabilities in downstream329

tasks. In summary, FocusLLM achieves compara-330

ble language modeling performance with a small331

training cost.332

4.2 Downstream Tasks333

Datasets. To assess the capabilities of FocusLLM334

in real-world scenarios, we select two widely used335

datasets: Longbench (Bai et al., 2023) and ∞-336

Bench (Zhang et al., 2024b). Longbench offers337

an evaluation on a variety of tasks including ques-338

tion answering, summarization, few-shot learning,339

mathematical counting, and code completion. ∞-340

Bench is designed to test a model’s ability to under-341

stand and reason over super long contexts, with an342

average length of 145.1K tokens. Thus, the tasks in343

∞-Bench are well-suited to test whether the model344

has a precise understanding of long contexts with-345

out information loss. For more detailed statistics,346

please refer to Appendix D. We believe that these347

two benchmarks can comprehensively reflect the348

capabilities of the model on downstream tasks.349

Models. We select representative models from the350

three types of baselines mentioned in Section 4.1351

for comparison. Additionally, we focus on com-352

paring FocusLLM with recently proposed models353

capable of processing extremely long streaming in-354

puts. Specifically, StreamingLLM utilizes a sliding355

window mechanism; InfLLM (Xiao et al., 2024)356

stores processed context into memory units and357

retrieves it using attention scores; Activation Bea-358

con compresses the preceding text to maintain a359

smaller context length. CEPE (Yen et al., 2024) 360

adopts a small encoder to process long inputs chunk 361

by chunk and feeds the memory to a decoder by 362

cross-attention. 363

Main Results. The experimental results are dis- 364

played in Table 2 and 3. We reference some base- 365

line results from (Xiao et al., 2024), which are 366

based on the Vicuna-7B-v1.5 model. Vicuna-7B- 367

v1.5 is based on LLaMA-2-7B but fine-tuned on 368

conversational data. For a fair comparison, we also 369

train a Vicuna version of FocusLLM. For YaRN- 370

128K, we select the version based on Mistral-7B- 371

inst-v0.2, which is stronger than Vicuna. For 372

LongLlama, as they do not have a version based 373

on the Llama2, we directly utilize the officially 374

released model. CEPE and LongLLaMA will expe- 375

rience OOM on ∞-Bench due to their substantial 376

memory usage, so we only report their results on 377

LongBench. Since not all models are inherently 378

capable of processing infinite text lengths, we also 379

elaborate the effective lengths for each method pre- 380

sented in Tables 2 and 3 in Appendix E. 381

From the experimental results, we can make the 382

following comparisons between FocusLLM and 383

previous methods: (1) FocusLLM outperforms all 384

baseline models, achieving the best results on both 385

the relatively shorter benchmark Longbench and 386

the extremely long benchmark ∞-Bench. This 387

demonstrates FocusLLM’s capability for effective 388

understanding and reasoning on long sequences 389

and its broad applicability. (2) Different types 390

of baseline models exhibit various shortcomings. 391

For training-free models like PI and NTK, extend- 392

ing the length to 128K comes with a significant 393

sacrifice in performance. Due to the lack of pre- 394

cise understanding of the full context, models that 395
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Vicuna-7B-v1.5 (4K)
Original LChat Vic-16K Yarn-128K PI NTK Stream InfLLM FocusLLM

∞-Bench

Math.Find 11.71 9.43 13.43 17.14 OOM OOM 6.00 11.14 11.71
En.MC 30.13 24.45 34.06 27.95 OOM OOM 32.31 31.44 32.31
Code.Debug 38.83 27.66 35.03 22.59 OOM OOM 46.19 34.26 28.43
Retrieve.KV 1.40 1.40 1.00 0.00 OOM OOM 0.00 0.60 12.40
Retrieve.Number 4.41 23.90 10.34 56.61 OOM OOM 4.41 81.69 83.56
Retrieve.PassKey 5.08 28.64 15.25 92.71 OOM OOM 4.92 99.15 95.76

Average 15.26 19.25 18.19 36.17 – – 15.64 43.05 44.03

LongBench

NarrativeQA 11.19 20.35 17.85 19.67 0.78 5.66 15.61 15.53 21.14
Qasper 13.79 29.35 25.85 11.10 2.71 21.17 23.84 23.57 31.07
MultiFieldQA 22.08 42.55 37.15 35.06 1.01 36.76 32.80 37.14 36.73
HotpotQA 12.71 33.19 24.72 11.94 1.35 19.54 22.17 22.53 40.65
2WikiMQA 13.99 24.33 21.41 12.02 1.17 14.51 18.38 18.82 20.30
Musique 4.81 14.71 8.44 7.52 0.71 4.30 6.30 5.24 14.20
GovReport 27.67 30.83 27.62 29.46 1.9 25.26 23.18 26.79 26.66
QMSum 19.72 22.93 22.63 21.53 1.29 19.48 20.09 20.91 20.50
MultiNews 26.61 26.63 27.88 16.04 1.16 25.88 26.19 26.43 27.45
TREC 69.00 66.50 69.00 68.50 4.50 59.00 61.00 67.50 68.00
TriviaQA 81.94 83.99 85.63 88.21 0.90 25.85 78.81 84.36 81.63
SAMSum 35.12 12.83 9.15 26.52 0.12 5.05 32.46 31.89 35.36
PassageRetrieval 9.00 30.50 4.00 16.25 0.62 5.00 6.00 9.00 15.67
LCC 64.53 54.79 50.64 66.39 21.54 53.65 63.70 61.41 62.79
RepoBench-P 50.17 58.99 44.94 55.82 19.36 44.58 48.26 47.52 53.72

Average 30.82 34.70 31.79 32.40 3.94 24.38 31.92 33.24 36.17

Table 2: The results on ∞-Bench and LongBench. The models on the right part can process extremely long inputs.
On both benchmarks, FocusLLM achieves significant improvements compared to strong baselines.

employ sliding window or condensing techniques,396

such as StreamingLLM and Activation Beacon per-397

form poorly on ∞-Bench (see also Appendix F),398

with performance nearly approaching zero on some399

tasks. This indicates that they suffer from severe400

information loss. As for fine-tuned models like401

LongChat and CEPE, their limitation is the re-402

stricted supported length. For example, CEPE403

struggles to handle lengths beyond 128K effec-404

tively (Yen et al., 2024). (3) The approaches of405

length extrapolation and continual training on long406

inputs, while capable of scaling context, introduce407

substantial computational and memory costs. In408

contrast, FocusLLM processes the text in chunks409

and utilizes parallel decoding, which significantly410

conserves both the memory and time for inference.411

5 Further Exploration412

5.1 Visualization of Candidate Tokens413

To further illustrate how candidate tokens func-414

tion, we provide a more intuitive explanation by415

visualizing the information carried by these tokens416

through attention weight heatmaps when decoding417

the next token. Due to space limitations, we place418

the visualization results in Appendix H. We have419

the following observations: i) In Passkey Retrieval420

task, the model assigns a high attention weight to421

one certain candidate token, indicating that this to-422

ken effectively carry the passkey information from 423

its respective chunk. In contrast, candidate tokens 424

from chunks containing noisy text carry no use- 425

ful information, resulting in near-zero attention 426

weights. ii) In LongBench NarrativeQA task, the 427

model shows a slightly different pattern, where 428

many candidate tokens receive attention, as mul- 429

tiple chunks’ information may be aggregated for 430

the QA task. The visualization results demonstrate 431

that FocusLLM effectively uses candidate tokens 432

to transmit information from the context while ig- 433

noring irrelevant noise. 434

5.2 Scaling to 400K Context 435

We contend that FocusLLM is capable of process- 436

ing extremely long sequences. To validate this, we 437

first conduct experiments on the passkey retrieval 438

task (Mohtashami and Jaggi, 2024). The results, as 439

illustrated in Figure 1, demonstrate that FocusLLM 440

maintains nearly 100% effectiveness at lengths of 441

up to 400K3, outperforming all other models. We 442

also extended the language modeling experiments 443

introduced in Section 4.1 to 400K, a length at which 444

most models fail to manage effectively. The result 445

is presented in the Appendix G. 446

3Constrained by hardware, the maximum length we are
able to test is 400k tokens.
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Figure 3: FocusLLM exhibits a more
efficient growth pattern in memory
usage compared to previous methods.
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Figure 4: Comparison of inference
time. The time taken by FocusLLM
is superior to previous methods.

5.8

6.0

6.2

256 512 1024 2048

2.0

2.2

2.4

2.6

Chunk Size

Pe
rp

le
xi

ty

PG19
Proof-Pile
CodeParrot

Figure 5: Perplexity under different
chunk size with the total sequence
length fixed as 8K on three datasets.

Llama-7B-chat (4K)
Original CEPE L_L A_B FocusLLM

NarrativeQA 18.70 22.14 - - 20.38
Qasper 19.20 26.34 - - 21.73
MultiFieldQA 36.80 31.56 - - 36.91

-Average 24.90 26.68 30.12 27.14 26.34

HotpotQA 25.40 34.95 - - 38.95
2WikiMQA 32.80 32.39 - - 32.95
Musique 9.40 9.76 - - 15.39

-Average 22.60 25.70 16.37 28.28 29.10

GovReport 27.30 13.90 - - 25.54
QMSum 20.80 20.30 - - 21.86
MultiNews 25.80 3.10 - - 26.35

-Average 24.70 12.43 24.19 25.15 24.55

TREC 61.50 68.50 - - 68.00
TriviaQA 77.80 87.90 - - 85.08
SAMSum 40.70 32.38 - - 41.63

-Average 60.00 62.92 60.31 60.72 64.81

LCC 52.40 66.21 - - 58.42
RepoBench-P 43.80 58.94 - - 54.27

-Average 48.10 62.57 66.05 57.83 56.35

Average 35.20 36.31 37.50 38.54 39.01

Table 3: The results of LLaMA2-based models on tasks
of LongBench. L_L represents Long Llama and A_B
represents Activation Beacon. FocusLLM outperforms
memory-based and compression-based methods, and
maintains attention to all tokens of context.

5.3 Memory Footprint and Inference Time447

For models that focus on long texts, aside from448

training costs, another critical aspect is the memory449

footprint and inference time. In this section, we450

compare FocusLLM with several previous long-451

context methods capable of retaining global in-452

formation by preserving the cache of all context:453

Standard (PI/NTK), LongLlama, and CEPE. As for454

models like Activation Beacon and StreamingLLM,455

although they maintain a constant memory foot-456

print by only retaining cache for a fixed window,457

they suffer significant information loss and strug-458

gle with the precise understanding of long texts as459

demonstrated in Section 4.2. Therefore, they are460

not the primary subjects of comparison.461

The results are shown in Figure 3 and Figure 462

4. FocusLLM with or without parallel indicates 463

whether we process each chunk either concurrently 464

or sequentially. The findings indicate that: (1) 465

When ample memory resources are available, par- 466

allel processing is more efficient for FocusLLM. 467

(2) Although FocusLLM splits long texts into nu- 468

merous chunks, resulting in a slightly longer infer- 469

ence time compared to the standard approach, it 470

still holds a significant advantage over other long- 471

context methods. 472

5.4 Chunk Size 473

We conduct an investigation into the impact of 474

different chunk sizes on performance. In theory, 475

larger chunk sizes, as long as they do not exceed 476

the model’s default context length (e.g., 4K for 477

LLaMA-2), are preferable because they allow for 478

processing the memory with a smaller number of 479

forward passes. However, smaller chunk sizes may 480

enable more precise processing. 481

In experiments, we maintain a total sequence 482

length of 8K, testing the perplexity using different 483

chunk sizes on the same samples of PG19. We 484

select {256, 512, 1024, 2048} as our test sizes. The 485

results are shown in Figure 5. We observe that there 486

is no consistent trend in perplexity as the chunk 487

size increases; it remains relatively stable. This 488

confirms our hypothesis that we can employ larger 489

chunk sizes on models with longer default context 490

lengths (e.g. LLaMA-2-32K). We will explore this 491

direction in our future work. 492

5.5 Ablation Studies 493

We employ both Continuation Loss and Reconstruc- 494

tion Loss for the training of FocusLLM. The mo- 495

tivation behind this is to equip the model with the 496

natural language modeling capability while also en- 497

hancing its ability to recover information. Ablation 498

7



LongBench ∞-Bench

Hyper Params. NarrativeQA TREC Math.Find En.MC Retrieve.PassKey

FocusLLM (2K, 2K) 18.53 65.5 13.43 31.00 99.32

Continuation Loss only (2K, 2K) 17.36 60.5 13.71 27.95 1.69
Reconstruction Loss only (2K, 2K) 17.05 62.0 12.86 26.64 91.19

Local Context Size ↓ (1K, 2K) 17.87 63.0 8.86 29.69 99.32

Table 4: Investigations into the training loss and local context size of FocusLLM. We present the results for
representative tasks from LongBench and ∞-Bench. For instance, NarrativeQA belongs to Single-Doc QA, while
TREC relates to Few-shot learning. The Hyper Params is denoted as (local context size, chunk size).

studies as detailed in Table 4, reveal that relying499

solely on the Continuation Loss enables the model500

to manage some tasks effectively. Nonetheless, for501

tasks with substantial dependencies on the preced-502

ing context, like HotpotQA and Retrieve.PassKey,503

the model’s efficacy deteriorates. Similarly, while504

employing the Reconstruction Loss ensures accu-505

rate restatement of the preceding context, the lack506

of generalizability of generating new tokens leads507

to a considerable decrease in performance. There-508

fore, the combined use of both loss functions is509

crucial for enhancing the performance and general-510

izability of FocusLLM.511

We also investigate how the local context size in-512

fluences performance in the last row of Table 4. As513

we reduce the local context size from 3.5K to 1K,514

the performance of most tasks experiences a slight515

decline. This suggests that candidate tokens cannot516

fully replace the information within the context.517

6 Related Work518

6.1 Long-context language models519

One research direction involves length extrapola-520

tion in transformers (Peng et al., 2023; Jin et al.,521

2024), where methods like positional interpolation522

help models adapt to longer sequences (Chen et al.,523

2023a). However, these techniques often fail to ad-524

dress the distraction issue caused by noisy content525

within extended texts (Tworkowski et al., 2024).526

Another research branch focus on modifying the527

attention mechanism or employing compression528

techniques to maintain long texts within manage-529

able lengths (Chevalier et al., 2023; Zhang et al.,530

2024a). For instance, (Xiao et al., 2023) discovered531

that retaining ‘sink tokens’ in conjunction with a532

sliding window can achieve smooth streaming out-533

put. (Zhang et al., 2024a) expanded the context534

dramatically through compression. However, these535

methods share a common limitation: they cannot536

utilize information from all tokens.537

6.2 Memory-enhanced Model 538

The integration of memory layers within trans- 539

former architectures has become a pivotal strat- 540

egy for enhancing long-context comprehension 541

(Bertsch et al., 2024; Tworkowski et al., 2024). 542

Common methodologies in memory-enhanced 543

models often employ recurrent strategies that itera- 544

tively integrate information from the current win- 545

dow into a persistent memory (Munkhdalai et al., 546

2024). Another approach is to initially encode the 547

complete long text into memory tokens, which is 548

then queried in to retrieve pertinent information 549

as needed (Xiao et al., 2024). For example, (Yen 550

et al., 2024) employ a small encoder to sequen- 551

tially encode long text segments, followed by the 552

integration of these encoded chunks into a decoder. 553

However, the drawback of such methods is that 554

the memory length does not extrapolate well, and 555

expanding the memory still incurs substantial com- 556

putational costs. In contrast, FocusLLM offers 557

superior training efficiency and remains effective 558

on exceedingly long texts. 559

7 Conclusion 560

In this work, we introduced FocusLLM, a novel 561

framework that significantly extends the context 562

length of LLMs. The core innovation lies in the 563

parallel decoding strategy, which distribute the bur- 564

den of understanding long texts across each chunk 565

and effectively aggregating global information. Fo- 566

cusLLM stands out due to its remarkable train- 567

ing efficiency, allowing us to achieve substantial 568

gains in context comprehension with minimal com- 569

putational and memory cost. Compared to exist- 570

ing methods, FocusLLM not only exhibits supe- 571

rior performance across downstream tasks but also 572

maintains low perplexities when handling extensive 573

texts, up to 400K tokens. We hope FocusLLM can 574

be an inspiring work for the community, driving 575

further exploration of long-context models. 576
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8 Limitations577

Our research has certain limitations: (1) Due to578

hardware constraints, our tests were limited to579

400K tokens, which does not represent the upper580

bound of FocusLLM’s capabilities. Future work581

will explore the full performance potential of Fo-582

cusLLM and investigate the use of quantization583

methods to reduce operational costs. (2) While584

FocusLLM demonstrates exceptional training ef-585

ficiency, we have observed that training on larger586

datasets can significantly enhance its generalizabil-587

ity and performance. Therefore, increasing the588

training data size will be a focus of future research.589
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A Efficiency of FocusLLM711

The parallel decoding mechanism of FocusLLM712

effectively reduces the computational complexity713

of the standard architecture. Specifically, when714

dealing with very long sequences, the primary com-715

putational burden in the transformer architecture716

lies in the attention mechanism, which has a com-717

plexity of O(L2), where L represents the total se-718

quence length. By dividing the sequence into n719

chunks, the complexity within each chunk becomes720

O((L/n)2). Therefore, when we process chunks721

in parallel, the time complexity can be reduced722

to O((L/n)2). And the space complexity of n723

chunks becomes approximately O((L/n)2 ∗ n) =724

O(L2/n). This means that compared to a standard725

transformer, FocusLLM can reduce the computa-726

tional complexity to a fraction, 1/n or even more727

of the original theoretically, where n is the number728

of chunks into which the sequence is divided. In729

experiments, the longer the sequence length, the730

more apparent the improvement in efficiency.731

B Details of Training Data732

We randomly sampled 80K sequences from Red-733

Pajama as our training corpus. Table 5 shows the734

detailed distribution.

Length 3K∼4K 4K∼6K 6K∼8K Total

Count 30K 16K 34K 80K
Portion 38% 20% 42% 100%

Table 5: Length distribution of training corpus.

735

C Experimental Details 736

We primarily conduct experiments on the LLaMA2- 737

7B-Chat model. The additional trainable param- 738

eters mentioned in Section 2 amount to only 2B 739

approximately. 740

Specifically, we conducted training on a Linux 741

server equipped with 8×A100 GPUs, each with 742

40GB of memory. The training was carried out 743

for 10,000 steps, equivalent to one epoch of the 744

entire training dataset, using a batch size of 8 and 745

a learning rate of 5e-5 with a linear scheduler. To 746

conserve GPU memory, we employed deepspeed’s 747

zero2_offload optimizing stage. The training pro- 748

cess was completed in approximately 20 hours. 749

For hyper-parameters, during training, the chunk 750

size was randomly selected from the set {64, 128, 751

256, 1024, 2048}. For the length of tokens in- 752

jected into each chunk, we set a default of 512 753

tokens for inference. And we ensured this length 754

did not exceed the chunk size in the training pro- 755

cedure. As a result, the length of injected tokens 756

was min{512, chunk size}. For evaluations on 757

the Longbench, we adopt a larger local context size 758

of 3,500 tokens for FocusLLM, consistent with the 759

official setting. 760

D Details of Benchmarks 761

D.1 LongBench 762

LongBench(Bai et al., 2023) includes 14 English 763

tasks, 5 Chinese tasks, and 2 code tasks, with the 764

average length of most tasks ranging from 5K to 765

15K. In experiments, we only utilize the English 766

tasks. Detailed statistics of the tasks used in our 767

paper are shown in Table 6. 768

D.2 ∞-Bench 769

The benchmark (Zhang et al., 2024b) comprises 770

12 unique tasks, each crafted to assess different 771

aspects of language processing and comprehension 772

in extended contexts. Detailed statistics of the tasks 773

used in our paper are shown in Table 7. 774
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Task Task Type Eval metric Avg len Language Sample
HotpotQA Multi-doc QA F1 9,151 EN 200

2WikiMultihopQA Multi-doc QA F1 4,887 EN 200
MuSiQue Multi-doc QA F1 11,214 EN 200

MultiFieldQA-en Single-doc QA F1 4,559 EN 150
NarrativeQA Single-doc QA F1 18,409 EN 200

Qasper Single-doc QA F1 3,619 EN 200
GovReport Summarization Rouge-L 8,734 EN 200
QMSum Summarization Rouge-L 10,614 EN 200

MultiNews Summarization Rouge-L 2,113 EN 200
TriviaQA Few shot F1 8,209 EN 200
SAMSum Few shot Rouge-L 6,258 EN 200

TREC Few shot Accuracy 5,177 EN 200
PassageRetrieval-en Synthetic Accuracy 9,289 EN 200

LCC Code Edit Sim 1,235 Python/C#/Java 500
RepoBench-P Code Edit Sim 4,206 Python/Java 500

Table 6: Detailed statistics of the tasks used in our paper of LongBench.

Task Name Context Examples Avg Input Tokens Avg Output Tokens
En.MC Fake Book 229 184.4k 5.3

Code.Debug Code Document 394 114.7k 4.8
Code.Run Synthetic 400 75.2k 1.3
Math.Find Synthetic 350 87.9k 1.3

Retrieve.PassKey Synthetic 590 122.4k 2.0
Retrieve.Number Synthetic 590 122.4k 4.0
Retrieve.KV[2̂] Synthetic 500 89.9k 22.7

Table 7: Detailed statistics of the tasks used in our paper of ∞-Bench.

Activation Beacon
Code Debug 21.32
Math Find 11.71
Math Calc 0.00

Passkey 1.69
Number String 1.69
KV Retrieval 0.00

Table 8: The accuracy of Activation Beacon on ∞-
Bench.

E Details of the effective lengths of775

models in Table 2 and 3776

Not all models are capable of processing infinite777

text lengths. Therefore, we provide a clear explana-778

tion of the effective input length for each method779

in Table 2 and Table 3. Specifically: (i) For models780

with a finite context length, we truncate the inputs781

by only preserving the system prompts and the tail782

of inputs to simulate real-world applications with783

streaming inputs like (Xiao et al., 2024). For in-784

stance, in Table 2, these models include Original785

(4K), LChat (32K), Vic-16K (16K), Yarn (128K),786

PI (128K), and NTK (128K). (ii) For other models,787

including StreamingLLM, InfLLM, LongLlama,788

CEPE, Activation Beacon, and our FocusLLM, the789

input can theoretically be of any length. So we790

input the entire sequence on the two benchmarks.791
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Figure 6: Perplexity on PG19 dataset of FocusLLM
compared to methods PI and NTK. FocusLLM can
maintain low perplexity even at token counts up to 400K
tokens.

F Supplementary Results on ∞-Bench of 792

Activation Beacon 793

Due to the compression of the context cache, Acti- 794

vation Beacon cannot retain full global information, 795

which hinders its ability to handle tasks that require 796

precise comprehension of the entire text in real-life 797

scenarios, as demonstrated in the results presented 798

in the Table 8. 799

G Scaling language modeling to 400K 800

context 801

As shown in Figure 6, FocusLLM maintains a low 802

perplexity even with a context length of 400K. Note 803
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that the number of candidate tokens corresponding804

to 400K is 200, which is far greater than the num-805

ber of candidate tokens seen during training. This806

demonstrates that FocusLLM has strong extrap-807

olation capabilities. We can effectively scale to808

lengths greater than 400K by either using longer809

sequences during training or by employing a base810

model with a default context length, which we plan811

to explore in future work.812

H Visualization of Attention Heatmap813

We visualized the information carried by candi-814

date tokens when their Key/Value representations815

are concatenated with the tokens in the local con-816

text, and select a few representative heads in Figure817

7 and Figure 8. We found that different patterns818

emerge in Passkey Retrieval and NarrativeQA tasks.819

The y-axis corresponds to the query representa-820

tions of tokens in the local context, and the x-axis821

corresponds to the key representations of candi-822

date tokens combined with the local context tokens.823

Therefore, the first few columns of the heatmap rep-824

resent the contribution of candidate tokens to the825

local context. We made the following interesting826

observations: i) Not all heads in all layers attend to827

candidate tokens, and higher layers attend to candi-828

date tokens more frequently than lower layers. This829

is likely because higher layers are more critical for830

the final representation. ii) In Passkey Retrieval831

task, only one chunk contains passkey information,832

while the others are noises. As a result, we observe833

that a single candidate token receives high atten-834

tion (a single column is highlighted), while other835

candidate tokens are ignored. iii) In NarrativeQA836

task, the final answer may rely on information from837

multiple chunks, so we see that many candidate838

tokens are assigned higher attention weights. In839

summary, the result indicates that FocusLLM ef-840

fectively ignores noise and aggregates information841

from multiple chunks.842
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Figure 7: Attention Heamap of Passkey Retrieval task. The first 8 columns, marked by red rectangule lines, represent
the attention weights corresponding to 8 candidate tokens. Since only one chunk contains the important passkey
information while the others are merely noises, we observe that only a single candidate token receives high attention
score (with a single column highlighted). This suggests that FocusLLM can effectively extract important information
while discarding irrelevant texts.
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Figure 8: Attention heamap of NarrativeQA in LongBench. The first 15 columns, marked by red rectangle lines,
represent the attention weights corresponding to 15 candidate tokens. Since the final answer may rely on information
from multiple chunks, we observe that many candidate tokens are assigned high attention weights. This suggests
that FocusLLM effectively aggregates information from multiple chunks.

14


	Introduction
	Architecture
	Notations
	Dynamic Condensing
	Parallel Decoding

	Training
	Experiments
	Long-context Language Modeling
	Downstream Tasks

	Further Exploration
	Visualization of Candidate Tokens
	Scaling to 400K Context
	Memory Footprint and Inference Time
	Chunk Size
	Ablation Studies

	Related Work
	Long-context language models
	Memory-enhanced Model

	Conclusion
	Limitations
	Efficiency of FocusLLM
	Details of Training Data
	Experimental Details
	Details of Benchmarks
	LongBench
	-Bench

	Details of the effective lengths of models in Table 2 and 3
	Supplementary Results on -Bench of Activation Beacon
	Scaling language modeling to 400K context
	Visualization of Attention Heatmap

