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ABSTRACT

The rapid evolution of drug-resistant (DR) microbial has become a severe issue
for human health. Antimicrobial peptides (AMPs) are powerful therapeutic drugs
for treating DR microbial, but their clinical application is limited by activity and
toxicity. Recently, AI has shown its power in discovering the high-activity AMPs,
relying on the database of the AMP’s wet-lab activity data. However, the activity
data from this database are collected from thousands of papers, with their differ-
ent wet lab experiments setting on one or few types of DR bacteria, have further
limits the development of AI methods for AMP identification. Moreover, recently
AlphaFold has revolutionized the field of drug discovery, but how can we ben-
efit from the predicted structure for AMP discovery still remains unknown. To
address the above challenges, we make two contributions. a) We construct the
DRAMPAtlas 1.0 that contains the training set collected from the public and the
testing set from our wet lab experiment. Each AMP sequence is equipped with
its 3D structure, activity data, and toxicity, where the activity is about six types
of DR bacteria. b) We conduct extensive experiments for AMP identification,
by modeling the 3D structure as voxels or graphs, in conjugate with its sequence
information or solely with the structure or sequence. We have made many inter-
esting findings. We hope that our benchmark and findings can benefit the research
community to better design the algorithms for high-activity AMP discovery. All
code and data associated with the work will be made publicly available after ac-
ceptance.

1 INTRODUCTION

Antimicrobial peptides (AMPs) are short amino acid (AA) sequences that can kill bacteria, fungi,
tumor cells, and viruses with the length typically from 6 to 50 (Fjell et al., 2012; Wan et al., 2024).
Although people have been discovering AMPs for over 80 years, fewer than 50 AMPs have been
under clinical experiment or approved by the US Food and Drug Administration (FDA) (Chen &
Lu, 2020). Drug resistance (DR) has become a serious issue for humans, with an increasing number
of deaths of over 1.2 million a year (Murray et al., 2022). The membrane disruption and another
mechanism of AMPs (Silva et al., 2020), have given the AMPs the potential to deal with the DR issue
of conventional antibiotics. Over the past decades, especially the revolution of deep learning (LeCun
et al., 2015), scientists have found new ways to effectively find the potential clinically useful AMPs.
Still, there is a long way to find the AMPs with high activity like antibiotics with the low toxin, high
stability, etc (Chen & Lu, 2020).

The performance of deep learning-based methods highly relies on the data (Li et al., 2024b; Wan
et al., 2024), specifically, the ground truth (GT) value and input data pairs. a) For the GT values,
in the real of the discovery of AMPs, the wet lab data like minimal inhibitory concentration (MIC)
values are collected from papers under different experimental setting (Wan et al., 2024). For exam-
ple, some AMP experiments are conducted under water while another AMP is conducted under the
plasma protein solution (Moretta et al., 2021). Besides, according to the classification of DR bacteria
from WHO (Willyard, 2017), there is more than one type of DR bacteria. One AMP may perform
differently under different types of DR bacteria (Szymczak et al., 2023). Current studies (de Breij
et al., 2018; Das et al., 2021; Ma et al., 2022; Huang et al., 2023; Cao et al., 2023; Pandi et al.,
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a. sequence representation b. structure representation
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Figure 1: Sequence representation v.s. Structure representation of the AMPs. We aim to uncover
the effectiveness of those representation methods in AMP identification.

2023; Szymczak et al., 2023; Li et al., 2024a) only investigate the effectiveness of a few AMPs
(usually less than 30) in wet lab under different DR bacteria. b) For the input data, current methods
for AMPs discover mainly rely on the sequence (Huang et al., 2023; Li et al., 2024a; Cao et al.,
2023) except for these works (Wang et al., 2024). Although the Alphafold (Jumper et al., 2021)
have revolution the field of drug discovery, the impact of the AMPs discovered with the structure
is merely discussed, due to the lake of multi-sequence alignment (MSA) information (Fang et al.,
2023). It makes people wonder, how important is the structure information for the AMP discovery.
The above situation has been an obstacle in the field of AMP identification. We try to address the
above concerns with the following two designs in our benchmark.

1. The intrinsic noise and missing values of different DR bacteria species have been the ob-
stacle for AMP training set construction (Wan et al., 2024). Considering it is unreliable
to re-conduct the wet lab experiments for these DR bacteria, we first conduct the wet lab
experiments on a family of AMPs, which contains 150 AMPs with their activities on 6
types of several DR bacteria. This dataset is treated as the test set for the evaluation of
algorithms. Based on these GT values, we have trained a missing value imputation algo-
rithm (van Buuren & Groothuis-Oudshoorn, 2011) to fill the missing values in the training
data set. Thus, we contribute the DRAMPAtlas 1.0, with its unique advantage on the clean
test set and cleaned training set.

2. The use of structure information in AMP discovery has merely been discussed (Wan et al.,
2024). According to the principle that the structure determines the function, the protein
structure is quite important (Anfinsen, 1973). Thus, we conduct extensive experiments on
the analysis of different structure representations, such as voxels, and graphs, and how other
information (secondary structure) from the 3D structure can benefit AMP identification.

With our tailored-constructed DRAMPAtlas 1.0 in Section 3, this work aims to answer the follow-
ing two questions, one for feature representation and another for the learning representation: 1.
Representation: How important is structure information & can structure information work together
with sequence information? 2. Learning: Can we benefit from modern neural network structure,
feature fusion, or re-balancing strategies?

To answer the above questions, we first set the multi-label classification settings in Section 4.1 in
conjugate with the evaluation metrics. For the first question, we benchmark the input information
in Section 4.2. We rigorously evaluate the performance of the different types of input data, such as
sequence, structure, sequence & structure, etc. We answer the second question in Section 4.3 by
evaluating different types of backbone neural networks and different re-balancing strategies. We also
validate the scale-up ability of network parameters. All these trained models will be made available
to the public.
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Table 1: Contribution1: A reliable test set dataset for AMP identification. This dataset is un-
precedented with respect to data quality and annotation scales. # indicates the number. “strains”
indicates how many types of micro-bacteria are tested in the wet lab. “DS” and “DR” indicate the
AMPs are evaluated on drug-sensitive or drug-resistant micro-bacteria, respectively.

Dataset Venue # of seqs # of species # of strains DS/DR

SAAP (de Breij et al., 2018) STM 2018 25 1 1 DS
CLaSS (Das et al., 2021) NBE 2021 20 2 2 DS
SearchAMP (Huang et al., 2023) NBE 2023 130 1 1 DS
BertAMP (Cao et al., 2023) BIB 2023 40 7 8 DS
Cell-freeAMP (Pandi et al., 2023) NC 2023 30 6 6 5/1
HydrAMP (Szymczak et al., 2023) NC 2023 26 4 5 3/2
FoundationAMP (Li et al., 2024a) NC 2024 29 4 5 4/1
Ours - 151 6 18 DR

2 RELATED WORK

2.1 REPRESENTATIONS OF ANTIMICROBIAL PEPTIDES (AMPS)

From a global to a local perspective, the features of AMPs can be categorized into global descriptors,
sequence descriptors, and structure-based descriptors.

Global descriptors summarize properties of peptides using fixed-size vectors, capturing aspects
such as sequence composition, structural features, and physicochemical properties (Xu & et al.,
2021). These descriptors have been extensively studied (Osorio et al., 2015; van Westen & et al.,
2013; Müller et al., 2017; Romero-Molina et al., 2019; Barigye et al., 2021; Chen & et al., 2018);
however, employing all available descriptors can lead to high-dimensional and redundant informa-
tion. Feature-selection algorithms (Saeys et al., 2007) help generate low-dimensional representa-
tions better suited for machine learning (ML) models. Constructing global descriptors requires
substantial effort and domain knowledge but is useful for capturing specific information when train-
ing data is limited. It is worth noting that global features can be derived from both sequence and
structural information.

Sequence-based representations capture primary amino acid sequences using an n × L matrix,
where n is the number of features per amino acid and L is the sequence length. Amino acids are
often represented using one-hot encoding (Chen & et al., 2021), where each amino acid is uniquely
identified. However, one-hot encoding does not capture additional amino acid properties, which
can be addressed by incorporating physicochemical and evolutionary features (Kawashima, 2000).
Deep learning (DL) techniques can learn amino acid embeddings in a data-driven manner (ElAbd
& et al., 2020). Sequence-based representations are useful for ML models like recurrent neural
networks (Hochreiter & Schmidhuber, 1997; Chung et al., 2014) and have been applied to peptide
sequence generation (Wan et al., 2022) and property prediction (Chen & et al., 2021).

For structural representations, there are two prevailing methods: voxel representation and graph
representation.

Voxel representations involve voxelization of peptides’ 3D structures, with each voxel storing in-
formation about atom occupancies and properties (Jiménez et al., 2017). Three-dimensional convo-
lutional neural networks (3D-CNNs) (Maturana & Scherer, 2015) process these structures and have
been applied to tasks like protein binding site prediction (Jiménez et al., 2017) and protein-ligand
binding affinity prediction (Jones & et al., 2021).

Graph representations model peptides by using nodes (atoms or residues) and edges (chemical
bonds or spatial distances) to form graphs (Wang et al., 2023; Gong et al., 2023). These graphs are
encoded using features such as one-hot encodings of atom or residue types and geometric properties.
Graph-based inputs are suitable for geometry-related ML tasks and have been used in protein struc-
ture prediction (Jumper et al., 2021; Baek et al., 2021), AMP prediction (Yan et al., 2023), molecular
conformation generation (Ganea & et al., 2021), and antibody design (Jin et al., 2022).
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Table 2: Contribution2: A structured training set for AMP identification. This dataset is un-
precedented with respect to data quality and annotation scales. # indicates the number. “strains”
indicates how many types of micro-bacteria are tested in the wet lab. “DS” and “DR” indicate the
AMPs are evaluated on drug-sensitive or drug-resistant micro-bacteria, respectively. Note that our
structure is predicted by two models, alphafold and helixfold.
Dataset Venue # of seqs # of species # of structure cleaned

LAMPv2 (Ye et al., 2020) 2020 23,253 - - No
dbAMP 2.0 (Jhong et al., 2022) 2021 26,447 - 3444 No
DRAMPv3 Shi et al. (2022) 2022 22,151 - 546 No
CAMPr4 (Gawde et al., 2023) 2022 16,945 - 933 No
Dbaaspv3 (Pirtskhalava et al., 2021) 2023 22,612 - >3,600 No
QLAPD (Wang et al., 2024) 2024 12,914 6 12,914 Yes
DRAMPAtlas 1.0 Ours 23,673 6 47,346 Yes

Although previous studies have employed some of these representation methods for AMP identifica-
tion, there is still a lack of systematic evaluation of the correlation between different representations
and AMP identification results. This gap exists both from the perspective of individual representa-
tions and the fusion of multiple representations through neural networks.

2.2 LEARNING TO IDENTIFY AMPS

Machine learning-based approaches (Garcı́a-Jacas et al., 2022; Sidorczuk & et al., 2022) trained
on public AMP databases (Pirtskhalava et al., 2021; Waghu et al., 2016; Witten & Witten, 2019;
Wang et al., 2016) have been utilized to predict antimicrobial activity from amino acid sequences, a
crucial step in AMP development. These approaches employ traditional ML methods like random
forests and support vector machines (Meher et al., 2017; Xiao et al., 2013; Fingerhut et al., 2021;
Santos-Júnior et al., 2020; Burdukiewicz & et al., 2020; Lawrence & et al., 2021; Bhadra et al.,
2018; Pane & et al., 2017), as well as DL-based methods (Yan & et al., 2020; Veltri et al., 2018;
Wang et al., 2024). However, variations in input representations, classification strategies for AMPs,
and evaluation metrics across studies complicate the determination of the most effective features
and models. To ensure fair model comparisons, feature selection and classification of training data
require standardized benchmarking (Garcı́a-Jacas et al., 2022; Sidorczuk & et al., 2022). Improving
data quality is also vital, as public AMP databases often contain data from diverse experimental
conditions and organisms (Wan et al., 2024). Therefore, in this work, we build a high-quality testing
set for AMP identification through extensive wet lab experiments.

3 DRAMPATLAS 1.0: BENCHMARKING AMPS IDENTIFICATION

3.1 GROUND TRUTH CONSTRUCTION FOR THE TESTING SET

We constructed a multi-label test set through extensive wet lab experiments on a series of peptides.
This test set includes the Minimum Inhibitory Concentration (MIC) performance of each peptide
against six high-risk Drug-Resistant (DR) bacterial classes listed by WHO. The MIC values for each
DR bacterium are represented by the average MICs of three different strains. The specific names of
these bacteria are: A. baumannii, P. aeruginosa, E. coli, K. pneumoniae, S. enterica, and S. aureus.
All peptides were tested under uniform wet-lab conditions, and each strain was tested twice to ob-
tain an average MIC value as the assessment result. The entire process spanned 18 months and cost
over $100,000, with detailed specifics provided in Appendix Table 1. The template peptides, from
which these similar peptides were derived, were generated using a conditional variational autoen-
coder (Wang et al., 2024). Through manual expertise and various methods, 151 peptide sequences
were modified from this template.

In Table 1, we present a comparison between our new test set with previous works, highlighting that
our method currently involves the largest dataset of peptides verified through extensive wet-lab ex-
periments under uniform experimental conditions for MIC testing. Unlike previous studies (de Breij
et al., 2018; Huang et al., 2023) that often focused on a single type of bacteria, such as Staphylococ-
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cus aureus, and were not necessarily targeting drug-resistant (DR) bacteria, our dataset covers six
different types of microorganisms and includes 18 different strains, most of which are DR strains.
This not only increases the diversity and representativeness of the data but also allows our method
to be evaluated in more complex and realistic environments. Furthermore, previous datasets like
SAAP (de Breij et al., 2018), CLaSS (Das et al., 2021), and SearchAMP (Huang et al., 2023),
despite achieving certain outcomes in their respective areas, have fewer sequences, species diver-
sity, and strain numbers compared to our dataset. For instance, the SAAP dataset only includes
25 sequences and 1 strain, whereas our dataset contains 151 sequences and 18 strains, significantly
enhancing the model’s generalization ability across diverse samples. Additionally, some datasets
only evaluated drug-sensitive (DS) strains, while our dataset encompasses both drug-sensitive and
drug-resistant strains (such as Cell-freeAMP, HydrAMP, and FoundationAMP), providing a more
comprehensive perspective for studying the effects of antimicrobial peptides on different strains.

This rich and diverse dataset not only helps to reduce bias in model evaluation but also enhances the
understanding of antimicrobial heterogeneity. By conducting extensive tests across multiple species
and strains, our method demonstrates stronger adaptability and robustness, thereby ensuring greater
reliability and practicality in real-world applications.

3.2 GROUND TRUTH ASSEMBLY FOR THE TRAINING SET

The Ground Truth (GT) for our training data, namely the MIC values for the six classes of bacteria,
was sourced from the DBAASP and PDB databases. Given that longer sequences require biolog-
ically more expensive synthesis methods compared to cheaper chemical synthesis, only peptides
ranging from 6 to 30 amino acids in length were included. For the DBAASP database, a series
of data cleansing algorithms were employed to obtain average MIC values for each class of DR
bacteria, while peptides from the PDB database were designated as negative samples (Wang et al.,
2024). The peptides consist exclusively of the 20 standard amino acids. Considering the challenge
of obtaining a comprehensive dataset from existing databases, we employed the Multiple Imputation
by Chained Equations (MICE) (van Buuren & Groothuis-Oudshoorn, 2011) to impute missing MIC
values. This imputation method demonstrated superior results on the wet-lab dataset compared to
the direct imputation of ineffective MIC values.

Table 2 presents a comparison of various datasets used for antimicrobial peptide (AMP) identifica-
tion, emphasizing their contributions in terms of sequence count, species diversity, structural data
availability, and data cleanliness. Notably, our proposed dataset, DRAMPAtlas 1.0, introduced in
this work, comprises 23,673 sequences and includes structures for all entries, totaling 47,346 struc-
tures due to multiple conformations per peptide. It also covers six microbial species and has been
thoroughly cleaned to ensure high data quality. Compared to other datasets like LAMPv2 (Ye et al.,
2020), dbAMP 2.0 (Jhong et al., 2022), and DRAMPv3 (Shi et al., 2022), which either lack struc-
tural information or data cleaning, DRAMPAtlas 1.0 provides a more comprehensive and reliable
resource for AMP research.

Furthermore, while QLAPD (Wang et al., 2024) also offers cleaned data with structures for 12,914
sequences across six species, DRAMPAtlas 1.0 significantly expands on the structural annotations
and sequence count. The availability of extensive structural data in our dataset facilitates advanced
modeling approaches that leverage three-dimensional information, potentially leading to more accu-
rate AMP identification. This comprehensive dataset addresses the limitations of previous resources
by providing high-quality, well-annotated data, thus serving as a valuable asset for the research
community in developing and benchmarking AMP prediction models.

3.3 REPRESENTATION AND LEARNING OF ANTIMICROBIAL PEPTIDES

In the domain of antimicrobial peptide (AMP) identification, the representation of peptides is a
pivotal factor influencing the performance of machine learning models. Different representations
encapsulate varying levels of biological and chemical information, affecting the models’ ability to
learn discriminative features. In this study, we considered three primary types of representations for
AMPs: sequence representations, structural representations, and global descriptor representations.
Each representation offers unique insights into the peptides’ properties, and understanding their
impact on model learning is essential for advancing AMP identification.
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3.3.1 SEQUENCE REPRESENTATION

Amino acids in the peptides were encoded using integers ranging from 1 to 20, corresponding to
the 20 standard amino acids. Sequences were padded with 0 to handle varying lengths. This integer
encoding was often transformed into a one-hot encoding, resulting in a binary vector representation
for each amino acid residue. One-hot encoding preserves the categorical nature of amino acids and
allows models to learn from the positional information within sequences.

Sequence representations focus on the primary structure of peptides, providing foundational infor-
mation for models to identify motifs and patterns associated with AMPs.

3.3.2 STRUCTURAL REPRESENTATION

To incorporate three-dimensional structural information, we employed structural representations in-
volving two key steps: structural prediction and structural encoding.

Structural Prediction We predicted the tertiary structures of peptides using advanced algorithms:

• AlphaFold (Jumper et al., 2021): A state-of-the-art protein structure prediction tool utiliz-
ing multiple sequence alignments and transformer architectures to predict protein folding.

• HelixFold (Fang et al., 2023): A BERT-like encoder-decoder architecture that predicts
structures directly from sequences without requiring homologous sequences.

Since many peptides lack sufficient homologous sequences, especially short AMPs, we adapted the
input sequences for AlphaFold by repeating them to meet the algorithm’s requirements. Detailed
hyperparameters for structure prediction are provided in the Appendix.

Structural Encoding Structural representations aim to provide models with comprehensive spa-
tial and physicochemical information, potentially enhancing the identification of structural motifs
relevant to antimicrobial activity. We encoded them using:

1. Graph Neural Networks (GNNs): Each amino acid residue was represented as a node in a
graph, with edges representing spatial proximity and sequential relationships. In our graph
representation (Gong et al., 2023), each node features a 43-dimensional vector comprising:
1. Amino Acid Embedding (20 dimensions): A one-hot encoding of the amino acid type. 2.
Energy Information (20 dimensions): Energy-related features pertinent to the amino acid.
3. 3D Position (3 dimensions): Cartesian coordinates representing the spatial location of the
amino acid residue. This representation captures both the structural and physicochemical
properties of the peptides within the graph framework.

2. Voxel Representation: We encoded molecular characteristics into a three-dimensional
voxel grid (Wang et al., 2024). The voxel representation had dimensions of 64 × 64 × 64
with four channels: 1. Atom Weight: Encoding the atomic mass of the amino acids. 2.
Amino Acid Charge: Representing the electric charge properties. 3. Amino Acid Cate-
gory: Categorical classification of amino acids (e.g., hydrophobic, polar). 4. Hydrophilic
Information: Indicating the hydrophilicity of amino acids.
Voxel representations allow neural networks to process 3D spatial data, capturing intricate
structural details of peptides.

3.3.3 GLOBAL DESCRIPTOR REPRESENTATION

Global descriptors offer aggregated properties of peptides derived from sequences or structures.
Each peptide was represented by a 10-dimensional vector encompassing features such as charge,
and hydrophobicity. These descriptors provide holistic insights into the peptides’ biochemical prop-
erties, which can be crucial for distinguishing AMPs from non-AMPs. The detailed list of global
descriptors used is available in Appendix Table 2.

3.3.4 LEARNING REPRESENTATIONS

Understanding the learning process from these representations is vital for optimizing model perfor-
mance. We experimented with a wide array of machine learning methods to evaluate their efficacy:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Comparison of various deep learning methods with different AMP representations.
We chose commonly used machine learning methods for sequence, voxel, and graph representation
of AMPs. We conducted a fair setting for every method. Detailed settings are provided in Appendix
C. Metrics below (mean±s.d.) were tested on the 151 samples DRAMPAtlas test set across 5 folds.
In an overall view, methods rely on sequence representation to perform the best, followed by graph
methods and then voxel methods.

Category Model AP F1 ACC AUC

3.1
seq.

SVM (Cortes & Vapnik, 1995) 55.25±2.64 69.25±0.00 53.64±0.00 54.20±5.21

XGBoost (Chen & Guestrin, 2016) 61.55±2.10 69.25±0.00 53.64±0.00 65.37±3.30

CatBoost (Prokhorenkova et al., 2018) 71.33±5.05 70.86±0.26 57.15±0.56 73.05±5.10

MLP (Rumelhart et al., 1986) 70.95±4.53 68.64±0.98 55.06±2.72 65.34±7.34

GRU (Chung et al., 2014) 84.93±0.30 72.98±1.27 61.50±2.54 87.41±0.67

LSTM (Hochreiter & Schmidhuber, 1997) 85.55±0.25 72.73±1.39 60.99±2.79 88.50±0.43

RNN (Elman, 1990) 78.80±4.44 71.54±0.60 58.59±1.24 82.59±2.57

Transformer (Vaswani et al., 2017) 81.81±1.78 74.64±2.21 69.54±6.64 84.01±2.51

Mamba (Dao & Gu, 2024) 78.81±1.56 75.99±2.64 71.17±2.57 79.34±2.29

3.2.1
structure

voxel

ResNet (He et al., 2016) 73.54±2.12 68.00±2.01 61.26±5.24 73.05±1.90

DenseNet (Huang et al., 2017) 76.49±1.10 70.61±4.38 64.42±1.62 74.60±1.38

ConvNeXt (Liu et al., 2022) 61.22±4.63 69.73±0.98 55.06±2.83 56.42±5.24

ViT (Dosovitskiy et al., 2021) 70.31±1.31 69.49±0.49 55.65±4.02 70.93±1.92

SwinTransformer (Liu et al., 2021) 56.75±0.94 69.25±0.00 53.64±0.00 51.83±1.02

3.2.2
structure

graph

GCN (Kipf & Welling, 2017) 80.39±2.33 73.37±0.42 62.32±0.85 82.20±2.13

GraphSAGE (Hamilton et al., 2017) 77.37±0.97 73.08±1.14 61.79±2.37 79.63±0.31

GAT (Veličković et al., 2018) 80.33±1.93 76.17±0.91 67.90±1.91 82.87±1.33

GIN (Xu et al., 2019) 79.21±1.60 76.20±1.35 69.71±2.75 80.32±1.99

GATv2 (Brody et al., 2022) 78.69±1.57 73.62±1.29 62.85±2.48 81.51±2.20

1. Conventional Machine Learning Methods: Models such as Support Vector Machines (SVM),
XGBoost, and CatBoost were utilized, leveraging their robustness in handling tabular and sequen-
tial data. 2. Deep Learning Architectures: We explored modern architectures including Multi-
layer Perceptrons (MLP), Recurrent Neural Networks (RNN), Long Short-Term Memory networks
(LSTM), Graph Neural Networks (GNN), and convolutional networks suitable for voxel data.

We conducted in-depth analyses of the predicted structures from different algorithms to understand
their impact on model learning. Additionally, recognizing the significant issue of data imbalance
in AMP identification (stemming from the relatively small number of known AMPs compared to
non-AMPs), we performed imbalance-aware loss functions to mitigate the effects of skewed class
distributions. Detailed analyses and discussions of these representations and learning methods are
presented in Section 4. Our investigations underscore the importance of selecting appropriate rep-
resentations and learning algorithms to enhance the predictive performance of AMP identification
models. By benchmarking these approaches, we aim to provide insights that facilitate the develop-
ment of more accurate and generalizable models in the field of antimicrobial peptide research.

4 METHOD AND EXPERIMENT

4.1 EVALUATION METRICS AND IMPLEMENTATION

To evaluate our method, we employ four key metrics: Precision, F1-score, Accuracy, and the Area
Under the Receiver Operating Characteristic Curve (AUC). These metrics offer a comprehensive
assessment of model performance across various dimensions, with Precision measuring the accu-
racy of positive predictions, F1-score providing a balance between Precision and Recall, Accuracy
reflecting overall correctness, and AUC evaluating the model’s ability to distinguish between classes
under varying threshold settings.

For data pre-processing and partition, peptides with MIC values less than 128 were considered
active, and those with values greater or equal to 128 were deemed inactive, forming the labels for our
multi-label classification task. To prevent data leakage, we compared the similarity of each peptide
in the test set with those in the training set, excluding any training peptides with more than 30%
similarity to those in the test set, remaining 13k samples for further process. The remaining training
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Table 4: Comparison on different structure source and model scale. We utilize structural pre-
dictions from AlphaFold and HelixFold to construct voxel, graph, and global descriptor inputs for
ML models. AlphaFold, being the more accurate of the two prediction methods, demonstrates the
significance of structural accuracy on performance. For model scaling, ResNet is selected for its
extensibility, which illustrates the influence of a model’s width (@ indicates the channel number)
and depth (number of layers) on performance. Detailed settings are shown in Appendix D.3.

Structure voxel Structure graph AP F1 ACC AUC

4.1
Structure
Prediction

Alphafold - 73.54±2.12 68.00±2.01 61.26±5.24 73.05±1.90

Helixfold - 73.38±0.89 69.22±1.86 59.23±3.03 70.02±1.39

- Alphafold2 80.33±1.93 76.17±0.91 67.90±1.91 82.87±1.33

- Helixfold 81.06±1.90 73.61±0.77 63.47±1.26 78.95±2.86

4.2
Global

Descriptor

Sequence (10d) 82.81±1.52 75.03±0.80 65.52±1.51 85.72±1.46

Alphafold (3d+7d from Seq.) 80.71±1.00 75.29±0.74 66.05±1.42 83.10±1.37

Helixfold (3d+7d from Seq.) 81.13±1.29 75.03±0.61 65.52±1.17 83.52±0.97

4.3
Scale

up

ResNet34@16 73.54±2.12 68.00±2.01 61.26±5.24 73.05±1.90

ResNet34@32 76.71±1.76 72.04±0.53 63.07±2.03 75.05±2.12

ResNet50@16 74.15±4.66 70.91±1.41 59.65±4.09 72.99±5.14

ResNet50@32 73.88±4.23 71.38±1.97 62.38±2.30 72.66±4.76

set peptides were divided into five folds for cross-validation, with the best-performing samples from
each fold evaluated on the test set.

Computational Infrastructure and Software Setup: Our computational setup includes an Intel
Core i9-14900K CPU and two NVIDIA 4090D GPUs, each with 24GB of VRAM, complemented
by 256GB of RAM. System storage is managed by a 4TB Samsung 990 PRO SSD. The platform
runs on Ubuntu 22.04, with NVIDIA Driver Version 550.107.02 and CUDA Version 12.4. Soft-
ware configurations are as follows: PyTorch version 2.2.0 (Paszke et al., 2019), torch-geometric
version 2.5.3 (Fey & Lenssen, 2019), and Python version 3.10.0. Peptide sequence global attributes
were processed using BioPython version 1.78 (Cock et al., 2009), and evaluation metrics were com-
puted using torchmetrics version 1.4.0 (Detlefsen et al., 2022). For detailed hyperparameter settings,
please refer to Supplementary Material Table 2.

4.2 ANALYSIS ON THE REPRESENTATION OF AMPS

Table 3 presents a comprehensive comparative analysis of various feature representation methods for
antimicrobial peptides (AMPs), highlighting the performance metrics across different deep-learning
models. The table underscores the significant impact that feature representation has on the predictive
capabilities of machine learning models in the context of AMP classification. Notably, it is observed
that simple sequence-based representation methods outperform more complex representations that
incorporate spatial, energy, and other structural information. This is particularly surprising, as one
might intuitively expect richer representations to yield better performance due to the additional in-
formation they encapsulate.

Sequence-based models such as LSTM and Transformer demonstrate superior performance, achiev-
ing average precision (AP) scores of 85.55% and 81.81% respectively. These models capitalize
on the sequential nature of amino acid sequences, effectively capturing the essential patterns and
dependencies necessary for accurate classification. In contrast, voxel-based methods, despite their
computational intensity and the inclusion of three-dimensional structural data, lag behind in perfor-
mance. For instance, the ResNet model with voxel representation attains an AP of only 73.54%,
significantly lower than its sequence-based counterparts. This underperformance may be attributed
to issues in the construction of voxel-based inputs or potential challenges in the imputation of labels
during training.

Moreover, within each representation category, most models exhibit comparable performance levels,
with few outliers significantly underperforming. Graph-based methods, which encode structural in-
formation in the form of graphs, also show promising results. The GAT model, for example, achieves
an AP of 80.33% and a relatively high F1 score of 76.17%, suggesting that attention mechanisms in
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Table 5: Analysis on the fusion of different representations. The networks used to extract the
feature are shown in the left part. We adopt the resnet34 as the voxel feature extracting backbone,
while GAT is used to extract the feature from graph representations.
Sequence Structure Descriptor AP F1 ACC AUC

LSTM - - 85.55±0.25 72.73±1.39 60.99±2.79 88.50±0.43

- - MLP 82.81±1.52 75.03±0.80 65.52±1.51 85.72±1.46

LSTM - MLP 82.15±1.82 76.40±2.03 67.99±3.82 83.89±2.31

LSTM ResNet - 77.88±2.67 73.55±1.95 64.53±3.19 76.68±2.63

LSTM GAT - 76.85±3.81 73.64±0.46 62.85±0.91 80.05±2.57

- ResNet MLP 78.70±1.15 69.50±2.41 67.15±1.75 78.04±1.62

- GAT MLP 79.23±1.17 73.74±1.97 62.94±3.78 81.17±1.95

LSTM ResNet MLP 82.02±1.20 74.66±2.00 66.98±5.21 81.05±1.52

LSTM GAT MLP 78.51±1.98 72.77±0.83 61.10±1.68 80.57±2.71

graph networks effectively capture important structural relationships. These findings indicate that
while complex representations do not necessarily guarantee better performance, certain architec-
tures like LSTM, ResNet, and GAT models interact more effectively with specific feature encoding
schemes. Further investigation into these top-performing models may provide deeper insights into
optimizing representation methods for AMP classification. Besides, the sequenced-based methods
generally outperform the two other structure representation methods. Finding 1: Sequence infor-
mation is important due to its accuracy.

Table 4 presents a comprehensive comparison of different structure sources and model scales in
the context of antimicrobial peptide (AMP) identification. In Table 4.1, we evaluate the impact of
using structural predictions from AlphaFold and HelixFold to construct voxel and graph inputs for
machine learning models. The results indicate that graph-based representations consistently outper-
form voxel-based ones. Specifically, when utilizing graph representations derived from AlphaFold
predictions, the model achieves an Average Precision (AP) of 80.33% and an AUC of 82.87%.
This is a significant improvement over voxel representations, which attain an AP of 73.54% and an
AUC of 73.05% using AlphaFold. The superior performance of graph representations suggests that
graph-based inputs may better capture the structural nuances crucial for AMP activity prediction.
Additionally, while both AlphaFold and HelixFold are effective for graph construction, AlphaFold
slightly outperforms HelixFold in terms of AP and AUC, highlighting Finding 2: the accurate
structural predictions will lead to better result, as the AlphaFold provides more accurate structure
prediction result than HelixFold.

Table 4.2 shows the effect of different types of global descriptors and their impact on the identi-
fication performance. The results show that the global information like alpha-sheet fraction from
sequence is slightly better than the information from structure, which might be due to the inaccurate
predicted AMP’s structure. Finding 3: global information from sequence is more beneficial for
AMP identification than from structure.

In Table 4.3, we examine how scaling the model’s width and depth influences performance by exper-
imenting with different configurations of ResNet models (He et al., 2016). Increasing the network
width from 16 to 32 channels yields noticeable improvements; for instance, ResNet34@32 achieves
an AP of 76.71% compared to 73.54% with ResNet34@16. This enhancement suggests that wider
networks can capture more discriminative features essential for accurate AMP identification. Con-
versely, scaling the model depth from ResNet34 to ResNet50 does not consistently lead to better
performance. In some cases, deeper models like ResNet50@32 show marginal decreases in AP and
AUC compared to their shallower counterparts. This observation may indicate that beyond a certain
depth, the benefits of additional layers diminish, possibly due to overfitting or vanishing gradient
issues, as discussed in He et al. (2016). Overall, the results underscore that model width plays a
more critical role than depth in this specific application, and that carefully selecting the structural
representation and model architecture is crucial for optimizing AMP identification models. Finding
4: properly scale up the channel number benefits the performance.

9
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Table 6: Comparison on different rebalancing method. We choose the LSTM+MLP ablation in
Table 5 as the baseline. DistributedBalancedLoss has 4 reweight functions implemented: Inverse
(Inv), Squareroot inverse (Sqrt inv), Rebalance, and Class-balance (CB).

Methods AP F1 ACC AUC
No Rebalancing 82.15±1.82 76.40±2.03 67.99±3.82 83.89±2.31

DistributionBalancedLoss
(Wu et al., 2020)

Inv 82.37±2.85 76.62±1.32 68.92±3.00 84.14±3.78

Sqrt inv 80.30±1.89 77.08±1.06 70.24±2.61 81.93±1.56

Rebalance 80.13±1.65 77.19±0.80 70.18±1.83 82.05±1.86

CB 38.08±0.00 0.00±0.00 46.36±0.00 18.71±0.00

ZLPR (Su et al., 2022) 82.06±0.83 75.85±1.72 67.04±3.25 84.37±1.21

WeightedBCE (Rezaei-Dastjerdehei et al., 2020) 82.25±1.67 78.28±1.64 71.83±3.25 84.52±1.98

4.3 ANALYSIS ON THE LEARNING PROCESS OF AMPS

Table 5 presents an analysis on the fusion of different representations for antimicrobial peptide
(AMP) identification during the training process. Models combining various feature extraction net-
works for sequence (LSTM), structure (ResNet or GAT), and descriptors (MLP) are evaluated
using metrics such as Average Precision (AP), F1 score (F1), Accuracy (ACC), and Area Under the
ROC Curve (AUC). The results show that using only sequence information with an LSTM network
achieves the highest AP and AUC scores of 85.55% and 88.50%, respectively, indicating strong
predictive power when modeling sequential data alone.

Furthermore, combining sequence features with descriptors generally leads to competitive perfor-
mance. For example, the combination of LSTM and MLP yields an F1 score of 76.40% and an
ACC of 67.99%, showing improvement over using descriptors alone. However, incorporating struc-
tural information through ResNet or GAT does not consistently enhance performance, which may
be due to the complexity of structural data or potential overfitting. Overall, the results suggest that
sequence-based models, possibly augmented with descriptor information, are effective for AMP pre-
diction, while the benefits of including structural representations require further investigation. The
potential reason is that the predicted structure of the AMPs is not that accurate. Finding 5: fusion of
different types of representation can be useful when we select proper structure, but the inaccuracy
of structure information still hurts.

Table 6 compares different rebalancing methods applied to the LSTM+MLP baseline model from
Table 5. The methods evaluated include various weighting schemes from DistributionBalanced-
Loss (Wu et al., 2020), namely Inverse (Inv), Squareroot inverse (Sqrt inv), Rebalance, and
Class-Balance (CB), as well as ZLPR (Su et al., 2022) and Weighted Cross-Entropy (Weight-
edCE) (Rezaei-Dastjerdehei et al., 2020). The results indicate that rebalancing methods generally
improve performance metrics such as Average Precision (AP), F1 score, Accuracy (ACC), and Area
Under the ROC Curve (AUC) compared to no rebalancing. Specifically, the WeightedCE method
achieves the highest F1 score (78.28%) and ACC (71.83%), suggesting that weighted loss functions
effectively address the class imbalance in the dataset. From the above analysis, we can draw the con-
clusion that addressing the data imbalance is important in boosting the identification performance.
Finding 6: re-balancing is useful in AMPs identification.

5 CONCLUSION AND DISCUSSION

Our contributions are twofold and aim to mitigate the limitations currently faced by the AI-driven
discovery of AMPs. Firstly, the creation of DRAMPAtlas 1.0 represents a pivotal advancement
in providing a standardized dataset that includes both public data and new wet-lab experimental
results. This dataset not only enriches the available data with comprehensive activity and toxicity
information across six types of DR bacteria but also integrates these with 3D structural data of
each peptide. Secondly, our extensive experiments utilizing both voxel and graph representations
of AMPs, in conjunction with sequence data, have provided valuable insights. We believe These
interesting findings will provide new insights into the research community.
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A APPENDIX OF WET LAB EXPERIMENTS

All bacterial strains were initially streaked onto Nutrient Broth (NB) agar medium and incubated
overnight at 37°C to ensure proper growth. For antimicrobial activity assessments, Minimum In-
hibitory Concentration (MIC) assays of antimicrobial peptides were conducted using Mueller Hin-
ton broth in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines. The
bacterial colonies were first suspended in a saline solution, and the turbidity was adjusted to a Mc-
Farland standard of 0.5 to achieve a bacterial concentration of 108 CFU/mL, followed by a 100-fold
dilution for the inhibition test. Subsequently, 50µL of the bacterial suspension at 1 × 106 CFU/mL
were incubated with an equal volume of different concentrations of peptide solutions (serial 2-fold
dilutions in Mueller-Hinton Broth from Hopebio). After incubation for 18–20 hours at 37°C, the
MIC was recorded as the lowest concentration at which no obvious bacterial growth was observed.
Fifty microliters (50µL) of the mixture without observed bacteria were added to Mueller-Hinton
(MH) agar plates. After further incubation for 18 hours at 37°C, the Minimum Bactericidal Concen-
tration (MBC) was recorded as the lowest concentration with no bacterial growth. All experiments
were performed in biological triplicates to ensure reproducibility and reliability of the results. The
detailed bacterial species used in our studies are shown in Tab. 1.

Table 1: Drug-Resistant bacterial strains used in the study. The number without prefix indicates the
DR bacterial from clinical environment.

A. baumannii P. aeruginosa E. coli K. pneumoniae S. enterica S. aureus
102 112 207 201 ATCC14028 101
104 116 208 209 CMCC50071 103
106 1162 210 212 1032

129
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B APPENDIX OF STRUCTURE PREDICTION DETAILS

In this study, we employed advanced computational frameworks to predict the three-dimensional
structures of antimicrobial peptides (AMPs). Specifically, we utilized ColabFold (Mirdita et al.,
2022), which integrates AlphaFold2 (Jumper et al., 2021), and HelixFold (Fang et al., 2023) for
structure prediction. Additionally, we refined the predicted structures using Rosetta (Leaver-Fay
et al., 2011) to enhance structural accuracy.

B.1 STRUCTURE PREDICTION USING COLABFOLD AND ALPHAFOLD2

We adopted the ColabFold framework, which leverages the AlphaFold2 algorithm for protein struc-
ture prediction. ColabFold accelerates the prediction process through optimized implementations
and allows for easy execution on cloud-based platforms. The detailed command used for structure
prediction is as follows:

colabfold_batch ./a3ms/ ./results/ --amber --use-gpu-relax
--num-relax 1 --num-models 3 --model-order 3,4,5

In this command:

• ./a3ms/ specifies the directory containing input multiple sequence alignments (MSAs)
in A3M format.

• ./results/ designates the directory where predicted structures and related outputs are
saved.

• --amber enables relaxation using the AMBER force field for improved structural refine-
ment.

• --use-gpu-relax allows the relaxation to be performed using GPU acceleration, en-
hancing computational efficiency.

• --num-relax 1 sets the number to 1 for how many of the top ranked structures to relax.
• --num-models 3 specifies that three models will be predicted for each input sequence.
• --model-order 3,4,5 indicates that AlphaFold2 models 3, 4, and 5 will be used in

the prediction process.

The use of the AMBER force field and multiple models aims to improve the accuracy of the predicted
structures by providing optimized energy states and accounting for model variability (Jumper et al.,
2021).

B.2 STRUCTURE PREDICTION USING HELIXFOLD AND REFINEMENT WITH ROSETTA

For additional validation, we employed HelixFold (Fang et al., 2023), a protein structure prediction
framework designed for high-throughput and high-accuracy modeling. We used HelixFold to predict
structures for the AMPs, focusing on capturing intricate structural features that might not be fully
resolved by other methods.

Post-prediction, we refined the structures using the Rosetta software suite (Leaver-Fay et al., 2011),
a widely used tool for protein structure prediction and refinement. Rosetta facilitates energy mini-
mization and conformational sampling, improving stereochemical properties and reducing potential
errors in side-chain orientations and backbone conformations. The refinement process involves:

1. Relaxing the protein structure to find the lowest energy conformation.
2. Fine-tuning side-chain packing to enhance hydrophobic interactions and eliminate steric

clashes.
3. Optimizing hydrogen-bond networks to stabilize secondary and tertiary structures.

The integration of HelixFold and Rosetta refinement ensures that the predicted structures are as
accurate and reliable as possible for downstream analyses.
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C APPENDIX OF DESCRIPTOR DEFINITION

The specific definition of each digit in the descriptor vector is shown in the Tab.2. Among them,
Alpha helix (Index 4), Beta sheet (Index 5), and Turn helix (Index 6) can be extracted either from
sequence with Biopython or from structure predicted by AlphaFold or HelixFold with MDTraj. All
other properties are extracted from the sequence with Biopython.

Table 2: Definition of descriptor vector
Dim Index Property Dim Index Property Dim Index Property

0 Gravy 4 Alpha helix 8 Isoelectric point
1 Aliphatic index 5 Beta sheet 9 Charge density
2 Aromaticity 6 Turn helix
3 Instability index 7 Charge at pH 7

D APPENDIX OF MACHINE LEARNING EXPERIMENTS

D.1 COMMON DEFAULT SETTINGS

If not specified, all the setting in Tab.3 is used.

Table 3: Common experiment settings
Optimizer AdamW Batch size 256

Weight decay 0.01 Base hidden dims (Seq.) 128
Learning rate 0.001 Base hidden dims (Voxel) 16
Loss function BCEWithLogitLoss Base hidden dims (Graph) 128

Epochs each fold 50 Peptide structure source AlphaFold

D.2 SETTINGS OF TABLE 3

For sequence models, bidirectional forward is enabled if possible, layer number is set to 2. Addition-
ally for MLP, 3 layers and a dropout rate of 0.3 are specified; for the transformer, it has 4 attention
heads.

For voxel models, the DenseNet growth rate is set to 16, ViT patch size is (8, 8, 8), SwinTransformer
patch size is (4, 4, 4), and window size (2, 2, 2)

For graph models, 2 layers and a dropout rate of 0.3 is set.

D.3 SETTINGS OF TABLE 4

In Table 4.1, the voxel method uses ResNet34@16, graph method uses GAT@128. In Table 4.2, a
3-layer MLP@128 is used to encode the descriptor.
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E APPENDIX OF VOXEL AND GRAPH FEATURES ABLATION

We conducted ablation experiments on features encoded to the peptide representations. Most of the
experiment settings are shared with Appendix C, voxel-based experiments use model ResNet34@16,
and graph-based experiments use model GAT@128. Detailed results are shown in Tab.4

The ablation study reveals several key findings regarding the impact of feature removal on perfor-
mance metrics. For voxel features, the exclusion of charge yields the highest AP at 76.36 and AUC at
74.26. Conversely, removing the hydrophilic type results in the lowest performance across metrics,
underscoring its critical role in maintaining accuracy and AUC. In the context of graph features, the
absence of energy leads to the highest AP at 84.74 and AUC at 88.23. Meanwhile, removing amino
acid information significantly diminishes performance, highlighting its importance for sustaining
metric scores.

Table 4: Impact of feature removal on voxel and graph Representations
Ablation type Info removed AP F1 ACC AUC

Voxel

No remove 73.54±2.12 68.00±2.01 61.26±5.24 73.05±1.90

Atom weight 74.31±3.16 71.06±1.13 62.38±2.03 72.67±3.30

AA Hydrophilic type 69.47±4.04 66.89±2.21 57.92±2.57 66.09±4.74

AA Charge 76.36±2.46 70.07±0.87 61.08±1.89 74.26±2.79

AA Category 73.30±0.82 70.17±1.45 61.41±2.39 71.50±1.17

Graph

No remove 80.33±1.93 76.17±0.91 67.90±1.91 82.87±1.33

AA Embedding 64.03±1.25 70.83±0.31 57.09±0.65 65.35±0.88

Energy 84.74±0.61 75.69±0.51 66.78±0.94 88.23±0.55

Position 80.84±1.45 75.81±3.27 66.91±6.14 83.29±1.92
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