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Abstract
The general ability to achieve a singular task with
a set of decentralized, intelligent agents is an im-
portant goal in multiagent research. The complex
interaction between individual agents’ incentives
makes designing their objectives such that the
resulting multiagent system aligns with a desired
global goal particularly challenging. In this work,
instead of considering the problem of designing
suitable incentives from scratch, we assume a
multiagent system with given preset incentives and
consider automatically modifying these incentives
online to achieve a new goal. This reduces the
search space over possible individual incentives
and takes advantage of the effort instilled by the
previous system designer. We demonstrate the
promise as well as the limitations of re-purposing
multiagent systems in this way, both theoretically
and empirically, on a variety of domains. Surpris-
ingly, we show that training a diverse multiagent
system to align with a modified global objective
(g→g′) can, in at least one case, lead to better gen-
eralization performance in unseen test scenarios,
when evaluated on the original objective (g).

1. Introduction
Designing an objective for a single artificial agent that

accurately reflects human values is difficult (Gabriel &
Ghazavi, 2021). Designing value-aligned objectives for
a system of artificial agents is even more complex. Even
if individual agent objectives may be value-aligned and
seemingly innocuous in isolation, they may conflict with
each other when brought together in a multi-agent system.
Consider, for example, the sensible goal of tasking a
self-driving car with minimizing its occupant’s commute
time to work. Assuming the car is also guaranteed to drive
perfectly safely, would a city of such vehicles align with
our desired values? Unfortunately, this is not the case, as
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exemplified by Braess’s paradox (Braess, 1968; Wardrop,
1952; Beckmann et al., 1956). In certain road networks, each
car minimizing commute time counter-intuitively leads to
higher commute time for all. This result is not a byproduct of
reward-hacking or any suboptimal driving policy, but a direct
result of rational behavior. Furthermore, naively replacing all
individual objectives with a singular shared global objective
as is standard in cooperative multiagent learning (Rashid
et al., 2018; Sunehag et al., 2017) is not a balm for these
issues; e.g., we assume individuals actually want to minimize
their own commute time, not the average commute time of
an entire city. These adversarial results, collectively coined
price of anarchy, present a challenge for multi-agent align-
ment. Furthermore, we may desire more from a multiagent
system than simply minimal average commute time across a
population. For example, in an instance of Braess’s paradox
in London, work to transform the Strand into a pedestrian
space started in 2021. Westminster City Council said closing
the Strand to motorists would “provide better movement of
[motor] traffic” and, at the same time, “improve the public
realm.” (Reid, 2022). Not only do current governments seek
systems that minimize average commute time, but also ones
that align with more general values (e.g., reducing green-
house gas emissions or inequity (Fehr & Schmidt, 1999)).
Our work aims to (1) automatically modify agents’ rewards
to (2) optimize an arbitrary global objective (e.g., minimize
average commute time + greenhouse gas emissions).

(1) Automatically Modifying Rewards. Humans with di-
verse skills and preferences are often brought together to
solve a variety of tasks. Similarly, ongoing AI research is cur-
rently developing a wide array of artificial agents for particu-
lar tasks. Instead of continuing to develop systems of bespoke
agents for each new global objective, we would like to modify
some core set of original, local objectives slightly to encour-
age an existing group of agents to achieve a new task with the
hope that this would make efficient use of previously learned
skills. Importantly, we want to modify objectives automat-
ically via reward-sharing (McKee et al., 2020; Gemp et al.,
2022; Lupu & Precup, 2020; Peysakhovich & Lerer, 2017).
Reward-sharing assumes that agents are deployed with sensi-
bly defined objectives (e.g., minimize commute time) that we
may wish to modify post deployment in some minimal way.
Automatically re-purposing local objectives in this way may
greatly reduce the search space of finding compatible local
objectives. Gemp et al. (2022) and Lupu & Precup (2020)
have developed approaches based on reward-sharing to mini-
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mize the specific global objective of average agent loss (equiv.
maximize welfare). We follow previous work and consider
linear reward-sharing among n agents (Gemp et al., 2022),
where we aim to learnn2 sharing weights that modify the orig-
inal objectives rather than searching over the infinite space of
all objective modifications. In Sections 3, 4, 5 we analyze how
our framework re-purposes local objectives for each domain.

(2) Importance of Arbitrary Global Objectives. The
problem of automatically constructing or modifying local
objectives is technically difficult. In order to evaluate the
performance of a set of local objectives, one must measure
the value of the global objective at some predicted steady
state behavior (i.e., system equilibrium) (Koutsoupias &
Papadimitriou, 1999; Roughgarden, 2015). Therefore,
simply evaluating the global objective assumes computing an
equilibrium, which is PPAD-complete (Chen & Deng, 2006;
Daskalakis et al., 2009) for Nash equilibria (NE). Several
global objectives have been studied in the social sciences and
computer science, motivating the study of a more diverse set
of global objectives. The debate between utilitarianism and
egalitarianism (e.g. maximizing utility of the least well-off
individuals) is arguably the most well studied (Myerson,
1981). Reducing income inequality is also well studied,
however, procedural modifications to player objectives
(i.e., mechanisms) can only be derived for select settings.
Furthermore, strong negative results exist in the related area
of research on incentive compatible mechanisms; Roberts’
theorem from 1979 proves that the only family of global
objectives that can be assuredly optimized is a weighted sum
of local objectives (Roberts, 1979) (i.e., weighted-welfare).
In this work, we consider non-weighted-welfare objectives.

Our solution is to build upon Decentralised, Differentiable,
Dynamic Compromise (D3C) (Gemp et al., 2022). D3C
was originally designed with welfare as the global objective.
However, at least programmatically, we may substitute any
desired global objective, including non-welfare objectives.
Section 2 introduces notation and covers basics of the D3C
framework, in particular, loss-sharing. Section 3 proves the-
oretical results, delineating the space of viable non-welfare
objectives in two analytically tractable domains. This section
also proposes a Pareto efficiency analysis for evaluating the
tradeoff between individual and global objectives. Section 4
then explores a model case study in traffic networks, reap-
plying the evaluative tools designed in the previous section.
Section 5 looks at a complex multi-agent reinforcement
learning (MARL) setting and examines the resulting multi-
agent system evaluated in held-out test scenarios. Section 6
discusses future directions and interesting challenges.

Contributions: In this work, we propose the problem of
automatically modifying individual agent objectives to opti-
mize a desired global objective or multiagent auto-alignment
for short. We show that agents can in some cases achieve
non-welfare goals via loss mixing in both simple and com-
plex domains, but this is not always the case, and we prove
this analytically. We demonstrate empirically that achieving

these goals may require some tradeoff with individual losses.
Lastly, we encounter a surprising empirical finding that
training on non-welfare objectives can actually lead to higher
welfare on held out test scenarios with unseen partners.

2. Background / Prelims
D3C. For our empirical studies, we assume the D3C
framework (Gemp et al., 2022), in which individual agent
objectives are modified in a way that minimizes the price of
anarchy, i.e., the global loss at an equilibrium relative to the
minimum possible global loss. To reduce the search space
of all possible objective modifications, D3C assumes that
individual objectives are only modified as linear mixtures
of all individual objectives. It is also assumed that these
mixtures respect budget balance, i.e., total loss cannot be
created or destroyed. We explore relaxing this last constraint,
colloquially referred to as “money burning”, in the following
section. Lastly, D3C introduces a KL term on the learned
mixtures that penalizes modifying the originally defined
objectives. In Figure 3, we study the effect of the KL
coefficient on how the multiagent system trades off between
global and individual objectives.

Notation and Modified Objectives. Let agent i’s loss
be ℓi(x) : x ∈ X → R where x is the joint strategy of all
agents. Let ℓAi (x) denote agent i’s modified loss which
mixes losses among agents. Let ℓ(x)= [ℓ1(x),...,ℓn(x)]

⊤

and ℓA(x) = [ℓA1 (x),...,ℓ
A
n (x)]

⊤ where n ∈ Z denotes the
number of agents. We consider transformations of the form
ℓA(x) = A⊤ℓ(x) (note the tranpose) where each agent i
controls row i of A. For example, agent 1’s loss is mixed
according to the first column of A which may not sum to
1, and not the first row, which it controls:

ℓA1 (x)=⟨
[A11,A21,A31]︷ ︸︸ ︷
[0.9,0.3,0.5],[ℓ1(x),ℓ2(x),ℓ3(x)]⟩. (1)

In the case where budget balance is maintained, each row
is constrained to the simplex, i.e. Ai∈∆n−1. Alternatively,
if “money burning”2 is allowed, the entries of A are
assumed non-negative and

∑
j Aij ≤ 1 for all i. Lastly,

[a;b]=[a⊤,b⊤]⊤ signifies row stacking of vectors.

While describing agent objectives as losses seem sensible
in domains such as traffic (e.g., commute time), describing
them as rewards or utilities may better fit others. In the
latter case, note that losses can be recovered from rewards as
ℓi(x)=−ri(x). The usage should be clear from the context.

3. Theory and Tools
Can a multiagent system use linear loss-sharing to

optimize for any global objective? We investigate this
question theoretically and empirically (using D3C) in a
modified Prisoner’s Dilemma, mixed-motive domain. We

2The money burning propositions 3.3 and A.3 still hold if we
remove the sum inequality constraint (

∑
jAij ≤1).
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also analyze a zero-sum game and a fully-cooperative game
in the Appendix. We find that the budget balance assumption
is a key limiting factor to what kinds of global objectives
a multiagent system can achieve, however, we believe the
question of whether one should require budget balance is
domain-specific. Note that the theoretical results in this
section are D3C-agnostic and only assume the simple linear
loss-sharing scheme outlined in Section 2.

3.1. Prisoner’s Dilemma

We adopt the same modified Prisoner’s Dilemma domain
(PD) used in (Gemp et al., 2022) where there are n = 2
players. The modified domain defines each player’s loss as
a strongly convex function:

Definition 3.1 (PD). Let x1,x2 ∈ [0,1] and ℓ1,ℓ2 be player
1 and 2’s strategy spaces and losses respectively:

ℓ1(x1,x2)=x2
1+(x2−1)2 (2)

ℓ2(x1,x2)=x2
2+(x1−1)2. (3)

Note that for any strategy chosen by player 2, player 1
is incentivized to play x1 = 0 (i.e., defect). The game is
symmetric, so the same argument holds for player 2. This
joint strategy (x1 = x2 = 0) constitutes the unique Nash
equilibrium. However, note that both players could achieve
lower loss if they chose to play x1=x2=

1
2 (i.e., cooperate).

This same incentive structure is reflected in the matrix
variant of the Prisoner’s Dilemma, hence the connection.

Reachability: We use this domain to study which global
objectives it is possible to optimize under the assumption
that individual objectives may be modified via linear mixing.
We cannot practically analyze the set of all possible global
functions g(x) on x∈X =[0,1]2, so we instead use squared
distance to an arbitrary joint strategy as a representative
family of global objectives.

3.1.1. ANALYTICAL RESULT: BUDGET BALANCE

We observe the following result on the viability of
ushering players in PD towards minima of global functions
from this family. A proof sketch is provided.

Proposition 3.2. [PD Reachability - w/ Budget Balance]
Assume agent losses are mixed linearly and budget balance
is maintained. Also, assume agents play the Prisoner’s
Dilemma game (PD) as defined in (Gemp et al., 2022) for
n=2 players. Then each of the light blue squares in Figure 1
(left) is the unique Nash equilibrium of PD played with a
unique, corresponding sharing matrix A. Conversely, the
dark squares are not the Nash equilibria of PD for any viable
sharing matrix.

Proof. PD satisfies the conditions of a strongly monotone
game. This class of games is special in that there exists
a unique fixed point of the projected dynamical system
(i.e., simultaneous projected gradient descent) and it is

necessarily a Nash equilibrium (Nagurney & Zhang, 2012).
We ask whether there exists a sharing matrixAwhose unique
equilibrium matches each goal x∗∈ [0,1]2. We can study the
fixed points of the dynamics by setting the player gradients
to zero, giving us a map from A to x∗. We can then identify
the range of this map if A is restricted to a row-stochastic
matrix proving the claim.

3.1.2. EMPIRICAL RESULT: BUDGET BALANCE

We next verify whether running D3C gives us empirical
results that are consistent with Proposition 3.2. We evaluate
reachability for all goals (x∗

1,x
∗
2) by plotting the mean value

of g(x) at the end of D3C training over 3 seeds. Results are
shown in Fig. 2. D3C is empirically able to minimize loss for
the analytically reachable regions (bottom left and top right
squares). For the unreachable regions (top left and bottom
right blocks), D3C is still able to achieve low loss, indicat-
ing that empirically, D3C can still approximately optimize
unreachable global objectives. As the goal (x1,x2)moves far-
ther away from the reachable areas, D3C receives higher loss.

3.1.3. ANALYTICAL RESULT: MONEY BURNING

We now consider which global objectives can be opti-
mized if we allow “money burning” (Sec. 2). We attain the
following result by replicating the same proof technique.

Proposition 3.3. [PD Reachability - w/o Budget Balance]
Assume agent rewards are mixed linearly and budget balance
is not required. Also, assume agents play the Prisoner’s
Dilemma game (PD) as defined in (Gemp et al., 2022) for
n=2 players. Then there always exists a mixing matrix A
that induces a unique Nash equilibrium matching the goal.

Therefore, a multiagent system in which some agents
destroy (or ignore) loss can actually allow the system to
optimize global objectives that were previously impossible.

3.1.4. TRADEOFF: GLOBAL AND LOCAL OBJECTIVES

To understand how D3C re-purposes local agent objectives,
we analyze how D3C trades of between global and local ob-
jectives for different KL divergence coefficients. The optimal
value for the local objective is the maximum welfare solu-
tion, x∗=(0.5,0.5). We sample four goals (0,0), (0.3,0.3),
(0.4,0.4), (0.5,0.5) that have varying degrees of alignment
with the local objective, where x∗ = (0.5,0.5) is the most
aligned and x∗=(0,0) is the least aligned. For each of these
goals we evaluate whether D3C converges to a Pareto-optimal
solution with respect to the global and local objectives. We re-
port the average local objective instead of the local objective
of each player because our goals are symmetric. Results are
averaged over 3 seeds and are shown in Fig. 3. When the local
and global objectives are most aligned, i.e., x∗=(0.5,0.5),
there is only one Pareto-optimal solution. As the objectives
become less aligned, the Pareto-frontier becomes larger. For
all KL coefficients, D3C prioritizes the global objective. For a
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Figure 1. Analytical result on Prisoner’s Dilemma: Budget balance. (Left) Each cell in the grid represents a target joint action x that we
want the system to converge to. Light blue means that D3C can analytically converge to that joint action and dark blue means that it cannot.
(Center, Right) Displays values of the sharing matrix for all target joint actions x. Since we only have two players, we only need two values
A11=1−A12 (center), A22=1−A21 (right) to represent the sharing matrix.

Figure 2. Empirical result: Budget balance. Reported over 3 seeds. (Left) For each target joint action, we ran D3C and report the global
loss achieved. (Center, Right) We report the final sharing matrix D3C agents converged to at the end of training. Darker values represent
more selfish sharing weights. The joint action x=(0,0) is the NE for the identity matrix (selfish sharing weights for A11 and A22. The
joint action x=(0.5,0.5) is the NE for the uniform sharing matrix (Aij =0.5∀i,j).

zero coefficient, D3C finds solutions that are Pareto-optimal.
As we regularize the sharing matrix to be closer to the identity
matrix, D3C becomes worse at maximizing both the global
and local objective. The reason for this is because the more
we regularize, the more D3C converges to solutions that are
closer tox=(0,0). This solution does not maximize the local
objective, whose optimal solution is x=(0.5,0.5), nor the
global objective when x∗∈{(0.3,0.3),(0.4,0.4),(0.5,0.5)}.

4. Model Case Study: Traffic
We depict an example of a traffic network in Fig. 5. Each

vehicles’s local objective ℓi is to minimize their occupant’s
expected commute time from starting node S to destination
node E. This network illustrates Braess’ paradox, which
is an observation that adding more roads can increase

congestion (Christodoulou & Koutsoupias, 2005; Steinberg
& Zangwill, 1983; Youn et al., 2008; Neuman & Barbaro,
2009). Without edge AB, drivers commute according to
the Nash equilibrium with an average commute time of 65
minutes. After adding edge AB, the average commute time
of rational, commute-time minimizing decision makers is
80 minutes (Gemp et al., 2022). We experiment with the
following global objectives g(x) that we may want our
multiagent system to align with:

• Minimizing total commute time:
∑

iℓi.
• Minimizing inequality: |ℓi− 1

n

∑
jℓj |. This objective de-

picts the need for all drivers to have an equal commute time.
• Minimizing total commute time and inequality:∑

iℓi+|ℓi− 1
n

∑
jℓj |. This objectives equally weights the

prior two.
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Figure 3. Pareto-frontier for Prisoner’s Dilemma for varying degrees of KL regularization of the sharing matrix. Each plot visually depicts
a trade-off between the average individual agent loss (y-axis) and the global system objective (x-axis), in the modified PD game. Given
different values of λ, and the expression g(x)+λℓ̄(x) where ℓ̄(x)= 1

n

∑n
i=1ℓ(x), we analytically solve for the value of x that minimizes

the expression (for each of those λ values). We then plot the values g(x) and ℓ̄(x), which represent the black dots in the graph. The blue
dots represent the Pareto frontier of this multi-objective optimisation. The rest of the colored dots in red, orange, yellow, etc. represent
runs of D3C with different KL coefficients. The different KL coefficients are represented by the color bar.

Figure 4. We plot the Average Commute Time, Average Commute Time Inequality, Average Commute Time + Inequality, and Expected
CO2 Emissions over training, respectively. These graphs represent the different global objectives. We expected that the corresponding
line for each plot will have the lowest loss (e.g., the red CO2 line will have the lowest values for the Expected CO2 Emissions plot). We find
that this is true for all plots except Average Commute Time. In that plot, the Comm. + Ineq. line achieves lower commute time, indicating
that adding terms like inequality to the global objective acts as a regularizer that helps optimize for the average commute time objective.

nSA∈{0−4},nBE∈{0−4}
10nSA+10nBE<10nSA+45

10nSA+10nBE<10nBE+45

Figure 5. Traffic Network, replicated from (Gemp et al., 2022) with
permission. Four drivers aim to minimize commute time from
S to E. Commute time on each edge depends on the number of
commuters, nij . Without edge AB, drivers distribute evenly across
SAE and SBE for a 65 min commute. After edge AB is added,
switching to the shortcut, SABE, always decreases commute time
given the other drivers maintain their routes, however, all drivers are
incentivized to take the shortcut resulting in an 80 min commute.

• Minimizing CO2 emissions. We generate a hypothetical
scenario where 1 tree is planted on path SAE, 1 tree is
planted on path SBE, and 2 trees are planted on path SABE.
We assume that the number of trees on a path helps offset
carbon emissions proportionally, where the amount of car-
bon emission is defined as max(0,numCarsOnPath−
numTreesOnPath). Thus, more drivers should take
path SABE to reduce carbon emissions, even though doing
so may increase individual commute time.

Performance on Global Objectives. We first investigate
how well D3C is able to minimize each global objective with
a KL coefficient of 0 (see §2, D3C). Intuitively, we expect
that if D3C is tasked with minimizing global objective i, it
should achieve lower loss when measured by objective i than
D3C tasked with minimizing global objective j ̸= i. Results
are shown in Fig. 4 across 10 seeds. For Inequality, Commute
Time + Inequality, and Expected CO2 Emissions, we verify
that D3C receives the lowest objective when tasked with
minimizing that same objective. However, for the Commute
Time plot, we see that the Commute Time + Inequality objec-
tive receives a lower loss than the Commute Time objective.
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Figure 6. The empirical Pareto-frontier for all global objectives in the Traffic Domain. Given g(x)+λℓ̄(x) where ℓ̄(x) = 1
n

∑n
i=1ℓ(x),

we empirically solve for a value of x that minimizes the expression for various values of λ. Each dot represents the resulting g(x),ℓ̄(x)
for the values of x that we solve for. The blue dots represent the Pareto-optimal points and the rest of the colored dots represent runs of
D3C with different KL coefficients. The color bar represents the different KL coefficients.

Figure 7. We study how D3C agents make the trade off between global and local objectives over time during training with a KL coefficient
of 0. The dotted blue lines represent the minimum values that you can achieve for each global and local objective. The color bar represents
training iterations. Ideally, we would like the trajectory to reach the lower left corner of the plot (where the two blue dotted lines intersect).
For the Inequality and CO2 plots, the local loss and global loss are not well-aligned, which is why D3C prioritizes the global objective
over the local objective.

The Inequality objective is a helpful regularizer that allows
D3C to more easily converge on the optimal solution.

Trade off Between Local and Global Objectives. We
ask how much D3C is trading off individual objectives to
optimize the global objective. We investigate this trade off
for different KL coefficients. Fig. 6 shows the empirical
Pareto-frontier and where the solutions that D3C converged
to lie on that frontier. We also visualize how D3C trades off
between global and local objectives throughout training for a
KL coefficient of 0 in Fig. 7. The blue dotted lines represent
the optimal values for both global and local objectives
where the lower left corner represents a point that minimizes
both objectives perfectly. For all objectives, we observe
that D3C is able to minimize the global objective. For
Inequality and CO2, we find that D3C minimizes the global
objective at the expense of the local objective because the
local objective is not aligned with the global objective. We
also find consistent results with the third plot in Fig. 4 that
adding a loss inequality term to the commute time objective
helps D3C minimize both global and local functions well.

5. MARL Social Dilemma: Clean Up
Finally, we evaluate D3C on Clean Up, a sequential social

dilemma public goods game (Leibo et al., 2021). In Clean
Up, there are 7 agents who are rewarded for eating apples.

Apples grow in an orchard that is inversely proportional to
how much dirt there is in a nearby river. If dirt accumulates
in the river beyond a certain threshold, the apple spawn rate
drops to zero. Clean Up is an interesting domain since some
agents must learn to be prosocial and clean the river in order
for other agents to harvest apples.

All agents use A3C (Mnih et al., 2016) as their underlying
RL algorithm unless specified otherwise. D3C agents must
learn to share reward with each other to incentivize each other
to clean the river. RL agents trained with a prosocial reward
function serve as the dominant baseline. The prosocial
baseline results in an effective but unfair joint policy where 2
or 3 agents constantly clean the river while the others harvest
apples. We ask whether we can choose a global objective that
will allow D3C to learn an effective but fairer policy (e.g.,
by having agents take turns cleaning the river). To do so, we
experiment with the following global objectives (note that
agent objectives are expressed as rewards in this domain):

• Welfare + Equity:
∑

iri−|ri− 1
N

∑
jrj |.

• Welfare:
∑

iri. We include this metric as an ablation.
• Equity: −

∑
i |ri−

1
N

∑
j rj |. We include this metric as

an ablation.

In addition, we compare against two baselines:

6



Auto-Aligning Multiagent Incentives with Global Objectives

Figure 8. Plotting mean welfare over training. Prosocial is the
current state of the art baseline. We implement the Prosocial base-
line by setting the sharing matrix to the uniform matrix. Welfare +
Inequity aversion performs similarly well to the Prosocial baseline.

Figure 9. Plotting mean equity over time. We find that the IRL,
Welfare, and Equity baselines have the most equity, however, all
three of those baselines are not efficient at harvesting apples.

Figure 10. Plotting mean welfare + equity over time. We find that
Equity and Welfare + Equity perform similarly well because Equity
achieves high equity and Welfare + Equity achieves high welfare.

• Prosocial3:
∑

i ri. All agents maximize the total local
reward. This baseline represents what fully cooperative
agents can achieve.

• IRL: ri. Indpendent RL. Agents maximize their own local
reward.

Performance on Global Objectives We begin by evaluating
how well D3C maximizes each global objective. We plot
D3C’s performance with respect to each global objective.
Results are reported across 3 seeds and are shown in

3This is different from D3C maximizing “Total Welfare” above,
where agents modify local reward functions over training via
mixing such that

∑
i ri is maximized. This is not the same as

explicitly replacing each agent’s reward function with
∑

iri.

Figure 11. We plot how D3C trades off between global and local
objectives over time with a KL coefficient of 0. The dotted blue lines
are empirical estimates of the optimal values of the local and global
objectives. The empirical estimates were calculated by taking the
maximum reward value over the different global objectives and
baselines. The Welfare + Equity objective best trades off between
local and global objectives whereas Equity and Welfare optimizes
for the global objective at the expense of the local objective.

Scenario 1 Visiting an altruistic bot population
Scenario 2 Our agents are resident and bots ride free
Scenario 3 Visiting a turn-taking bot population that cleans first
Scenario 4 Visiting a turn-taking bot population that eats first
Scenario 5 Our agents are visited by one reciprocator
Scenario 6 Our agents are visited by two suspicious reciprocators
Scenario 7 Our agents are visited by one suspicious reciprocator

Table 1. Description of Cleanup scenarios pairing D3C trained
agents with held-out partners.

Figures 8, 9, 10. Notably, we find that the Welfare +
Equity objective performs similarly to the Prosocial baseline.
Welfare + Equity is able to do so while achieving significantly
higher equity than the Prosocial baseline.

Trade-off Between Local and Global Objectives. How is
D3C re-purposing agent objectives? We further investigate
how D3C trades off between global and local objectives over
training. Results are shown in Fig. 11, reported over 3 seeds.
The dotted blue lines are empirical estimates of the optimal
values of the local and global objectives. The empirical
estimates were calculated by taking the maximum reward
value over the different global objectives and baselines. The
Welfare + Equity objective best trades off between local and
global objectives whereas Equity and Welfare prioritize the
global objective over the local objective.

With an understanding of how D3C trades off between
global and local objectives across three domains, we further
analyze whether having different global objectives can give
us desirable properties such as zero-shot generalization in
Clean Up.

5.1. Zero-shot Generalization

We evaluate our agents on six test scenarios in Clean Up.
Each scenario contains pre-trained bots that were not seen
during training. The bots in each scenario display a different
behavior outlined in Table 1 (e.g., free riding, turn-taking)
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Figure 12. The x-axis represents runs with different D3C global
objectives + baselines. The last two columns represent agents
who were trained directly on the evaluation scenarios. The y-axis
represents different evaluation scenarios (Table 1).

that help us evaluate how well our trained agents can
coordinate with these diverse unseen agents out-of-the-box.
In Fig. 12 we report the normalized reward that our trained
agents receive in each scenario (reward of 1 is the highest
and 0 is the lowest), as well as the mean normalized reward.
We also report the rewards that exploiter agents, or agents
trained in the test scenarios achieve. These exploiter agent
scores are meant to serve as an upper bound, however we
cannot guarantee that their RL training process converged
to a global maximum. Welfare + Equity obtains the highest
overall mean reward followed by the exploiter agents. We
suspect that Welfare + Equity generalizes well because this
led to turn-taking behavior.

6. Discussion and Conclusion
Our analytical and empirical findings show: 1) Agents can

optimize non-welfare global objectives via reward redistri-
bution in both simple and complex domains. However, this
is not always the case, and we investigate this analytically.
2) Achieving system-level global objectives can come at
some cost to individual agent utilities, thus defining the
trade-off between local and global objectives is critical. 3)
Surprisingly, training on non-welfare objectives can actually
lead to better performance on (some) held out test scenarios.

Taken holistically, our findings clearly motivate the value
of enabling a multi-agent system (MAS) to automatically
reconfigure agent loss functions to be more efficiently
re-purposed for different global objectives. In other words,
this type of framework is useful for fast adaptation of a MAS.
Returning to the traffic domain, a system of self-driving
cars not only needs to optimise routes for commute time and
carbon emissions. Perhaps certain roads are experiencing

heavier traffic, and the MAS needs to adapt its global
objective to incorporate infrastructure sustainability. This
investigation serves as initial deep dive into understanding
value realignment with more general global objectives. As
a result, it opens up many interesting follow-on questions
for exploration.

6.1. Future Directions

Global Objectives. Where should global objectives come
from? In this work, we predefined the global objectives.
However, if we are interested in a value-aligned MAS, it
is important to provide the capability of specifying goals
and train the MAS on goals reflective of real user values
and preferences. Ideally, specification would occur through
natural language, as this lends a familiar and intuitive
interface for humans and allows significantly more flexibility
in specifying the goal. With that, one important consideration
is that fine-tuning of user-specified goal prompts is critical,
given current large language models (LLMs) (Ouyang et al.,
2022). A promising idea is to learn a global reward model,
trained using reinforcement learning from human feedback
(RLHF) (Christiano et al., 2017; Ziegler et al., 2019) or from
AI feedback (RLAIF) (Bai et al., 2022).

Fair Allocation of Reward. In fully cooperative multi-agent
settings, the multi-agent credit assignment problem (Chang
et al., 2003) refers to the task of ascertaining individual
agent contributions from the collective reward achieved. In
problem settings we consider, agents receive local rewards
from the environment; however, it is unclear to what extent
these rewards reflect the contribution made. For example, in
CleanUp, cleaning agents are pivotal for improving welfare
because unless sufficient cleaning occurs, no apples are
spawned. Yet only agents that eat apples are rewarded.
Though D3C redistributes agent environmental rewards,
its bias is to make the minimal modification necessary
for improving welfare. Minimizing the Price of anarchy,
however, is known in some cases to result in increased
inequality (Gemici et al., 2018). Completely reassigning
environmental rewards to lessen the impact of such issues
requires more research.

Reward Sharing Mechanisms. Relaxing the constraint
of budget balancing (e.g. through burning wealth (Hartline
& Roughgarden, 2008)) and examining its impact on the
expected performance is a particularly interesting question
to explore in more depth. How would computed tradeoffs
between local and global objectives change if agents were al-
lowed to burn wealth? Another interesting question is around
designing more sophisticated reward-sharing mechanisms.
Some ideas include examining (a) non-linear combinations
of agent rewards or (b) state-dependent reward mixtures.

This work examines how to automatically modify AI
agent objectives towards a shared global objective. We
view this work as an exciting step for creating adaptable,
value-aligned multi-agent systems.
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A. Theory and Tools — Zero-Sum and Fully Cooperative Games
A.1. Zero-Sum Games

Two-player, zero-sum games are arguably the most intensely studied class in game theory. We now ask the question of
whether linear-mixing can enable the players to minimize distance to a Nash equilibrium. To examine this question, we
consider the canonical “cycle game” with unique Nash equilibrium at x1=x2=0:

Definition A.1 (ZS). Let x1,x2∈R and ℓ1,ℓ2 be player 1 and 2’s strategy spaces and losses respectively:
ℓ1(x1,x2)=x1x2 (4)
ℓ2(x1,x2)=−x1x2. (5)

Assume both players attempt to minimize their losses by performing gradient descent on their mixed losses. We can ask
whether their update directions ever make progress towards the equilibrium. We can quantify this by measuring the inner
product between their update directions at any given joint strategy x=(x1,x2) and the vector from the Nash equilibrium
to their joint strategy (x−x∗=x); a negative inner product would imply progress towards x∗.

A.1.1. ANALYTICAL RESULT: BUDGET BALANCE

In the case where the rows of A live on the simplex, the inner product mentioned above is identically 0. We therefore claim
the following result.

Proposition A.2. [Zero-Sum Reachability - w/ Budget Balance] Assume agent rewards are mixed linearly and budget balance
is maintained. Also, assume agents play the 2-player, zero-sum game (ZS) (Def. A.1). Then no setting of the A matrix (static
or dynamic) leads to updates that proceed towards the Nash equilibrium.

Under discrete time dynamics, all updates will diverge away from the Nash equilibrium.

A.1.2. ANALYTICAL RESULT: MONEY BURNING

We can replicate the analysis above without the simplex constraint to show the following.

Proposition A.3. [Zero-Sum Reachability - w/o Budget Balance] Assume agent rewards are mixed linearly and budget
balance is not required. Also, assume agents play the 2-player, zero-sum game (ZS) (Def. A.1). Then no fixed A matrix leads
to updates that proceed towards the Nash equilibrium. However, an At matrix can be dynamically chosen that will lead
updates towards the Nash equilibrium.

A.2. Fully Cooperative Games

In the case where all agents directly minimize the global objective (ℓi=g∀i; i.e., fully cooperative games), linear-reward
mixing with budget-balance will have no effect. This is simply because a weighted sum of the same local objectives results
in the same local objective. Therefore, a system of agents with the same local objective cannot be re-purposed via these means
to optimize any other global objective.

If the budget balance constraint is relaxed, then it is possible for the mixture weights to sum to numbers other than 1. This
transformation can be represented by introducing a coefficient in front of each player’s objective that indicates the degree
to which their objective has been scaled up or down. This is analogous to introducing a dimension-wise learning rate schedule
such as Adam (Kingma & Ba, 2014), but does not change the locations of equilibria.

Given the negative results on zero-sum and cooperative games, we restrict our attention to mixed-motive games in the
following sections. These games provide the diversity in agent objectives that serves as the necessary basis for constructing
new objectives.
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