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Abstract001

Federated fine-tuning of large language mod-002
els (FedLLMs) presents a promising approach003
for achieving strong model performance while004
preserving data privacy in sensitive domains.005
However, the inherent memorization ability of006
LLMs makes them vulnerable to training data007
extraction attacks. To investigate this risk, we008
introduce simple yet effective extraction attack009
algorithms specifically designed for FedLLMs.010
In contrast to the “verbatim” extraction attacks,011
which assume access to fragments from all012
training data, our approach operates under a013
more realistic threat model, where the attacker014
only has access to a single client’s data and015
aims to extract previously unseen personally016
identifiable information (PII) from other clients.017
This requires leveraging contextual prefixes018
held by the attacker to generalize across clients.019
To evaluate the effectiveness of our approaches,020
we propose two rigorous metrics—coverage021
rate and efficiency—and extend a real-world022
legal dataset with PII annotations aligned with023
CPIS, GDPR, and CCPA standards, achieving024
89.9% human-verified precision. Experimen-025
tal results show that our method can extract up026
to 56.57% of victim-exclusive PII, with "Ad-027
dress," "Birthday," and "Name" being the most028
vulnerable categories. Our findings underscore029
the pressing need for robust defense strategies030
and contribute a new benchmark and evalua-031
tion framework for future research in privacy-032
preserving federated learning. The data and033
code will be made publicly available to facili-034
tate reproducibility.1035

1 Introduction036

Fine-tuning large language models (LLMs) in a037

federated learning (FL) setting (Ye et al., 2024a,b;038

Zhang et al., 2023; Chen et al., 2024; Yao et al.,039

2024) enables collaborative training across dis-040

tributed clients without requiring centralized access041

1To preserve anonymity, code and data release details will
be disclosed after acceptance.

to private data. Recent advancements (Bai et al., 042

2024; Wu et al., 2025; Li et al., 2020; Karimireddy 043

et al., 2020) have primarily focused on improving 044

the performance and efficiency of FL algorithms. 045

However, the privacy risks—particularly the threat 046

of training data extraction—from federated LLMs 047

(FedLLMs) remain insufficiently explored. 048

LLMs are well known for memorizing and re- 049

gurgitating parts of their training data (Carlini 050

et al., 2021, 2023), including sensitive content such 051

as personally identifiable information (PII) (Shao 052

et al., 2024; Kim et al., 2023; Nakka et al., 2024). 053

Although FL helps preserve data locality by ex- 054

changing model updates instead of raw data, our 055

preliminary experiments (Appendix B.3) reveal 056

that FedLLMs are still susceptible to verbatim data 057

extraction (VDE) attacks—where an attacker re- 058

covers large fragments of training data from the 059

aggregated global model. However, VDE relies 060

on unrealistic assumptions such as the adversary 061

having access to large portions of the training cor- 062

pus (Yu et al., 2023; Huang et al., 2022). 063

In this work, we consider a more realistic threat 064

model: a malicious client exploits its own local 065

context to extract previously unseen PII from other 066

clients via the shared global model. For example, 067

a prefix like “The trial of this case has 068

now concluded. The plaintiff, [Name]...” 069

from the attacker’s data can be used to elicit sen- 070

sitive information memorized from other clients. 071

Based on this scenario, we introduce three sim- 072

ple yet effective extraction strategies: (1) using all 073

contextual prefixes from the attacker’s dataset to 074

query the global model, (2) querying the model 075

with high-frequency prefixes from the attacker’s 076

dataset(FP Sampling), (3) locally fine-tuning on 077

prefix–PII pairs to amplify memorization-based ex- 078

traction(LAFt). 079

To evaluate these attacks, we construct a bench- 080

mark dataset by annotating a real-world legal cor- 081

pus with PII labels in accordance with major pri- 082
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vacy regulations such as CPIS, GDPR, and CCPA083

(see Acronyms List A). We assess attack success084

through two metrics: (i) coverage—the proportion085

of target PII extracted from other clients, and (ii)086

efficiency—the amount of PII extracted within a087

limited query budget.088

Experiments show that our attack methods can089

achieve up to 56.57% coverage, with “Address,”090

“Birthday,” and “Name” being the most vulnerable091

PII types. We also observe diminishing returns in092

coverage as the prefix budget increases. Notably,093

FP Sampling and LAFt enhance the diversity of094

extracted PII under constrained budgets. These re-095

sults highlight a concrete privacy risk in FedLLMs096

and call for stronger defense mechanisms.097

This paper makes the following key contribu-098

tions:099

1. We propose three novel and effective data ex-100

traction attack strategies targeting FedLLMs,101

evaluated using the metrics of coverage and102

efficiency. These attacks are orthogonal to103

existing approaches such as gradient recon-104

struction and active membership inference.105

2. We conduct comprehensive experiments show-106

ing that our attacks can extract up to 56.57%107

of victim-exclusive PII, and revealing a trade-108

off between extraction coverage and effi-109

ciency.110

3. We build a real-world benchmark dataset by111

augmenting a legal corpus with fine-grained112

PII annotations aligned with regulatory stan-113

dards (CPIS, GDPR, CCPA), addressing the114

scarcity of resources for studying privacy in115

FL.116

2 Related Work117

This study is related to the fields of data extraction118

attacks and federated learning. For the reader’s con-119

venience, a brief introduction to these concepts is120

provided in Appendix B. In this section, we review121

only the work directly related to our method.122

2.1 PII Extraction Attacks in LLM123

Large language models, due to their massive pa-124

rameter scale, are capable of memorizing exact125

training data samples, making them vulnerable to126

data extraction attacks. These attacks can target127

different granularities of information: sample-level128

and entity-level.129

At the sample level, an attacker with access to130

the full prefix of a training sample can query the131

LLM to regenerate the exact suffix (Yu et al., 2023; 132

Shi et al., 2024; Zhang et al., 2024). This tech- 133

nique, known as verbatim training data extraction 134

(VDE) (Carlini et al., 2021, 2023; Schwarzschild 135

et al., 2024), is widely used to detect data contami- 136

nation and copyright violations (Dong et al., 2024). 137

At the entity level, attackers may know a 138

subset of PII entities—such as names or affili- 139

ations—about a particular subject. By combin- 140

ing these known details with prompt templates 141

(either manually crafted or automatically gener- 142

ated (Kassem et al., 2025)), they can elicit the 143

model to produce additional PII records about the 144

same subject. This is known as an associative data 145

extraction attack (Shao et al., 2024; Kim et al., 146

2023; Zhou et al., 2024). 147

Broadly, PII extraction attacks refer to any attack 148

that aims at eliciting outputs from the model that 149

contain PII (Lukas et al., 2023; Nakka et al., 2024; 150

Huang et al., 2022). Both verbatim and associative 151

techniques can be used to conduct such attacks. 152

While most prior work assumes centralized train- 153

ing with full data access, we investigate PII extrac- 154

tion under federated fine-tuning, where the attacker 155

has limited observability and control. We elaborate 156

on this in Section 4.1. 157

2.2 Privacy Threats in Federated Learning 158

Threats in Federated Learning can be categorized 159

into two main areas: security and privacy (Wang 160

et al., 2024; Xie et al., 2024; Li et al., 2024b). Se- 161

curity threats typically aim to disrupt the entire 162

FL system by invalidating model training (She- 163

jwalkar and Houmansadr, 2021) and introducing 164

backdoors (Bagdasaryan et al., 2020; Chang et al., 165

2024). In contrast, privacy threats have attracted 166

more attention from researchers and focus on steal- 167

ing confidential information from the FL system, 168

such as inferring sensitive properties (Melis et al., 169

2019), reconstructing clients’ private datasets (Zhu 170

et al., 2019; Geiping et al., 2020), and determining 171

the membership and source of training data (Rashid 172

et al., 2025; Vu et al., 2024; Hu et al., 2024). To 173

achieve these attacks, researchers often make dif- 174

ferent assumptions regarding the attacker’s knowl- 175

edge. Common assumptions typically fall into two 176

dimensions: whether the attacker is a client or 177

a server (Chu et al., 2023), and whether the at- 178

tacker is semi-honest (Applebaum, 2017; Hu et al., 179

2024) or malicious. These assumptions determine 180

whether the attacker has access to gradients, lo- 181

cal datasets, model parameters, and the ability to 182
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manipulate them.183

3 Dataset184

3.1 Data Sources and Preprocessing185

The majority of our dataset is sourced from186

the Challenge of AI in Law (CAIL) (Li et al.,187

2024a), supplemented by smaller portions from188

CJRC (Duan et al., 2019) and JEC-QA (Zhong189

et al., 2020). CAIL is a renowned annual competi-190

tion featuring a variety of legal NLP tasks. In our191

study, we focus on two natural language generation192

tasks (i.e., Summary and Reading Comprehension)193

and three natural language understanding tasks (i.e.,194

Match, Exam, and Classification). Detailed task195

descriptions are provided in Appendix E, with Ta-196

ble 6 illustrating representative examples for each197

task. Following prior work (Zhang et al., 2023; Yue198

et al., 2024) on LLM and FedLLM applications in199

the legal domain, we further preprocess and curate200

the dataset to fit our setting. The complete prepro-201

cessing procedure is outlined in Appendix F, where202

Table 7 presents comprehensive dataset statistics.2203

3.2 PII Labeling204

We reviewed the definitions and examples of PII in205

various legal provisions, including CPIS, GDPR,206

CCPA, and Singapore PDPC (see Acronyms List207

in Appendix A), and used them as references to208

establish a systematic PII labeling standard. We209

selected PII types relevant to the text modality and210

removed types that are unlikely to appear in le-211

gal texts (e.g., browser history, SMS content, IP &212

MAC addresses), as well as those that are difficult213

to describe or evaluate (e.g., medical examination214

reports, psychological trends). Ultimately, we de-215

fined labeling guidelines encompassing 7 major216

categories and 36 subcategories. These standards217

are summarized in Table 9, and the distribution of218

labeled PII types is shown in Figure 1.219

We employed a combination of machine-assisted220

annotation and manual verification to label the data.221

For each major PII category, we designed a dedi-222

cated prompt (Figure 9) and used GPT-4o (OpenAI223

et al., 2024) to generate initial annotations. We then224

used Label Studio (Tkachenko et al., 2020-2025)225

2The datasets contain PII from publicly available
government-published legal documents. They were de-
identified and used in prior work (e.g., Yue et al. (2024)).
We use curated versions from these papers. Since our study
concerns privacy risks in FedLLMs, real-world PII is neces-
sary to evaluate model vulnerabilities.
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Figure 1: Distribution of de-duplicated PII instances by
label category.

and recruited students to review a subset of the an- 226

notated data. Details of the human annotation pro- 227

cess—including annotator backgrounds and label- 228

ing instructions—are provided in Appendix J. For 229

human review, we randomly selected 100 samples 230

comprising over 6,000 PII annotation instances, 231

yielding an F1 score of 89.9%. The evaluation 232

results are summarized in Table 10. 233

4 Method 234

4.1 Problem Definition 235

We study a novel extraction attack tailored to fed- 236

erated LLMs (FedLLMs), which differs from tradi- 237

tional verbatim data extraction (VDE) in three key 238

aspects: 239

Assumptions. Unlike VDE that assumes the at- 240

tacker has access to most or all of the training data, 241

our setting limits the attacker to a small, isolated 242

subset of the overall training corpus. 243

Setup. In our formulation, the prefix and its 244

corresponding target suffix are not drawn from a 245

contiguous span of training data. Instead, extrac- 246

tion prefixes are sampled from the attacker’s local 247

dataset Da, while the target suffixes reside exclu- 248

sively in other clients’ private data and are absent 249

from Da. Thus, each prefix must generalize beyond 250

local context to trigger the generation of unseen 251

suffixes. 252

Goals. The attacker does not aim to recover all 253

training completions, but instead focuses on extract- 254

ing specific, high-value information—most notably, 255

personally identifiable information (PII)—from the 256
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global model.257

Formally, we consider an FL system compris-258

ing c clients C = {C1, C2, . . . , Cc}, where each259

client Ci holds a local dataset Di. Among them,260

one client—denoted as the attacker Ca ∈ C—is261

assumed to be semi-honest (Applebaum, 2017; Hu262

et al., 2024). That is, Ca faithfully follows the FL263

protocol (e.g., does not poison data or manipulate264

model weights), but acts adversarially in a passive265

manner, attempting to infer PII contained in other266

clients’ datasets by analyzing the global model θ.267

In this setting, the attacker issues queries to the268

model θ to extract data without knowing which269

client any particular output originates from. How-270

ever, for evaluation purposes, we designate one271

client as the reference victim to measuring the at-272

tack’s effectiveness. Let Sa and Sv denote the sets273

of PII instances held by the attacker and the vic-274

tim client, respectively. The attacker constructs a275

prompt set P and queries the federated language276

model θ, obtaining a corresponding output set Y .277

We formalize key definitions and evaluation met-278

rics in the following subsections.279

Definition 1 (Extracted). A PII instance s ∈ Sv is280

considered successfully extracted if there exists a281

prompt p ∈ P and a corresponding model output282

y ∈ Y such that:283

∃u ∈ Σ∗ such that y = s⊕ u, (1)284

where Σ∗ is the set of all finite-length strings over285

the vocabulary, and ⊕ denotes string concatena-286

tion. In other words, the model output y begins287

with s.288

Definition 2 (Coverage Rate). The coverage rate289

measures how thoroughly the attacker recovers the290

PII unique to the victim client. It is defined as:291

SE = {si | ∃y ∈ Y such that si is extracted by y},292

CR =
|(Sv \ Sa) ∩ SE |

|Sv \ Sa|
. (2)293

A higher CR indicates that a larger fraction of the294

victim’s unique PII has been successfully extracted.295

Definition 3 (Efficiency). Efficiency quantifies the296

precision of extraction with respect to the number297

of queries. Let Q denote the number of queries, the298

efficiency is defined as:299

EF =
|(Sv \ Sa) ∩ SE |

Q
. (3)300

A higher EF indicates that more PII is extracted301

with fewer queries.302

Building upon these definitions, the central chal- 303

lenge is to design algorithms that enable the at- 304

tacker to extract PII both comprehensively and effi- 305

ciently—that is, achieving high coverage and high 306

efficiency. 307

4.2 Attacking Algorithms 308

4.2.1 PII-contextual Prefix Sampling 309

We begin with a straightforward method for con- 310

structing query prompts using PII-contextual pre- 311

fixes—text segments that immediately precede PII 312

instances in the attacker’s own dataset Di. This 313

approach is motivated by the observation that man- 314

ually crafted prompts such as "my phone number 315

is" may not align with the model’s training distribu- 316

tion and are often ineffective at extracting attacker- 317

defined PII instances. 318

Let the attacker’s training example be denoted
as Ua = {t0, t1 · · · t|Ua|}, formed by concatenating
all samples in Di, where each ti represents a word
token. Let S be the multiset of PII instances labeled
in Ua. Define the function Loc(s) as the index of
the first word of a PII instance s in Ua. We fur-
ther define a contextual prefix extraction function
Tλ(U, s) that returns the λ-length prefix ending just
before s:

Tλ(U, s) = tLoc(s)−λ · · · tLoc(s)−1.

The resulting set of PII-contextual prompts is given 319

by: 320

Pc = {Tλ(Ua, s) | s ∈ S}. (4) 321

Once Pc is constructed, the attacker Ca uses the
global model θ to generate candidate PII comple-
tions. For each prefix p ∈ Pc, a suffix y of at
most m tokens is sampled according to the model’s
conditional distribution:

y = {x1, x2 . . . xm} ∼ P(y | p; θ).

To increase the diversity of generations, Ca may
sample n independent suffixes for each prefix p,
forming:

Yp = {y1, y2, . . . , yn}.

The final set of candidate generations is the union
across all prefixes:

Y =
⋃
p∈Pc

Yp.

This results in a total query cost of Q = n · |Pc|. 322
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We can further generalize the contextual prompt
set Pc by collecting a multiset of all prefix sub-
strings that end immediately before each PII in-
stance:

SUP(Pc) = {ti · · · tLoc(s)−1 | (Loc(s)−i) ∈ [1, λ]}.

This produces a much larger set of contextual pre-323

fixes, which may yield a higher extraction coverage324

rate but an extremely low efficiency due to the mas-325

sive number of query prompts.326

4.2.2 Frequency-Prioritized Prefix Sampling327

Motivated by prior work (Shao et al., 2024),328

which suggests that extraction effectiveness may be329

closely related to co-occurrence frequency, we hy-330

pothesize that prefixes occurring more frequently331

immediately before PII entities are more strongly332

associated with diverse PII instances. Based on this333

intuition, our objective is to prioritize such high-334

frequency prefixes in order to construct a more335

compact and informative prefix set.336

To formalize this, we partition the multiset
SUP(Pc) based on prefix frequency. For each inte-
ger σ ≥ 1, let:

Pσ = {p ∈ SUP(Pc) | CountSUP(Pc)(p) = σ}.

which defines subsets of prefixes that occur exactly
σ times. This induces a frequency-based decompo-
sition of the unique prefixes in SUP(Pc):

Set(SUP(Pc)) =
⋃
σ≥1

Pσ.

Given a frequency threshold σa, we define the set337

of frequent prefixes as:338

Pf≥σa =
⋃

σ≥σa

Pσ, (5)339

which is then sorted in descending order of fre-340

quency. Notably, setting σa = 1 yields the full341

set of generalized contextual prefixes, Pf≥1 =342

Set(SUP(Pc)), sorted in descending order of fre-343

quency.344

Given a prefix budget B, we construct the fi-345

nal prefix set by selecting the top-B prefixes from346

Pf≥σa , thereby prioritizing high-frequency pre-347

fixes during sampling.348

4.2.3 Latent Association Fine-tuning349

We hypothesize that a model’s susceptibility to ex-350

traction attacks stems from its latent ability to asso-351

ciate two underlying conceptual distributions: (1)352

A — the distribution over prefixes that are seman- 353

tically or syntactically likely to precede PII; and 354

(2) B — the distribution over actual PII instances. 355

Let Dist(A,B; θ) denote the degree of association 356

between these two distributions under model pa- 357

rameters θ. 358

Because this association is implicitly encoded in 359

the model’s internal representations, we propose a 360

method to reduce this distance through parameter 361

updates—a technique we term Latent Association 362

Fine-tuning (LAFt). The core idea is to fine-tune 363

the model to minimize Dist(A,B; θ), thereby re- 364

inforcing its internal linkage between indicative 365

prefixes and corresponding PII, ultimately improv- 366

ing its capacity for PII extraction. 367

To implement this, we construct a fine-tuning 368

dataset Dft by pairing frequent prefixes with known 369

PII instances from the attacker’s dataset: 370

Dft = {(p, s) | p ∈ Pf , s ∈ Sa}, (6) 371

where Pf is the set of frequent prefixes derived
from Da, and Sa is the attacker’s known PII set.
We then fine-tune the model using the standard
causal language modeling objective:

θ′ = argmin
θ

∑
(p,s)∈Dft

|s|∑
t=1

− logP(st | p, s<t; θ).

The updated model θ′ is then used for extraction, 372

using prefixes from either Pf or Pc. 373

5 Experiment 374

5.1 Experimental Setup 375

Federated Setup. We simulate a federated sys- 376

tem with 5 clients using a label-skewed non-IID 377

data partitioning method based on clustering of lan- 378

guage embeddings (Li et al., 2023). Each client re- 379

ceives a comparable number of samples. Federated 380

fine-tuning is conducted on legal tasks using the 381

OpenFedLLM framework (Ye et al., 2024b), with 382

FedAVG as the aggregation method over 10 com- 383

munication rounds. All clients adopt parameter- 384

efficient fine-tuning (LoRA) and a shared prompt 385

template. Hyperparameter settings and implemen- 386

tation details are detailed in Appendix K. 387

After federated fine-tuning, we evaluate the util- 388

ity of the final global model on a held-out global 389

test set. Following common practice, we compare 390

it against a centrally trained (non-FL) baseline eval- 391

uated on the same test set. The results are reported 392

in Table 8 in the Appendix. 393
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Models and Metrics. We use Qwen1-8B (Bai394

et al., 2023) and Baichuan2-7B (Yang et al., 2023),395

both pre-trained primarily on Chinese corpora.3396

The model performance is evaluated with Coverage397

Rate(CR), Efficiency(EF), and Victim-exclusive398

Extracted PII(VxPII, defined as |(Sv \ Sa) ∩ SE |),399

defined to measure extraction accuracy and com-400

pleteness.401

Attack Strategies. We designate client 0 as the402

attacker and client 1 as the victim, and evaluate403

three strategies: (1) PII-contextual prefix sampling.404

The attacker builds a prefix set Pc from its local405

dataset D0 with prefix length λ = 50. Each prefix406

queries the global model 15 times, generating up407

to m = 10 tokens per query—sufficient to recover408

most PIIs with manageable cost. (2) Frequency-409

prioritized sampling. Prefixes in Set(SUP(Pc)) are410

ranked by frequency to form Pf≥1 and used in411

descending order. Sweeping the prefix budget B412

varies the frequency threshold σa, enabling anal-413

ysis of coverage–efficiency trade-offs. (3) Latent414

association fine-tuning. The attacker fine-tunes the415

global model (1 epoch, LR = 5e-5, LoRA: r = 16,416

α = 32) using 10k frequent prefixes and 10k ran-417

domly sampled PIIs from its own data to reinforce418

prefix–PII associations. Further implementation419

details are provided in Appendix K.3.2.420

Evaluation Protocol. To ensure fair evaluation,421

we define the set of victim-exclusive PIIs as (Sv \422

Sa) and apply two filters: (1) only PIIs si ∈ Sv423

that do not appear in the attacker’s training corpus424

(si /∈ Ua) are retained; and (2) we enforce a longest425

common prefix constraint to eliminate interference426

between PIIs—e.g., those sharing prefixes—which427

may confuse the determination of which PII has428

been extracted (see Equation (1)):429

LCP(si, sj) = 0, ∀si ̸= sj ∈ Sv430

Metrics are computed on this filtered and prefix-431

disjoint set, as defined in Equations (2)–(3).432

5.2 Main Results433

RQ1: How effective is the PII extraction attack434

using contextual prefixes? We first evaluate the435

coverage rate (CR) and efficiency (EF) of our ex-436

traction attacks by querying federated fine-tuned437

LLMs using the PII-contextual prefix set Pc. Ta-438

ble 1 presents the results. With Pc, our attack439

3Both models are publicly available. See licenses on Hug-
gingface pages: Qwen1 and Baichuan2.

Table 1: Summary of attack results using the PII-
contextual prefix sampling method (with and without
LAFt), where client 0 (attacker) targets client 1 (victim).
Additional statistics used to compute CR and EF are
available in Appendix Table 5.

Model Prefix Set CR EF

wo LAFt

Qwen1-8B Pc 22.93% 0.1910%
Set(SUP(Pc)) 56.20% 0.0110%

Baichuan2-7B Pc 28.95% 0.2411%
Set(SUP(Pc)) 53.56% 0.0105%

w LAFt

Qwen1-8B Pc 28.30% 0.2357%
Set(SUP(Pc)) 56.57% 0.0111%

Baichuan2-7B Pc 28.46% 0.2370%
Set(SUP(Pc)) 52.16% 0.0102%

Figure 2: Label distribution of deduplicated victim-
exclusive PII extracted by Qwen1-8B (without LAFt, us-
ing prefix set Pc). Results for Baichuan2-7B are shown
in Appendix Figure 13.

achieves a considerable CR of 22.93% on Qwen1- 440

8B and 28.95% on Baichuan2-7B. 441

To understand what types of PII are most vul- 442

nerable, we analyze the extracted instances. Fig- 443

ure 2 shows the label distribution of deduplicated 444

victim-exclusive PII extracted by Qwen1-8B (with- 445

out LAFt). The results for Baichuan2-7B are pro- 446

vided in Appendix Figure 13. 447

The most frequently extracted PII categories in- 448

clude "Address", "Birthday", and "Name", while 449

others such as "Work Experience" and "Work 450

Place" occur less often but remain notable. More 451

complex types like "Medication Record" are not 452

extracted at all. This is primarily due to the eval- 453

uation protocol, which only credits model outputs 454

that match ground truth exactly. Complex PII often 455

appears as long free-text spans, making verbatim 456
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Figure 3: Coverage rate (CR) and efficiency (EF) under
varying prefix budgets B for prefix sets Pc and Pf≥1.
Prefix set Pf≥1 is frequency-sorted in descending order
(see Section 4.2.2). Budget values are scaled exponen-
tially (base 10); model used is Qwen1-8B.

reproduction difficult.457

To estimate an upper bound of extraction capa-458

bility, we evaluate with the generalized prefix set459

Set(SUP(Pc)), which includes all potential contex-460

tual prefixes. As shown in Table 1, expanding Pc to461

Set(SUP(Pc)) increases CR to 56.57% (Qwen1-462

8B) and 53.56% (Baichuan2-7B). However, this463

gain comes at a steep cost in efficiency—dropping464

EF to only 0.01%—indicating most queries yield465

redundant or irrelevant content.466

We further investigate this CR–EF tradeoff in467

Figure 3, which illustrates how CR and EF vary468

with prefix budget B for prefix sets Pc and Pf≥1.469

As B increases, CR improves, but EF declines470

sharply. This suggests diminishing returns in effi-471

ciency when scaling up the number of queries to472

discover new PII instances.473

RQ2: How effective is frequency-prioritized pre-474

fix sampling? As shown in Figure 4, frequency-475

prioritized (FP) sampling does not extract more476

VxPII instances than the contextual prefix set Pc,477

contrary to our hypothesis in Section 4.2.2. This478

result suggests that the contextual cues embedded479

in Pc are already strong indicators of LLM memo-480

rization, and that memorization cannot be inferred481

solely from co-occurrence frequency. Instead, it482

likely arises from more complex interactions be-483

tween corpus semantics, model architecture, and484

pre-training dynamics.485

Despite this, FP sampling captures highly dis-486

tinct subsets of memorized PII. As shown in Fig-487

ure 5(a), the Venn diagram comparison reveals that488

49.9% of the VxPII extracted by FP sampling on489

Qwen1-8B and 65.02% on Baichuan2-7B are not490

discovered by the Pc method. This highlights FP491

sampling’s complementary strength in uncovering492

diverse memorized content.493

1 17000 35000 53000 71006
Prefix Budget B

0

500

1000

1500

2000

Vx
PI

I C
ou

nt

Qwen1-8B, Without LAFt

Pc

Pf 1[ : |Pc|]

1 17000 35000 53000 71006
Prefix Budget B

0

500

1000

1500

2000

2500
Baichuan2-7B, Without LAFt

Pc

Pf 1[ : |Pc|]

Figure 4: VxPII counts under varying prefix budgets
(B) for prefix sets Pc and Pf≥1. Prefix set Pf≥1 is
frequency-sorted in descending order (see Section 4.2.2)
and truncated to match the size of Pc here.

RQ3: How effective is Latent Association Fine- 494

tuning? As shown in Table 1, applying Latent 495

Association Fine-tuning (LAFt) significantly im- 496

proves the CR of Qwen1-8B by 5.37%, raising it 497

to 28.30%, and increases EF to 0.24%, indicating 498

enhanced extraction performance. For Baichuan2- 499

7B, LAFt does not yield a direct improvement in 500

CR, but, as depicted in Figure 5(b), it facilitates the 501

identification of additional distinct PII instances. 502

These results demonstrate that LAFt is an ef- 503

fective method for increasing the diversity of ex- 504

tracted PII, complementing the FP sampling ap- 505

proach. The extent of the improvement achieved 506

by LAFt is influenced by the construction of the 507

fine-tuning dataset Dft and the choice of hyperpa- 508

rameters. In this study, we adopt a consistent set- 509

ting by constructing Dft through pairing frequent 510

prefixes with randomly sampled PII and fine-tuning 511

the model for one epoch to ensure a fair compar- 512

ison. However, further exploration of personal- 513

ized strategies—tailored to models with different 514

architectures and pre-training conditions—could 515

potentially yield better performance. 516

5.3 Cross-Client Evaluation of Extraction 517

Robustness 518

To assess the robustness of our PII extraction 519

method across different clients, we perform a cross- 520

client evaluation where each client is iteratively 521

designated as the attacker, while the remaining 522

clients act as victims. This setup ensures that the 523

extraction performance is not biased toward any 524

particular client. 525

As shown in Table 2, our method achieves consis- 526

tently high coverage rates across all attacker–victim 527

pairings, demonstrating its generalizability and ef- 528

fectiveness in diverse settings. 529
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Figure 5: Venn diagrams showing overlap between Vx-
PII sets extracted by different methods. (a) Compari-
son of VxPII sets using PII-contextual prefixes Pc vs.
frequency-prioritized prefixes Pf≥1 at prefix budget
B = 10,000 (without LAFt). (b) Comparison of VxPII
sets extracted with and without LAFt on Qwen1-8B and
Baichuan2-7B using the full Pc prefix set.

Table 2: Coverage rates (CR) of extraction attacks
across different attacker–victim client pairs with a pre-
fix budget B = 10000. Prefixes are randomly sampled
from each attacker’s corresponding set Pc. “–” indicates
self-attack scenarios, which are not applicable.

Attacker
ID

Victim ID

0 1 2 3 4

0 - 10.91% 12.89% 10.93% 11.88%
1 11.97% - 12.41% 11.46% 12.35%
2 12.56% 11.39% - 11.65% 12.74%
3 12.07% 10.82% 12.04% - 11.99%
4 12.26% 11.36% 13.25% 11.21% -

5.4 PII Sanitization Defense530

We evaluate the effectiveness of a simple data sani-531

tization strategy that masks PII using existing an-532

notations. Each PII instance in the training data533

is replaced with a string of asterisks (*) of equal534

length. We then re-fine-tune FedLLM on this sani-535

tized dataset and perform the PII-contextual Prefix536

Sampling attack once again. Table 3 compares537

the attack performance with and without the PII538

masking defense.539

As shown in the results, the number of extracted540

VxPII is only slightly reduced. To understand this,541

we examine the document frequency of VxPII in-542

stances—that is, how often each appears in the543

training data. Figure 7 shows that PII masking544

significantly lowers the frequency of most VxPII,545

suggesting that our annotations effectively cover546

the majority of PII. Interestingly, some VxPII with547

zero document frequency—indicating they were ab-548

sent from the masked dataset—were still extracted.549

Based on these observations, we identify two550

main reasons for the limited effectiveness of the551

Table 3: Attack performance with and without PII mask-
ing using the contextual prefix set Pc. The model is
Qwen1-8B.

VxPII CR EF

With PII Masking 2017 22.74% 0.1894%
Without Defense 2034 22.93% 0.1910%

Table 4: Comparison of VxPII sets between attacks on
FedLLM and its un-fine-tuned base model.

Prefix Set Model |F \B| |B \ F | |F ∩B|

Pc Qwen1 682 518 1801
Pf≥1 Qwen1 554 308 4611
Pc Baichuan2 407 405 2161

masking defense: (1) Pretraining data contami- 552

nation: Our training data, sourced from publicly 553

available legal documents, likely overlaps with the 554

pretraining corpora of models like Qwen1-8B and 555

Baichuan2-7B. (2) Incomplete PII labeling: Some 556

PII instances may remain unlabeled—and therefore 557

unmasked—in the training data. In the realistic 558

scenarios, attackers can customize PII definitions, 559

making exhaustive and comprehensive coverage 560

inherently challenging. 561

Pretraining data contamination is difficult to 562

eliminate, as LLM providers rarely disclose their 563

pretraining corpora. To mitigate this, we adopt 564

a conservative strategy: we compare the VxPII 565

extracted from FedLLM (F ) with that from its un- 566

fine-tuned base model (B), and subtract B to iso- 567

late PII memorized during federated fine-tuning. 568

Table 4 shows that even after removing B, a sub- 569

stantial number of VxPII remain in F \B, confirm- 570

ing memorization during fine-tuning. Figure 12 571

further shows that F \ B exhibits a similar label 572

distribution of VxPII as observed in Figure 2, sup- 573

porting the validity of our method. 574

6 Conclusion 575

To investigate the privacy risks of data extraction at- 576

tacks in realistic settings, we introduce a new class 577

of attacks targeting FedLLMs. We extend a le- 578

gal dataset with systematic PII annotations aligned 579

with major privacy regulations, and evaluate attack 580

performance using two key metrics: coverage rate 581

and efficiency. Extensive experiments demonstrate 582

that certain PII types are highly vulnerable, and 583

our proposed methods can achieve substantial ex- 584

traction performance. These findings highlight a 585

critical privacy gap in FedLLMs and underscore 586

the urgent need for stronger defense mechanisms 587

in future federated learning systems. 588
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7 Limitations589

This work investigates the privacy risks of590

FedLLMs using a legal-domain dataset. Future591

research can extend our proposed methods to other592

sensitive domains such as healthcare and finance,593

where privacy concerns are equally critical. Addi-594

tionally, there is a need for further exploration of595

defense mechanisms that can preserve the privacy596

of FedLLMs while maintaining their performance.597

8 Ethic598

This paper presents PII extraction attacks on feder-599

ated fine-tuned LLMs to expose potential privacy600

risks. While designed for research and defense601

purposes, such methods could be misused to re-602

cover sensitive user data in real-world FL systems.603

We conduct all experiments on legal datasets with604

anonymized PII, and highlight the need for stronger605

safeguards in FedLLM deployments.606
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• CCPA - California Consumer Privacy Act914

(State of California, US, 2018)915

• CPIS - Chinese Information Security Tech-916

nology: Personal Information Security Speci-917

fication (GB/T 35273-2020) (Standardization918

Administration of China (SAC), 2020)919

• Singapore PDPC - Personal Data Protection920

Commission (Singapore) (Personal Data Pro-921

tection Commission, Singapore, 2012)922

• Non-IID - Non-independent and identically923

distributed924

B Preliminary Knowledge925

B.1 Data Extraction Attack926

Early research on training data extraction attacks927

has broadly categorized them into untargeted and928

targeted attacks (Research, 2022; Yu et al., 2023).929

Untargeted extraction aims to recover any mem-930

orized training samples without specifying a tar-931

get (Lukas et al., 2023), whereas targeted extraction932

attempts to reconstruct specific training samples,933

often by providing a known prefix and recover-934

ing the remaining content (Carlini et al., 2021).935

The latter type, often referred to as Verbatim Data936

Extraction, has become a standard approach for937

evaluating memorization in LLMs (Carlini et al.,938

2023; Dong et al., 2024) and for detecting poten-939

tial data contamination (Dong et al., 2024). We940

briefly outline the core methodology of verbatim941

data extraction below.942

Given an LLM θ and a training dataset X , each943

training sample xi ∈ X is partitioned into two944

segments: a prefix ai and a suffix bi, such that945

xi = aibi. The model is then prompted with ai to946

generate a completion gi of the same length as bi.947

If gi exactly matches bi, the sample is considered948

successfully extracted.949

In practice, model outputs may not exactly repli-950

cate the original suffix but can still be lexically951

close. To accommodate this, a similarity-based952

metric such as Edit Distance (Levenshtein, 1965)953

is often employed. A sample is deemed extracted if954

the similarity score between gi and bi exceeds a pre-955

defined threshold t. By computing this similarity-956

based extraction score across all samples in a957

dataset D, one can quantify the model’s memoriza-958

tion behavior or assess its vulnerability to training959

data extraction attacks.960

B.2 Federated Learning 961

Federated Learning (FL) is a solution to address 962

data isolation issues (Yang et al., 2019), where a 963

central server and multiple clients collaborate to 964

complete the training process. A key feature of 965

FL is that the training datasets are stored locally 966

on each client and remain invisible to other clients. 967

FL is commonly used in industrial scenarios where 968

each client represents an independent organization, 969

such as hospitals collaborating to train a medical 970

model without combining their datasets due to le- 971

gal restrictions or business competition. Federated 972

Learning enables the training of stronger models 973

compared to training on data from a single client 974

alone. 975

Given c clients and their private datasets
D1, D2, . . . , Dc, the federated learning process
aims to learn a global model θ by solving the fol-
lowing optimization problem:

θ∗ = argmin
θ

1

c

c∑
i=1

L(Di, θ)

To solve this problem, many federated optimization 976

algorithms have been proposed, such as FedAVG 977

(McMahan et al., 2023) and FedProx (Li et al., 978

2020). Typically, these algorithms consist of two 979

alternating phases: local updating and central ag- 980

gregation. In the local updating phase, each client 981

independently optimizes the global model using its 982

own dataset. In the central aggregation phase, the 983

server aggregates the models from the clients using 984

an aggregation algorithm, obtaining a global model, 985

which is then sent back to each client for the next 986

round of local updating. A typical procedure of 987

federated learning is illustrated in Algorithm 1. 988

B.3 Preliminary Assessment of Verbatim Data 989

Extraction Risks in FedLLMs 990

To examine the memorization behavior of federated 991

fine-tuned large language models (FedLLMs) and 992

evaluate their potential risks of leaking sensitive 993

information, we conduct a preliminary experiment 994

simulating a verbatim data extraction (VDE) at- 995

tack. The results are referenced in the main paper 996

(Section 1) to empirically motivate our study. 997

We adapt the experimental setup from (Dong 998

et al., 2024) to the federated setting, where an at- 999

tacker is assumed to possess prefix fragments of 1000

the training data from all participating clients and 1001

attempts to recover the subsequent suffix tokens. 1002

For each training sample, we extract a prefix from 1003
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the original sequence and query the trained model1004

to generate a continuation. The generated suffix1005

is compared against the ground truth using Edit1006

Distance (ED) (Levenshtein, 1965), where a lower1007

ED indicates stronger memorization. Specifically:1008

• ED = 0 indicates the model has perfectly mem-1009

orized and reproduced the suffix;1010

• ED values are capped at 50, as we restrict1011

suffixes to a maximum of 50 tokens.1012

We perform the attack on the global models ag-1013

gregated after 10 rounds of federated training. To1014

ensure a comprehensive assessment, we consider1015

three popular FL algorithms—FedAvg, FedProx,1016

and Scaffold—each under both IID and Non-IID1017

data distributions. Two baseline settings are also1018

included:1019

• Centralized: All client data is pooled and1020

the model is fine-tuned in a conventional non-1021

federated manner;1022

• Untrained: The base model is evaluated with-1023

out any fine-tuning.1024

Figure 6 summarizes the results across five1025

downstream tasks. Our key observations are:1026

• FedLLMs consistently exhibit higher ED1027

scores (i.e., lower memorization) than central-1028

ized models, suggesting that the FL aggrega-1029

tion process reduces susceptibility to verbatim1030

extraction.1031

• However, compared to untrained models,1032

FedLLMs still show non-negligible memoriza-1033

tion, with noticeably lower ED scores, indicat-1034

ing partial leakage of training data.1035

These findings highlight a trade-off between col-1036

laborative model training and privacy preservation,1037

and they serve as the motivation for our in-depth1038

investigation of privacy risks in FedLLMs.1039

C Federated Learning Framework1040

Algorithm 1 outlines a general framework for Fed-1041

erated Learning (FL), where a central server coor-1042

dinates multiple clients to collaboratively train a1043

global model without sharing local data. At each1044

round, the server distributes the current model to1045

all clients, each of which performs local updates1046

based on its private data and sends the updated1047

parameters back. The server then aggregates the1048

received updates to produce a new global model.1049

Algorithm 1 A Federated Learning Framework
Input: Clients set C = {c1, c2, . . . , cc} with local
datasets D1, D2, . . . , Dc; total FL rounds R; initial
global model θ0; server aggregation function fagg; client
loss function L
Output: Learned global model θR

1: ServerExecute:
2: for round r = 1 to R do
3: for each client ci ∈ C (in parallel) do
4: θir ← CLIENTUPDATE(ci, θr−1)
5: end for
6: θr ← fagg({θir|ci ∈ C})
7: end for

8: ClientExecute:
9: function CLIENTUPDATE(ci, θr−1)

10: θir ← argmin
θ
L(θr−1, Di)

11: return θir
12: end function

D Full Table for PII-contextual Prefix 1050

Attack Results 1051

Table 5 provides the complete results correspond- 1052

ing to Table 1, showing detailed data across all 1053

settings. 1054

E Task Descriptions and Examples 1055

1. Judicial Summarization (Sum): The task of 1056

judicial summarization aims to extract key in- 1057

formation from court judgments and generate 1058

concise summaries. The input to this task is a 1059

legal document, and the output is a summary 1060

of its content. The performance of this task 1061

is evaluated using the Rouge-L metric, which 1062

effectively measures the similarity between 1063

the generated and reference texts based on the 1064

longest common subsequence (LCS). Rouge- 1065

L is a widely used metric in text generation 1066

tasks. In this study, we adopt Rouge-L be- 1067

cause it captures both semantic and structural 1068

similarities between texts, making it suitable 1069

for summarizing judicial documents. 1070

2. Judicial Reading Comprehension (RC): 1071

This task focuses on answering legal ques- 1072

tions based on court documents to evaluate the 1073

model’s reading comprehension ability. The 1074

input consists of a piece of legal material and 1075

a question, and the task requires answering 1076

the question based on the content of the ma- 1077

terial. The performance metric for this task is 1078

Rouge-L. 1079

3. Similar Case Matching (Match): In this task, 1080
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Centralized Federated Untrained

Figure 6: Edit Distance results of verbatim data extraction attacks after 10 training rounds. We evaluate six federated
configurations (FedAvg, FedProx, Scaffold × IID/Non-IID) and report the mean and standard deviation. Lower
values indicate stronger memorization. Centralized and untrained models serve as baselines.

Table 5: Detailed attack performance of client 0 (attacker) targeting client 1 (victim) under various settings. The
victim-exclusive set (Sv \ Sa) includes 8,870 unique PII items.

Model Prefix Set LAFt CR EF VxPII Count Prefix Set Size

Qwen1-8B

Pc without 22.93% 0.1910% 2034 71006
Pc with 28.30% 0.2357% 2510 71006

Set(SUP(Pc)) without 56.20% 0.0110% 4985 3013161
Set(SUP(Pc)) with 56.57% 0.0111% 5018 3013161

Baichuan2-7B

Pc without 28.95% 0.2411% 2568 71006
Pc with 28.46% 0.2370% 2524 71006

Set(SUP(Pc)) without 53.56% 0.0105% 4751 3013161
Set(SUP(Pc)) with 52.16% 0.0102% 4627 3013161

the input includes three case documents, and1081

the model is required to determine which of1082

the latter two documents is more similar to1083

the first one. The model selects the most simi-1084

lar document by computing the similarity be-1085

tween the first case and each of the other two.1086

The evaluation metric for this task is accuracy.1087

4. Judicial Exam (Exam): This task simulates1088

multiple-choice questions from legal exam-1089

inations to assess the model’s knowledge of1090

legal concepts. Given a judicial exam question1091

with multiple options, the model is expected to1092

choose the correct answer. The performance1093

is evaluated using accuracy.1094

5. Legal Case Classification (Cls): This task1095

requires the model to classify the cause of ac-1096

tion in a case, assisting legal retrieval systems1097

in automatically categorizing case types. The1098

input is a description of the case facts, and the 1099

model is required to output the correspond- 1100

ing case category. The performance metric is 1101

accuracy. 1102

F Data Preprocessing 1103

Previous works (Zhang et al., 2023; Yue et al., 1104

2023) have used these datasets for LLM and 1105

FedLLM research. In this work, we use the pro- 1106

cessed datasets from these prior studies and further 1107

curate the data for our experiments. We applied 1108

the following preprocessing steps to prepare the 1109

datasets: 1110

Deduplication and Cleansing. To ensure the 1111

quality of our data, we remove duplicate samples 1112

with logically equivalent meanings. For example, 1113

in the RC tasks, some samples only differ in the 1114

order of two legal cases. We also clean out samples 1115
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Table 6: Input and Output Examples for Each Task

Task Input Output

Judicial Summarization
(SUM)

First-instance civil judgment on inheritance dispute between Han and Su
Shenyang Dadong District People’s Court
Plaintiff: Han, female, born June 6, 1927, Han ethnicity...
. . .
Clerk: Li Dan

Summary: This case involves an inheritance
dispute between the plaintiff and the defendant.
The plaintiff requests...

Judicial Reading Comprehension
(RC)

Case: Upon trial, it was found that on February 11, 2014, the plaintiff...
Question: When did the plaintiff and defendant agree on the travel plan?

The plaintiff and defendant agreed on the
travel plan on February 11, 2014.

Similar Case Matching
(Match)

Determine whether Case A is more similar to Case B or Case C.
A: Plaintiff: Zhou Henghai, male, born October 17, 1951...
B: Plaintiff: Huang Weiguo, male, Han ethnicity, resident of Zhoushan City...
C: Plaintiff: Zhang Huaibin, male, resident of Suzhou City, Anhui Province, Han ethnicity...

B

Judicial Exam
(Exam)

Wu was lawfully pursued by A and B... Which of the following analyses is correct?
A. If Wu missed both A and B, and the bullet...
B. If Wu hit A, resulting in A’s death...
C. If Wu hit both A and B, causing A’s death and B’s serious injury...
D. If Wu hit both A and B, causing both to die...

A

Legal Case Classification
(Cls)

Legal document: Plaintiff Yan Qiang submitted the following claims to this court:... Private Loan Dispute

containing garbled characters or large segments1116

with a mixture of multiple languages.1117

Unifying Prompt Template and Instruction Re-1118

shaping. Some tasks, such as Exam, contain in-1119

structions that appear in different parts of the sam-1120

ple (either at the beginning or the end). To standard-1121

ize the format, we reshape the data so that the in-1122

struction always appears at the beginning, followed1123

by the legal document. Additionally, we employ1124

hierarchical hyper markers such as "<Case A>",1125

"<Case B>", and "<Answer>" to clearly segment1126

the prompt, making the structure more transparent1127

for the LLM.1128

G Supplementary Dataset Statistics and1129

Analysis1130

Table 7 summarizes the basic statistics of the five1131

datasets used in our experiments. Each dataset1132

corresponds to a different downstream task for fine-1133

tuning the model.1134

Figure 7 presents the document frequency distri-1135

bution of the 2017 VxPII instances extracted from1136

the model trained on the masked dataset (see Sec-1137

tion 5.4). Most VxPII exhibit low frequency, indi-1138

cating that PII masking significantly reduces mem-1139

orization.1140

Table 7: Dataset Statistics

Exam RC SUM Match Cls

#Samples 2399 3500 2651 3848 4196

0 20 40 60 80 100 120
Document Frequency of VxPII

10 3

10 2

10 1

100

De
ns

ity
%

In Original Corpus
In Masked Corpus

Figure 7: Document frequency distribution of the 2017
VxPII instances extracted from the model trained on the
masked dataset.

H Prompt Template and Utility 1141

Fine-tuning Results for FedLLMs 1142

Figure 8 shows the unified prompt template used 1143

for all federated utility fine-tuning tasks. Table 8 1144

reports the evaluation results across multiple tasks, 1145

comparing different federated learning algorithms 1146

and base models. 1147

Below is a task related to judicial and legal
matters. Output an appropriately completed
response to the request.

<### Input >
{{Task Input}}

<### Output >
{{Task Output }}

Figure 8: Unified Utility Fine-tuning Template for All
Tasks.
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Table 8: Utility Performance over Different Tasks.

FL Algorithms Models SUM(rouge-l) RC(rouge-l) Match(Acc) Exame(Acc) Cls(Acc)

FedAvg Qwen1-8B 50.0 14.2 50.0 37.5 90.0
FedAvg Baichuan2-7B 57.6 42.4 50.0 33.3 89.5
Non-FL Qwen1-8B 50.0 18.9 50.0 40.8 87.0

I Machine Annotation Standards for PII1148

Labeling1149

This section provides details on the machine an-1150

notation protocol we use to identify Personally1151

Identifiable Information (PII) in our dataset. Ta-1152

ble 9 defines our categorization schema, which in-1153

cludes seven major categories and their correspond-1154

ing fine-grained subtypes. To ensure annotation1155

consistency and scalability, we utilize a templated1156

prompting approach for automated PII labeling.1157

Figure 9 shows the machine annotation prompt1158

used to instruct the LLM annotator. The prompt1159

dynamically incorporates category definitions and1160

format constraints to standardize the output.1161

I would like you to assist in reviewing the provided
document and labeling all sections containing

{{Major Categories of PII}} according to the
following requirements.

1. **Types of personal information to identify
include :**
{{PII Subcategories }}

2. ** Output format :**
{{ Output Format Description }}

3. **Input instructions :**
{{Input Format Description }}

Please provide the output directly in accordance
with the format requirements above , without any
additional explanation or comments. Thank you

for your assistance!

Figure 9: PII Machine Annotation Prompt Template

J Details of Human Evaluation for PII1162

Annotation1163

To validate the quality of the machine-generated PII1164

annotations, we recruited four Chinese-speaking1165

students with foundational knowledge of Chinese1166

law to manually annotate PII on a selected sub-1167

set of the dataset. Prior to annotation, all annota-1168

tors underwent thorough training on the annotation1169

guidelines and usage of the Label Studio tool. The1170

instructions provided to annotators are detailed in1171

Figure 10, while Figure 11 illustrates the anno-1172

tation interface used. All annotators were fairly1173

compensated upon completion of their tasks.1174

The human evaluation results, reported in terms1175

of precision, recall, and F1 score, are summarized1176

in Table 10, indicating high agreement both in ex- 1177

act span matching and in combined span-and-label 1178

matching, confirming the reliability of the machine 1179

annotations. 1180

K Experiment Implementation Details 1181

K.1 Federated Dataset Partitioning. 1182

We use the preprocessed and labeled datasets (see 1183

Section 3) for our experiments, splitting the data 1184

into training and testing sets. In the federated learn- 1185

ing setup, we simulate a system with five clients. 1186

The testing set remains global, while the train- 1187

ing set is heterogeneously partitioned across the 1188

clients using a balanced Non-IID distribution (see 1189

Acronyms List A). To achieve this, We employ a 1190

clustering-based method (Li et al., 2023) for par- 1191

titioning, where a language encoder first gener- 1192

ates embeddings, which are then clustered using K- 1193

means. Finally, a Dirac distribution with α = 0.5 is 1194

applied to create a label-skewed partitioning (Guo 1195

et al., 2024), ensuring each client receives a com- 1196

parable number of samples. 1197

K.2 Hardware and Computation Budget 1198

All experiments are conducted on a single NVIDIA 1199

A6000 GPU with 48 GB of memory, using bfloat16 1200

precision. Most sampling-based attack experiments 1201

are completed within 200 GPU hours. 1202

K.3 Experiment Procedure 1203

K.3.1 Federated Utility Fine-Tuning 1204

We begin by performing federated fine-tuning of 1205

the LLM(Zhang et al., 2023; Wu et al., 2025) on 1206

the partitioned dataset, adapting it to the legal 1207

tasks. The fine-tuning is conducted using the Open- 1208

FedLLM framework (Ye et al., 2024b). We set the 1209

total number of FL rounds to 10 and use FedAVG 1210

as the aggregation algorithm. 1211

Each client performs multi-task fine-tuning by 1212

mixing all local tasks and applying a unified prompt 1213

template, as illustrated in Figure 8, following the 1214

approach in Raffel et al. (2023). In each round 1215

of federated learning, the client fine-tunes the re- 1216

ceived global model for one epoch using parameter- 1217
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Table 9: Categorization of Personally Identifiable Information (PII) Types in Our Labeling Standards

Major Category Minor Category

Personal Basic Information Name, Birthday, Address, Gender, Ethnicity, Family Relationship, Age, Na-
tionality, Personal Phone Number

Personal Identity Information ID Number, Social Security Number, Driver’s License Number, Employee
Number, License Plate Number

Health Related Information Physical Condition, Fertility Information, Current Medical History, Diagnosis
and Treatment Status, Other Medication Record

Work and Education Information Workplace, Position, Work Experience, Education Experience, Grades

Personal Property Information Bank Account, Amount of Funds, Fund Flow Records, Virtual Assets, Other
Financial Records

Personal Location Information Precise Location, Accommodation Information, Travel Trajectory

Others Marital History, Religious or Philosophical Beliefs, Sexual Orientation or
Sex Life, Unpublished Criminal Records

# **PII Annotation Guidelines for Labelers **
## **1. Task Objective **
**Core Task **: Proofread legal texts to accurately identify and annotate ** Personally Identifiable

Information (PII)**. Each annotation task includes:
1. ** Localization **: Mark the exact character offsets of each PII instance in the text;
2. ** Categorization **: Assign each PII instance to the appropriate **major category (7 total)** and **minor

category (36 total)**, ensuring precise classification.
## **2. PII Category System **
| Major Category | Minor Categories |
| - | - |
| Personal Basic Information | Name , Birthday , Address , Gender , Ethnicity , Family Relationship , Age ,

Nationality , Personal Phone Number |
...( omitted)...
## **3. Annotation Workflow and Standards **
### **Step -by -Step Process **
1. **Read the Full Text **: Understand the context to detect all potential PII entities;
2. **Sentence -by-Sentence Annotation **: For each PII instance , annotate its **start position**, **text span

**, and corresponding **major + minor category **;
3. ** Special Cases **: For ambiguous expressions (e.g., "a certain district of a certain city"), determine

PII status based on contextual clues.
### ** Annotation Guidelines **
* ** Accuracy **: Ensure all annotated content is verifiably present in the text. Avoid false positives or

over -labeling;
* ** Support Channel **: If any uncertain cases arise during annotation , promptly reach out to the *Annotation

Support Team* for clarification.

Figure 10: Markdown-style guideline for PII annotation, covering task objectives, taxonomy, and labeling proce-
dures.

Table 10: Human Evaluation of PII Labeling Quality

Evaluation Criteria Precision (P) Recall (R) F1 Score (F1)

Identical Span Only 0.89 0.93 0.91
Identical Span and Label 0.89 0.90 0.89
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Figure 11: Human annotation interface in the Label Studio tool for PII labeling. Annotators are familiar with
the Label Studio environment and are instructed to label PII spans based on predefined PII categories. Machine-
generated labels are provided as references to assist the human annotators.

efficient fine-tuning (PEFT) techniques of LoRA1218

(Hu et al., 2021). The learning rate is set to 3e-41219

with a linear decay schedule. The maximum input1220

sequence length is 3072 tokens. We use a batch size1221

of 1 and apply gradient accumulation with a factor1222

of 8. The LoRA configuration is set to r = 16 and1223

α = 32.1224

After federated fine-tuning is complete, we eval-1225

uate the utility performance of the final global1226

model on a held-out global test set. In line with1227

standard practices in federated learning research,1228

we also compare this performance with that of a1229

centrally (non-FL) trained model on the same test1230

set. The results are summarized in Table 8.1231

K.3.2 PII Extraction1232

In the main experiments, we designate client 0 as1233

the attacker and client 1 as the victim. We construct1234

the prefix set Pc for PII-contextual prefix sampling1235

from the local dataset D0. During this construction,1236

we set the length parameter λ to 50. Each prefix is1237

used to independently query the utility fine-tuned1238

global model n = 15 times. For each query, the1239

model is allowed to generate up to m = 10 new1240

tokens. This generation length is sufficient to cover1241

most labeled PII instances while keeping the com-1242

putational cost acceptable.1243

For Frequency-Prioritized Prefix Sampling, we1244

construct Set(SUP(Pc)) from the aforementioned 1245

Pc, and sort it in descending order of prefix fre- 1246

quency (as described in Section 4.2.1). The model 1247

θ is then queried using prefixes in this frequency- 1248

descending order. Although we do not explicitly 1249

define a frequency threshold σa, we sweep the pre- 1250

fix budget B exponentially in base 10. Because 1251

Set(SUP(Pc)) is sorted by decreasing frequency, 1252

this sweep over B implicitly corresponds to sweep- 1253

ing σa from +∞ to 1. 1254

K.3.3 Latent Association Fine-tuning 1255

To construct the fine-tuning dataset Dft, we se- 1256

lect the top 10000 most frequent prefixes from 1257

Set(SUP(Pc)) and randomly sample 10000 PII in- 1258

stances from the attacker’s (client 0’s) PII set Sa. 1259

Although alternative strategies could be explored 1260

for prefix and PII selection, this approach is rela- 1261

tively straightforward and effective. We then fine- 1262

tune the model θ to obtain θ′ using one epoch and 1263

a small learning rate of 5e-5. LoRA is applied with 1264

r = 16 and α = 32, consistent with the initial 1265

federated fine-tuning setup. 1266

L Additional PII Label Distribution 1267

Results 1268

Figure 12 illustrates the label distribution of 1269

FedLLM-exclusive victim PII extracted by Qwen1- 1270
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Figure 12: Label distribution of FedLLM-exclusive Vx-
PII extracted using prefix set Pc and the Qwen1-8B
model.

Figure 13: Label distribution of deduplicated victim-
exclusive PII instances extracted by the Baichuan2-7B
model (without LAFt, using prefix set Pc). This figure
complements Figure 2 in the main text, which presents
the corresponding results for Qwen1-8B.

8B. This result corresponds to the experiment de-1271

scribed in Section 5.4.1272

Figure 13 presents the label distribution of dedu-1273

plicated victim-exclusive PII instances extracted by1274

the Baichuan2-7B model.1275
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