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Abstract
Diffusion Policies are effective at learning
closed-loop manipulation policies from human
demonstrations but generalize poorly to novel
arrangements of objects in 3D space, hurting
real-world performance. To address this issue,
we propose Spherical Diffusion Policy (SDP), an
SE(3) equivariant diffusion policy that adapts
trajectories according to 3D transformations of
the scene. Such equivariance is achieved by
embedding the states, actions, and the denoising
process in spherical Fourier space. Additionally,
we employ novel spherical FiLM layers to condi-
tion the action denoising process equivariantly
on the scene embeddings. Lastly, we propose a
spherical denoising temporal U-net that achieves
spatiotemporal equivariance with computational
efficiency. In the end, SDP is end-to-end SE(3)
equivariant, allowing robust generalization across
transformed 3D scenes. SDP demonstrates a
large performance improvement over strong
baselines in 20 simulation tasks and 5 physical
robot tasks including single-arm and bi-manual
embodiments. Code is available at https:
//github.com/amazon-science/
Spherical_Diffusion_Policy.

1. Introduction
Diffusion Policy (Chi et al., 2023) has emerged as an effec-
tive method for learning closed-loop policies from human
demonstration. This success is based on the ability of Diffu-
sion models (Ho et al., 2020) to approximate multi-modal
human demonstrations (Mandlekar et al., 2021). A particu-
larly challenging aspect of real-world robotic manipulation,
which is often underrepresented in synthetic benchmarks,
is that objects may be found in a wide range of 3D poses.
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Figure 1. SDP enforces that the policy is SO(3) equivariant.
Specifically, in the second row, an SO(3) rotation that is applied
to the scene leads to an equivalent rotation on the latent spherical
Fourier features in the neural networks enc, ϵθ , and on the gen-
erated trajectory (blue dots). Fourier features are visualized as
spherical signal.

Consider, for example, grasping a dish that is randomly
placed in the sink, threading a nut onto a bolt with random
orientation, or wiping the curved surface of a car. Diffu-
sion Policy may struggle to attain robust 3D generalization
without training on a large amount of costly human demon-
strations to exhaust the possible 3D arrangements of the
scene.

We propose Spherical Diffusion Policy (SDP), a Fourier
space SE(3) equivariant method that automatically adapts
to changes in the scene. SDP improves on recent works
in equivariant diffusion policy learning which are limited
to SO(2)-equivariance (Wang et al., 2024b), equivariant to
only single-object transformations (Yang et al., 2024a; Tie
et al., 2024), or computationally heavy (Tie et al., 2024). In
contrast, our method is light and SE(3) equivariant across
multiple objects, allowing it to perform more complicated
tasks with less engineering. SDP achieves translational in-
variance by formulating states and actions in the gripper
frame (Chi et al., 2024). Figure 1 illustrates the SO(3)
equivariance of the proposed method. If the scene is trans-
formed by a 3D rotation, then the denoised action trajectory
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will be rotated by the same rotation. Since this equivari-
ance is embedded in the neural network, it does not rely
on additional data to train and thus achieves high sample
efficiency. The equivariance constraints lead to provable
SE(3) generalization to transformed scenes.

The contributions of this work are:

1. a novel method, Spherical Diffusion Policy, which is
equivariant to 3D rotations and invariant to 3D transla-
tions enabling generalization to unseen scenes,

2. a novel spherical FiLM layer for SO(3) equivariant
conditioning,

3. a novel spherical denoising temporal U-net for denois-
ing trajectories with spatiotemporal-equivariance,

4. theoretical validation that SDP is equivariant,

5. empirical validation of SDP through extensive experi-
ments that include 20 simulation and 5 physical tasks
including single-arm and bi-manual embodiments.

2. Background
Diffusion Policy is a closed-loop imitation learning method
that learns a policy π(s) = a that maps states to action
trajectories from expert demonstrations. The states s con-
sist of camera observation o, e.g. images or voxels or
point clouds, and the end-effector’s 6DoF pose (3D trans-
lation and 3D rotation) eT , eR and aperture egrip. The ac-
tion a specifies the 6DoF pose aT , aR and gripper aper-
ture agrip. The policy takes an input a history of h states
St = [st, st−1, . . . , st−h+1]. The output is an action se-
quence of r actions At = [at, at+1, . . . , at+r−1].

Diffusion Policy (Chi et al., 2023) leverages Diffusion Mod-
els (Ho et al., 2020; Song et al., 2021) to learn from multi-
modal human demonstrations (Mandlekar et al., 2021). Dif-
fusion policy infers actions by sampling AK

t from a uniform
Gaussian noise, then performing K iterations of denoising,
producing AK

t , AK−1
t , .., A0

t . The final iterate A0
t is the

output action. The denoising process is defined by:

Ak−1
t = α

(
Ak

t −γϵθ(St, A
k
t , k)+z

)
, z ∼ N (0, σ2I) (1)

where ϵθ(St, A
k
t , k) is a learnable denoising function, pa-

rameterized by θ, that estimates the noise ϵk based on the
state St, the noisy action Ak

t , and the step k. The parame-
ters α, γ, σ define the noise schedule and functions of the
denoising step k. Finally, the denoising function is trained
to predict the noise added to the expert action:

L =
∥∥ϵθ(St, A

0
t + ϵ, k)− ϵ

∥∥2 . (2)

Equivariance describes the property of a function which
commutes with the transformations of a symmetry group

G: ρout(g)f(x) = f
(
ρin(g)x

)
, for all g ∈ G. Here, the

ρs denote group representations, mapping each group ele-
ment to an invertible matrix (Serre et al., 1977). The 2D
special orthogonal group SO(2) describes planar rotations
and its subgroup Cn discretizes SO(2) into n rotations.
Similarly, SO(3) describes 3D rotations. We denote the
group of 3D translations T(3). The Special Euclidian group
SE(3) = SO(3) ⋉ T(3) includes both 3D rotations and
translations. For any group, the trivial representation ρ0
assigns the identity matrix ρ0(g) = I to each group element.
This makes invariance a special case of equivariance where
the output representation ρout = ρ0. For SO(3), there are
higher-dimensional representations ρ1, ρ2, . . . that will be
introduced later. Representations can be combined by di-
rect sum ρ(g) = ρ′(g)⊕ ρ′′(g), where ρ′(g) and ρ′′(g) are
diagonal blocks in ρ(g).

Equivariant Policy Learning assumes the policy is equiv-
ariant π(gS) = ga, g ∈ G, where G could be SO(2) group
or SE(3) group. One way to achieve equivariance is by
recognizing and modeling an equivariant function using
equivariant neural networks. (Ryu et al., 2024) states that
for Brownian Diffusion on the SE(3) manifold, if the target
function π(S) = a is equivariant, then the denoising func-
tion ϵθ is also equivariant: ϵθ(gS, gA, k) = gϵθ(S,A, k).
EquiDiff (Wang et al., 2024b) extends this open-loop equiv-
ariance (Ryu et al., 2024) into closed-loop setups, but it is
limited to SO(2) equivariance. For an additional introduc-
tion, see Appendix C.1.

Another way to achieve equivariance is by canonicalizing
the input S and output a of a neural network (Zeng et al.,
2022; Wang et al., 2021; Jia et al., 2023; Chi et al., 2024).
For example, if a is a 3D translation, then canonicalizing S
involves translating it inversely so that the action is at the
origin: Scan = S − a, acan = a − a, a ∈ T(3). Intuitively,
canonicalization eliminates the transformation applied to
the state and action by always evaluating the state in the
canonicalized view. Refer to Appendix C.2 for proof.

Spherical Harmonics (SH) are functions on the sphere
Y m
l : S2 → R which give an orthonormal basis for the

function space L2(S2,R). They are indexed by degree l ∈
Z≥0 and order −l ⩽ m ⩽ l,m ∈ Z. A spherical function in
spatial space can be transformed into the frequency domain
by a spherical Fourier transform: F : f 7→ {cml }, where
cml are Fourier coefficients. Inversely, the inverse spherical
Fourier transform F−1 converts the Fourier coefficients to
the spatial value: f(u) =

∑∞
l=0

∑
m cml Y m

l (u). Spherical
functions and SH are SO(3) steerable and thus suitable
for SO(3)-equivariant networks. Essentially, a rotation of
f in spatial space is equivalent to a rotation of cml in the
frequency domain by the Wigner D-matrices Dl

m, which is
orthogonal. That is, f ′ = g · f, g ∈ SO(3) is equivalent to
cnl

′ =
∑

m Dl
mn(g)c

m
l , where cnl

′ are Fourier coefficients
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of f ′. For example, degree 0 (ρ0) Fourier coefficients c0 ∈
R are scalars that are invariant to rotation, and degree 1 (ρ1)
Fourier coefficients c1 ∈ R3 are 3D vectors with Wigner D-
matrix given by a standard 3D rotation matrix. A Spherical
Fourier signal up to degree L has (L + 1)2 coefficients
(Cohen et al., 2018; Bonev et al., 2023). SDP leverages this
compact representation. Convolving two sets of Spherical
Fourier signals (Cohen et al., 2018; Klee et al., 2023) leads
to a signal over SO(3), which has

∑L
l (2l+1)2 coefficients,

as adopted in ET-SEED (Tie et al., 2024).

Equiformer (Liao & Smidt, 2023) and EquiformerV2
(Liao et al., 2024) are SE(3) equivariant graph neural net-
works (GNN) (Passaro & Zitnick, 2023). In contrast to
conventional GNNs that treat each node in the graph as a
scalar, Equiformer attaches spherical features to each node.
These features are compactly approximated by truncated
Fourier coefficients, up to degree l ⩽ L. Messages are
aggregated from neighbor nodes in the graph through the
edges by equivariant graph attention. This is followed by an
equivariant spherical linear and activation layer. The spheri-
cal linear layer treats degree l Fourier coefficients as high
dimensional vectors to perform a linear mapping in each
degree separately. The spherical activation layer (Geiger &
Smidt, 2022) performs inverse Fourier transform, then per-
forms conventional activation point-wise on the sphere, and
lastly converts the activation back to Fourier coefficients.

3. Related Works
Closed-loop Robot Policy Imitation Learning learns
robot skills from human demonstrations through machine
learning. Though it is a straightforward and general frame-
work, facing multiple challenges. One challenge is the
error compounding effect where the action prediction er-
ror causes future states to diverge from the training states
and further exacerbate the next action prediction (Ke et al.,
2021). To combat this, action chunking (Lai et al., 2022;
Mandlekar et al., 2021; Chi et al., 2023; Zhao et al., 2023b)
proposes predicting and executing a trajectory of actions
instead of one step of action. Another challenge is to learn
from multi-modal human demonstrations. Multiple methods
are proposed to fit a multi-modal policy, including Gaussian
Mixture Model (Mandlekar et al., 2021; Zhu et al., 2022b),
Variational Auto Encoder (Zhao et al., 2023b; Mousavian
et al., 2019), Energy-Based Models (Implicit Models) (Flo-
rence et al., 2022), and Diffusion Models (Janner et al.,
2022; Pearce et al., 2023; Chi et al., 2023). Based on (Chi
et al., 2023), this work leverages additional inductive bias –
equivariance, to achieve significantly better performance.

Equivariance on Robot Learning Robotic policies op-
erate in the 3D world, sharing rich symmetries. (Zhu et al.,
2022a; Huang et al., 2022; Zhu et al., 2023; Hu et al., 2024)

investigated equivariance in the grasp learning. (Wang et al.,
2021; Huang et al., 2024c; Simeonov et al., 2022; Zhao
et al., 2023a; Ryu et al., 2024; Huang et al., 2024a; Gao
et al., 2024; Zhu et al., 2025b) developed equivariant open-
loop policies. (Van der Pol et al., 2020; Wang et al., 2022b;a;
Jia et al., 2023; Liu et al., 2023; Wang et al., 2024c;b; Yang
et al., 2024b;a) verified effectiveness of equivariance in
closed-loop agent. Among these works, (Zhu et al., 2022a;
Zhao et al., 2023a; Jia et al., 2023; Liu et al., 2023; Huang
et al., 2024c; Wang et al., 2024b; Zhu et al., 2025a) utilize
discrete equivariance that suffers from discretization error.
On the other hand, (Ryu et al., 2024; Huang et al., 2024a;
Gao et al., 2024; Hu et al., 2024; Zhu et al., 2025b) leverages
continuous equivariance but is limited to open-loop settings.
Moreover, EquiBot (Yang et al., 2024a) are limited to degree
l = 1 representation that suppresses rich information, and
ET-SEED(Tie et al., 2024) uses heavy SO(3) irreducible
representation that needs two-stage inference to alleviate
computation burden. Furthermore, (Yang et al., 2024a;b;
Tie et al., 2024) requires a segmentation pipeline engineered
for each task to exclude everything but one object in the
workspace. In contrast, our work is the first to leverage con-
tinuous and compact spherical Fourier features to achieve
a SE(3) equivariant, end-to-end, and computationally effi-
cient closed-loop policy.

Diffusion Models and Equivariant Diffusion Models
Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) are probabilistic generative models
that demonstrated a strong capability modeling multi-modal
distribution. Such capability is achieved by iteratively re-
moving noise from an initial sample randomly drawn from
an underlying distribution. Equivariance is introduced to dif-
fusion models in (Xu et al., 2022; Hoogeboom et al., 2022;
Yim et al., 2023) in the context of molecule generation. Dif-
fusion Models are applied to robotics in open-loop settings
(Ke et al., 2024; Ryu et al., 2024; Jiang et al., 2023; Urain
et al., 2023; Huang et al., 2024b) and closed-loop settings
(Janner et al., 2022; Pearce et al., 2023; Chi et al., 2023;
2024; Ze et al., 2024; Wang et al., 2024a; Liu et al., 2024;
Brehmer et al., 2024). The most relevant works on equivari-
ant Diffusion Policy include (Wang et al., 2024b; Zhao et al.,
2025; Yang et al., 2024a; Tie et al., 2024), where (Wang
et al., 2021; Zhao et al., 2025; Hu et al., 2025) is limited
to discretized SO(2) equivariance. (Yang et al., 2024a; Tie
et al., 2024) is SO(3) equivariant thus requiring engineer-
ing effort to segment everything but the target object, even
though, these methods are designed to handle a single object
in the scene. Moreover, (Tie et al., 2024) is based on heavy
SO(3) irreducible representations and needs 2 stage diffu-
sion process. In contrast, our method is SE(3) equivariant,
based on compact yet expressive spherical representations
that can end-to-end learning without task-specific engineer-
ing effort and generalize to multi-object tasks.
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Figure 2. Method overview. During inference, SDP first embeds state St into a spherical scene feature Ct by the encoder enc. Then,
SDTU ϵθ estimates the noise ϵ based on the noisy actions Ak

t , step k, and the scene feature Ct. Later, the noise is subtracted from the
noisy actions, generating cleaner actions Ak−1

t . This denoising process is performed for K iterations, generating a clean trajectory A0
t .

4. Method
4.1. Method Overview

The Spherical Diffusion Policy model maps observations
to actions π(S) = A. We assume the optimal policy is
SE(3) equivariant and enforce this assumption in the model.
Specifically, we enforce rotation equivariance π(gS) =
gA, g ∈ SO(3), and translation invariance π(tS) = A, t ∈
T(3). The model is thus SE(3)-equivariant where T(3) acts
trivially on the actions.

The rotational equivariance of π is enforced by an equivari-
ant denoising function ϵθ, as proven in (Ryu et al., 2024;
Wang et al., 2024b). Specifically, we use an equivariant
conditional denoising function ϵθ(S,A+ ϵk, k) to estimate
the noise for a noisy action A+ ϵk, the step k, and state S.
We model ϵθ using three components as shown in Figure 2:
i) the spherical encoder embeds the state into a multichannel
spherical scene feature enc(S) = C, and then ii) a spher-
ical denoising temporal Unet (SDTU) estimates the noise
from the noisy action and step, conditioned on the scene
feature ϵθ(C,Ak+ϵk, k) using iii) spherical FiLM (SFiLM)
layers to achieve this equivariant conditioning. Since these
three components are equivariant, the denoising function is
equivariant by composition.

Translational invariance of π is achieved using a relative ac-
tion formulation (Chi et al., 2024), which canonicalizes the
state-action (Zeng et al., 2022) with respect to translations
by centering the observation on the gripper and defining
action positions relative to the gripper:

Scan,i = (O − eiT , e
i
T − eiT , e

i
R, e

i
grip)

Acan,i = (Ai
T − eiT , A

i
R, A

i
grip).

See Appendix C.2 for proof. For the single-arm setting,
i ∈ {0} denotes the gripper. Additionally, we propose
bi-manual relative action representation. In this case, i ∈

{0, 1} and we canonicalize the state and action to the left
i = 0 and the right i = 1 gripper’s position.

4.2. Representing State and Action by Spherical Signal

In this section, we propose a spherical representation of the
state and action for the policy. There are several advantages
of using spherical Fourier features as latent features. First,
the truncated spherical Fourier coefficients provide a com-
pact approximation of spherical features and are compatible
with SO(3) rotations, rather than computationally heavy
SO(3) irreps used in ET-SEED (Tie et al., 2024). Further-
more, higher degree coefficients can represent finer details
than EquiBot(Yang et al., 2024a) which adopted Vector Neu-
ron (Deng et al., 2021) that only supports up to 3D vectors
(analogous to type-l = 1), suppressing rich higher degree
information in the latent features. For example, vector rep-
resentations cannot capture spherical distributions with two
distinct modes. Lastly, spherical features support equivari-
ance to continuous group SO(3) (continuous rotation), in
contrast to discretized group C8 (discretized rotation) in
EquiDiff (Wang et al., 2024b) which suffers from discretiza-
tion error.

The end-effector state e, the action at, and the noise ϵ have
the same geometric structure consisting of a 3D position,
3D rotation, and 1D gripper aperture information. We de-
compose the end-effector data as a 3D position vector, a
3× 3 rotation matrix, and a 1D scalar. The rotation matrix
can be viewed as 3 column vectors. We represent the po-
sition vector by a degree 1 vector, the rotation matrix by 3
degree 1 vectors, and the aperture as a scalar in the trivial
representation. That is, e, at, ϵ ∈ ρee = ρ41 ⊕ ρ0. Intuitively,
the position and rotation matrix are rotated by the rotation
matrix corresponding to the rotation of the state, while the
gripper aperture stays unchanged.
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Figure 3. Spherical denoising temporal U-net (SDTU). Left: The SDTU ϵθ estimates the noise ϵ, based on the noisy actions Ak
t , denoising

step index k, and the encoded scene C. The SDTU has a U-net architecture, with 4 spherical down or up convolution blocks. Right:
details of a spherical down or up convolution block.

We adopt point clouds as an observation o and treat color
information as degree 0 spherical coefficients (same as (Ryu
et al., 2024)), as the color is invariant to the point cloud
rotation. The point cloud is encoded to a latent vector by a 5-
layer ResNet (He et al., 2016) encoder enc(·). The encoder
is implemented by EquiformerV2 (Liao et al., 2024) which
extracts a high-degree spherical signal from the point cloud,
see Appendix E for details. The robot state e is concatenated
to the output of the encoder yielding C.

4.3. Spherical Denoising Temporal U-net

The spherical denoising temporal U-net ϵθ infers the noise
from the noisy action Ak + ϵk, denoising step index k, and
state embedding C as ϵθ(C,A

k + ϵk, k). The vector C
encodes the state in spherical Fourier space up to degree L.
The input Ak + ϵk and the output are spherical signals in
ρee, as introduced in Section 4.2. The denoising step index
is encoded using sinusoidal embeddings, treated as degree
0 features.

The SDTU is a 1D U-net with spherical Fourier features that
are spatiotemporal equivariant. The temporal equivariance
is achieved using 1D convolution along the time dimension t,
as proposed in Diffuser (Janner et al., 2022). We incorporate
an additional spherical Fourier dimension in the latent fea-
tures to achieve spatial equivariance (SO(3) equivariance).
This equivariance is enforced by mixing channel tempo-
ral convolution on each degree l of the spherical Fourier
coefficient:

ho
l,m,t =

r∑
j=0

∑
i∈in

hi
l,m,jw

i,o
l,j−t, (3)

where i, o indexing the input and the output channels respec-
tively, l,m is the degree and order of the spherical Fourier
coefficient h, in denotes all input channels. Subscript j
indexes the time in the prediction trajectories.
Proposition 4.1. The mixing channel temporal convolution

in Equation. 3 is SO(3) equivariant:

Dl
mn(g)h

o
l,m,t =

∑
j∈T

∑
i∈in

Dl
mn(g)h

i
l,m,jw

i,o
l,j−t. (4)

For proof see Appendix A.1, the proof essentially follows
Schur’s lemma (Schur, 1905), which states that any linear
combination of SO(3) Fourier features is equivariant. This
convolution is followed by spherical activation (Cohen et al.,
2018; Geiger & Smidt, 2022) for expressiveness. Stride and
transposed convolution are used for down- and up- sampling
in the U-net, as in Diffuser (Janner et al., 2022). Spherical
FiLM layers are adopted, allowing for equivariant condi-
tioning, and are described in the next section. Figure 3
summarizes the SDTU.

4.4. Spherical FiLM Conditioning Layer

We propose equivariant spherical FiLM (SFiLM) layers to
extend the Feature-wise Linear Modulation (FiLM) layer
(Perez et al., 2018) used by Diffuser (Janner et al., 2022) into
the spherical Fourier domain. The condition on sphere C is
projected into a scaling condition γ and an offset condition
β by equivariant linear layers (Geiger & Smidt, 2022): γ =
Γ(C), β = B(C). Then, SFiLM conditions each degree
l separately. Specifically, SFiLM treats γl, βl as 2l + 1
dimensional vectors, to modulate the hidden feature hl, by
projecting γl onto hl as a scaling condition and adding βl

as an offset condition:

SFiLM(hl|γl, βl) = γT
l hl

hl

||hl||
+ βl. (5)

SFiLM supports high degree Fourier coefficients for expres-
siveness, which differs from EquiBot (Yang et al., 2024a)
that only supports degree 1 which drops rich information in
the latent features.

Proposition 4.2. The SFiLM layer in Equation. 5 is SO(3)
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equivariant:

D(g) · SFiLM(hl|γl, βl) =

SFiLM
(
D(g)hl|D(g)γl, D(g)βl

)
, g ∈ SO(3) (6)

The proposition is proved by the orthogonal property of the
Wigner D-matrices D and Schur’s lemma (Schur, 1905),
please see Appendix A.2 for details.

5. Experiments
5.1. Simulation Experiments

Experimental Settings We conduct simulation experi-
ments using the MimicGen (Mandlekar et al., 2023) environ-
ment, built on the Mujoco simulator (Todorov et al., 2012),
which features diverse tasks that are contact-rich, precise,
and long-horizon (see Figure 4). Unlike scripted demon-
strations, which are unimodal, or Reinforcement Learning
(RL) agent-generated demonstrations, which are Markovian,
MimicGen generates multi-modal, non-Markovian trajec-
tories from a few human demonstrations (Mandlekar et al.,
2021), making it well-suited for benchmarking learning
from human demonstrations.

MimicGen provides observations in the form of RGBD im-
ages from both a front view and an in-hand view, along
with a 7-DoF robot state. The RGB images have a reso-
lution of 84 × 84 × 3, while RGBD data can be used to
reconstruct either 3D colored voxels (843) or colored point
clouds (PCD) with 1024 points. For PCD, we exclude table
points, following DP3 (Ze et al., 2024). The action space in
MimicGen consists of a 6-DoF gripper pose and a 1-DoF
gripper aperture. Three control modes are used: Absolute
Control, which defines the gripper trajectory in the robot
frame; Relative Control, which defines it in the current grip-
per frame; and Velocity Control, which determines the next
gripper pose relative to the previous one (Chi et al., 2024).

To evaluate robustness, we modify four MimicGen tasks
with SE(3) initialization by randomly tilting the table within
a defined range and randomly placing objects on the table-
top while keeping the robot base upright. Benchmarking is
conducted across three difficulty levels with progressively
increasing tilt ranges: [0], [−15◦, 15◦], and [−30◦, 30◦]. Ad-
ditionally, we also compare various baselines across all 12
original MimicGen tasks.

We compare several baselines in our experiments: 1) EquiD-
iff (Wang et al., 2024b) – an SO(2)-equivariant diffusion
policy using either voxel or RGB image observations. 2)
DiffPo (Chi et al., 2023) – the original diffusion policy,
employing either a convolutional (-C) or transformer (-T)
backbone in the diffusion network. 3) EquiBot (Yang et al.,
2024a) – an SO(3)-equivariant diffusion policy with up to
degree l = 1 representations. 4) DP3 (Ze et al., 2024) – a

diffusion policy based on point-cloud representations. 5)
ACT (Zhao et al., 2023b) (Action Chunking Transformer)
– a model capturing multi-modality via a Variational Au-
toencoder (VAE). 6) BC-RNN (Mandlekar et al., 2021) – a
behavioral cloning approach that captures multi-modality
using a Gaussian Mixture Model (GMM) and accounts for
non-Markovian dynamics via a Recurrent Neural Network
(RNN). A relevant baseline, ET-SEED (Tie et al., 2024), is
not included because the code was unavailable before the
initial submission. Following (Chi et al., 2023; Wang et al.,
2024b), we train all baselines using DDPM (Ho et al., 2020)
with 100 denoising steps. For details on hyperparameters,
see Appendix D. We report the maximum test success rate
throughout training, averaging results over 50 rollouts for
each of the three seeds.

Results on Tasks with SE(3) Initialization Table 1
shows that SDP outperforms all baselines across all tilt-
ing ranges, except for the Coffee 0◦ task, demonstrating
superior sample efficiency. Notably, as the tilting range
increases, SDP achieves a more significant relative perfor-
mance improvement over the baselines. This highlights
SDP’s strong SE(3) generalization, enabled by its contin-
uous SE(3) equivariance property. However, performance
declines for all methods, including SDP, as the tilting range
increases. We hypothesize that this drop is caused by point-
cloud occlusion and object instability due to gravity, both
of which disrupt SE(3) equivariance.

Results on Tasks with SE(2) Initialization Table 2
shows that SDP outperforms all baselines across 10 tasks,
except for Coffee and Coffee Preparation. Despite the varia-
tions in SE(2), SDP still demonstrates a notable advantage,
suggesting that its continuous SE(2) equivariance bene-
fits learning more effectively than the discrete C8 equiv-
ariance in EquiDiff. The lower performance of SDP on
Coffee and Coffee Preparation may be attributed to the
low-resolution point clouds, which struggle to capture fine
details—such as the slack between the coffee pod and its
receptacle—potentially hindering precise manipulation.

5.2. Physical Experiments

Experimental Settings We further evaluate the perfor-
mance of SDP across 5 physical tasks in Figure 5, using a
robot station shown in Figure A1. Turn Lever involves ma-
nipulating an articulated object, while Push Eraser requires
pushing a small eraser. Grasp Box challenges the policy to
maintain a closed kinematic chain. Flip Book involves rich
contact between the end-effector, the tabletop, and the book.
Pack Package is a long horizon task. The observations are
captured by two stationary RGBD cameras positioned above
the workspace to minimize occlusion. Point clouds with
1024 points are reconstructed from the RGBD images (for
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(a) Coffee 0◦ (b) −15◦ ∼ 15◦ (c) −30◦ ∼ 30◦ (d) Thr. Pc. D2 (e) Square D2 (f) Thread. D2

Figure 4. MimicGen tasks with SE(3) initialization ((a)-(c), showing 1 of 4 tasks) and SE(2) initialization ((d)-(f), showing 3 of 12 tasks).

Table 1. Evaluation success rate on 4 MimicGen tasks with 3 levels of SE(3) initialization. We train all the baselines on progressively
tilted environments with 100 demonstrations. As the degress of SE(3) initialization increases, SDP maintains reasonable performance
while the performance of other baselines drop severely. Results averaged over three seeds.

Coffee Three Pc. Assembly Square Threading Average

Method Equ Ctrl Obs 0◦ 15◦ 30◦ 0◦ 15◦ 30◦ 0◦ 15◦ 30◦ 0◦ 15◦ 30◦ 0◦ 15◦ 30◦

SDP SE(3) Rel PCD 63 54 33 67 49 37 62 38 31 60 53 39 63 49 35
EquiDiff (Wang et al., 2024b) C8 ⊂ SO(2) Abs Voxel 65 43 29 37 15 8 39 3 3 39 20 10 45 20 13
DiffPo (Chi et al., 2023) N/A Abs RGB 44 23 16 4 2 2 8 0 1 17 10 8 18 9 7
EquiBot (Yang et al., 2024a) SO(3) Abs PCD 0 1 0 1 1 1 0 1 1 6 4 0 2 2 1

Table 2. Evaluation success rate on 12 MimicGen tasks with SE(2) initialization. We train all the baselines with 100 demonstrations.
SDP demonstrates the best performance on 10 tasks. Results averaged over three seeds.

Stack Three Pc. Hammer Mug Nut Pick Coffee Average
Stack Three Square Threading Coffee Assembly Cleanup Cleanup Kitchen Assembly Place Preparation Success

Method Ctrl Obs D1 D1 D2 D2 D2 D2 D1 D1 D1 D0 D0 D1 Rate

SDP Rel PCD 100 98 62 60 63 67 82 54 89 92 73 73 76

EquiDiff (Wang et al., 2024b)

Abs

Voxel 99 75 39 39 65 37 70 53 85 67 58 80 64
EquiDiff (Wang et al., 2024b) RGB 93 55 25 22 60 15 65 49 67 74 42 77 54
DiffPo-C (Chi et al., 2023) RGB 76 38 8 17 44 4 52 43 67 55 35 65 42
DiffPo-T (Chi et al., 2023) RGB 51 17 5 11 47 1 48 30 54 31 15 38 29
DP3 (Ze et al., 2024) PCD 69 7 7 12 34 0 54 21 45 16 12 10 24
ACT (Zhao et al., 2023b) RGB 35 6 6 10 19 0 38 23 37 42 7 32 21

EquiDiff (Wang et al., 2024b)

Vel

Voxel 95 59 25 33 55 5 64 39 69 53 40 48 49
EquiDiff (Wang et al., 2024b) RGB 75 25 11 11 41 1 49 29 61 44 29 49 35
DiffPo-C (Chi et al., 2023) RGB 81 26 6 13 43 2 43 25 42 42 35 42 33
BC RNN (Mandlekar et al., 2021) RGB 59 12 8 7 37 0 32 19 31 35 21 14 23

(a) Single-arm Turn Lever (b) Single-arm Push Eraser (c) Bi-manual Grasp Box

(d) Bi-manual Multi-step Flip Book (e) Bi-manual Multi-step Pack Package

Figure 5. Five physical robotic manipulation tasks.

Push Eraser we also tested 2048 points). The actions are the
6 DoF gripper poses for single-arm tasks or 12 DoF gripper
poses for bi-manual tasks.

Training Dataset from Human Demonstrations We use
Gello (Wu et al., 2023) to collect demonstrations with ob-
jects initialized in random SE(3) poses. For the single-
arm tasks, we collect 30 successful human demonstrations.
Additionally, we record an extra 10% demos as the recov-
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Table 3. Success rate (%) of 5 physical experiments over 20 evalu-
ation episodes. The action space and number of training demon-
strations are listed under each task. Overall, SDP is 61% better
than EquiDiff and 71% better than DiffPo-C. Results from one
seed. * using point clouds with 2048 points.

Turn Lever Push Eraser Grasp Box Flip Book Pack Package Avg.
6 DoF 6 DoF 12 DoF 12 DoF 12 DoF Succ.

Method 33 Demos 33 Demos 33 Demos 66 Demos 66 Demos Rate

SDP 80 35/ 90* 85 65 70 78
EquiDiff 20 30 35 0 0 17
DiffPo-C 10 10 15 0 0 7

ery demos at specific poses. Similarly, for the bi-manual
Grasp Box task, we collect 33 demos at random SE(3)
poses. For more challenging bi-manual tasks like Flip Book
and Pack Package, we collect 66 demos. Figure A3 visu-
alizes the SE(3) training pose distribution for all five tasks.
Further details on the tasks are provided in Appendix B.2.

Results and Discussion We benchmark SDP against the
top two baselines, EquiDiff (Wang et al., 2024b) and DiffPo-
C (Chi et al., 2023), from the simulation experiment (Table
1). We train all three models using DDIM (Song et al., 2021)
and inference with 8 denoising steps for all tasks. Each base-
line is evaluated on 20 rollouts per physical task, with each
rollout initialized using object poses in novel SE(3) poses
unseen in the training set. The success rates are summarized
in Table 3, with a detailed breakdown of the success rates
provided in Table A1. For the Push Eraser task, increasing
the PCD resolution to 2048 points enables accurate localiza-
tion of the eraser, resulting in a performance improvement
of over 50%.

SDP significantly outperforms all baseline methods across
every task and embodiments, achieving a 61% higher suc-
cess rate than EquiDiff and a 71% improvement over DiffPo-
C. These significant gains in sample efficiency and spatial
generalization are largely attributed to its inherent SE(3)
equivariance. For instance, in the Turn Lever task, SDP
successfully locates and rotates a lever that is randomly
clamped in 3D space. In comparison, EquiDiff frequently
misdirects the gripper to the workspace center, entirely miss-
ing the lever, while DiffPo approaches the lever but only
hovers nearby without engaging it. Further discussion of
common failures can be found in Appendix B.3.

5.3. Ablation Study

Table 4 presents six ablations: 1) Discrete SDP - replaces
SDTU that has continuous equivariance with discrete equiv-
ariant denoising U-net with Octahedron (cubical) discretiza-
tion, this is a SE(3) adaption of (Wang et al., 2024b; Zhao
et al., 2025). 2) SDP Absolute Action – defines actions in
the workspace frame instead of SDP’s relative action formu-

lation, which defines actions in the current gripper frame. 3)
DP3-canonical - DP3 (Ke et al., 2024) with canonicalized
observation-action space, by transforming the point cloud
and trajectory to the gripper frame. This achieves SE(3)-
invariance. 4) EquiBot Rel. – removes SDP’s spherical
Fourier features and replaces its model with EquiBot (Yang
et al., 2024a), while keeping the relative action formulation.
5) DP3 Absolute Action - (Ke et al., 2024) the original DP3
policy, this baseline ablates relative action, spherical repre-
sentation, and equivariance. 6) EquiBot Absolute Action –
removes both the spherical Fourier features and the relative
action formulation, adopting EquiBot (Yang et al., 2024a)
in the absolute action formulation.

The results are shown in Table 4. Discrete SDP trivially
modifying (Wang et al., 2024b) to be SE(3) equivariant,
sufferers from discretization error thus underperforms SDP.
The relative action formulation that achieves 3D transla-
tional equivariance, also plays a key role, as its removal in
SDP Abs. causes major performance drops, particularly
in the Coffee and Square tasks. DP3-canonical leverages
SE(3) invariant features, outperforms DP3 that did not lever-
age, but still underperforms SDP by a large margin, demon-
strating the advantage of equivariant features. This matches
the finding in (Miller et al., 2020). The EquiBot Rel. abla-
tions result in significant performance drops across all four
tasks, indicating that the spherical Fourier representation
is the most critical factor for SDP’s performance. Finally,
DP3 Abs., EquiBot Abs. further amplifies the performance
degradation, demonstrating that removing both the relative
action formulation and spherical Fourier representation is
more detrimental than removing either one alone.

Table 4. Ablation study. The relative action space and the spherical
representation are critical for the SE(3) generalization, while the
latter one is more important. Results from one seed.

Rel. Spher. Equi- Coffee Thr. Pc. Square Thread. Avg.
Method Act. Rep. variance 15◦ As. 15◦ 15◦ 15◦ SR

SDP ✓ ✓ SE(3) equ. 54 49 38 53 49
Discrete SDP ✓ ✓ Octahedron 42 16 34 48 35
SDP Abs. ✗ ✓ SO(3) equ. 18 42 0 44 26
DP3-canonical ✓ ✗ SE(3) inv. 40 0 8 12 15
EquiBot Rel. ✓ ✗ SE(3) equ. 18 2 4 6 8
DP3 Abs. ✗ ✗ None 20 0 0 4 6
EquiBot Abs. ✗ ✗ SO(3) equ. 1 1 1 4 2

5.4. Additional Studies

Performance VS Degree l in spherical Fourier features
As shown in Table 5, increasing the degree from 1 to 2
improves performance across all tasks. However, beyond
degree 2, performance saturates while computational cost
increases. Since SDP is designed for real-time robot control,
we select l = 2.
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Table 5. Success rate VS degree l of the spherical Fourier feature.
Results from one seed.

Degree l Coffee 15◦ Thr. Pc. As. 15◦ Square 15◦ Threading 15◦ Avg. SR

3 52 52 66 52 56
2 (SDP) 54 49 38 53 49
1 44 4 10 46 26

Sample Efficiency To assess the impact of training dataset
size on performance, we evaluate SDP, EquiDiff, and DiffPo
on four MimicGen tasks with tilted angles in the range
[0, 15◦], using 100, 316, or 1000 demonstrations. Figure 6
summarizes the results, with each point representing the
average success rate across all four tasks.

SDP achieves a success rate of 48.5% using only 100 demon-
strations, surpassing EquiDiff by 4% while utilizing just
one-tenth of the data, indicating a 10× improvement in
data efficiency. Similarly, EquiDiff attains a 20% success
rate with 100 demonstrations, matching the performance of
DiffPo, which requires approximately 300 demonstrations,
supporting a 3× gain in data efficiency.

Figure 6. Impact of training dataset size on task success rates: in-
creasing the number of demonstrations from 100 to 316 (a 3×
increase) yields an average success rate improvement of 9–12%
across four tasks, with initial success rates of 48.5% (SDP), 20.3%
(EquiDiff), and 8.8% (DiffPo). At 1,000 demonstrations (10×),
the average success rate saturates for SDP at 60%, while EquiDiff
and DiffPo continue to improve, reaching 44.5% and 32.5%, re-
spectively.

The observed performance saturation of SDP beyond 300
demonstrations may be attributed to scene occlusions, as re-
lying solely on agent-view and in-hand cameras can obscure
critical areas of the workspace. Additionally, all demon-
strations are generated from 10 raw human demonstrations
(Mandlekar et al., 2023), so increasing the number of gener-
ated demonstrations may not increase diversity in the data.
Furthermore, the kinematic constraints of the robot may
limit its ability to access certain regions, thereby impacting
overall task success.

Inference Speed Table 6 presents the inference time com-
paring SDP with four other baselines. DiffPo is the fastest
(0.09s) while ETSEED is the slowest (29.4s). The inference
time of SDP is on the same order of magnitude as that of
the best baseline-DiffPo (approximately 5×), while SDP
achieves continuous SE(3) equivariance, significantly better
performance than DiffPo and EquiDiff in simulation and
physical experiments, and does not require preprocessing.

SDP leverages spherical features by using EquiformerV2
(Liao et al., 2024) and SDTU, which is more lightweight
(66× faster inference speed, 32× larger batch size) than the
SE(3)-transformer that ET-SEED is based on. Moreover,
SDP supports high orders of spherical harmonics, which is
more expressive than Vector Neuron. Lastly, SDP achieves
continuous SE(3)-equivariance, where EquiDiff enforces
discrete C8 ⊂ SO(2) equivariance.

Table 6. Comparison of inference time. At the costs of 5× solver
than DiffPo, SDP achieves continuous SE(3) equivariance and
does not need preprocessing. The inference time and the training
batch size are tested on a commercial GPU with 24GB RAM.

Inference Pre- Batch Equivariance Neural
Method Time (s) ↓ processing Size ↑ Network

SDP 0.44 No 32 SE(3) EquiformerV2, SDTU
DiffPo 0.09 No 64 None Convolution
EquiDiff 0.14 No 64 C8 ⊂ SO(2) ESCNN
EquiBot 0.18 Segmentation 64 SE(3) Vector Neuron
ET-SEED 29.4 Segmentation 1 SE(3) SE(3)-Transformer

6. Conclusion and Limitations
This paper introduces the Spherical Diffusion Policy (SDP),
an SE(3)-equivariant policy that generalizes to 3D scene ar-
rangements using only a few demonstrations. SDP achieves
this through three key components: 1) spherical Fourier
features, providing compact and precise representations for
continuous SO(3) equivariance; 2) spherical FiLM, enforc-
ing equivariant conditioning; and 3) a spherical denoising
temporal U-net, ensuring spatiotemporal equivariant denois-
ing. SDP significantly outperforms strong baselines across
simulation and real-world experiments, demonstrating ef-
fectiveness in both single-arm and bi-manual embodiments.

One limitation of the proposed method is that it operates
in position control, ignoring contact forces, which leads
to protective stops in the Flip Book task. An important
future direction is to address this by learning a compliant,
force-aware policy (Kohler et al., 2024; Hou et al., 2024)
in an equivariant manner. Another limitation is the low-
resolution point cloud processing in the observation encoder,
which struggles to capture fine details, such as these in the
Push Eraser task. Using a more efficient Graph Neural
Network (Zhao et al., 2021; Luo et al., 2024) could help
mitigate this issue.
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Impact Statement
On the bright side, the proposed method enhances spatial
generalization for manipulation policies, making it poten-
tially deployable in real-world scenarios to significantly
reduce human workload. On the dark side, the method
lacks awareness of common scenes, which could result in
risky actions such as harming individuals, causing fires, or
damaging objects.
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A. Proofs
A.1. Proof of Proposition 4.1

Proof. Focusing on the right-hand side of the Equation 4:∑
j∈T

∑
i∈in

Dl
mn(g)h

i
l,m,jw

i,o
l,j−t (7)

= Dl
mn(g)

∑
j∈T

∑
i

hi
l,m,jw

i,o
l,j−t (8)

= Dl
mn(g)h

o
l,m,t, (9)

the line 8 is because of Schur’s lemma (Schur, 1905), which states that any linear operation of SO(3) irreps acts as on each
irreducible subspace is equivariant.

A.2. Proof of Proposition 4.2

Proof. Focusing on the right-hand side of Equation 6:

SFiLM
(
D(g)hl|D(g)γl, D(g)βl

)
(10)

= (D(g)γl)
TD(g)hl

D(g)hl

||D(g)hl||
+D(g)βl (11)

= γT
l D(g)TD(g)hl

D(g)hl

||D(g)hl||
+D(g)βl (12)

(13)

Because the Wigner D-matrices are orthogonal, we have:

SFiLM
(
D(g)hl|D(g)γl, D(g)βl

)
(14)

= γT
l hl

D(g)hl

||hl||
+D(g)βl (15)

= D(g)(γT
l hl

hl

||hl||
+ βl) (16)

= D(g) · SFiLM(hl|γl, βl), (17)

the line 16 is based on Schur’s lemma (Schur, 1905).

B. Physical Experiments and Results
B.1. Physical Experiment Workstation

Our physical robotic workstation, as shown in Figure A1, is composed of two collaborative UR5e manipulators, each
equipped with a compliant ray-fin finger(Crooks et al., 2016).Two scene cameras (RealSense D415) are positioned on either
side of the workspace. GELLO controllers (Wu et al., 2023) are utilized to collect human demonstrations for physical
robotic manipulation tasks.

B.2. Physical Manipulation Tasks and Training Datasets

We experiment with SDP on five physical tasks, as shown in Figure A2 : (a) Turn Lever involves manipulating an articulated
object and (b) Push Eraser requires pushing a small object with a single manipulator; (c) Bi-manual Grasp Box challenges
the policy to maintain a closed kinematic chain; (d) Flip Book involves rich contact between the end-effector and the book
while transforming book’s pose with dexterous complex coordinated manipulation; (e) Pack Package is a long horizon task.

Turn Lever: An expert demonstrator moves one ray-fin finger to make flush contact with the edge of the lever and then turn
the Lever counter-clockwise at least 60 degree around the fulcrum. Otherwise the task has failed. The lever, initialized with
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Figure A1. Overview of the manipulation experimental setup: two UR5e manipulators, each with a compliant ray-fin fingers, two
stationary overhead cameras, and GELLO teleop controllers.

a SE(3) pose, is flexibly positioned with a clamp, using a combination of pitch and yaw angles within the 3D workspace of
the manipulator. A total of 33 human demonstrations have been collected, composed of 30 successful demo and 3 (10%)
recovery demonstrations where failed states were corrected to reach to the successful goal state.

Push Eraser: An expert demonstrator moves one ray-fin finger to make contact with the Eraser, which is initialized with an
SE(3) pose within the marked boundary on the whiteboard. Once the contact is secure, the demonstrator will move the
ray-fin finger to push the Eraser, in a straight line, towards the closest edge, until the eraser is outside the marked rectangle,
achieving a successful goal state. Otherwise the task has failed. The whiteboard is positioned, flexibly with a clamp, with
approximate pitch angles of -15, 0, 30, 45, 60, and 90 degrees and approximate yaw angles of -15, 0, and 15 degrees
within the 3D workspace of the manipulator. In total, 33 human demonstrations were collected, consisting of 30 successful
demonstrations and 3 (10%) recovery demonstrations.

For the bi-manual manipulation tasks, we design a set of 432 distinct SE(3) poses, consisting of 9 regions on the x-y plane,
3 discrete pitch angles (0°, 8°, or 16°) provided by an 8° wedge, and 16 discrete yaw angles with 15° or 30° increments. We
randomly sample an SE(3) pose from this set to position a box, book, or container for collecting human demonstrations.

Grasp Box: an expert demonstrator moves two ray-fin fingers to pinch grasp the box at a sampled SE(3) pose, then lifts
the pinched box minimally 40cm above the flat surface. Otherwise the task has failed. Similarly, we collect 33 human
demonstrations including 3 recovery demos.

Flip Book: an expert demonstrator moves two ray-fin fingers to pinch grasp the book along its medium dimension at a
sampled SE(3) pose, then rotates the pinched book in-hand so that the book is pinched along its smallest dimension, and
then lifts the book minimally 40cm above the flat surface. Otherwise the task has failed. Due to the precision required for
coordinated finger movements, we collect 66 human demonstrations including 6 recovery demos.

Pack Package: An expert demonstrator moves two ray-fin fingers to pinch-grasp the box, transports it to the pre-pack
pose above the container, places the box inside, moves to the pre-lid-close pose, and finally closes the lid. The final goal
state of the task is the box inside the container with the lid closed. If any step fails, the task is considered a failure. Due
to the precision required for coordinated finger movements, we collect 66 human demonstrations, including 6 recovery
demonstrations.
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(a) Single-arm Turn Lever (b) Single-arm Push Eraser (c) Bi-manual Grasp Box

(d) Bi-manual Flip Book (e) Bi-manual Pack Package

Figure A2. Demonstrated robot actions for each task: a) Turn Lever, b) Push Eraser, and c) Grasp Box, each task with two trajectory
segments and their respective goal states; d) Flip Book task with three trajectory segments and goal states, where both manipulators must
perform coordinated movement after the initial pinch ; e) Pack Package with five trajectory segments and goal states.

B.3. Detailed Evaluation Results

We evaluate the baseline performance with 20 rollouts, using object poses randomly sampled from the SE(3) pose set in
training. All poses are annotated, and evaluation is conducted on novel, unseen poses.

For all five physical tasks, we report the success rate for each intermediate goal state in Table A1. We compare SDP with
EquiDiff (Wang et al., 2024b) and DiffPo (Chi et al., 2023). SDP achieves a strong performance with a minimum 90%
success rate on the first step, where both EquiDiff and DiffPo perform poorly. For subsequent steps, the success rate drops
by up to 20% in the Flip Book task, where precise coordination of both fingers is required for the in-hand pose rotation.

Figure A4 provides examples of task successes and failures. The most common failure cases for SDP occur during the book
flip step. Lack of precise coordination between the two fingers may cause the book to either drop or be pinched too tightly,
leading to a robot fault. Other failures include invalid pinching during the pick step or object drops due to a loose grip.
For the Pack Box task, collisions with the container may occur during the transfer of the pinched box, and misalignment
or incorrect placement can lead to collisions during the packing step. Interestingly, when positioning the lid to close, the
robot may mistakenly identify the object as the lid. For the Turn Lever task, the finger may drift away from the lever while
attempting to complete the required rotation. For the Push Eraser task, the robot pushes in the wrong direction, failing to
push the eraser across the boundary. For the Grasp Box task, SDP struggles to pinch the box when its long dimension is
parallel to the robot’s front (i.e., when the box has a yaw angle of 0 or 180 degrees).
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(a) Single-arm Turn Lever (b) Single-arm Push Eraser

(c) Bi-manual Grasp Box (d) Bi-manual Flip Book

(e) Bi-manual Pack Package

Figure A3. Visualization of SE(3) Pose Distribution for Five Physical Tasks. The initial state of 4 out of 20 episodes are visualized.

C. Additional Background
C.1. Equivariant Diffusion

The theory of Equivariant Diffusion has been extensively investigated in (Köhler et al., 2020; Brehmer et al., 2024; Ryu
et al., 2024; Wang et al., 2024b). Based on these works, we summarize the equivariance property of the policy and the
denoising function of the policy for completeness. There are two scenarios: diffuse equivariance and denoise equivariance.

Proposition C.1 (Diffuse equivariance). If the policy is equivariant to group G, i.e., π(gS) = gπ(S), and the distribution
D from which to sample the noise, is invariant to group G, i.e., D = gD, and the the denoising function satisfies

ϵθ(S, π(S) + ϵ, k) = ϵ, ϵ ∼ D, (18)

then the denoising function is equivariant to group G, i.e., ϵ(gS, gAk, k) = gϵ(S,Ak, k),

Proof. We assume the denoising function satisfies Equation 18. Since the equation holds for all ϵ ∼ D and D is G-invariant,
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Table A1. Breakdown of success rates at each step for five physical experiments over 20 evaluation episodes. The action space and number
of training demonstrations are same as in Table 3.

Turn Lever Push Eraser Grasp Box Flip Book Pack Box

Method Contact Rotate Contact Push Grasp Lift Grasp Flip Lift Pick Transport Pack Locate Close

SDP 90 80 90 90 90 85 100 80 65 95 85 75 70 70
EDP 35 20 40 30 45 35 0 0 0 45 35 10 0 0
DP 30 10 15 10 30 15 35 0 0 70 35 5 5 0

(a) Single-arm Turn Lever (b) Single-arm Push Eraser

(c) Bi-manual Grasp Box (d) Bi-manual Flip Book

(e) Bi-manual Pack Package

Figure A4. Examples of successes and failures for each task, with green indicating successful behaviors and red indicating failures.

we can evaluate at gS and gϵ,
ϵθ(gS, π(gS) + gϵ, k) = gϵ.

Using the equivariance of π and substituting in Eqn.18 for ϵ gives

ϵθ(gS, gπ(S) + gϵ, k) = gϵθ(S, π(S) + ϵ, k)
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as desired.

Proposition C.2 (Denoise equivariance). The action prediction is equivariant to group G, i.e., π(gS) = gπ(S), when
the denoising function is equivariant to group G, i.e., ϵ(gS, gAk, k) = gϵ(S,Ak, k), and the distribution D from which to
sample the noise, is invariant to group G, i.e., D = gD.

Proof. Simplifying Equation. 1 by dropping t we have:

Ak−1 = α
(
Ak − γϵθ(S,A

k, k) + z
)
, z ∼ D (19)

When k = K, the denoise is sampled form D: ϵθ(S,A,K) = d1, d1 ∼ D, and the denoised action AK−1 is:

AK−1 = α(0− γd1 + d2), d1, d2 ∼ D (20)
= α(d2 − γd1) (21)
= α(gd′2 − γgd′1), d′1, d

′
2 ∼ D (22)

= gα(d′2 − γd′1) (23)

= gAK−1 (24)

When k = K − 1, the denoise is applied to the noisy action, to generate the cleaner action. Transforming the input to the
denoising function in Equation. 19 by g:

α
(
AK−1 − γϵθ(gS, gA

K−1,K − 1) + z
)

(25)

= α
(
gAK−1 − gγϵθ(S,A

K−1,K − 1) + gz
)

(26)

= gα
(
AK−1 − γϵθ(S,A

K−1,K − 1) + z
)

(27)

= gAK−2 (28)

Equation. 28 holds for k = K − 1,K − 2, ..., 1, thus by applying it iteratively, we have gA0.

Proposition. C.1, C.2 specify the prerequisites of an equivariant diffusion policy. Empirically we find that the group invariant
distribution D can be relaxed to a Gaussian distribution N , which is simple and achieves good performance.

C.2. Translation Invariance by Canonicalization

Translation invariance is achieved using a relative action formulation (Chi et al., 2024) and state-action canonicalization
(Zeng et al., 2022; Wang et al., 2021; Zhu et al., 2022a; Jia et al., 2023). We summarize and proof this property.

Proposition C.3. The relative state-action formulation is T(3) (translational) invariant.

Proof. Translating both the state S and the action A by g ∈ T(3) we have:

gScan =
(
(O + g)− (eT + g),

(eT + g)− (eT + g),

eR, egrip
)

= (O − eT , eT − eT , eR, egrip)

= Scan

gAcan =
(
(AT + g)− (eT + g), AR, Agrip

)
= (AT − eT , AR, Agrip)

= Acan

Therefore π(Scan) = π(gScan) = gAcan = Acan.
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D. Hyperparameters
Hyperparameters for diffusion-based baseline methods are listed in Table A2. SDP generally adopts Diffusion Policy’s
hyperparameters, except for batch size, because SDP is heavier than other baselines.

SDP EquiDiff EquiBot DiffPo DP3 DP3 paper

Batch Size 32 64 64 64 128 128
Prediction Horizon 16 16 16 16 16 16
Action Horizon 8 8 8 8 8 8
Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Epochs 500 500 500 500 500 3000
Learning Rate Scheduler cosine cosine cosine cosine cosine cosine
Noise Scheduler DDPM DDPM DDPM DDPM DDIM DDIM
Diffusion Train/Test Step 100 100 100 100 100/10 100/10
Encoded Scene Dimension 128 128 128 128 64 64

Table A2. Hyperparameters for baselines.

E. Architecture of the Point Cloud Encoder
The point cloud encoder is a 5-layer ResNet (He et al., 2016), consisting of EquiformerV2 (Liao et al., 2024) graph
convolution layers in the hidden layers and EquiformerV2 origin convolution layer in the last layer to aggregate all the
features into a single point.

Figure A5. Overview of the Point Cloud Encoder. Top: the point cloud encoder. Bottom: the details of each block in the encoder. “pts”
stands for the number of points and “c” stands for the number of channels.
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