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Abstract

Solving grid puzzles involves a significant001
amount of logical reasoning. Hence, it is a002
good domain to evaluate reasoning capability003
of a model which can then guide us to improve004
the reasoning ability of models. However, most005
existing works evaluate only the final predicted006
answer of a puzzle, without delving into an in-007
depth analysis of the LLMs’ reasoning chains008
(such as where they falter) or providing any009
finer metrics to evaluate them. Since LLMs010
may rely on simple heuristics or artifacts to pre-011
dict the final answer, it is crucial to evaluate012
the generated reasoning chain beyond overall013
correctness measures, for accurately evaluat-014
ing the reasoning abilities of LLMs. To this015
end, we first develop GridPuzzle, an evaluation016
dataset comprising of 274 grid-based puzzles017
with different complexities. Second, we pro-018
pose a new error taxonomy derived from man-019
ual analysis of reasoning chains from LLMs020
including GPT-4, Claude-3, Gemini, Mistral,021
and Llama-2. Then, we develop a LLM-based022
framework for large-scale subjective evaluation023
(i.e., identifying errors) and an objective met-024
ric, PuzzleEval, to evaluate the correctness of025
reasoning chains. Evaluating reasoning chains026
from LLMs leads to several interesting find-027
ings. We further show that existing prompting028
methods used for enhancing models’ reasoning029
abilities do not improve performance on Grid-030
Puzzle. This highlights the importance of un-031
derstanding fine-grained errors, and presents a032
challenge for future research to enhance LLMs’033
puzzle-solving abilities by developing methods034
that address these errors1.035

1 Introduction036

Recent advancements in LLMs such as GPT-4,037

Gemini, Claude-3 (Anthropic, 2024), Llama-2038

(Touvron et al., 2023), and Mistral (Jiang et al.,039

2023) have achieved remarkable performance on040

1Data and source code are available at https://
anonymous.4open.science/r/GridPuzzle-00B2

a wide range of Natural Language Understanding 041

(NLU) tasks previously thought to be exclusive to 042

human. Beyond NLU, exploring LLMs’ logical rea- 043

soning capabilities (Liu et al., 2021; Saparov and 044

He, 2022; Parmar et al., 2024) on complex reason- 045

ing tasks such as puzzle-solving is under-explored. 046

Past attempts have been made to evaluate models 047

on logic-intensive grid-based puzzle-solving. How- 048

ever, they either do not focus on evaluating LLMs 049

(Mitra and Baral, 2015; Jabrayilzade and Tekir, 050

2020) or do not evaluate LLMs independently, but 051

rather use neuro-symbolic approaches (Ishay et al., 052

2023) that use external specialized solvers on LLM 053

outputs. Here, we aim to evaluate puzzle-solving 054

capabilities of LLMs by themselves, without the 055

use of any external logic solvers. 056

To understand the reasoning capabilities of 057

LLMs, it is important to evaluate reasoning chains, 058

rather than the final predicted answer. There have 059

been works that evaluate reasoning chains using ob- 060

jective metrics such as ROSCOE (Golovneva et al., 061

2022), CTC (Deng et al., 2021), and BARTScore 062

(Yuan et al., 2021), however, they do not focus 063

specifically on evaluating reasoning. Some prior 064

works propose metrics for specific reasoning tasks, 065

such as FOLIO (Han et al., 2022) and ProntoQA 066

(Saparov and He, 2022). However, these methods 067

rely on reference-based evaluation, do not focus 068

on puzzle-solving, and do not aim to identify fine- 069

grained errors in reasoning chains. To address these 070

limitations, we propose a reference-free manual 071

and automated subjective evaluation of reasoning 072

chains to understand various fine-grained errors in 073

reasoning chains for grid-based puzzle-solving. 074

Motivated by Mitra and Baral (2015), we first 075

develop GridPuzzle (Figure 1), a comprehensive 076

evaluation dataset consisting of grid-based puzzles 077

with grid-size of 3×4, 3×5, 4×4, 4×5, and 4×6 078

with three levels of difficulty (easy, medium, and 079

hard). Then, we evaluate LLMs including GPT- 080

4, Gemini-Pro, Claude-3, Llama-2, and Mistral 081
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3 x 5 4 x 4 4 x 5 4 x 63 x 4

A group of friends has decided to try several different weight-loss diets and exercises to see who amongst them
can lose the most weight in 3 months. Using only the clues below, match the pounds lost to the options from
names and diets. Remember, as with all grid-based logic puzzles, no option in any category will ever be used
more than once.
Pounds lost: 3, 5, 7, 9. 
Names: Raymond, Stuart, Tom, Wesley. 
Diets: caveman, dairy-free, gluten-free, vegan.

1. Stuart lost 4 more pounds than the person who used the vegan diet.
2. The dieter who used the gluten-free diet lost 2 more pounds than Raymond.
3. Stuart lost 7 lbs.
4. The dieter who lost 7 lbs is either the person who used the caveman diet 
or Raymond.
5. Wesley lost 5 lbs.

Step-by-step solution: [Your steps show how you are solving the puzzle]

Fill the following table to show your final answer.
3 | correct option from names | correct option from diets
5 | correct option from names | correct option from diets
7 | correct option from names | correct option from diets
9 | correct option from names | correct option from diets

- Grid Sizes

LLMs:

Let's solve the puzzle using the given clues:
1. Clue 3 says Stuart lost 7 lbs.
2. Clue 4 specifies that the dieter who lost 7 lbs is either the
person who used the caveman diet or Raymond.
*Since Stuart lost 7 lbs (from Clue 3), he either used the
caveman diet or is named Raymond. 
3.  Clue 5 states Wesley lost 5 lbs.
*Therefore, Wesley cannot have used the caveman diet or lost
7 lbs. We don't yet know his diet.
.
.

.

.
That leaves 9 lbs to be the only unassigned number, and since
it can't be Wesley (5 lbs) or Stuart (7 lbs), Tom must have lost 9
lbs. The only remaining diet for Tom is gluten-free.

Final Answer:

3 Raymond Vegan

5 Wesley Dairy-Free

7 Stuart Cavemen

Reasoning Chain:

Incorrect

3 Raymond Vegan

Reasoning chains
Reasoning chains

Reasoning chains

1. Clue 3 says Stuart lost 7 lbs. 
2. Clue 4 specifies that the dieter who lost 7 lbs is either the person who used the
caveman diet or Raymond. 
3. Since Stuart lost 7 lbs (from Clue 3), he either used the caveman diet or is
named Raymond. 
4. Clue 5 states Wesley lost 5 lbs. 
5. Therefore, Wesley cannot have used the caveman diet or lost 7 lbs. 
6. We don't know his diet yet. 
.
.
.
20. That leaves 9 lbs to be the only unassigned number, and since it can't be
Wesley (5 lbs) or Stuart (7 lbs), Tom must have lost 9 lbs. 
21. The only remaining diet for Tom is gluten-free. 

NC

RR

NC

RR

NC

WR - 4

RR

RR

Reasoning chains
Reasoning chains

Reasoning chains
Inst.

Auto-Evaluated Reasoning Chains

  {
  ""Sentence"": ""Clue 3 says Stuart lost 7 lbs."",
  ""Premise"": ""Clue 3"",
  ""Conclusion"": ""Stuart lost 7 lbs."",
  ""Explanation"": ""Reiteration of the clue."",
  ""Error Category"": ""NC"",
  ""Sub Category"": ""-""
  },
  {
  ""Sentence"": ""Clue 4 specifies that the dieter who lost 7 lbs is either the person who
used the caveman diet or Raymond."",
  ""Premise"": ""Clue 4"",
  ""Conclusion"": ""Stuart must be on the caveman diet or be Raymond."",
  ""Explanation"": ""That is the right reasoning from the given clue."",
  ""Error Category"": ""RR"",
  ""Sub Category"": ""-""
  },......

Puzzle

Clues

While answering use the following format:

Final Answer

GridPuzzle Dataset

Size Puzzles
3 x 4 60

3 x 5 60

4 x 4 60

4 x 5 60

4 x 6 34

Human-Evaluation:

Figure 1: Schematic representation of proposed pipeline. Begins with the data collection of GridPuzzle dataset
(top left) and evaluating various LLMs in zero-shot CoT setting (bottom left), then analyzing reasoning chains of
LLMs manually to find various error types (top right) and automate this analysis process using LLM to check the
correctness of reasoning chain by finding errors (bottom right).

on GridPuzzle in zero-shot-CoT setting (Figure 1).082

Experimental results show that LLMs do not fare083

well and achieve a maximum of 5.1% accuracy.084

To investigate reasoning chains, we manually085

analyze them (Figure 1) to find fine-grained er-086

rors (further details in section 3.3). Based on087

this, we propose a new error taxonomy comprising088

five broad categories, and nine fine-grained sub-089

categories (Tables 1 and 2), providing deeper in-090

sights into the primary causes of the LLMs’ reason-091

ing failures. However, scaling manual analysis to a092

larger set is time-consuming and laborious. Hence,093

we propose to leverage LLMs as auto-evaluators094

by creating prompts that utilize error taxonomy095

as prompts to automate the analysis of reasoning096

chains and help in identifying errors (Figure 1).097

While evaluating w.r.t. manual annotation, our auto-098

evaluator model achieves ∼ 86% agreement, hence099

providing quality error categorization.100

Beyond identifying errors and the accuracy of101

the final answer, we propose PuzzleEval, a LLM-102

based framework to evaluate reasoning chains for103

grid-based puzzles. PuzzleEval involves a multi-104

stage evaluation using GPT-4o. First, we identify105

key logical conclusions from the reasoning chain;106

second, we extract key logical concepts from these 107

conclusions; and finally, we measure the presence 108

of these logical concepts in the final gold answer 109

to assess the correctness of the reasoning chain. 110

Evaluating reasoning chains based on error catego- 111

rization and PuzzleEval reveals interesting findings 112

such as LLMs show lower accuracy despite having 113

more error-free reasoning steps, open-source mod- 114

els lack reasoning skills compared to closed-source 115

models, and the most dominant error categories 116

are wrong reasoning and elimination. Additionally, 117

we employ existing prompting methods such as 118

Plan-and-Solve and Self-discover, demonstrating 119

that these methods do not improve performance 120

on GridPuzzle. We believe that our findings will 121

inspire future work in the automated, in-depth eval- 122

uation of reasoning chains for broader reasoning 123

tasks and enhance the reasoning abilities of models. 124

2 Related Work 125

Puzzle-solving Task Puzzle-solving task pro- 126

vides detailed insights into LLMs’ logical reason- 127

ing. Giadikiaroglou et al. (2024) categorize puz- 128

zles into (1) rule-based and (2) rule-less puzzles. 129

Rule-less puzzles include riddles (Lin et al., 2021), 130
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MCQs (Zhao and Anderson, 2023), programming131

puzzles (Schuster et al., 2021), and commonsense132

reasoning puzzles (Gu et al., 2023); however, in our133

work we focus on rule-based puzzles. In rule-based134

puzzles, past attempts have explored Sudoku (No-135

ever and Burdick, 2021), Rubik’s Cube, 8-puzzle,136

Game of 24 (Yao et al., 2024), crosswords (Yao137

et al., 2024), chess puzzles (Feng et al., 2024), card138

games (Gupta, 2023), and BoardgameQA (Kazemi139

et al., 2024). However, grid-based puzzle-solving140

is under-explored. Mitra and Baral (2015) pro-141

posed a grid-based puzzle dataset, but this work142

does not provide any insights into the performance143

of recent LLMs. Motivated by this, we propose a144

systematically curated grid-based puzzle dataset,145

GridPuzzle, and also provide a detailed evaluation146

of various LLMs in puzzle-solving.147

Automatic Evaluation of Reasoning Chains148

Previous works (Dalvi et al., 2021; Saparov and He,149

2022; Han et al., 2022) have focused on reference-150

free evaluation, which is not reliant on gold-151

reasoning chains. Recently, ROSCOE (Golovneva152

et al., 2022) proposed a suite of metrics to measure153

the semantic consistency, logicality, informative-154

ness, fluency, and factuality of reasoning chains,155

while the ReCEval framework (Prasad et al., 2023)156

evaluates reasoning chains based on two key prop-157

erties: correctness and informativeness. Recent158

evaluation methods such as LLM evaluation (Chi-159

ang and Lee, 2023) and G-Eval (Liu et al., 2023)160

leverage LLMs to measure the quality of reasoning161

chains. LLM evaluation involves presenting task162

instructions and a text sample to LLMs, asking163

them to rate the sample’s quality on a 5-point Lik-164

ert scale, whereas the latter incorporates automatic165

chain-of-thought generated by the LLM describing166

the detailed evaluation steps. Additionally, Tyen167

et al. (2023)’s attempt to use GPT-4 as evaluator168

in a few-shot setting, shows that evaluating reason-169

ing chains remains a challenge. Furthermore, Au-170

toRace (Automatic Reasoning Chain Evaluation)171

(Hao et al., 2024) proposed a fully automated ap-172

proach for evaluating reasoning chains that adapt173

to different tasks without human effort. However,174

these methods do not evaluate reasoning chains at175

the level of fine-grained error types and do not pro-176

vide detailed task-specific insights. To address this,177

we propose LLM-based reference-free evaluation178

methods that identify fine-grained errors and assess179

the correctness of generated reasoning chains for180

puzzle-solving capabilities.181

3 Evaluation of Reasoning Chains 182

3.1 GridPuzzle 183

To develop this dataset, we extract logic grid puz- 184

zles of various grid sizes from Puzzle Baron’s 185

Logic Puzzles2. Specifically, we compile logic 186

grid puzzles of size 3× 4, 3× 5, 4× 4, 4× 5, and 187

4× 6. Each grid size has three levels of difficulty 188

(easy, medium, and hard) except 4× 6. This partic- 189

ular grid size has only two difficulty levels (Easy 190

and Medium). Statistics corresponding to each grid 191

size are presented in Figure 1 (top left).

Error
Category Description

WW Wrong Premise and Wrong Conclusion
WR Wrong Premise and Right Conclusion
RW Right Premise and Wrong Conclusion
RR Right Premise and Right Conclusion
NC No Conclusion statement or no reasoning involved

Table 1: Proposed error taxonomy for broad categories
based on manual analysis. If a statement starts with “so,
therefore, hence, this means, this implies, etc.” and/or is
not followed by any premise, consider the previous state-
ment’s conclusion or the previous NC as the premise.

192

3.2 Manual Evaluation 193

To explore where exactly these LLMs falter in per- 194

forming reasoning, we conduct a detailed manual 195

analysis of the reasoning chains generated by them 196

while solving grid-based puzzles. Our manual anal- 197

ysis process consists of three steps. First, we begin 198

by segmenting the reasoning chains into individual 199

sentences, allowing us to categorize errors more 200

precisely. Second, we identify the premise and 201

conclusion for each sentence and determine their 202

respective correctness. We refrain from subdivid- 203

ing sentences into multiple premises or conclusions 204

to maintain simplicity for finding errors. At last, 205

each sentence is categorized as either containing 206

a single premise and conclusion or being a declar- 207

ative statement without a conclusion. Afterward, 208

we begin assessing potential issues or errors in the 209

reasoning chains. Now, we follow an exhaustive 210

approach to create fine-grained error categories. 211

We begin with 30 reasoning chains (6 puzzles x 5 212

reasoning chains from LLMs) to manually identify 213

potential errors. Next, we categorize these errors 214

in a structured format. We then add another 30 215

reasoning chains to see if any new types of errors 216

emerge. If new errors are identified, we refine our 217

2https://logic.puzzlebaron.com/
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Category Source Sub-Category Description

Wrong Premise or
No Conclusion

From the clues
(Example: From clue 4,....)

(1) Hallucination When information is completely out of context and not present in clues.

(2) Incomplete Information Lacks necessary information to make a particular conclusion.

(3) Assumptions
Statements not derived from clues directly; might include assumed

information relevant to the clue.

Derived Conclusions using
clues given in puzzle

which was not inherently
given in the clues.

(4) Error Propagation Premise derived from a previous incorrect conclusion.

(5) Incomplete Information Lacks necessary information to make a particular conclusion.

(6) Wrong Assumption The derived assumption is incorrect.

Wrong Conclusion
Derived using the premise

(which itself is either
taken directly from the

clues or derived)

(a) Wrong Reasoning The reasoning is incorrect, regardless of the premise’s accuracy.

(b) Error propagation Conclusion is incorrect due to an erroneous premise.

(c) Wrong Elimination All premises are present, but not all conclusions are correctly derived.

Table 2: Proposed error taxonomy for sub-categories based on manual analysis. These sub-categories are defined
for cases where either the conclusion or premise is incorrect (“RW” or “WR”) or both are incorrect (“WW”). For
“WW”, the error sub-categories might appear in any combinations between (1-6) and (a-c) such as ‘1a’, ‘4b’, or ‘6c’.

categories accordingly. This process is repeated218

until we evaluate a total of 150 reasoning chains219

and no new types of errors are found. Based on this220

method, we have carefully filtered and categorized221

several errors made by LLMs, presenting them as222

five broad categories and nine sub-categories.223

3.3 Proposed Error Taxonomy224

Broad Categories As shown in Table 1, we225

present five main categories: “WW” - Wrong226

Premise Wrong Conclusion, “WR” - Wrong227

Premise Right Conclusion, “RW” - Right Premise228

Wrong Conclusion, “RR” - Right Premise Right229

Conclusion, or “NC” - No Conclusion. These230

acronyms of broad categories are self-explanatory.231

For instance, the category “WW” comprises sen-232

tences where a wrong premise leads to a wrong con-233

clusion. Interestingly, we also find the “WR” cate-234

gory consists of instances where a wrong premise235

still leads to a correct conclusion. Additionally,236

sentences containing only information from clues237

or premises from previous steps fall under “NC”.238

We conduct further investigate why the premises239

and conclusions becomes incorrect.240

Sub-categories: Wrong Premise As shown in241

Table 2, we identified the source of the premise to242

determine the origin of errors: (i) ‘From Clues’ –243

where the premise is directly borrowed from one244

of the clues without any further reasoning, and (ii)245

‘Derived’ – where the premise is inferred from ei-246

ther the clues or the previous conclusions. From Ta-247

ble 2, there are six possible reasons associated with248

two different sources for wrong premise. When249

the premise originates from the source (i), we find250

three types of errors: Hallucination – When some251

factual information from the clues is distorted or252

completely made up; Incomplete information –253

When the information is correctly borrowed from 254

the clues but it is not sufficient to make a partic- 255

ular conclusion; Assumptions – This is a special 256

category where the premise is not derived but also 257

not given exactly in the clues. It is often related to 258

one of the clues and is of the form, “Let’s assume” 259

or “Assuming that.” When source is derived, we 260

find three different errors: Error Propagation – 261

This occurs when a previously incorrect conclusion 262

becomes the basis for a flawed premise, thereby 263

extending the error from one conclusion to the 264

next; Incomplete information – When the derived 265

premise is not sufficient to make a particular con- 266

clusion; and lastly, Wrong Assumption – When 267

the LLM reasoner clearly states that a premise was 268

an assumption but it was incorrectly derived. 269

Sub-categories: Wrong Conclusion As shown 270

in Table 2 (source), conclusions are always log- 271

ically derived from a fixed set of premises. For 272

having a wrong conclusion in any reasoning step, 273

we find three errors responsible: Error Propaga- 274

tion – When a conclusion is wrong strictly due to 275

some error in the preceding premise; Wrong Elim- 276

ination – When the conclusion is wrong because 277

the LLM reasoner failed to eliminate all the unfit 278

choices correctly. This case is specific to the task of 279

the grid-based puzzle but is inherently an erroneous 280

deduction on the LLM’s end; Wrong reasoning – 281

The remaining incorrect conclusions that did not 282

follow the patterns described in the mentioned cat- 283

egories are classified under this label. 284

3.4 Automated Evaluation 285

Manual analysis of reasoning chains provides de- 286

tailed categorization of errors; however, it is te- 287

dious and, therefore, challenging to scale for the 288

entire dataset. But analyzing the distribution of 289
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Examples of reasoning chain evaluated by GPT-4o

Sentence:"Therefore, Zeno must be 69%, and UCLA
must be 62%.",
Premise: "If Zeno were 55%, there would be no score
7% lower than 55% for UCLA.",
Conclusion: "Zeno must be 69%, and UCLA must be
62%",
Explanation: "The conclusion is incorrect as UCLA is
already known to be 62% from clue 2.",
Error Category: "RW.",
Premise: "A",

Sentence:"Since the third performer used flashlights, it
must be either Lora or Carmen.",
Premise: "The performer who used flashlights was
either Lora or Carmen.",
Conclusion: "The third performer must be either Lora
or Carmen.",
Explanation: "The conclusion is based on the incorrect
premise that the third performer used flashlights.",
Error Category: "WW",
Sub Category "4B",

Table 3: Examples of reasoning chain evaluated by
Auto-evaluator (GPT-4o).

errors from our proposed taxonomy on the whole290

dataset is also crucial in understanding shortcom-291

ings of LLMs’ reasoning ability. Thus we develop292

a LLM-based auto-evaluator to automate the pro-293

cess of error evaluation. To this end, we prompt294

GPT-4o model to identify and categorize errors in295

the given reasoning chain. Our prompt consists of296

a system prompt followed by a user prompt con-297

taining the reasoning chain to be evaluated along298

with the original puzzle and its gold solution. The299

system prompt can be further dissected into 3 key300

components: the instructions, the knowledge, and301

an exemplar. The instruction contains all the rules302

that the GPT-4o needs to follow to conduct ac-303

curate evaluation and error categorization of the304

reasoning chains. It incorporates similar sequential305

steps used during manual evaluation of reasoning306

chains along with the required output format. The307

knowledge has a detailed description of our error308

taxonomy including the broad and sub-categories.309

We also provide a preference order for selecting310

categories along with the description to minimize311

any ambiguity in the evaluation process. The ex-312

emplar consists of a puzzle, its correct solution,313

and a manually evaluated reasoning chain with our314

error categories. We termed this LLM-based eval-315

uator as “Auto-evaluator”. The structure of the316

Auto-evaluator prompt is described in App B.317

Using the Auto-evaluator, we evaluated a total of318

1,370 reasoning chains generated by five different319

LLMs for solving 274 puzzles. The application of320

our Auto-evaluator to this large dataset allowed us321

to analyze the distribution of error categories on 322

a broader scale. To validate the accuracy of the 323

evaluations performed by the Auto-evaluator, we 324

randomly sampled 20 reasoning chains from the 325

manually evaluated set. The authors then compared 326

their error category assignments to those given by 327

the Auto-evaluator. The agreement score for the to- 328

tal number of reasoning steps between the manual 329

evaluation and the GPT-4o evaluation is ∼ 86%. 330

Table 3 shows the example of reasoning steps eval- 331

uated by GPT-4o. 332

4 Experimental Steup 333

4.1 Experiments 334

We evaluate a range of closed-source LLMs in- 335

cluding GPT-4-Turbo, Claude-3-Opus, and Gemini- 336

Pro, and open-source models Llama-2-13B, and 337

Mistral-7B-Instruct on GridPuzzle in the Zero-shot- 338

CoT setting (Kojima et al., 2022). Our GridPuz- 339

zle dataset consists of a set of instances denoted 340

as P = < pi×j
n , an >, where pi×j

n is nth puzzle 341

instance with grid size of i × j and an as a gold 342

answer. We prompt each LLM to generate a reason- 343

ing chain before predicting answer â. To evaluate 344

each model in the Zero-shot-CoT setting, we pro- 345

vide < I, pi×j
n > as input to the model and predict 346

an answer â where I is a natural language instruc- 347

tion. The evaluation is conducted on the OpenAI, 348

Google, and Anthropic model versions released in 349

April 2024 with temperature setting 0 for determin- 350

istic predictions. NVIDIA A100 GPUs are used for 351

conducting the inference of open-source models 352

with a batch size of 4. The example prompts used 353

for these experiments are provided in App. A. 354

4.2 Metrics 355

Accuracy We use accuracy to demonstrate the 356

capability of LLMs in solving grid-based puzzles 357

based on their ability to predict the final answer. To 358

calculate this metric, we use the LLM-generated 359

final answers and compare them with the available 360

gold solution. The predicted answers and the gold 361

solution are in the form of tables with the number 362

of rows and columns equal to the grid size of the 363

puzzle. We perform an Exact Match (EM) to com- 364

pare the two tables and mark them as correct only 365

when all the entries of the tables match. See the 366

example of the final answer table in Appendix C. 367

PuzzleEval We developed this LLM-based met- 368

ric to assess step-by-step reasoning chains and pro- 369

vide a correctness score for each step, as well as 370
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Figure 2: Performance of 5 different LLMs in terms of
accuracy on the GridPuzzle dataset.

the Average Correctness Score (ACS) for the entire371

chain. PuzzleEval is a reference-free metric specif-372

ically designed for assessing reasoning chains gen-373

erated for grid-based puzzle tasks. It evaluates the374

correctness of each step in the reasoning chain and375

reports the score using only the final answer table376

provided as the gold solution, without requiring377

any comparison to a gold reasoning chain.378

As shown in Figure 13 (refer to App. F), Puz-379

zleEval consists of three stage pipeline to evaluate380

any reasoning chain. First, we prompt GPT-4o to381

label all the steps sequentially to account for any382

discrepancies in the different formats of reasoning383

chains produced by various models, and to extract384

only the final conclusions from each step. This385

stage is crucial as it filters out the portion of steps386

where the models just reiterate clues or previous387

conclusions. Second, we instruct the model to ex-388

tract the pair-wise relation of elements from the389

puzzle that have been either accepted or rejected390

in the extracted final conclusions. If the extracted391

conclusion is "Sam is assigned to the year 2015392

but not 2014.", these pairs are of the form “Sam393

– 2015” or “Sam – not 2014”. Third, we provide394

the gold solution table and ask the model to check395

if these accepted or rejected pairs match the given396

information. As per the validation, the pairs ex-397

tracted from every step are marked as correct or398

incorrect. After obtaining this information for each399

step the correctness score is calculated by adding400

up all the correct and incorrect steps (correct pairs401

are marked 1 and incorrect pairs are marked 0)402

divided by the total number of pairs in each step.403

Finally, the ACS is determined by adding up all the404

correctness scores from each step and dividing by405

the number of steps to capture the overall quality of406

the reasoning chain. Hence, PuzzleEval provides407

ACS for each reasoning chain in range of 0 to 1.408

Model 3 x 4 3 x 5 4 x 4 4 x 5 4 x 6 Avg

Llama 0.45 0.46 0.46 0.42 0.28 0.41
Mistral 0.29 0.26 0.27 0.26 0.27 0.27
Claude 0.60 0.56 0.52 0.55 0.46 0.54
Gemini 0.60 0.64 0.54 0.52 0.62 0.58
GPT-4 0.61 0.62 0.56 0.54 0.60 0.59

Table 4: The results for PuzzleEval on the different grid
sizes available in GridPuzzle dataset in terms of ACS.

5 Results and Analysis 409

5.1 Objective Evaluation 410

To evaluate the performance of LLMs when solv- 411

ing grid-based puzzles, we assess the outputs of 412

5 LLMs using the accuracy and PuzzleEval. As 413

shown in Figure 2, we found that all the models 414

have low performance on the GridPuzzle dataset in 415

terms of accuracy. The smaller open-source LLMs 416

completely failed at the puzzle-solving task, with 417

LLama-2 solving only one puzzle correctly. Close- 418

source models with significantly larger parameter 419

sizes also exhibited poor performance. GPT-4 had 420

the highest accuracy at only 5.11% (14 puzzles 421

out of 274). Despite the overall low performance 422

of all LLMs, the closed-source models perform 423

marginally better. We evaluate the quality of the 424

reasoning chains using PuzzleEval. Table 4 pro- 425

vides the ACS for each grid size available in the 426

GridPuzzle. Surprisingly, compared to the accu- 427

racy, the performance of the models with PuzzleE- 428

val was significantly better as shown in Table 4. 429

The ACS lie in the range of 0.24 to 0.62 across all 430

grid sizes. This higher score can be attributed to 431

the partial correctness of reasoning chains when 432

solving the grid-puzzle task. The disparity between 433

metrics shows that evaluating only final answers 434

doesn’t fully capture LLMs’ effectiveness in com- 435

plex logical tasks like grid-puzzles. 436

With the increase in the sizes of the grids, the 437

complexity of the puzzles also rises, leading to a 438

depreciating performance by the LLMs with larger 439

grids. Overall the performance of larger LLMs 440

was much better than the small open-source mod- 441

els. Mistral-7B performed the worst in PuzzleEval 442

which is in accordance with its low accuracy score. 443

GPT-4 and Gemini models surprisingly have simi- 444

lar PuzzleEval scores (0.59 and 0.58 respectively) 445

despite their large difference in accuracy. This dif- 446

ference in PuzzleEval could be attributed to the rel- 447

atively shorter reasoning chains (fewer reasoning 448

steps) produced by Gemini (an average of 14.91 449
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Figure 3: The percentage distribution of the broad error
categories across the combined reasoning steps of all
5 LLMs. The total number of steps generated by each
model is provided inside the round brackets below the
model names.

steps) compared to GPT-4 (an average of 20.66450

steps). Shorter reasoning chains may reduce the451

number of errors that occur while solving the puz-452

zle. It is interesting to note that the smaller LLMs453

have consistently decreased performance with the454

increase in the grid size of the puzzles but the larger455

LLMs have mixed performance.456

5.2 Reasoning Chain Evaluation457

The relative distribution of the broad error cate-458

gories over the collective reasoning steps for each459

model is given in Figure 3. It is important to note460

that, despite using the same zero-shot-CoT setting,461

the GPT-4 and Llama-2 used significantly more462

reasoning steps (> 5.5k steps) to solve the 274463

puzzles compared to the other three models (∼ 4k464

steps). The distribution of error sub-categories for465

each model is presented as heatmaps in the first466

five sub-figures in Figure 4. Here, we present sev-467

eral findings based on evaluation of different error468

category distribution across GridPuzzle.469

Majority of reasoning steps are error-free. Fig-470

ure 3 shows that most reasoning steps for each471

model fall into the “NC” error category, indicating472

that many steps reiterate the facts or clues from473

the initial puzzle rather than focusing on reasoning.474

Over 55% of Gemini-Pro’s reasoning steps fall into475

this category, the most among all models, suggest-476

ing that Gemini spends the fewest steps on actual477

reasoning. The "RR" category comprises over 46%478

of GPT-4’s reasoning steps, highlighting its strong479

reasoning ability. This higher number of correct480

reasoning steps correlates with GPT-4’s higher Puz-481

zleEval score, reflecting its overall effectiveness.482

Why is the accuracy low despite the reason- 483

ing chains being mostly error-free? The dispar- 484

ity between accuracy and PuzzleEval arises from 485

the relative location of errors within the reason- 486

ing chains. It has been observed that “RR” cate- 487

gory reasoning steps mainly occur in the initial half 488

of the chain, leading to a high overall PuzzleEval 489

score. Conversely, errors in the “RW”, “WR”, and 490

“WW” categories typically occur in the latter half 491

of the chain, resulting in incorrect final answers 492

and lower accuracy scores. Based on our error tax- 493

onomy, the “RW”, “WR”, and “WW” broad error 494

categories have been further dissected into 6 × 3 495

error sub-categories, with their distribution across 496

reasoning steps shown in Figure 4. 497

Dominant error sub-categories and their cor- 498

relation with the broad categories. The most 499

common error sub-category across all heatmaps 500

appears to be the “-” category which actually refers 501

to the absence of errors. All the reasoning steps 502

with “NC” and “RR” classifications fall in this cat- 503

egory. To observe the actual overall trend across 504

all 5 LLMS, the top 10 most common error sub- 505

categories have been listed in the last sub-figure 506

of Figure 4. The top categories ‘a’ and ‘c’ refer 507

to the Wrong Reasoning and the Wrong Elim- 508

ination sub-categories under the “RW” category. 509

These errors arise when LLMs correctly identify 510

the premise but fail to make accurate deductions 511

from it. A number of the top 10 sub-error cate- 512

gories (‘1a’, ‘4a’, ‘4b’, ‘4c’, ‘5a’, ‘5c’, and ‘6a’) 513

emerge from the “WW” category. 514

For the categories, ‘4a’, ‘4b’, and, ‘4c’ the er- 515

rors in the premise are propagated from errors in 516

previous reasoning steps showing how initially oc- 517

curring errors in the chain can lead to more de- 518

pendent errors. The ’4b’ error category is the one 519

where this behavior is maximized as here both the 520

premise and conclusions were wrong because of 521

previously propagated errors. The ‘5a’ and ‘5c’ 522

errors occurred due to the incompleteness or lack 523

of information in the premise and wrong reasoning 524

or elimination in the corresponding conclusions. 525

The ‘1a’ kind of error occurred when the premise 526

consisted of hallucinated information. The only 527

sub-category from the “WR” category making it 528

in the top 10 is the ‘3’ category which is caused 529

due to wrong assumptions in the premise. It can 530

be noted here that the reasoning steps of the “WR” 531

category do not deteriorate either of the evaluation 532

metrics, as the conclusions ended up being correct, 533
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Figure 4: The first five sub-figures in the above section show the error Sub-category distribution over five LLMS.
The last sub-figure denotes the top 10 error Sub category distribution across all model reasoning steps.

but rather indicate the inconsistency of the LLMs534

in reasoning over puzzle-solving.535

Mitigation Strategy Accuracy PuzzleEval

Baseline 12 0.61
Plan-and-Solve 9 0.62
Self-correct 10 0.59
Self-discover 13 0.65
Feedback-Learning 10 0.59

Table 5: The results for accuracy and PuzzleEval using
GPT-4-Turbo, with and without mitigation strategies.

Performance of Open-source vs Proprietary536

LLMs. From the results of our objective and sub-537

jective metrics, it is evident that the open-source538

models have lower performance on the grid-puzzle-539

solving task than the proprietary models. The540

Llama-2 and Mistral models have the lowest ac-541

curacy values and their low performance on the542

PuzzleEval consistently degrades with the increase543

in the size and complexity of the grids. The Claude-544

3, Gemini, and GPT-4 models have higher values545

of accuracy but their performance across the grid546

sizes in the PuzzleEval is inconsistent. The dispar-547

ity in the performance of both kinds of models can548

be attributed to the difference in their parameter549

sizes and the low instruction following capabilities550

of small open-source models.551

Discussion on Mitigation Strategy We conduct552

a case study on a subset of GridPuzzle with a 3x4553

grid size using widely used prompting techniques554

used for improving LLMs’ reasoning. In partic-555

ular, we use four strategies: (1) Plan-and-Solve556

(Wang et al., 2023), (2) Self-correct (Zhang et al., 557

2024), (3) Self-discover (Zhou et al., 2024), and 558

(4) Feedback-Learning. We updated the prompts 559

corresponding to these techniques with our error 560

taxonomy and task. App. D provides further dis- 561

cussion on results presented in Table 5. 562

6 Conclusion 563

In this work, we evaluated the logical reasoning 564

abilities of LLMs through the lens of a grid-based 565

puzzle-solving task. We introduced GridPuzzle, 566

an evaluation dataset of 274 puzzles with various 567

grid sizes. From a manual evaluation of reason- 568

ing chains generated by five different LLMs on 569

GridPuzzle, we developed a fine-grained error tax- 570

onomy with five broad categories and nine sub- 571

categories. We then created an Auto-evaluator 572

to automate the identification of error categories, 573

providing broader insights into error distributions 574

across the dataset. Additionally, we proposed Puz- 575

zleEval, a reference-free metric to objectively eval- 576

uate the correctness of reasoning chains for grid- 577

based puzzles. Our analysis of error distributions 578

in GridPuzzle revealed several interesting findings 579

and insights into the logical reasoning abilities 580

of different LLMs. We further evaluated exist- 581

ing reasoning-specific prompting methods, such 582

as self-discover and self-correct, finding that they 583

do not improve results on GridPuzzle. We believe 584

our work offers a challenging dataset, highlights 585

where these LLMs make mistakes, and provides 586

insights to develop better logical reasoning systems 587

for complex tasks such as puzzle-solving. 588
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Limitations589

While GridPuzzle facilitates the evaluation of590

LLMs’ logical reasoning abilities, the complexity591

of the puzzles can be enhanced by incorporating592

further complex grid sizes beyond 4x6. Addition-593

ally, this study can be extended to different types594

of puzzles, such as Sudoku, Game of 24, and com-595

monsense puzzles. Though our study provides fine-596

grained error categories, it can be further refined by597

mapping to formal logic to identify more detailed598

and atomic errors, offering a deeper understand-599

ing of LLMs’ reasoning failures. Although we600

propose an effective automatic method for error601

identification to reduce manual analysis, explor-602

ing other automated methods using smaller-scale603

supervised learning could be a promising future604

research direction. We also note that this research605

is currently limited to the English language and can606

be extended to multilingual scenarios to evaluate607

the logical reasoning abilities of LLMs.608

Ethics Statement609

We have used AI assistants (Grammarly and610

ChatGPT) to address the grammatical errors and611

rephrase the sentences.612
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A GridPuzzle dataset sample Puzzle787

The GridPuzzle dataset contains 274 puzzles of788

various grid sizes and complexity. A sample puz-789

zle from the dataset along with the Zero-shot-CoT790

prompt is described in Figure 5. All the puzzles791

in the dataset have a similar structure with varying792

numbers of clues.793

Attached Instruction Prompt
While answering use the following format:
Step-by-step solution: [Your steps show how you are solving the puzzle]
Final Answer:
Fill the following table to show your final answer.
2 | correct option from dates | correct option from locations
9 | correct option from dates | correct option from locations
16 | correct option from dates | correct option from locations
23 | correct option from dates | correct option from locations

Clues
1. The outing to Eastbrook logged 7 fewer shooting stars than the trip to 

Isleton.

2. The April 17 outing was in Gilmore City.

3. The outing where they saw 16 shooting stars was in Gilmore City.

4. The April 10 outing logged 7 more shooting stars than the April 22 outing.

Puzzle
Jamie never misses an opportunity to watch the night sky for falling stars. 
Using only the clues below, match the shooting stars to the options from 
dates and locations. Remember, as with all grid-based logic puzzles, no 
option in any category will ever be used more than once.

shooting stars: 2, 9, 16, 23.

dates: April 7, April 10, April 17, April 22.

locations: Eastbrook, Gilmore City, Isleton, Manchester.

Gold Answer
2 | April 22 | Eastbrook
9 | April 10 | Isleton
16 | April 17 | Gilmore City
23 | April 7 | Manchester

Figure 5: The prompt structure of a 4 x 4 grid size puzzle
from GridPuzzle dataset. Every Zero-shot-CoT prompt
from the dataset consists of Puzzle, its corresponding
Clues, the Instruction for solving the puzzle, along with
the Gold solution of the Puzzle.

B GPT-4o Auto Evaluator794

To expand the reasoning chain evaluation process795

we prompt the GPT-4o model with a detailed sys-796

tem prompt. The structure of this system prompt797

is elaborated in Figure 6. The 3 main components798

of this system prompt are the Instruction - similar799

to the ones given to human evaluators, the Knowl-800

edge - obtained from the error taxonomy, and an801

Exemplar - consisting of a Puzzle, its Gold Solu-802

tion, the LLM-generated Reasoning chain, and the803

evaluated Reasoning Chain.804

Instruction

Evaluation Instructions:
Analyze each sentence by dividing it into a premise and
conclusion, evaluate errors based on the correct solution, and
classify according to specific error categories and subcategories.

Formatting Instructions:
Follow a JSON format for the output, detailing each sentence with
its premise, conclusion, explanation, error category, and
subcategory.

Knowledge
Error Taxonomy Description:
Detailed description of each of the error categories and their
subcategories.
Main Categories:
Wrong Premise Wrong Conclusion (WW), Wrong Premise Right
Conclusion (WR), Right Premise Wrong Conclusion (RW), Right
Premise Right Conclusion (RR), and No Conclusion (NC).
Subcategories:
Hallucination, Incomplete Information, Assumptions, Error
Propagation, Incomplete Information, Wrong Assumption, Wrong
reasoning, wrong elimination. 

Evaluation Example
Puzzle:
Nicholas and Edith are having a small dinner party...
Categories:
vintages : 1984, 1988, 1992, 1996.
wines : Annata Branco, Bianca Flaux, Ece Suss, Vendemmia.
types : gewurztraminer, merlot, pinot noir, riesling.
Clues:
1. The Ece Suss was bottled sometime after the Annata Branco.
2. The Bianca Flaux was bottled 4 years before the Vendemmia.
3. ...

Gold Solution:
1984 | Annata Branco | gewurztraminer
1988 | Ece Suss | pinot noir
1992 | Bianca Flaux | merlot
1996 | Vendemmia | riesling

LLM Reasoning Chain:
1. From clue 6, we know that the 1984 bottle is a gewurztraminer.
So,...

Human-evaluated reasoning chain: 
[
  {
    "Sentence": "From clue 6, we know that the 1984 bottle is a
gewurztraminer.",
    "Premise": "clue 6",
    "Conclusion": "We know that the 1984 bottle is a
gewurztraminer.",
    "Explanation": "Reiteration of the clue.",
    "Error Category": "NC",
    "Sub Category": "-"
  },...

Task Definition: 
Analyze and evaluate the given reasoning chains into specific
reasoning error categories.

Figure 6: The prompt structure of auto-evaluator. The
prompt consists of instructions to evaluate reasoning
chains, Knowledge of the error category descriptions,
and a human-evaluated reasoning chain example. This
system prompt is followed by a user prompt with the
puzzle, its gold solution, and the reasoning chain to be
evaluated.
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Figure 7: The top left section of the figure consists of a 3x4 sample puzzle from the GridPuzzle dataset along
with the Zero-shot-CoT prompt. Right below the prompt, we have the Gold solution for the corresponding puzzle.
In the top right section of the figure, we have the Model-generated Reasoning chain to solve this puzzle along
with the Final Answer. In this particular instance, the reasoning chain was generated by the GPT-4 model. In the
bottom half of the figure, we have the manually evaluated reasoning chain, split into individual sentences. The
corresponding error categories found in each step is given the bottom right column called ‘Error Categories.’

12



Figure 8: The top left section of the figure consists of a 3x4 sample puzzle from the GridPuzzle dataset along with
the Zero-shot-CoT prompt. Right below the prompt, we have the Gold solution for the corresponding puzzle. In the
top right section of the figure, we have the Model-generated Reasoning chain to solve this puzzle along with the
Final Answer. In this instance, the reasoning chain was generated by the Llama2-13b model. In the bottom half of
the figure, we have the GPT-4o Auto-Evaluated Reasoning chain.The auto-evaluation is done sentence-wise and the
output is in a JSON-structured format consisting of 5 components: the Sentence, the Premise, the Conclusion, the
Error category and the Sub-category. The corresponding error categories found in each sentence are given in the
bottom right columns called ‘Error Categories’ and ‘Sub Categories.’
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C Evaluation of Reasoning Chains805

In order to identify the error categories from the806

erroneous reasoning chains we conducted manual807

and auto-evaluation of the reasoning chains. The808

process of manual evaluation has been described809

in figure 7 and the process of auto-evaluation using810

GPT-4o has been described in figure 8.811

D Further Discussion on Mitigation812

Strategy813

We updated the prompts corresponding to these814

techniques to include some of our findings from815

the reasoning chain evaluations as precautionary in-816

structions. The first strategy is the Plan-and-Solve817

(Wang et al., 2023) strategy which prompts the818

model to first generate a plan to solve the given819

problem and then follow those steps. The sec-820

ond strategy is inspired by the Self-correct (Zhang821

et al., 2024) method which uses a combination822

of self-verification and self-refine to improve rea-823

soning. Next, we used the Self-discover (Zhou824

et al., 2024) technique which is a 2-step structured825

reasoning. Lastly, we created our prompting tech-826

nique called “Feedback-Learning” by providing827

specific feedback system instructions to the LLM828

based on our error taxonomy. The detailed prompt829

structure is described in Appendix E. The results830

of these strategies are provided in Table 5 (main831

paper). It is evident from the results that prompting-832

based strategies are not sufficient to significantly833

improve the LLM reasoning on the grid-puzzle-834

solving task. Compared to the rest of the strate-835

gies, Self-Discover marginally improves the per-836

formance on both accuracy and PuzzleEval. These837

results indicate the sore need of developing tech-838

niques beyond prompting by having deeper insights839

from LLMs’ reasoning chains.840

E Mitigation Strategy Prompts841

We conducted a study on the 60, 3x4 puzzles842

present in GridPuzzle dataset to try and improve the843

reasoning abilities of LLMs when solving the grid-844

puzzle task. We used prompt-based methods, such845

as the Plan-and-Solve technique, which divides846

puzzle-solving into planning and solving steps. We847

also enhanced the solver with insights from our848

error taxonomy. The prompt structure for this tech-849

nique is given in figure 9.850

Next, we devised our own strategy to improve851

LLM reasoning by using the top error categories852

from our findings and teaching the LLM to rectify853

Figure 9: The prompt structure for the Plan-and-Solve
strategy which is split into two prompts one for planning
and the other for solving the puzzle.

those mistakes. This strategy termed as Feedback- 854

learning makes use of a detailed system prompt 855

that acts as a feedback-providing unit followed by 856

a basic user prompt to solve the puzzle. The prompt 857

structure for this strategy is shown in figure 10. 858

The Self-correct strategy merges Self-verify and 859

Self-refine qualities to minimize LLM reasoning 860

errors. It starts with solving the puzzle using a 861

Zero-shot-CoT prompt, followed by prompting the 862

LLM to verify and refine the solution. Finally, it in- 863

tegrates the model’s suggestions with insights from 864

our error taxonomy to enhance the puzzle-solving 865

response. The prompt structure for this strategy 866

is shown in figure 11. The Self-Discover strategy, 867

depicted in figure 12, proved most effective in re- 868

ducing LLM reasoning errors in puzzle-solving. 869

This approach begins by having the model analyze 870

the problem and potential errors, follows with a list 871

of prescribed reasoning modules, prompts the LLM 872

to select and apply the most suitable module, and 873

concludes by using a structured prompt to solve the 874

puzzle. 875
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Figure 10: The prompt structure for the Feedback-
learning strategy. The system prompts consist of in-
structions regarding the major errors as well as ways to
rectify those errors.

F Process of Calculating PuzzleEval876

The overall flow of the process of calculating Puz-877

zleEval metrics is described in figure 13. This878

three-stage process includes: A conclusion extrac-879

tion stage, followed by a Pair-wise extraction stage880

and concluded by Validation of the extracted pair-881

wise relations.882

Figure 11: The prompt structure for the Self-Correct
strategy is split into 3 parts. The first prompt solves
the puzzle, the second prompt verifies the solution
and gives suggestions to improve the solution, and the
third prompt uses these suggestions along with error
taxonomy-based instructions to refine the final solution.
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Figure 12: The prompt structure for the Self-Discover
strategy. In the first part of this prompt the model is
prompted to assess the problem and select the appro-
priate reasoning module to solve it. Then the module
is modified to give a structured plan to solve the puz-
zle. In the second part, the model uses this structured
plan along with instructions from our error taxonomy to
solve the puzzle.
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Figure 13: The process of calculating PuzzleEval metrics is described above. The reasoning chains are produced by
our 5 LLM models and the gold solution is taken from our GridPuzzle dataset.
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