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Abstract
Large language model (LLM) unlearning is
critical in real-world applications where it is
necessary to efficiently remove the influence of
private, copyrighted, or harmful data from some
users. However, existing utility-centric unlearning
metrics (based on model utility) may fail to
accurately evaluate the extent of unlearning in
realistic settings such as when (a) the forget and
retain sets have semantically similar content, (b)
retraining the model from scratch on the retain
set is impractical, and/or (c) the model owner can
improve the unlearning metric without directly
performing unlearning on the LLM. This paper
presents the first data-centric unlearning metric
for LLMs called WaterDrum that exploits robust
text watermarking to overcome these limitations.
We introduce new benchmark datasets for LLM
unlearning that contain varying levels of similar
data points and can be used with WaterDrum to
rigorously evaluate unlearning algorithms.

1. Introduction
The capabilities of large language models (LLMs) have
drastically improved in recent years, prompting increased
efforts to deploy LLMs in real-world applications. However,
accompanying this push for practical LLM deployment
are growing concerns around data issues regarding LLMs
that may threaten to derail such developments, especially
since LLMs typically require large amounts of training
data. Data owners have raised intellectual property (IP)
infringement concerns: For example, the New York Times
has sued OpenAI over its LLM’s use of their copyrighted
work (Grynbaum and Mac, 2023). Many jurisdictions are
also paying increased scrutiny over data privacy concerns,
e.g., with regulations such as the General Data Protection
Regulation (GDPR, 2016) and the California Consumer
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Privacy Act (CCPA, 2018) mandating the “right to be
forgotten” that allow users to request the erasure of their
data from the trained models. Furthermore, it is also
not uncommon for public data to become outdated or to
be found erroneous/harmful, e.g., the retraction of public
scientific papers with fabricated data (Hu et al., 2024).

These data concerns have sparked considerable research
efforts on LLM unlearning algorithms, which aim to
efficiently remove the influence of a subset of the model’s
original training data (called the forget set) while avoiding
the prohibitively expensive alternative of retraining the
model from scratch on the retain set. However, due to
the size and complexity of LLMs, existing unlearning
algorithms cannot yet achieve perfect unlearning like
retraining: They may not fully remove the influence of all
data in the forget set, and may also inadvertently remove the
influence of data in the retain set that should be preserved
(Maini et al., 2024; Shi et al., 2025). This raises a natural
question: How can we measure the extent to which these
algorithms have unlearned a given set of data? Existing
works have largely proposed utility-centric unlearning
metrics that evaluate unlearning based on model utility
(performance) indicators, like the perplexity or accuracy
on downstream tasks. After unlearning, the model utility
indicators related to the forget set are expected to worsen.
We provide an overview of existing utility, membership
inference attack, and image and classification watermarking
based unlearning metrics in App. A.1 and position our work
with respect to other LLM unlearning evaluation works in
App. A.2.

However, are the utility-centric metrics effective in the
face of practical challenges with real-world datasets? In
real-life settings, it is (a) common for the forget and retain
sets to have semantically similar content, (b) typical to be
prohibitively expensive to retrain an LLM, and (c) possible
that an LLM owner might attempt to improve the metric
without directly performing LLM unlearning to reduce cost.
In App. H, we will show that utility-centric metrics fall short
and we have identified two reasons. Expecting worse utility
on the forget set after unlearning ignores the ability of the
LLMs to generalize from the retain set (Liu et al., 2024). In
addition, to evaluate the success of unlearning, these metrics
require referencing the retrained LLM (on the retain set)
which cannot be obtained in practice.

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
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Table 1: Comparison of unlearning metrics based on the
proposed desiderata (Sec. 2). We enforce D3, so the metrics
cannot rely on the retrained model. D1 and D2 consider the
setting with an honest model owner and no similar data.

D1 D2 D4

ROUGE (Maini et al., 2024) ✓ ✗ ✗
Truth Ratio (Maini et al., 2024) ✓ ✗ ✗

KnowMem (Shi et al., 2025) ✓ ✗ ✗
MIA (Shi et al., 2024) ✗ ✗ ✗
WaterDrum (ours) ✓ ✓ ✓

In this work, we (a) define clear desiderata that an
effective and practical unlearning metric should satisfy
(Sec. 2), (b) propose a novel data-centric approach
to evaluating the success of LLM unlearning instead,
which we call Watermarking for Data-centric Unlearning
Metric (WaterDrum) that satisfies these desiderata, and
(c) propose a new benchmark dataset WaterDrum-Ax
that includes data from multiple parties and contains
duplicates with varying degrees of similarity (App. F).
WaterDrum is based on a robust text watermarking
framework Waterfall (Lau et al., 2024) that is capable of
verifying multiple data owners’ watermarks in LLM outputs
when the LLM is trained on their watermarked data (Sec. 3).
Our key insight is that using watermarked data creates
a clear counterfactual — a model that is not trained on
watermarked data would not contain the watermark signal.

2. Problem Formulation and Desiderata
We consider the setting of a collection T of data owners
where each data owner i has a dataset Di. These datasets
may contain similar data instances (e.g., news articles on the
same event from different news agencies or paper abstracts
from the same arXiv category but different authors, as
illustrated in App. K.3). The model owner aggregates
their data DT :=

⋃
i∈T Di for training an LLM φT to be

deployed as a service. We consider the unlearning scenario
where a subset F ⊆ T of data owners requests to remove
the influence of their to-be-erased data DF :=

⋃
i∈F Di

(called the forget set) from the LLM due to concerns about
privacy, IP protection, or erroneous content.

Ideally, the model owner would retrain a new model φR
on the remaining set of data DR:=T \F (called the retain
set) to comply with these unlearning requests. However,
full retraining is impractical in reality due to the prohibitive
computational cost, especially when DR is large. Instead,
the model owner would resort to using some unlearning
algorithm, which modifies the original model φT based on
DF to an unlearned model φ̃ that approximates φR. Such
an unlearned model may not have perfectly unlearned the
forget set, so it can be intuitively viewed as retaining the
influence of some (possibly unknown) subset of the forget
set DG# ⊆ DF and hence still be effectively influenced by its

approximate retain set DR
⋃
DG#. Note that DG# might not

correspond exactly to the union of Di’s over some subset of
data owners in F and can possibly include only a subset of
data points from each Di. The best unlearned models should
have |DG#| and its influence to be as small as possible.

In most practical scenarios, data owners have only query
access to the model. Let the query function q denote a
mapping from each given data point d• or dataset D• to a
corresponding text query q(d•) or set q(D•) of text queries.
For example, q can be a function that structures d• into an
appropriate prompt format q(d•) to query an LLM for Q&A
or completion tasks. To ease notation, we abbreviate q(D•)
as q•; for example, qi and qF denote the queries formed
using Di and DF , respectively.

To analyze whether the model owner has unlearned their
dataset Di, the data owner i can rely on some LLM
output, such as φ•(q(di)) or φ•(qi), to compute an
unlearning metric M that quantifies the extent to which
their data remains present in the output. Specifically, we
define an unlearning metric M where M(φ•(q(di)), i) and
M(φ•(qi), i), respectively, measure the influence of i’s data
Di (i.e., second input to M ) detectable in the output of
LLM φ• to queries q(di) or qi. Additionally, for ease
of notation, we also use M to measure the influence of
data from a set of owners; for example, M(φR(qF ),F)
measures the influence of the forget set DF detectable in the
retrained LLM φR’s output. The metric M should satisfy
the following non-exhaustive desiderata.

2.1. Effectiveness

First, the metric must effectively measure the extent to
which an unlearning algorithm has not unlearned the
forget set (so, the resulting unlearned LLM φ̃ would still
be influenced by its unknown approximate retain set, as
discussed in Sec. 2). To achieve this, we will now define
effectiveness desiderata that utilize LLMs retrained on the
retain set (and varying known subsets of the forget set) as
retraining is a perfect unlearning algorithm:1

D1 Separability. The metric should detect/classify whether
an owner’s data still has influence on an unlearned LLM.
Specifically, when evaluating the retrained LLM φR (i.e.,
achieved by perfect unlearning), the metric should, with
high probability, give higher values when measured on
the output to queries formed by the retain set DR (which
influences φR) than queries formed by the forget set DF
(which does not). That is, for any randomly selected data
points dr ∈ Dr ⊆ DR from owner r and df ∈ Df ⊆ DF

1The retrained LLMs are only used to justify our effectiveness
desiderata for evaluating the unlearning metrics. In practice, the
metrics should be used to evaluate imperfect unlearning algorithms
without the retrained LLMs, as discussed in D3(a).
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from owner f , the probability

P [M(φR(q(dr)), r) > M(φR(q(df )), f)] ≈ 1 . (1)

Separability, which is defined by the left-hand side of Eq. (1)
(or, equivalently, AUROC), implies that some threshold κ
exists such that for any data point di ∈ Di ⊆ DT from
owner i, a large value M(φR(q(di)), i) > κ indicates that
di is likely to be in the retain set DR; varying κ yields the
ROC curve. Similarly, when considering an unlearned LLM
φ̃, a large value M(φ̃(q(di)), i) indicates that di is likely to
be in the approximate retain set (Sec. 2). In other words,
the metric should serve as a good classifier for whether an
owner’s data still influences the LLM and is hence in the
approximate retain set: A higher AUROC indicates a better
separability of data that influences the LLM vs. not (Fawcett,
2006). Further discussion is given in App. D.1.

D2 Calibration. In Sec. 1, we highlighted that existing
unlearning algorithms cannot yet achieve perfect unlearning.
Thus, our unlearning metric should be calibrated to
the extent of imperfect unlearning. For example, we
can simulate different extents of imperfect unlearning by
retraining with different sizes of subsets of the forget
set. Specifically, the metric (in expectation) should be
proportional to the size k of the random subset D G# of the
forget set that is used to retrain the LLM φ̂:

ED G# ⊆DF :|D G# |=k [M(φ̂(qF ),F)] ∝ k/|DF | (2)

where D G# is defined in a similar way as DG# in Sec. 2 except
that it is known. Eq. (2) implies that a perfectly unlearned
LLM like φR should have M(φR(qF ),F) = 0 since k = 0.
So, when evaluating unlearning algorithms, we identify
successful perfect unlearning of the forget set by looking for
M(φ̃(qF ),F) ≈ 0. In addition, the metric’s value can be
intuitively interpreted as the extent to which the forget set
has not been unlearned. This enables the unlearning metric
to go beyond being just a binary indicator of whether an
entire forget set is unlearned to a meaningful continuous
score of unlearning. Further discussion is given in App. D.2.

2.2. Practicality

A viable metric for deployment must satisfy the following
additional feasibility and robustness desiderata that account
for challenges faced in common real-life scenarios:

D3 Feasibility. (a) When the metric is used to evaluate
an unlearning algorithm and produce M(φ̃(qi), i) on the
unlearned LLM φ̃, it should not require the retrained
model φR. The premise of unlearning is that retraining the
model on the retain set is prohibitively expensive. Hence,
metrics cannot depend on φR in practice. However, as we
will see in Secs. F.1 and H.3, many existing metrics cannot
satisfy D2 without access to φR, which limits their practical
use. (b) To enable data owners with only query access to

the LLM to evaluate unlearning, the metric should only
depend on the queried output instead of full access to the
weights or token probabilities of the unlearned model φ̃.

D4 Robustness to similar data. The effectiveness
desiderata D1-D2 should hold for any DR and DF ,
including typical scenarios where DR and DF have similar
data points. We further discuss this desideratum in App. D.3.

3. Methodology
3.1. Challenges for utility-centric unlearning metrics

Utility-centric unlearning metrics have evaluated the
effectiveness of unlearning based on model utility
(performance) indicators, such as verbatim memorization,
perplexity, and accuracy on downstream tasks. Performance
indicators P have compared the unlearned LLM φ̃’s output
to queries (e.g., φ̃(qF ) on the forget set) to the original
data (e.g., DF ). We describe several types of utility-centric
unlearning metrics in App. G.2.

However, such performance indicators P do not meet our
required desiderata for the metric M (Sec. 2). First, D3(a)
does not allow retraining the LLM. Without retraining, the
reference value P (φR(qF ),DF ) of the perfectly unlearned
LLM (i.e., retrained LLM φR) cannot be determined
and thus cannot be used to offset the metric to produce
a value close to 0 when the forget set DF is perfectly
unlearned (e.g., it is not possible to define and compute
M as P (φ̃(qF ),DF ) − P (φR(qF ),DF )). Thus, without
retraining, P does not satisfy D2, making it difficult to
identify successful unlearning of the forget set. Next,
when there are similar data present in the forget and
retain sets (D4), we observe that any unlearned LLM φ̃
(e.g., the retrained LLM φR) tends to produce similar
outputs to queries on both sets, that is, φ̃(qF ) ≃ φ̃(qR),
as empirically verified in App. I.2. As the performance
indicators largely depend on direct comparisons with the
LLM outputs, their corresponding values will also be similar,
i.e., P (φ̃(qF ),DF ) ≈ P (φ̃(qR),DR). We will show in
App. H that this leads to utility-centric metrics failing to
satisfy D1 when the data from the forget and retain sets are
highly or moderately similar. The failure arises because
expecting poor predictions on the forget set and a low
P (φ̃(qF ),DF ) overlooks the generalization capability of
LLMs (Liu et al., 2024). Table 1 presents a comparison
of our WaterDrum and existing metrics based on the
desiderata in Sec. 2. In App. A.1, we provide further details
on utility-centric and other unlearning metrics.

3.2. Watermarking as unlearning metric

To overcome the challenges described above and satisfy
the desiderata in Sec. 2, we propose to adopt a
novel data-centric approach to evaluating the success of
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Figure 1: Overview of the watermarking, training,
unlearning, and verification process in WaterDrum.

unlearning instead. Instead of relying on utility-centric
metrics that indirectly infer unlearning via model
performance, we directly track the presence of data by
actively embedding data-specific signals detectable in the
LLM outputs that are designed to be orthogonal to its
performance. In App. A.1, we highlight how WaterDrum
differs from existing watermarking-based metrics for image
classification tasks. In App. B, we outline desiderata
required by a watermarking framework (and its verification
operator) to meet our unlearning metric desiderata in Sec. 2.

3.3. Overview of WaterDrum and Experimental results

To satisfy the watermarking desiderata presented in App. B,
we propose WaterDrum, an unlearning metric built on top
of our adaptation of the scalable and robust Waterfall
framework (Lau et al., 2024) which can successfully verify
multiple owners’ watermarks in LLM outputs when the
LLM has been trained on their watermarked text.

Specifically, we adopt the watermarking W(·, µ) and
verification V(·, µ) operators as defined in Waterfall.
We can then define the WaterDrum metric on datasets as

M ′(φ•(q
′
i), ·) := |D′

i|
−1 ∑

d′
i∈D′

i
M ′(φ•(q(d

′
i)), ·). (3)

Waterfall’s watermarking and verification approaches
satisfy the watermarking desiderata W0, W1(a) and W2,
as elaborated and demonstrated in (Lau et al., 2024). We
empirically verified that the Waterfall method satisfies
W0 in App. I.1 and W1(b) on calibration in App. H.3. The
rest of the watermarking process desiderata can be satisfied
by properly designing the unlearning and evaluation process,
which we illustrate in Fig. 1 and present below:

P1 Watermarking setup. Each data owner i first
watermarks their data Di with a unique private key µi to
generate a watermarked dataset D′

i := {d′i = W(di, µi) |
di ∈ Di}, before the model owner aggregates their
watermarked data D′

T :=
⋃

i∈T D′
i, trains a model φ′

T on
it, and offer to clients (including data owners) query access
to the trained model.

P2 Unlearning. A subset of data owners F requests that
their data D′

F :=
⋃

i∈F D′
i be erased from the model φ′

T .
The model owner will claim to have done the unlearning,
and offer query access to a new model φ̃′.

P3 Unlearning verification. The verification operator
takes the role of the uncertainty metric in WaterDrum,
as per Eq. (3). In most cases, each data owner f in F
can query the unlearned model φ̃′ with queries q′f based
on D′

f and apply the verification operator V(φ̃(q′f ), µf )
to measure the extent that their data has been unlearned.
More challenging situation of queries, such as under a threat
model, is described later in App. E.

Note that WaterDrum in Eq. (3) applied during P3 only
requires query access to the model, hence satisfying W3.
Watermarking desideratum W4 is also satisfied by the setup
in P1 and the fact that the model owner never requires the
data owners’ keys, including in P2. In App. K.1, we explain
why the process is practical and discuss deployment details.

To effectively evaluate WaterDrum and compare with
other baseline unlearning metrics, we explain the limitations
of existing unlearning benchmark datasets and introduce a
new benchmark dataset WaterDrum-Ax in App. F.

Experiments. We empirically verify whether WaterDrum
and the baseline unlearning metrics satisfy the proposed
desiderata – see App. H for details). Below, we extract two
key results showing how WaterDrum is the only metric
that consistently satisfy D1 (Table 2), and D2 (Table 3),
under varying levels of similar data across DR and DF (D4)
and enforcing D3 (i.e., no access to retrained model).

Table 2: AUROC (± across 3 seeds) of metrics for different
levels of similarity for the WaterDrum-Ax dataset.

Similarity ROUGE KnowMem WaterDrum

Exact Dup. 0.334±0.005 0.492±0.005 0.957±0.008
Sem. Dup. 0.960±0.002 0.450±0.007 0.963±0.001
No Dup. 0.974±0.001 0.491±0.008 0.965±0.002

Table 3: R2 of the best fit line (dotted in Fig. 6) for metrics
under different levels of similarity on the WaterDrum-Ax
dataset. WaterDrum is very well linearly calibrated across
the settings, with the highest R2 value.

Similarity ROUGE KnowMem MIA WaterDrum

Exact Dup. -37.47 -498.1 -1220 0.987
Sem. Dup. 0.693 -276.5 -90.21 0.991
No Dup. 0.650 -252.9 -7.553 0.963

4. Conclusion
In this work, we (a) defined clear desiderata that unlearning
metric should satisfy, (b) proposed a novel data-centric
LLM unlearning metric, WaterDrum, and (c) introduced
a benchmark dataset, WaterDrum-Ax, which can be used
with WaterDrum to benchmark unlearning algorithms.
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A. Related Works
A.1. Unlearning Metrics

Unlearning algorithms are often evaluated based on their a) unlearning effectiveness, b) utility preservation, and c) unlearning
efficiency (Li et al., 2024b). We briefly discuss b) and c) as they are not the focus of this work. b) Utility preservation refers
to how well the LLM maintains its performance and usability after unlearning, which can be measured with performance
indicators (e.g., perplexity, accuracy) on the retain set and various downstream tasks (Chang et al., 2024). The c) efficiency
of an unlearning algorithm can be assessed based on how much time and resources it saves compared to retraining from
scratch (Nguyen et al., 2022; Li et al., 2024b). See Section 4 of (Liu et al., 2025) for a deeper discussion about other
unlearning effectiveness, utility preservation, efficiency, and scalability metrics.

a) Unlearning effectiveness metrics. Broadly, unlearning effectiveness (or forget quality) refers to how well the LLM has
removed the presence/influence of the forget set. There are a few classes of such metrics.

Utility based metrics are a form of utility-centric metrics that expect the model utility (performance indicators) when
evaluated on the forget set to worsen after unlearning. LLM utility based unlearning metrics include ROUGE-L (Lin,
2004), Truth Ratio (Maini et al., 2024), and KnowMem (Shi et al., 2025). More details of their definitions can be found
in App. G.2 and we have described the disadvantages of utility-centric metrics in App. F.1.

Membership inference attacks (MIA) based metrics expect the ability or probability to infer the membership of a data
sample in the forget set to reduce significantly after unlearning. Some MIA-based metrics are also utility-centric, as
membership inference may depend on performance indicators, such as perplexity and the log-likelihood of tokens in
text data (Shi et al., 2024). However, MIA attacks (Shokri et al., 2017) have demonstrated limited success against
LLMs (Duan et al., 2024), and their performance is adversely affected by the presence of similar data in the forget and
retain set.

Watermarking based metrics embed signals in the forget set and expect the strength of these signals to decrease after
unlearning (Li et al., 2024b). Our algorithm WaterDrum falls under the category but is the first metric that works
for LLMs. Existing watermarking-based unlearning metrics are designed and work only for image datasets and
classification models. For example, Guo et al. (2023) embedded invisible backdoors in images with incorrect target
labels to assess the success of unlearning, measured by a drop in the success rate of backdoor attacks. Sommer et al.
(2022) introduced a probabilistic verification framework for backdoors, in which users modified their data prior to
submission. We highlight the key differences of our work: (a) These methods rely on label-based predictions and
face challenges such as generalization effects, conflicting backdoor patterns, or backdoor defences. In contrast, our
work focuses on adapting watermarking to LLMs, where longer and more complex output sequences provide richer
signals for unlearning verification. (b) These models compromise model utility even before unlearning, especially when
the forget set is large. In contrast, our framework does not significantly degrade model utility. (c) Most importantly,
existing watermarking and backdoor attack-based metrics are limited to image data and cannot be directly applied as
unlearning metrics for textual data due to additional challenges such as in preserving data fidelity (Guo et al., 2023;
Sommer et al., 2022).

Unlearning metrics can also be classified based on whether they are retraining-based or non-retraining-based. Retraining
is commonly viewed as the gold standard in classical unlearning settings (Cao and Yang, 2015; Golatkar et al., 2020;
Bourtoule et al., 2021). This has led to various evaluation metrics that assert how closely an unlearned model approximates
a retrained one, e.g., via matching performance on the forget set (Golatkar et al., 2020; Chundawat et al., 2023b) or
measuring distances in weights and activations (Tarun et al., 2023; Golatkar et al., 2021; Chundawat et al., 2023a). However,
retraining LLMs is often infeasible due to the scale of model parameters and the volume of pretraining data. In addition,
retraining-based metrics contradict the purpose of unlearning that emphasizes the unavailability of a retrained model.

Therefore, non-retraining metrics are now more important and aligned with the growing trend of commercial LLMs that
only provide black-box access. Chundawat et al. (2023a) proposes the ZRF score that captures the randomness in LLM
predictions as an indicator of unlearning, while Becker and Liebig (2022) proposes to utilize model epistemic uncertainty.
Yao et al. (2024) propose that a surrogate subset with the same distribution as the forget set can be employed to approximate
the performance of the retrained model. However, these metrics often overlook the LLM’s ability to generalize from
pre-training or the remaining retain set. To address this, synthetic datasets, such as TOFU dataset (Maini et al., 2024),
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are carefully crafted to ensure a sufficient separation between the forget and retain set. Nonetheless, such separation and
low similarity is rarely achievable in real-world scenarios. In this work, we address these limitations by proposing a
non-retraining metric that works despite greater similarity between the forget and retain set and the generalization
ability of LLMs. Additionally, our metric would work for multiple unlearning requests. Specifically, we propose to use
watermarking (Sommer et al., 2022; Guo et al., 2023; Gao et al., 2024) to handle potential similarities due to its ability to
make each data point uniquely identifiable.

A.2. Comparison With Other LLM Unlearning Evaluations.

Maini et al. (2024); Shi et al. (2025) have proposed new unlearning metrics and benchmark datasets. Li et al. (2024a) proposes
a multiple-choice question benchmark dataset, WMDP, to evaluate the LLM’s knowledge in biosecurity, cybersecurity, and
chemical security. This benchmark dataset is different from TOFU, MUSE, and ours in nature because it is specifically for
knowledge editing and only contains testing data instead of training data. Wang et al. (2025) suggest that an unlearning
metric should be robust against (unchanged by) red teaming scenarios (such as recovering knowledge by jail-breaking,
probing, relearning) and unlearning algorithms should be compared when they achieve the same retain quality, which is
realized by mixing the parameters of the LLM before and after unlearning. Wu et al. (2024) proposes a new perspective of
fact unlearning and an accompanying synthetic dataset. In contrast, we propose and satisfy a novel set of desiderata
to address realistic settings, such as when the forget and retain sets have semantically similar content and when
retraining is impractical. Our desiderata are not intended to be exhaustive and can complement existing benchmarks.
Lynch et al. (2024) proposes a suite of adversarial metrics to resurface forget set-related knowledge that exists in the
unlearned LLMs, e.g., jailbreaking prompts, relearning (via fine-tuning and in-context learning), and latent knowledge
extraction. While these metrics employ the textual similarity to the forget set in adversarial scenarios to evaluate the
unlearning success, watermarking uses the signal carried in LLM outputs to detect the presence of data from the forget set.

A.3. Text Watermarking

Watermarking is an extensively studied technique for copyright protection, fingerprinting, and authentication (Wan et al.,
2022; Liu et al., 2024). Watermarking consists of two main stages: embedding and detection, where the watermark must
remain imperceptible and robust against removal attacks (Wan et al., 2022). Unlike digital images, where continuous
signals facilitate imperceptible watermark embedding, text watermarking is more difficult due to its discrete nature and
susceptibility to text modifications (Liu et al., 2024). Existing methods, such as inserting Unicode characters (Por et al.,
2012) or synonym replacement (Yang et al., 2022), are often easily detectable and susceptible to word replacement. On the
other hand, syntactic-based watermarking methods are often constrained by the limited choices of syntactic structures and
require prior linguistic knowledge (Wan et al., 2022). Recently, LLMs have emerged as a promising watermarking tool
as they can generate natural-looking text and improve watermarking robustness. Lau et al. (2024) proposed a robust text
watermarking approach capable of embedding watermarks across data from multiple data owners, preserving the semantic
content of the original text, and also achieving watermark robustness such that watermarks in the training data of LLMs
remain detectable in the LLM output. We build on Lau et al. (2024) framework in our work to develop our unlearning
metric. Other watermarking frameworks can be considered in future works.

B. Watermarking desiderata
In our watermarking framework, each data owner i is assigned a unique private watermark key µi. Our watermarking
framework comprises (a) a watermarking operator W(di, µi) → d′i that takes in any text data di ∈ Di and produces a
corresponding text data d′i uniquely associated with watermark µi, and (b) a verification operator V(g′, µi) that takes in
any text data or set of text data g′ (e.g., LLM output(s)) and provides a score reflecting the likelihood of g′ containing the
watermark µi.

To satisfy our unlearning metric desiderata in Sec. 2, the watermark and verification operators used in the watermarking
framework will need to satisfy a list of desiderata.

W0 Fidelity. The watermarking should have minimal impact on the semantic similarity of the original data, i.e., d ≃
W(d, µ) for any watermark key µ and data d ∈ DT . While this does not directly impact the unlearning metric
desiderata, W0 ensures that the watermarking process preserves the value of the data for the model owner and the
metric can be deployed in practice.
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Figure 2: Unlike existing utility-centric metrics, WaterDrum satisfies the unlearning metric desiderata in Sec. 2.
WaterDrum is robust to similar data as orthogonal data-specific signals are embedded in the LLM outputs that are
W1 verifiable.

W1 Verifiability. (a) The watermark should be verifiable if and only if the watermarked content is present in the LLM. In
our setting, this implies that the retrained LLM should not contain the watermark of an owner f in F who requested to
erase its data, i.e., V(φR(q(df )), µf ) = 0. In contrast, an LLM that has been trained on owner f ’s data Df ⊆ DF
should have a verifiable watermark µf , i.e., V(φF (q(df )), µf ) ≫ 0 for all df ∈ Df . (b) If every text data in DF is
watermarked with the same key µF , the average value V(φ̂(q(df )), µf ) across all df ∈ DF for model φ̂ retrained on
DR

⋃
D G# should be proportional to the size of the data D G# ⊆ DF . Together, (a) and (b) support D1 and D2.

W2 Overlap verifiability. The verifiability desideratum W1 is satisfied despite the presence of other watermarks (e.g., µr

from another owner r) in the training dataset of the model. This allows for multiple watermarks to be evaluated from
the output of the same model.

We will also need additional desiderata on the watermarking process to meet the rest of the unlearning metric desiderata:

W3 Query access constraint. Data owners should be able to verify the watermark with only query access to the model.
This supports D3 with feasible and efficient unlearning evaluation.

W4 Unique key. Each data owner i’s watermark key µi should be unique. When a forget set data owner requests full
erasure of its data, the forget and retain sets will have different watermarks, with different strengths, thus supporting
D1. Furthermore, the unique keys ensure that similar or even identical data from different owners will have different
watermarks, which supports D4.

Fig. 2 summarizes how a framework that satisfies these desiderata can satisfy the unlearning metric desiderata in Sec. 2.
Concretely, we can define a metric M ′ based on the verification operator.

M ′(φ•(q(di)), i) := V(φ•(q(di)), µi) . (4)

To measure the influence of F on LLM output, we evaluate the verification score for each watermark and consider the one
with the highest score: M ′(φ•(q(di)),F) := maxj∈F V(φ•(q(di)), µj).

C. Details on Watermarking with Waterfall
Watermarking and verification of the training text data was done using the Waterfall algorithm (Lau et al., 2024), using
the default configuration of the code available on https://github.com/aoi3142/Waterfall. The texts were
watermarked with the default LLM meta-llama/Llama-3.1-8B-Instruct, with watermark strength κ = 2 and
perturbation key kp = 1.

When watermarking for WaterDrum-Ax, the different data owners were assigned consecutive IDs µ, starting from 0 and
incrementing by 1 for each data owner (0, 1, 2, ...). For experiments involving duplicate data, we watermarked with the ID 1
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Figure 3: Each ■ represents a query. Different κ corresponds to different decision boundaries. In the top diagrams, the
metric and κ∗ can clearly separate queries on the forget set and the retain set. In the bottom diagrams, the queries cannot be
separated clearly and for any κ, the true and false positive rates are the same. The left diagram provides a toy example to
illustrate the intuition of the separability desiderata D1, while the right diagrams show actual plots of metrics evaluated on
semantic-duplicate WaterDrum-TOFU from App. H.2, where WaterDrum exhibits clear separability over Truth Ratio.

higher than the owner index instead (i-th owner watermarked with µi = i+ 1, where i is zero-indexed). The watermark ID
for the duplicate of the last owner’s data is wrapped around, using µ−1 = 0 (i.e., for majority of the duplicate experiments
where there is only a single duplicate data owner duplicating the single forget class, those duplicate data were watermarked
with µ = 0). For the experiments with multiple data owners requesting to have their data unlearned, this simulates the
situation where some owners only request for a portion of their data to be unlearned, while retaining the remaining portion
of their data.

When watermarking for WaterDrum-TOFU, the data from the retain set was watermarked with ID µ = 0 while data from
the forget set was watermarked with ID µ = 1. Duplicate data of the forget set were watermarked with the retain watermark,
ID µ = 0.

Note that as part of Waterfall’s watermarking process, the original texts were paraphrased with the use of an LLM.
Although efforts were made to ensure that the watermarked text retains high semantic similarity with the original text
(see (Lau et al., 2024) and https://github.com/aoi3142/Waterfall), we cannot guarantee the faithful reproduction of all
content from the original text, nor the factual correctness of the watermarked texts. Despite this, WaterDrum-Ax
and WaterDrum-TOFU still serve as suitable datasets when used for the purpose of evaluating unlearning metrics and
algorithms, where the factuality of the content in the dataset is not relied upon. In practical real-world unlearning applications,
additional (automated or human-involved) checks could be performed on the watermarked text to ensure accuracy and
consistency to the original text (Lau et al., 2024).

D. Further Discussion on Desiderata for Unlearning Metrics
D.1. D1 Separability

A separable metric (D1) should be a good classifier of whether an owner’s data still has influence on an unlearned LLM, in
particular, the model retrained only on DR. To illustrate the difference between a separable and non-separable metric, we
provide a toy example in Fig. 3 (left). With a separable metric, an optimal threshold κ∗ could be chosen where false positive
and false negative classifications are minimal, as is the case for WaterDrum Fig. 3 (top right). However, for non-separable
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Figure 4: A calibrated metric should reflect the extent of imperfect unlearning. On the horizontal axis, we simulate using
different sized fractions of the red owner’s dataset. D2 requires the metric to have 0 value when the dataset is not used and
larger values when a larger fraction is used. As shown in Fig. 6 in App. H.3, WaterDrum is well calibration while other
metrics are not.

metrics, any κ chosen would result in similar true and false positive rates, as shown in Fig. 3 (bottom right).

D.2. D2 Calibration

D2 (calibration) enables unlearning metrics to go beyond being just a binary indicator of whether an entire dataset has been
unlearned, to be a meaningful continuous score of how much of a forget set DF has been unlearned.

• The proposed linear proportional form (Eq. (2)) of D2 captures the desire that the unlearning metric can be directly
interpreted as indicating the proportion of DF that has not been unlearned, given just a single calibration data point
(i.e., the forget set metric evaluated on the original model) that is available before unlearning. This is in direct contrast
to existing utility-centric metrics, which require at least one additional calibration data point (the forget set metric
evaluated on the retrained model), violating D3(a) as described in App. F.1.

• Surprisingly, as seen in our experiments (Fig. 3 and Tab 3), WaterDrum can satisfy D2, enabling this intuitive and
simple interpretation in the scenario of models retrained with data including varying fractions of the forget set k

|DF | .

Fig. 4 provides an intuitive illustration for the calibration desideratum, where the metric score measures the extent of
imperfect unlearning. We also discuss practical use cases for D2 in App. K.2.

D.3. D4 Robustness

Similarity of data in the retain and forget set is not typically considered in other works related to unlearning, despite its
prevalence in practical real world scenarios (e.g., news agencies have different news articles reporting on the same event, as
illustrated in App. K.3). Our D4 robustness desideratum directly addresses this, enforcing that the other desiderata should
hold even under scenarios where similar data is present across retain and forget set.

Let di ≃ dj denote that text data di and dj have a large similarity score SS(di, dj), e.g., computed using some semantic
text similarity (STS) score, and Di ≃ Dj denote sets where for any di ∈ Di, there is a corresponding dj ∈ Dj such that
di ≃ dj . Satisfying D4 is challenging because the similarity of data points dr and df in the respective retain and forget
sets often implies that the corresponding LLM outputs will also be similar, i.e., φ•(q(dr)) ≃ φ•(q(df )) (we empirically
demonstrate this in App. I.2 for the retrained model). This makes it hard for many utility-centric metrics to satisfy both the
separability and calibration desiderata and further motivate the need to adopt more data-centric unlearning metrics.
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Figure 5: Plot of forget watermark strength (WaterDrum metric) over % of queries in Q intercepted, as the model owner
increases its filtering threshold B under the threat model T. The best possible unlearning metric against T will have its score
decrease only proportionally (dotted orange diagonal line). WaterDrum achieves a similar performance, implying that the
threat model requires intercepting a large proportion of queries to reduce the metric detectable by the forget set data owner.
Watermark strength is scaled to 1.0 for Q before the threat model is implemented.

E. Resilience
We need to consider the realistic scenario in which the model owner’s interests may not align with those of the data owners.
As full unlearning is costly, the model owner is incentivized to avoid it while appearing to fulfil the data owners’ erasure
requests. As the model owner is aware of the metric M used, they can attempt to improve the metric through a threat model
without directly performing unlearning if doing so is less costly.

To analyze this, we consider the scenario where the model owner continues to use the existing model φT instead of spending
resources to unlearn DF (and produce φ̃).

Threat model. The model owner implements the threat model T that involves simulating a decoy unlearned model qφ with
a gating function to intercept any query q(di) that is received. For metrics that it could compute exactly, the model owner
would filter queries that result in output with signals that indicate that the underlying model is still the full model φT with
influence from the forget set DF , e.g., queries q(di) where M(φT (q(di)), f) > κ for any f ∈ F , and replace φT (q(di))
with some text g(q(di),DF ) that minimizes the metric signal. For metrics that the model owner cannot compute exactly
(e.g., metrics with computation that require some information that is private to the data owner), the model owner can only
resort to a proxy indicator SS that measures how similar a query output φT (q(di)) is to the forget set DF , for the filter:

qφ(q(di)) =

{
g(q(di),DF ) if ∃df ∈ DF , SS(φT (q(di)), df ) > B,

φT (q(di)) otherwise
(5)

with a selected threshold value B as determined by the model owner. In practice, for g(q(di),DF ), the model owner
can generate an output that minimizes the score of metric M , such as by replacing it with output from another untrained
model. Note that in situations where Eq. (5) is applied, the model owner will realistically only intercept queries with a
large SS threshold B. Performing this for a small threshold will harm overall model performance with more decoy output
replacements and will be more costly – in the extreme scenario, this approach intercepts all queries and would essentially be
comparable to a full unlearning algorithm. In these cases, the metric needs to be resilient against such a threat model: i.e.,
exhibit Resilience. The metric should meet all the above desiderata, despite the model owner potentially implementing
threat model T in Eq. (5).

Subsequently, we assess whether our WaterDrum metric satisfies the resilience requirement where the model owner
attempts to avoid unlearning by building a decoy unlearned model qφ (Eq. (5)). To create the impression of successful
unlearning, the model owner can compute the forget set data owner f ∈ F’s unlearning metric on any model output, and
adjust any output with high scores to an alternative output with low scores (e.g., output from a decoy model). Such an attack
would work well for all baseline metrics, since the model owner can replicate any metric computation process that is done by
data owner f . Specifically, unlike WaterDrum where the metric score can only be computed with knowledge of the data
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owner’s private watermark key µ, other metrics (such as ROUGE) can be directly computed by the model owner, allowing
the model owner to use the metric itself as SS. The model owner can then choose their threshold B in Eq. (5) to exactly
match the data owner’s threshold κ from D1, thereby replacing all outputs that the forget data owner would consider as
influenced by the forget set. This prevents the data owner from realizing that their data still remains in the underlying model.

However, the key advantage of WaterDrum is that the model owner does not have the private key µf of data owner f to
compute the metric (Eq. (3)) when building their decoy model. The model owner can only resort to some proxy indicator of
similarity SS between received queries q(di) and the forget set DF to decide which output it should replace to lower the
WaterDrum metric score. The lower the threshold B it sets, the higher the chances of reducing the WaterDrum score,
but the more output it would need to replace, increasing the cost of this attack and discouraging the model owner to avoid
actual unlearning. Generating coherent replacement text without µf is costly, as Waterfall watermarks are robust to
modification attacks (Lau et al., 2024) – the model owner may have to replace any intercepted output with unwatermarked
text from other sources (e.g., another model) with lower quality, impacting its service to its users.

In response to the threat model, data owner f can prepare beforehand a set of queries Q that it assesses to have watermark
signal above an unlearning threshold κ, i.e. Q = {q(di)|M ′(φT (q(di)), f) > κ}. In our experiment, DF is a set of arXiv
abstracts from the math.PR dataset, and Q consists of other such abstracts not2 in DF . These queries are related to DF
(from the same subject) in order to elicit the watermark of F without being actually from DF , so as to prevent the model
owner from directly recognizing and filtering them as F ’s queries. Thus, the model owner can only use the proxy indicator
STS score as SS, computed between the model’s generated text and all text in df ∈ DF to try and intercept F’s queries.

As the model owner increases B, it potentially reduces the average watermarking score via 2 effects: (1) diluting the
score by replacing the output with watermark signal by the output from unwatermarked sources, and (2) expecting a lower
watermark signal from the remaining unfiltered queries that are semantically further away from the original watermarked
DF . Fig. 5 plots the WaterDrum metric against the percentage of intercepted queries in Q, as the threshold B is increased.
Note that the unlearning metric decreases almost 1:1 with the percentage of intercepted queries, implying that the model is
only relying on effect (1) with no help from effect (2), i.e., the model owner can only reduce F’s watermark strength by
indiscriminately filtering all queries that are semantically similar to DF . This makes it very costly for the model owner to
carry out the attack. For example, reducing the forget watermark strength to 0.2 requires rejecting more than 70% of the
non-relevant queries Q – the model owner may favor performing actual unlearning instead.

F. The WaterDrum-Ax Dataset
Apart from good unlearning metrics, suitable unlearning benchmark datasets are also critical for evaluating and developing
practical unlearning algorithms. However, existing benchmark datasets such as TOFU (Maini et al., 2024), MUSE (Shi
et al., 2025), and WMDP (Li et al., 2024a) may not represent the realistic challenges outlined in our problem setting (Sec. 2)
as they lack: (a) Realistic forget-retain splits. Both TOFU and MUSE only have fixed forget DF and retain DR datasets,
and do not represent practical scenarios where there are multiple data owners who could decide independently whether to
erase their data; and (b) Similar data. Both datasets do not measure and control for a range of data similarity across DF
and DR, and hence cannot support evaluations on unlearning metrics for D4 and unlearning algorithms on their ability to
unlearn data in DF that are similar to those in DR. In fact, Thaker et al. (2024) have also identified that in these popular
benchmark datasets, the forget and retain sets are disjoint (the queries on the forget set are related only to the forget set and
are unrelated to the retain set) and the performance of the unlearning methods declines sharply if dependencies between
both sets are introduced. This underscores the importance of considering datasets with less disjoint and more similar data.

To address these limitations, we introduce a complementary unlearning benchmark dataset, WaterDrum-Ax.
WaterDrum-Ax, comprising arXiv paper abstracts across various categories published after the release of the Llama-2
model, includes (a) abstracts from the 20 most popular academic subject categories to represent 20 different data owners
that can be freely assigned to define DF and DR; and (b) varying levels of data similarity ranging from exact duplicates
to paraphrased versions of the abstracts that can be used across DF and DR to support evaluation of the practicality and
resilience of the unlearning metrics, especially the assessment of D4 on robustness to similar data. Overall, WaterDrum-Ax
contains 400 abstracts for each category, aggregating to a total of 8000 data points in WaterDrum-Ax. These abstracts
have an average length of 260 tokens, which is considerably longer than that of TOFU (Maini et al., 2024) (59 tokens). For

2For simplicity, in our experiments the data owner does not include queries based on DF in Q as it can assume that the model owner
would definitely filter any output φT (qF ) based on it.
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licensing information on individual papers in the dataset, see https://arxiv.org/help/license.

The WaterDrum-Ax benchmark dataset can be used to: (i) evaluate unlearning metrics based on the desiderata introduced
in Sec. 2, and (ii) evaluate unlearning algorithms on effective and practical metrics identified in (i). The empirical evaluations
in App. H focus on (i) but include some preliminary results on (ii) in App. H.4. We leave more systematic investigations of
(ii) to future work.

F.1. Challenges for utility-centric unlearning metrics

Utility-centric unlearning metrics have evaluated the effectiveness of unlearning based on model utility (performance)
indicators, such as verbatim memorization, perplexity, and accuracy on downstream tasks. Performance indicators P have
compared the unlearned LLM φ̃’s output to queries (e.g., φ̃(qF ) on the forget set) to the original data (e.g., DF ). We
describe several types of utility-centric unlearning metrics in App. G.2.

However, such performance indicators P do not meet our required desiderata for the metric M (Sec. 2). First, D3(a) does
not allow retraining the LLM. Without retraining, the reference value P (φR(qF ),DF ) of the perfectly unlearned LLM (i.e.,
retrained LLM φR) cannot be determined and thus cannot be used to offset the metric to produce a value close to 0 when the
forget set DF is perfectly unlearned (e.g., it is not possible to define and compute M as P (φ̃(qF ),DF )−P (φR(qF ),DF )).
Thus, without retraining, P does not satisfy D2, making it difficult to identify successful unlearning of the forget set. Next,
when there are similar data present in the forget and retain sets (D4), we observe that any unlearned LLM φ̃ (e.g., the
retrained LLM φR) tends to produce similar outputs to queries on both sets, that is, φ̃(qF ) ≃ φ̃(qR), as empirically verified
in App. I.2. As the performance indicators largely depend on direct comparisons with the LLM outputs, their corresponding
values will also be similar, i.e., P (φ̃(qF ),DF ) ≈ P (φ̃(qR),DR). We will show in App. H that this leads to utility-centric
metrics failing to satisfy D1 when the data from the forget and retain sets are highly or moderately similar. The failure arises
because expecting poor predictions on the forget set and a low P (φ̃(qF ),DF ) overlooks the generalization capability of
LLMs (Liu et al., 2024). Table 1 presents a comparison of our WaterDrum and existing metrics based on the proposed
desiderata in Sec. 2.

G. Experimental setup.
We conduct our experiments on NVIDIA L40 and H100 GPUs. Evaluation is averaged across 3 random seeds {41, 42, 43}.
Text generation from the different models used temperature = 1, top-p = 1, top-k left as the LLM vocabulary size.

G.1. Datasets and Training Hyperparameters.

Our primary experiments were conducted on the WaterDrum-Ax (App. F) and WaterDrum-TOFU (derived from
TOFU (Maini et al., 2024) (MIT License), details in App. C) benchmark datasets, with the pre-trained Llama-2-7B (Touvron
et al., 2023) as the base model:

WaterDrum-Ax. We finetune the bfloat16-pretrained Llama-2-7B model from Hugging Face3 using LoRA (r = 8,
α = 32) with batch size 128 , 20 training epochs, learning rate 1e−3. Additionally, we finetune the bfloat16-pretrained
Phi-1.5 model (detailed in App. J.2) with the same settings. We have considered these two models as they are representative
of the recent LLMs, different in terms of model architectural details, and span different model scales.

WaterDrum-TOFU. We finetune the bfloat16-pretrained Llama-2-7B-chat model from Hugging Face4 using LoRA (r = 8,
α = 32) with batch size 128 , 10 training epochs, learning rate 1e−4.

The models were finetuned with different data subsets under various settings. For unlearning, we consider the last 1 class
from WaterDrum-Ax and the last 10% data from WaterDrum-TOFU as the forget sets, and use a batch size of 32. While
we conduct our experiments using LoRA as in other LLM unlearning works (Maini et al., 2024; Shi et al., 2025), we also
demonstrated that WaterDrum applies to full parameter fine-tuning in App. J.1. We also conducted experiments on other
LLMs (Li et al., 2023) detailed in App. J.2.

3https://huggingface.co/meta-llama/Llama-2-7b-hf.
4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf.
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G.2. Baseline Metrics.

For baselines, we compare WaterDrum against recent and commonly adopted unlearning metrics: ROUGE-L (Lin, 2004),
Truth Ratio (Maini et al., 2024), KnowMem (Shi et al., 2025) and MIA (Shi et al., 2024). Other than our metric WaterDrum,
we consider these other baseline metrics as utility-centric unlearning metrics.

• ROUGE-L: measures the longest common subsequence between the generated text and a reference text. This serves as
a surrogate for the generation quality for the WaterDrum-Ax dataset and the question-answering accuracy for the
WaterDrum-TOFU dataset. For the WaterDrum-Ax dataset, we prompted the LLM with the first 50 tokens of the
training dataset for the LLM to perform completion generation. For the WaterDrum-TOFU dataset, we prompted the
LLM with the questions, using the LLM’s prompt format. To calculate the metric score, we follow Shi et al. (2025);
Maini et al. (2024) in computing the ROUGE-L recall scores (Lin, 2004) to compare the LLM response with the
training data as ground truth. We generated 10 outputs for each prompt, and the mean score for the 10 generations was
taken.

• Truth Ratio: measures the probability of generating a correct answer versus a wrong answer as an indicator of whether
the LLM still memorizes the knowledge to be unlearned on the WaterDrum-TOFU dataset. Following Maini et al.
(2024), for each given question, we compute the ratio by dividing the averaged probabilities of multiple wrong answers
by the probability of a paraphrased true answer.

• KnowMem: measures the ROUGE score of QA pairs related to the training data to measure the LLM memorization
of the knowledge on the WaterDrum-Ax dataset. Following (Shi et al., 2025), we use GPT-4 to create a
question-answering evaluation set with 8000 QA pairs based on the abstracts in the WaterDrum-Ax dataset and
measure the ROUGE score between the LLM’s generated response to the questions and the ground truth answers.

• MIA: measures the difference in predictive distribution between two models to measure privacy leakage from unlearning.
Specifically, we employ the state-of-the-art Min-40% attack (Shi et al., 2024) based on the loss on the forget set and
holdout set, and compute AUROC of discriminating the losses.

• WaterDrum: We also use our proposed watermark metric and compare the results against the above-mentioned
baseline evaluation metrics. We used the same generation setup as that in ROUGE-L for WaterDrum, and evaluated
the watermark strength of only the generated output excluding the prompt.

For ease of comparability, all metrics are scaled such that their score when evaluated on the original model φT (which is
accessible to the data owners before unlearning) is 1.0. As our WaterDrum framework involves watermarking the training
data DT (P1), the models finetuned on this watermarked dataset differ slightly from the dataset used for other metrics.
However, their performance remains comparable, as Waterfall satisfies desideratum W0 (as shown in App. I.1).

G.3. Details on data duplication

We examine 3 representative scenarios where there exists extra data Ds that is similar to DF with different SS: (a) Exact
duplication: Ds is an exact copies of DF , hence we make Ds as a copy of DF . This marks the highest similarity with STS
= 1.00 and ROUGE = 1.00. (b) Semantic duplication: Ds is a paraphrased version of DF with the same semantic meaning.
We use GPT-4 to paraphrase DF and obtain Ds. In this case, Ds has STS = 0.97, ROUGE = 0.69 on WaterDrum-Ax,
and STS = 0.96, ROUGE = 0.60 on WaterDrum-TOFU. We also consider the standard scenario when there is (c) No
duplication at all in the dataset, i.e., Ds = ∅.

We then finetune 3 models on the WaterDrum-Ax dataset Ds
R = Ds

⋃
DR during finetuning, corresponding to the 3

different levels of similarity. Note that since Ds is from a different data owner than DF , we embed different watermarks
for Ds and DF for the evaluation of our WaterDrum (details in App. C). Subsequently, we adopt the set of considered
unlearning methods (including retraining the model on just the retain set Ds

R) to remove DF while retaining Ds
R.

G.4. Details on calibration

In our experiments, we simulated varying sizes of subsets of the forget set by partitioning the forget set sequentially into
10 partitions, and retraining LLMs with by incrementally including partitions (and the retain set) in the training set of the
retrained LLMs, i.e., using the first 0%, 10%, 20%, . . . , 100% of DF as D G# when retraining the LLMs on DR

⋃
D G# . We
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observed in App. H.3 that WaterDrum satisfies the calibration desiderata under this method of partitioning, and believe
that in general, this would hold in expectation for randomly sampled fixed-size subsets of the forget set.

G.5. Baseline Unlearning Algorithms

In our experiments, we have adopted several popular baseline unlearning algorithms detailed as follows:

• Retrain: Directly retraining the LLM from the base LLM on the retain set. The retrained model usually serves as the
golden standard for other unlearning methods.

• Finetune: Continually training the LLM on the retain set for 1 or several epochs. This method assumes that the LLM
naturally forgets about the forget set as learning progresses on the retain set. In this paper, we finetune for 1 epoch
using a learning rate of .001.

• KL Minimization (KL) (Maini et al., 2024): Concurrently maximizing the prediction loss on the forget set and
minimizing the Kullback-Leibler divergence of predictions on the retain set to the original model. We ran KL
minimization for 5 unlearning epochs.

• SCRUB (Kurmanji et al., 2024): Maximizing the Kullback-Leibler divergence of predictions on the forget set to
the original model, while minimizing the prediction loss and divergence on the retain set. The optimization process
alternates between maximization steps and minimization steps. In our experiments, we ran 3 maximization and
minimization epochs.

• Direct Preference Optimization (DPO) (Maini et al., 2024): For question-answering tasks, encouraging responses
such as “I don’t know” on the forget set, while simultaneously minimizing the prediction loss on the retain set. Note
that this method is not compatible with completion tasks, and is omitted for the WaterDrum-Ax dataset. We ran 5
unlearning epochs for DPO.

• Task Vector (TV) (Ilharco et al., 2023): Subtracting the parameters of the model retrained only on the forget set from
the original model. In the experiments, we finetune the model on the forget set for 5 epochs.

Note that we excluded Gradient Ascent (Maini et al., 2024) from the unlearning algorithms considered, as they have been
shown to perform poorly in other works, where the LLM output becomes gibberish or random words (Maini et al., 2024).

H. Experiments
H.1. Practicality desiderata (D3, D4)

We first evaluate WaterDrum and the baseline metrics on the effectiveness and practicality desiderata, D1-D4, as we have
outlined in Sec. 2. To do so, we establish experimental settings that mimic the real-life scenarios described in the practicality
desiderata D3 and D4. Then, under these settings, we evaluate the effectiveness of various metrics based on D1 and D2, by
considering how they evaluate the perfect unlearning algorithm – retraining the model on only the retain set to generate φR,
which is guaranteed to contain no influence from the forget set DF by construction.

Feasibility (D3). All of the baseline metrics (ROUGE-L, Truth Ratio, KnowMem and MIA) typically require retraining a
model φR with just the retain set DR to get reference values M(φR(qF ),F), and hence violate D3(a). In our experiments,
we show how the effectiveness of these metrics gets significantly impacted without access to φR. In contrast, WaterDrum
does not require φR as it naturally has M ′(φR(q′F );F) = 0 since it satisfies W1. In addition, the computation of the MIA
metric requires logit-access, which violates D3(b). However, for evaluation purposes, we grant MIA logit-access in our
experiments.

Robustness to similar data (D4). We establish the settings to assess the robustness of the unlearning metrics to similar
data by injecting a small amount of data Ds ≃ DF into DR, i.e., the retain set is augmented (Ds

R = Ds

⋃
DR) with

some data points that are similar to DF . We consider two such scenarios: (a) Exact duplication. Data points in Ds are
exact copies of those in DF , (Ds = DF ) and (b) Semantic duplication. Data points in Ds are paraphrased version of
DF , (Ds ≃ DF ). In addition, we consider the case where there is (c) no duplication of DF data points in DR, (Ds = ∅).
Additional implementation details are in App. G.3.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

WaterDrum: Watermarking for Data-centric Unlearning Metric

Table 4: AUROC (± across 3 seeds) of metrics for different levels of similarity for the WaterDrum-TOFU dataset and
WaterDrum-Ax dataset. WaterDrum’s AUROC remains near 1.0 even when similar data exists.

WaterDrum-TOFU WaterDrum-Ax
Similarity ROUGE Truth Ratio WaterDrum ROUGE KnowMem WaterDrum

Exact Duplicate 0.510±0.007 0.508±0.008 0.926±0.027 0.334±0.005 0.492±0.005 0.957±0.008
Semantic Duplicate 0.798±0.001 0.472±0.054 0.954±0.001 0.960±0.002 0.450±0.007 0.963±0.001

No Duplicate 0.908±0.005 0.747±0.011 0.928±0.026 0.974±0.001 0.491±0.008 0.965±0.002

H.2. Separability desideratum (D1)

To assess whether the unlearning metrics satisfy D1, note that the left-hand side expression P[M(φR(q(dr)), r) >
M(φR(q(df )), f)] in Eq. (1) corresponds to the definition of the AUROC of the metric M in distinguishing between R and
F (Fawcett, 2006). Hence, we can compute the AUROC of various unlearning metrics with the retrained model φR, and
assess if the AUROC ≈ 1. We exclude MIA from this experiment because it focuses solely on assessing privacy leakage
based on distributional differences between forget and holdout sets, without considering the retain set.

Table 4 shows the AUROC of the metrics on the WaterDrum-TOFU dataset under various duplicate settings. Notably,
WaterDrum is the only metric that consistently achieves AUROC > 0.9 and close to 1, hence satisfying D1. In contrast,
the other metrics’ performance degrades significantly in the duplicate settings, with AUROC dropping to around 0.5, which
means the metrics are no better than random assignment in separating the forget and retain sets. Furthermore, note that
Truth Ratio only achieves an AUROC of about 0.75 even in the ‘no duplicate’ setting, indicating that it does not satisfy D1
under the basic settings.

Empirical results on WaterDrum-Ax (Table 4) show similar trends, with WaterDrum consistently performing well and
KnowMem encountering difficulties in all settings. ROUGE performs poorly under the ‘exact duplicate’ setting where only
5% of the augmented retain set are duplicates of the forget set. While it performs well for the ‘semantic duplicate’ settings
in this experiment, this occurs because the mean ROUGE score between Ds and DF is still low (≈ 0.65) although the mean
semantic similarity score of Ds and DF is high (STS = 0.94). The lower ROUGE score implies that the text has already
been heavily paraphrased such that the ‘semantic duplicate’ setting is effectively closer to the ‘no duplicate’ setting for
ROUGE in this experiment. Milder forms of perturbation for this dataset would likely make its degradation of performance
on D1 more apparent.

H.3. Calibration desideratum (D2)

Next, we assess whether the unlearning metrics meet the calibration desideratum, as defined in Eq. (2). Failing to meet
this desideratum implies that the metrics cannot indicate the extent to which the forget set has been unlearned in a given
model. We evaluate this by first producing LLMs retrained on DR

⋃
D G# with varying size k of the subset D G# included. We

then compute the unlearning metrics for each retrained model and plot calibration curves showing how the metrics vary
with different k. To quantify how well the metrics satisfy Eq. (2), we can compute the R2 value for the best-fit line with
the vertical intercept at 0, since a calibrated metric should be proportional to k/|DF | and have M(φR(qF ),F) = 0 when
no data from the forget set is used for training. R2 values close to 1 imply that the metrics are well calibrated, while large
negative values occur when the metrics produce similar, instead of proportional, values for varying percentages.

Fig. 6 shows the calibration curves for the various unlearning metrics, and Table 5 the corresponding R2 values, under
the various duplicate settings for the WaterDrum-Ax. Note that WaterDrum is the only metric that is calibrated across
all settings, and can represent the percentage of forgotten data remaining in the unlearned model. In fact, the rest of the
unlearning metrics perform poorly across all settings, including the basic ‘no duplicate’ setting — they cannot be used to
tell when DF is perfectly unlearned as M(φR(qF ),F) ̸= 0.

The results demonstrate the strong reliance of the baseline methods on access to the retrained model. These methods fail
to quantify the extent of unlearning, or even indicate the success of unlearning, without knowledge of the reference value
that a perfectly unlearned model (e.g., φR) is expected to have. This reliance is impractical as unlearning algorithms were
designed precisely to approximate retrained models that are infeasible to obtain. Fig. 12 and Table 10 in App. L.2.1 show
similar results for the WaterDrum-TOFU dataset, where all baseline metrics fail to meet the calibration desideratum for
all settings, including the ‘no duplicate’ setting. More results are provided in App. L.1.1.
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Figure 6: Plots of unlearning metrics against the % of DF remaining in the retrained model, under settings with different
levels of data similarity for the WaterDrum-Ax dataset. Note that apart from WaterDrum, none of the other metrics
are calibrated and satisfy D2. With WaterDrum, the results are very close for the three settings with different levels of
similarity. Associated R2 are in Table 5.

H.4. Benchmarking unlearning algorithms

Finally, we provide a basic illustration of how we could use WaterDrum to benchmark unlearning algorithms. A
WaterDrum evaluation plot shows the unlearning algorithms evaluated on two axes: M ′(φ̃(qR),R) on the x-axis and
M ′(φ̃(qF ),F) on the y-axis that measure the retain and forget watermark strength, respectively, on an unlearned model φ̃.
The original model φT , which contains both DF and DR, is at the top right corner, while the retrained model φR, which
only contains DR, is at the bottom right corner. It is expected for the metric evaluated for DR on the retrained LLM φR
to be approximately the same as that of the original LLM φT , as the retain set is not removed in both the original and the
retrained model. In this plot, the closer the algorithms are to the retrained model, the better they are at both unlearning DF
while retaining the influence of DR.

Fig. 7 shows the WaterDrum evaluation plot for several unlearning algorithms (Finetune, KL Minimization (KL) (Maini
et al., 2024), Task Vector (TV) (Ilharco et al., 2023), SCRUB (Kurmanji et al., 2024); details are in App. G.5). Note that
most algorithms are still far from reaching the retrained model performance. The KL and TV algorithms achieve good
unlearning quality but significantly compromise the retain set’s influence and model’s overall utility, while Finetune and
Scrub maintain some retain performance but do not achieve the best unlearning quality. We also performed preliminary
experiments for the cases with multiple parties and duplicate data in App. L.3.

I. Additional experiments
I.1. Quantitative evidence that watermarking with Waterfall does not degrade LLM performance

Our WaterDrum framework lays out desiderata for compatible watermarking methods (App. B), including fidelity (W0).
We chose to use Waterfall (Lau et al., 2024) as their paper already presented extensive empirical results showing that its
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Table 5: R2 of the best fit line (dotted in Fig. 6) for metrics under
different levels of similarity on the WaterDrum-Ax dataset.
WaterDrum is very well linearly calibrated across the settings,
with the highest R2 value.

Similarity ROUGE KnowMem MIA WaterDrum

Exact Duplicate -37.47 -498.1 -1220 0.987
Semantic Duplicate 0.693 -276.5 -90.21 0.991

No Duplicate 0.650 -252.9 -7.553 0.963
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Figure 7: Using WaterDrum, we benchmark
unlearning methods on WaterDrum-Ax; green lines
denote optimal unlearning values.

Table 6: Semantic similarity of qf and qs from the WaterDrum-Ax dataset. For reference, the STS score of texts from the
same category is 0.67.

Similarity of query STS score of query output

Exact Duplicate 0.96
Semantic Duplicate 0.87

watermarking process has minimal degradation on LLM performance (App H.3).

Nonetheless, we have confirmed Waterfall’s fidelity for our experiments by comparing the trained LLM’s performance
when trained on the un/watermarked data using truth ratio (Maini et al., 2024), which computes each LLM’s probability of
generating the correct answer compared to a set of wrong answers perturbed from the correct answer.

Our results show that on the WaterDrum-TOFU dataset, the truth ratio of un/watermarked LLMs are very similar, at
0.5143 and 0.5163, respectively. This shows that watermarking has minimal impact on the LLM’s performance.

I.2. Similarity of output in retrained LLM

Following the setup in App. H.1, under the setting where the retain set (Ds
R = Ds

⋃
DR) contains some data points that are

similar to the forget set (Ds ≃ DF ), we verify that output of the LLM φ̃s trained on the retained set Ds
R are similar for the

duplicate queries φ̃s(qF ) ≃ φ̃s(qs).

We empirically verify the similarity by evaluating the STS scores between the outputs of the forget query qF and the retain
query qs. As shown in Table 6, the mean STS scores are 0.96 and 0.87 for exact and semantic duplicates, respectively. For
comparison, the STS score of query outputs from the same WaterDrum-Ax category (i.e., outputs for queries from the
same arXiv category such as the math.PR subject) only have a mean STS score of 0.67. This shows that the query outputs
from the duplicate queries are very similar, much more so than queries from the same subject.

I.3. Similar metrics score across data

We verify that data points from Ds and Df with similar semantics will have similar metric scores (M(φR(qs),Ds) ≃
M(φR(qF ),F)). We use our WaterDrum to measure the metric scores on data points from Ds and Df for the
WaterDrum-Ax dataset when unlearning 1 class. Fig. 8 shows a histogram plot of the metric scores for the two different
subsets with similar semantics. This verifies that the distributions of metric scores from the two subsets are similar.

J. Ablations
J.1. Evaluation on full parameter fine-tuning

The majority of the experiments were conducted using LoRA (Hu et al., 2022), following the setting in other LLM unlearning
works (Maini et al., 2024; Shi et al., 2025). To show that WaterDrum is also applicable when used for full parameter
fine-tuning, we conducted experiments for the separability (D1) and calibration (D2) desiderata with varying levels of
similarity for the WaterDrum-Ax dataset.
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Figure 8: Count of data with different watermark strengths measured on Df and Ds (with similar semantics) for the
WaterDrum-Ax dataset when unlearning 1 class. The result shows that metric scores from the two sets have a similar
distribution.

Table 7: AUROC of metrics for different levels of similarity for the WaterDrum-Ax dataset (right). WaterDrum ’s
AUROC remains near 1.0 even when similar data exists.

Similarity ROUGE KnowMem WaterDrum

Exact
Duplicate

Full 0.335 0.497 0.990

LoRA 0.334 0.492 0.957

Semantic
Duplicate

Full 0.965 0.447 0.990

LoRA 0.960 0.450 0.963

No
Duplicate

Full 0.984 0.481 0.991

LoRA 0.974 0.491 0.965

For full parameter fine-tuning, we used a learning rate of 1e-4 and trained for 10 epochs. Note that due to the high
computational cost of full parameter fine-tuning, we only report the results for one seed, while the results for LoRA are
averaged across three different seeds.

Table 7 and Table 8 show that WaterDrum performs better than other metrics, for both LoRA and full parameter fine-tuning.
The LoRA and full-parameter fine-tune results are very similar for WaterDrum across the experiments, showing that
WaterDrum consistently achieves the best performance across different settings.

J.2. Evaluation on other models

We have also evaluated our WaterDrum on Phi-1.55 to verify its adaptability to different LLMs. Figs. 9a and 9b illustrate
the AUROC and calibration for the settings of ‘no duplicate’ and ‘exact duplicate’. The result on Phi-1.5 aligns with our
main experiments using Llama2-7B and meets the proposed desiderata. This validates our WaterDrum’s adaptability to
different LLMs, which guarantees its real application potential.

5https://huggingface.co/microsoft/phi-1_5.
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Table 8: R2 of the best fit line for various metrics under different levels of similarity for the WaterDrum-Ax dataset.
WaterDrum is very well linearly calibrated across the settings, with the highest R2 value.

Similarity ROUGE KnowMem MIA WaterDrum

Exact
Duplicate

Full -5059 -981.5 -4.774 0.984

LoRA -37.47 -498.1 -1220 0.987

Semantic
Duplicate

Full 0.545 -139.2 -35.57 0.989

LoRA 0.693 -276.5 -90.21 0.991

No
Duplicate

Full 0.850 -103.8 -3.937 0.940

LoRA 0.650 -252.9 -7.553 0.963

(a) Plots for separability, where WaterDrum achieves good separability with
high AUROC values.

(b) Plots for calibration, where WaterDrum is well
calibrated with high R2 values.

Figure 9: D1 and D2 of our WaterDrum measured on the Phi-1.5 model for the WaterDrum-Ax dataset under the no
duplicate and exact duplicate settings.

K. Practical considerations for real-world deployment of WaterDrum
K.1. Practical deployment pipeline for WaterDrum for evaluating unlearning of LLMs

A key strength of WaterDrum is its real-world feasibility, especially when dealing with closed-sourced LLM providers,
where other LLM unlearning metrics fail. Unlike other methods, WaterDrum can be easily implemented in practice with
just additional lightweight data preprocessing and no other changes to existing pipelines. Specifically, WaterDrum offers
the following advantages for real-world deployment:

• Data owners can quickly watermark their data before sharing them with the model owners or releasing important data
publicly. This not only facilitates unlearning verification but also allows them to detect whether their data has been
used by model owners without authorization (Lau et al., 2024; Maini et al., 2024).

• No changes are required on the model owners’ end. They can continue training their closed-source LLMs and provide
API access, or even release open-source models.

• Data owners can then detect whether their data has been used for fine-tuning of any LLM based on just LLM output
(even closed-source), submit an unlearning request, and verify whether unlearning has been done via WaterDrum.
Verification of the Waterfall watermark is very efficient (Lau et al., 2024) and can even be run on a CPU (about 3
seconds per 1000 query outputs).

• In comparison, other LLM unlearning metrics face severe limitations that rule out practical deployment, such as
requiring a retrained model (D3), which even a cooperative model owner cannot provide due to computational costs.
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K.2. Practical real-life use case for D2 (Calibration) in WaterDrum

Although it is ideal for unlearning to delete the forget set completely, in practice, partial unlearning of the forget set (as
an outcome of imperfect unlearning) may be inevitable due to the size and complexity of LLMs. This is because a) exact
unlearning involving retraining from scratch is prohibitively expensive and impractical, and b) perfect unlearning on LLMs
is not yet achievable with current approximate unlearning algorithms without significantly harming model performance (e.g.,
on the retain set).

In App. H.4, we demonstrate this by testing various SOTA unlearning methods: all methods only achieve imperfect
unlearning except when the LLM is destroyed (i.e., has no presence of both the forget and retain sets), or when a new LLM
is retrained from scratch. With D2 (Calibration), the characterization of imperfect unlearning becomes possible, and this is
important across various stages of the unlearning pipeline in practical, real-life scenarios:

1. Deployment: In practice, model owners may only be able to achieve partial unlearning of the forget set while preserving
the utility of their LLM offering to customers. A calibrated continuous score unlearning metric satisfying D2 such
as ours can serve as an objective proxy for negotiations with data owners on the needed extent of unlearning and the
corresponding amount of compensation required. The negotiated targeted extent of unlearning can then be used as an
objective to guide the actual implementation of unlearning, e.g. the selection of the most suitable unlearning algorithm
which may each achieve different forget-retain performance trade-offs (e.g., from a reference plot like Fig. 7, choosing
the method that achieves the highest retain score for a fixed forget threshold), or suitable hyperparameters for a given
method.

2. Evaluation and development: For research and development, a calibrated metric satisfying D2 enables evaluation
beyond binary success/failure and instead quantifies partial success in unlearning the forget set. This supports a more
realistic and granular assessment of theoretical unlearning algorithms.

In summary, perfect unlearning may not be achievable in practice due to the limitations of current LLM unlearning
algorithms, which necessitate a continuous evaluation that goes beyond a binary decision. D2 (Calibration) provides an
interpretable way to measure imperfect unlearning, enabling practical evaluation and considerations of trade-offs between
LLM performance and compensations. Until perfect unlearning is feasible, a continuous and calibrated metric satisfying D2
will be valuable.

K.3. Practical real-life scenarios of data owners with similar data

As discussed in Sec. 2, it is common for the data owners to have semantically similar instances, such as news articles on the
same event. Here, we identify a real-life scenario where two news agencies, Reuters and The Straits Times (i.e., the data
owners), produce semantically similar news articles, as shown in Fig. 10a. These two articles from the two different data
owners exhibit a high semantic similarity with an STS score of 0.90. In this case, one agency may request unlearning, which
matches our problem setting in D4. As another example in the WaterDrum-Ax dataset, Fig. 10b shows that the two arXiv
paper abstracts from the same Materials Science category but different authors (i.e., the data owners) are also semantically
similar with an STS score of 0.88. In this example, one group of authors may request unlearning, which also matches our
problem setting in D4.

L. Additional Results on Unlearning Evaluation
Here we provide additional evaluation results to the main experiments on both WaterDrum-Ax and WaterDrum-TOFU
datasets.

L.1. Evaluation on WaterDrum-Ax

L.1.1. ROBUSTNESS TO SIMILAR DATA

Relaxation of Feasibility. In App. H.3, we have demonstrated the calibration of the metrics without access to φR. As
illustrated in Fig. 6, the reference metric value varies depending on the similarity between the forget and retain sets. In
actual real-world unlearning scenarios, the forget set cannot be known in advance. Only after an unlearning request is made
can the reference value be determined with expensive retraining on the actual retain set. This defeats the purpose of using
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(a) The news agencies Reuters and The Straits Times both produce news articles reporting on the same soccer match and hence have a
high semantic similarity with STS = 0.90.

(b) In the WaterDrum-Ax dataset, the two arXiv paper abstracts from the same Materials Science category but different authors both
present similar content and hence have a high semantic similarity with STS = 0.88.

Figure 10: Examples of high semantic similarity (STS) across different domains.
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Figure 11: Plots of unlearning metrics against the % of DF remaining in the retrained model, scaled by referencing the
original and retrained model with different levels of data similarity for the WaterDrum-Ax dataset.

Table 9: R2 of the best fit line (dotted in Fig. 11 and scaled by referencing the original and retrained model) for various
metrics under different levels of similarity for the WaterDrum-Ax dataset.

Similarity ROUGE KnowMem MIA WaterDrum

Exact Duplicate 0.923 -0.331 0.273 0.994
Semantic Duplicate 0.997 0.101 -0.011 0.995

No Duplicate 0.998 0.006 0.990 0.957

cheaper (but approximate) unlearning algorithms that avoid retraining. Despite this limitation, here we explore relaxing the
restriction by allowing metrics to use φR as a reference.

By referencing the fully retrained model as the baseline 0 point for M(φR(qF ),F) (as described in App. F.1), we visualize
the scaled calibration of the baseline metrics in Figure 11, and present the R2 values in Table 9. The results imply that,
under the relaxed condition by referencing φR, the calibration of the baseline metrics generally improves. Notably, ROUGE
achieves a good calibration across various similarity levels, though it underperforms in the ‘exact duplicate’ settings. In
contrast, our WaterDrum consistently demonstrates strong calibration, with robust R2 values across all settings. Despite
these, it is important to emphasize that the retrained models are not available in practical scenarios, and their availability will
eliminate the need to perform unlearning in the first place.

L.2. Evaluations on WaterDrum-TOFU

As a supplement to the main experiments, here we present additional results on the WaterDrum-TOFU dataset. As
described in App. H.1, we consider the exact duplication, semantic duplication, and no duplication settings, and finetune the
models on the WaterDrum-TOFU dataset. While App. H.2 discusses separability results with similar data, we report here
the evaluation of calibration (D2) with similar data as follows:
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Figure 12: Plots of unlearning metrics against the % of DF remaining in the retrained model, under settings with different
levels of data similarity for the WaterDrum-TOFU dataset.

Table 10: R2 of the best fit line for various metrics under different levels of similarity for the WaterDrum-TOFU dataset.

Similarity ROUGE Truth Ratio MIA WaterDrum

Exact Duplicate -30.085 -6444.874 -3.480 0.889
Semantic Duplicate -24.386 -1416.284 -41.15 0.947

No Duplicate -2.744 -11.741 -0.838 0.923

L.2.1. CALIBRATION WITH SIMILAR DATA

Figure 12 visualizes the calibration on WaterDrum-TOFU and Table 10 displays the R2 values. Similar to App. H.3, our
WaterDrum outperforms the baseline metrics by ensuring M(φR(qF ),F) = 0 and maintaining strong calibration, with
high R2 values without referencing retrained models across all settings.

L.3. Benchmarking unlearning algorithms for more classes and duplicate data

In addition to the results in App. H.4, here we consider the WaterDrum-Ax with 1, 3, and 5 data owners (out of 20 total
data owners) requesting their data to be unlearned from the LLM (Fig. 14). Additionally, we also consider duplicate data in
both forget and retain sets (Fig. 15). We can observe that, except for Finetune, all the other unlearning algorithms perform
poorly. However, note that Finetune requires a significant amount of computation resources as the retain set is likely to be
significantly larger than the forget set, and almost similar in size to the full dataset. Typically, LLM training only involves
very few epochs (Touvron et al., 2023). The computational cost of finetuning a few epochs on the retain set can be almost as
expensive as retraining.

We noticed that the retain watermark strength for the retraining model when considering unlearning of 5 classes increases
slightly beyond 1.0. We hypothesize that this is due to the large proportion of forget set out of the whole dataset when
removing 5 out of the total 20 classes (25% of the training data). The high proportion means that the retain set DR used for
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Figure 13: Plots of unlearning metrics against the % of DF remaining in the retrained model, scaled by referencing the
original and retrained model with different levels of data similarity for the WaterDrum-TOFU dataset.

Table 11: R2 of the best fit line (scaled by referencing the original and retrained model) for various metrics under different
levels of similarity for the WaterDrum-TOFU dataset.

Similarity ROUGE Truth Ratio MIA WaterDrum

Exact Duplicate 0.991 -0.586 -0.018 0.997
Semantic Duplicate 0.998 0.854 -0.417 0.996

No Duplicate 0.999 0.995 0.608 0.997

training the retraining model is much smaller than the full dataset DT , which could have resulted in the retraining model
becoming more specialized in the smaller retraining dataset containing the retain set, resulting in a higher retain watermark
strength.

M. Limitations
While our desiderata may be non-exhaustive and watermark strength is just one aspect of unlearning effectiveness, we
believe that our work is the first step towards developing more effective and practical unlearning algorithms and deriving
theoretical results. Future work could conduct a more comprehensive and systematic evaluation of existing LLM unlearning
algorithms and adapt theoretical insights from the watermarking community to analyze LLM unlearning metrics based on
our new connection.

N. Other Questions
1. What is the difference with existing watermarking-based unlearning metric? Existing watermarking-based

unlearning metrics are mostly for image-based classification model, as opposed to our metric for text-based generative
LLMs. See discussion on watermark based metrics in App. A for details.

26



1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

WaterDrum: Watermarking for Data-centric Unlearning Metric

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.00
0.25
0.50
0.75
1.00

1 class

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

3 class

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

5 class

Retain watermark M ′( (q ), ) 

 F
or

ge
t w

at
er

m
ar

k
   

   
M
′ (

(q
),

)

Unlearning performance for WaterDrum-Ax dataset

original retraining finetune KL tv scrub

Figure 14: Benchmark of existing unlearning methods with WaterDrum on the WaterDrum-Ax with no duplication
between retain and forget set (DT = DR

⋃
DF ), for 1, 3, and 5 data owners requesting for their data to be removed.

2. Existing works (Liu et al., 2025; Lynch et al., 2024) have already identified similar limitations about existing
unlearning metrics. What is the novelty of the work? We formally define clear desiderata and propose a
non-retraining based metric that works despite greater similarity between the forget and retain set and the generalization
ability of LLMs. See more discussion in App. A.

3. Why do we only run experiments on TOFU and WaterDrum-Ax instead of other datasets such as WMDP?
TOFU and WaterDrum-Ax cover both LLM question-answering and generation tasks, which are representative of
LLM tasks. WMDP is different from TOFU and WaterDrum-Ax in nature because it is specifically for knowledge
editing and only contains testing data instead of training data. As our work considers a data-centric view of unlearning,
we are concerned with the unlearning of specific data owners’ contribution (with potential similar overlapping data
across data owners), rather than indiscriminately unlearning certain (harmful) knowledge.

4. Can our conclusion be generalized to other datasets or other models? Results on Phi-1.5 (see App. J.2) show that
the conclusions can be generalized to other models as well. The two models considered in our paper are representative
of recent LLMs, different in terms of model architectural details, and span different model scales. These two models
are also the only models considered in (Maini et al., 2024; Wang et al., 2025).

5. Beyond unlearning effectiveness, can our watermark metric be used to measure utility preservation/retention?
As shown in App. H.4, our metric can be used to verify that the metric on the retain set in the unlearned model is
similar to that in the original model. Hence, by verifying the retain watermark, our metric can also quantify the extent
of undesirable removal of the retain set’s influence and evaluate the effects of catastrophic forgetting.

6. Practical significance of unlearning from finetuning data vs pretraining data. In real-life applications, LLM
finetuning is performed to enhance the model in specific downstream tasks, which is more likely to make use of
task-specific datasets. These datasets are more concerned with privacy/safety issues, and are hence more significant for
unlearning than public datasets.

7. What new insights can be gained from the proposed framework? (a) We showed that existing metrics fail on
our necessary desiderata (App. F.1), prompting caution on metrics design. (b) Using WaterDrum to benchmark
LLM unlearning algorithms (App. H.4) shows that they perform poorly on unlearning and retaining performance.
WaterDrum can serve as an optimization criterion for future LLM unlearning algorithms. (c) By emphasizing practical
conditions, WaterDrum encourages future LLM unlearning algorithms to consider realistic constraints.

8. Why do we not consider other desiderata? Our work focuses on the most essential desiderata (effectiveness
desiderata) and more practical/realistic settings. These desiderata are those that we find to be most relevant necessary
criteria for effective unlearning metrics, though they are not meant to be exhaustive nor by themselves sufficient to
guarantee unlearning. We see our work as complementary to other compatible frameworks.
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Figure 15: Benchmark of existing unlearning methods with WaterDrum on the WaterDrum-Ax with duplicate data
(DT = DR

⋃
DF

⋃
DS , where DF and DS are the duplicate data in the forget and retain sets respectively). For the

x-axis, the top figures show WaterDrum scores for the retain set excluding duplicates DR, while the bottom figure shows
WaterDrum scores for only the duplicates within the retain set DS . The y-axis for both figures are the same, showing DF .
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