

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMIZING USER PROFILES VIA CONTEXTUAL BANDITS FOR RETRIEVAL-AUGMENTED LLM PERSONALIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel at general-purpose tasks, but personalizing their responses to individual users remains challenging. Retrieval augmentation offers a lightweight alternative to fine-tuning by conditioning LLMs on user history records, yet existing strategies rely on heuristics (e.g., relevance to the query) that overlook the true contribution of records to personalization. Through a systematic motivation study, we show that (i) relevance does not reliably predict utility, and (ii) utility is non-monotonic across records: the best user profile is not simply the combination of the best individual records, and adding more records can even hurt performance. To address these limitations, we propose PURPLE, a contextual bandit framework that oPtimizes UseR Profiles for Llm pErsonalization. PURPLE operates as a re-ranking layer over candidate records, balancing efficiency with personalization quality. Across nine real-world personalization tasks spanning classification, regression, and short- and long-text generation, PURPLE consistently outperforms strong heuristic and retrieval-augmented baselines, establishing contextual bandit retrieval as a principled and scalable solution for personalized LLMs. Our anonymized code is available at: <https://anonymous.4open.science/r/ICLR-26-PURPLE-A104/>.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable success in various natural language processing tasks, including text generation, question answering, and dialogue systems. As these models are increasingly applied to personalized applications, such as drafting emails on behalf of users, tailoring responses to individuals based on their own preferences has become a crucial challenge. Existing approaches for personalizing LLMs, such as Parameter-Efficient Fine-Tuning (PEFT) (Hu et al., 2022) and Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), generally require modifying model parameters. These approaches incur high computational costs, demand frequent updates, and are impractical for real-time personalization at scale, especially when the LLM is not fully open-sourced or the end user cannot afford model fine-tuning. Moreover, continually fine-tuning models for different individuals would complicate safety evaluation and deployment, since each personalized variant would require separate testing.

In this paper, we focus on a lightweight approach for LLM personalization through retrieval augmentation (Wu et al., 2025), where user profiles are constructed by retrieving and injecting a collection of past user records into the prompt to guide personalized responses. Building on this retrieval-augmented view of personalization, prior work has shown that incorporating user profiles can effectively steer LLM outputs toward individual preferences (Salemi et al., 2024; Jiang et al., 2025). Compared to parameter-updating methods, this approach is attractive because it is lightweight, transparent, and readily deployable, since the users can directly inspect and edit the records that guide generation. However, a central challenge remains: **which user records should be used to form the user profile?** Simply appending the entire user history records not only risks introducing redundancy and noise, but can also overflow the model’s context window, for example, when histories span years of interactions. Conversely, overly aggressive pruning may discard personalization signals. Existing strategies for building user profiles often rely on heuristics, such as selecting user records with the highest *relevance*, i.e., the similarity to the query (Karpukhin et al., 2020). How-

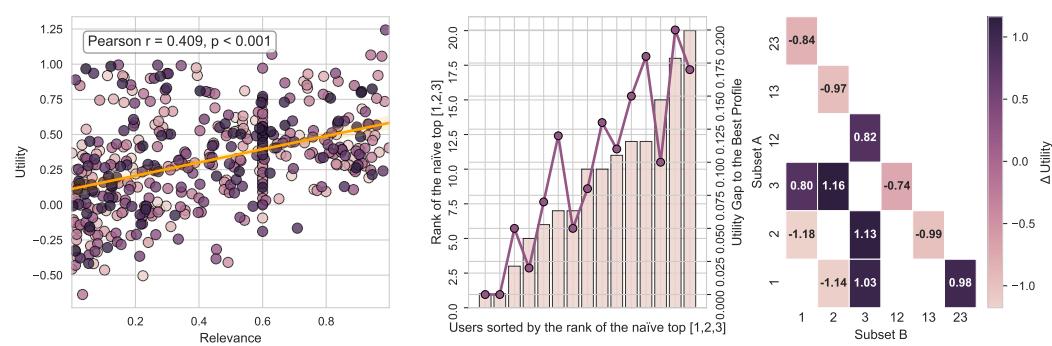


Figure 1: Empirical study of record relevance and personalization utility on *Personalized Product Review Generation* task. (Left) Scatter plot of history records from 15 representative users. Each point is a record, with relevance (semantic similarity to the query) on the x -axis and utility (BLEU improvement over no-history baseline) on the y -axis. While positively correlated overall ($r = 0.41$, $p < 0.001$), high relevance does not reliably imply high utility. (Middle) For each user, we enumerate all profiles of size $k = 3$ from their top-5 records by individual utility and compare them to the naïve greedy top-3 profile. Bars indicate the rank of the greedy profile (lower is better), and the green line shows its utility gap to the optimal profile. Greedy aggregation often yields suboptimal personalization. (Right) Heatmap of Δ utility for combinations of top-3 records, comparing the joint utility of profile unions with the sum of their parts. Negative values reveal diminishing returns when strong records are combined, while positive values highlight synergies among moderate records. Together, the results show that personalization utility is misaligned with relevance and non-monotonic across records, motivating adaptive selection methods. Full details are provided in Appendix A.

ever, relevance alone does not guarantee personalization gains. What truly matters is the *utility* of the chosen records, i.e., how much they improve downstream task performance when injected into the prompt. To investigate how such a heuristic behaves in real personalization tasks, we conduct experiments on *Personalized Product Review Generation*, drawn from the LongLaMP (Kumar et al., 2024) benchmark. This study (see Figure 1 and Appendix A), reveals two key observations:

- **Utility \neq Relevance:** A record that closely matches the query (high relevance) does not always improve generation quality (utility). Although relevance and utility are often positively correlated, relevance alone is an unreliable predictor of personalization benefit.
- **Utility is Non-monotonic:** Combining the records with the highest individual utility does not necessarily yield the best profile. Greedy aggregation can reduce performance when records overlap or conflict, whereas certain less obvious combinations may provide greater gains.

These two observations highlight what an ideal solution for retrieval-augmented LLM personalization must achieve. At its core, the system needs a re-ranking module that can select a subset of user records whose combined utility is maximized, rather than relying on individual relevance heuristics. To succeed, such a module should satisfy two key requirements. First, its training supervision must come directly from downstream generation quality, not from semantic similarity between the query and records, ensuring alignment with the true personalization objective. Second, it must be list-aware, explicitly modeling dependencies among records so that the selected set captures complementary signals rather than merely aggregating the top individual items. Unfortunately, existing methods fall short: heuristic RAG pipelines satisfy neither requirement, while recent LLM-based list-wise rerankers address dependency modeling but still rely on relevance-oriented supervision.

Motivated by these gaps, we propose **PURPLE**, a framework that models user record selection as a contextual bandit problem (Langford & Zhang, 2007). In its formulation, the context consists of both the current query and the user’s past records. The selection policy is guided by a reward function reflecting downstream personalized text generation performance. PURPLE outputs a *propensity score* for each user record, which is passed through a Plackett-Luce ranking model to produce the final selected user records. This formulation enables the model to capture interactions between records and adaptively select those that are most beneficial for personalization. We train PURPLE end-to-end using the policy gradient method (Sutton et al., 1999).

108 Our main contributions are as follows:
 109

- 110 • We demonstrate **using real-world tasks** that relevance and utility are misaligned and that utility is
 111 non-monotonic across records, highlighting fundamental limitations of heuristic-based retrieval.
- 112 • We introduce **PURPLE**, a framework that casts retrieval-augmented LLM personalization as a
 113 contextual bandit problem, adaptively optimizing user profiles beyond static heuristics.
- 114 • We show through **extensive experiments** on nine real-world personalization tasks, covering clas-
 115 sification, regression, short-text generation, and long-text generation, that PURPLE consistently
 116 outperforms strong baselines in both effectiveness and efficiency.

118 **2 RELATED WORK**
 119

121 **LLMs for Personalization.** LLMs demonstrate strong performance across domains (OpenAI,
 122 2024), yet their outputs often diverge from user expectations because pre-training captures gen-
 123 eral rather than individual needs. Reinforcement learning from human feedback (RLHF) (Ouyang
 124 et al., 2022) and parameter-efficient finetuning (PEFT) (e.g., LoRA (Hu et al., 2022)) can align
 125 models with user preferences, but both require model finetuning and are impractical for end users
 126 who lack access or resources. A complementary direction personalizes LLMs through user pro-
 127 files (Salemi et al., 2024), built from prior user interactions or external signals. Incorporating user
 128 profiles into the prompt has shown benefits across multiple tasks requiring personalization, includ-
 129 ing text summarization (Zhang et al., 2024), question answering (Wu et al., 2024), content gener-
 130 ation (Shen et al., 2024), and personalized chatbot interaction (Jiang et al., 2025). Yet it remains
 131 unclear which user history records in a profile truly drive performance improvements, particularly
 132 in retrieval-augmented generation (RAG), where performance hinges on selecting semantically rel-
 133 evant context. Moreover, little analysis has been conducted on how to best select and compose user
 134 records into profiles with high personalization utility. Our work addresses this gap by studying how
 135 user profiles shape personalization in retrieval-augmented LLMs, and by proposing strategies for
 136 selecting user records to maximize downstream performance.

137 **Retrieval-Augmented Language Models.** Retrieval-augmented language models (RALMs) en-
 138 hance parametric LMs with external memory to improve factuality and coverage. Early work such as
 139 REALM (Guu et al., 2020) and RAG (Lewis et al., 2020) jointly trained the retriever and LM, while
 140 Re2G (Glass et al., 2022) further incorporated a reranking module into this end-to-end pipeline. To
 141 reduce training costs, subsequent methods froze the LM and applied retrieval in-context. For ex-
 142 ample, In-Context RALM (Ram et al., 2023) leveraged LLMs for reranking, while REPLUG (Shi
 143 et al., 2024) distilled retrievers from LLMs. More recently, instruction-tuned variants such as Self-
 144 RAG (Asai et al., 2024) and RankRAG (Yu et al., 2024) jointly model retrieval and generation, but
 145 their reliance on large-scale finetuning renders them impractical for personalization.

146 The most relevant to our work are In-Context RALM and REPLUG, yet both incorporate only one
 147 retrieved record at a time, a limitation our method directly addresses. Specifically, REPLUG com-
 148 bines multiple records by weighting generation outputs with retrieval probabilities, while In-Context
 149 RALM periodically triggers retrieval during decoding at fixed steps and replaces previously used
 150 records. These designs arise because jointly reasoning over multiple records leads to a combina-
 151 torial explosion in the number of possible profiles. In contrast, our approach is explicitly designed
 152 to overcome this limitation by modeling cross-record dependencies and directly optimizing over
 153 multi-record profiles without resorting to such approximations.

154 **LLMs for Reranking.** Reranking methods are commonly categorized as pointwise, pairwise, or
 155 listwise. Pointwise models such as MonoBERT (Nogueira et al., 2019) and MonoT5 (Nogueira
 156 et al., 2020) score each query-document pair independently, while pairwise models such as
 157 DuoT5 (Pradeep et al., 2021) compare candidates in pairs. In contrast, listwise approaches jointly
 158 model the full candidate set and have recently been advanced by LLMs through prompt-only rank-
 159 ing (RankGPT (Sun et al., 2023)), distillation into smaller models (e.g., RankVicuna, RankZephyr,
 160 Lit5Distill, FIRST (Pradeep et al., 2023a;b; Tambe et al., 2023; Gangi Reddy et al., 2024)), and
 161 inference-time relevance extraction (ICR (Chen et al., 2025)). However, these methods conflate rel-
 162 evance with utility, which is insufficient for personalization. In this work, we instead train rerankers
 163 using downstream generation quality as feedback, prioritizing utility over semantic similarity.

162

3 METHODOLOGY

163

164 We formulate retrieval-augmented LLM personalization as a contextual bandit problem (Langford
165 & Zhang, 2007), where the goal is to learn a policy that selects informative user records given the
166 context. Unlike classic multi-armed bandits, the contextual bandit framework incorporates auxiliary
167 information (e.g., the current query and user history) before making a selection. This formulation
168 enables direct optimization of retrieval strategies through policy gradient reinforcement learning,
169 aligning the selection of user records with downstream personalization objectives.
170

171

3.1 PROBLEM FORMULATION

172

173 We consider a dataset $\mathcal{D} = \{(\mathcal{H}^u, x^u, y^u)\}_{u=1}^{|\mathcal{D}|}$, where each example consists of a user's collection
174 of history records \mathcal{H}^u , a query x^u to which the system is asked to provide an answer, and a ground-
175 truth personalized response y^u . Personalization is achieved by retrieving informative records from
176 \mathcal{H}^u and supplying them as context to a frozen LLM, which then generates the final response. In practice,
177 we apply PURPLE as a re-ranking module on top of a candidate pool selected by lightweight
178 heuristics, ensuring low-latency inference compatible with large-scale systems. In the following
179 development, we focus on a single user and omit the superscript index for brevity.
180

180 Let $\mathcal{H} = \{h_1, \dots, h_N\}$ denote the set of N history records for a user, where each record $h_i =$
181 (x_i, y_i) is an input–output pair (e.g., a query and its answer from the user). Given a new query x ,
182 our goal is to construct a user profile from \mathcal{H} to condition the LLM for generating a personalized
183 response. Formally, a profile is an ordered tuple $\mathcal{P} = \langle p_1, \dots, p_K \rangle \in \text{Perm}_K(\mathcal{H})$, which is a K -
184 permutation of \mathcal{H} . We stress that the profile is order-sensitive: different permutations of the same K
185 records correspond to distinct profiles and thus provide different inputs to the downstream LLM.
186

186 We formulate the selection of \mathcal{P} as a *contextual bandit problem*, where the context is given by the
187 user's history \mathcal{H} and the query x , and the action corresponds to selecting K records from \mathcal{H} to
188 construct a profile. Formally, this formulation consists of the following key components:
189

190

191 - **Context:** $\mathcal{C} = (\mathcal{H}, x)$, where \mathcal{H} is the user's collection of history records and x is the query.
192 This representation captures both past user preferences and the immediate intent.
193 - **Actions:** $\mathcal{P} = \langle p_1, \dots, p_K \rangle \in \text{Perm}_K(\mathcal{H})$, which corresponds to selecting K distinct
194 records from \mathcal{H} in a particular order. The action thus determines not only which records to
195 use but also how they are arranged. The size of the action space is $N!/(N - K)!$.
196 - **Reward:** $R(\text{LLM}(\mathcal{P}, x), y)$, a function that measures the quality of the LLM-generated
197 response $\text{LLM}(\mathcal{P}, x)$ relative to the ground-truth personalized response y .
198

199 We model the policy for selecting user records with a neural distribution $\pi_{\theta}(\cdot | \mathcal{C})$, parameterized by
200 θ , which assigns probabilities to candidate user profiles given the context \mathcal{C} . The objective is to learn
201 parameters θ such that the policy assigns higher probabilities to more informative profiles, which
202 ultimately enhance personalized text generation. To this end, we maximize the expected reward over
203 sampled user profiles, optimizing the following objective on a dataset \mathcal{D} spanning multiple users,
204 each associated with a set of history records, a query, and the corresponding ground-truth answer:
205

206
$$\mathcal{J}(\theta) = \mathbb{E}_{(\mathcal{H}, x, y) \sim \mathcal{D}, \mathcal{P} \sim \pi_{\theta}(\cdot | \mathcal{C})} [R(\text{LLM}(\mathcal{P}, x), y)]. \quad (1)$$
207

208 It is challenging to directly optimize Equation 1 since the reward is not differentiable. To address
209 this, we employ the likelihood ratio gradient estimator from reinforcement learning and stochastic
210 optimization (Williams, 1992; Sutton et al., 1999), which allows us to compute the gradient as:
211

212
$$\nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{(\mathcal{H}, x, y) \sim \mathcal{D}, \mathcal{P} \sim \pi_{\theta}(\cdot | \mathcal{C})} [\nabla_{\theta} \log \pi_{\theta}(\mathcal{P} | \mathcal{C}) R(\text{LLM}(\mathcal{P}, x), y)]. \quad (2)$$
213

214 Since it is intractable to enumerate all profiles $\mathcal{P} \in \text{Perm}_K(\mathcal{H})$ during the optimization process,
215 we estimate Equation 2 by randomly sampling $M = 32$ profiles. To stabilize training and reduce
216 variance in gradient estimation, we apply z-score normalization over the rewards of these 32 profiles
217 sampled for each example. The detailed gradient estimation scheme is provided in Equation 2 in
218 Appendix B.
219

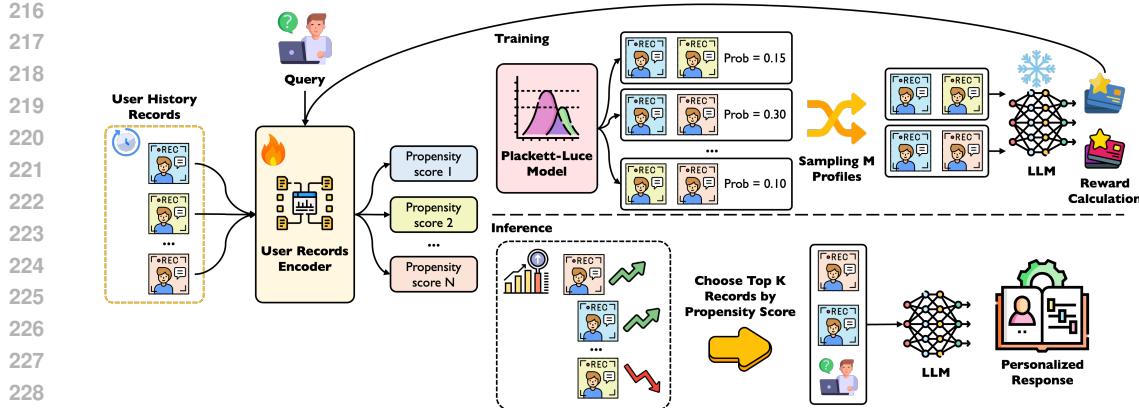


Figure 2: Workflow of the proposed PURPLE framework. User records encoder takes a user query and a list of user history records as input, outputting the propensity scores of all records. During **training**, a Plackett-Luce model is employed to convert the propensity scores to a probability distribution over all possible profiles, followed by sampling M profiles for gradient estimation. During **inference**, records with top K propensity scores are provided to the LLM along with the user query to generate a personalized response.

3.2 MODEL AND FUNCTION DESIGN

Design of $\pi_{\theta}(\cdot \mid \mathcal{C})$ Since different permutations of the selected records may lead to different final responses, we adopt the Plackett-Luce (PL) model, which assigns probabilities to profiles based on the scores of individual user records. Therefore, $\pi_{\theta}(\cdot \mid \mathcal{C})$ defines a distribution over all $(N)_K = N!/(N-K)!$ permutations of length K drawn from the N history records. The probability assigned to a specific profile \mathcal{P} is given by:

$$\pi_{\theta}(\mathcal{P} \mid \mathcal{C}) = \prod_{k=1}^K \frac{f_{\theta}(p_k; \mathcal{C})}{S - \sum_{j=1}^{k-1} f_{\theta}(p_j; \mathcal{C})}, \quad (3)$$

where $S = \sum_{i=1}^N f_{\theta}(h_i; \mathcal{C})$, and $f_{\theta}(\cdot)$ is the user record encoder that outputs a propensity score in $[0, 1]$ for each record, indicating the model's tendency to include that record in the user profile. During training, profiles are generated by sampling K records without replacement based on Equation 3. At inference time, the top- K records ranked by propensity scores are selected to construct the user profile. Because our user record encoder is order-aware and rewards are assigned to ordered sets, the learned propensity score can be interpreted as each record's contribution to the selected set. We further show in Sec. 5.3 that this ordering achieves higher final utility compared with other baselines.

Design of f_{θ} For the record encoder f_{θ} , we aim to capture the interdependencies among user records. A key design consideration is the trade-off between modeling dependencies at the token level versus the sentence level. While the former could, in principle, capture finer-grained interactions, it would quickly exceed the encoder's context length. To address this, we adopt a late interaction strategy (Khattab & Zaharia, 2020), where we first obtain sentence-level embeddings with a pre-trained encoder, and then apply a Transformer encoder to model dependencies across records. Figure 2 illustrates the overall workflow of our method. Within the user record encoder, we utilize a pre-trained Contriever (Izacard et al., 2022) to obtain token embeddings for both the query and the records. Each record first cross-attends to the query at the token level, producing query-fused record embeddings that incorporate query information. A subsequent pooling operation is then applied to the updated record token embeddings to produce fixed-size sentence-level embeddings. Embeddings are then processed by a Transformer encoder to model cross-record dependencies. We omit positional encodings to avoid ordering bias among records.

Design of Reward Function In this work, we propose an LLM-driven reward, where the policy is trained to maximize the log-likelihood that the LLM assigns to the target sequence. Formally, given

270
 271 Table 1: Results of PURPLE and baselines on six datasets from the LaMP benchmark (Salemi et al.,
 272 2024). Out-of-memory results are indicated by “–”. The best and second-best result in each column
 273 is highlighted in **bold** and underlined.

Task	Citation	Movie	Rating	News	Scholar	Tweet
Metric	Acc. / F1	Acc. / F1	MAE / RMSE	RG1 / RGL / MT	RG1 / RGL / MT	RG1 / RGL / MT
<i>With Phi-4-Mini-Instruct (3.84B)</i>						
BM25	63.3 / 62.9	32.7 / 27.8	0.444 / 0.860	14.2 / 12.6 / 11.8	<u>39.8</u> / 33.2 / <u>42.3</u>	38.3 / 33.5 / 35.2
Contriever	65.0 / 64.7	35.5 / 30.8	<u>0.409</u> / <u>0.792</u>	14.6 / 13.1 / <u>12.3</u>	39.7 / <u>33.4</u> / 41.9	38.5 / 33.8 / 35.8
IC-RALM-Llama-3-8B-Instruct	62.2 / 62.1	33.5 / 28.8	0.460 / 0.836	13.4 / 11.8 / 11.0	37.5 / 30.8 / 40.6	38.3 / 33.5 / 35.4
REPLUG-LSR	51.8 / 46.3	<u>36.8</u> / <u>32.6</u>	0.498 / 0.913	14.1 / 12.7 / 11.5	14.1 / 12.7 / 11.5	42.3 / 37.3 / 38.9
RankGPT-Llama-3-8B-Instruct	64.9 / 64.5	33.1 / 27.5	0.444 / 0.852	14.3 / 12.8 / 12.0	39.7 / 33.3 / 42.0	38.2 / 33.5 / 35.3
RankGPT-GPT5-nano	65.9 / <u>65.6</u>	35.5 / 31.4	0.444 / 0.865	14.6 / 13.0 / 12.1	<u>39.8</u> / 33.4 / <u>42.3</u>	38.5 / 33.7 / 35.5
ICR-Llama-3-8B-Instruct	65.8 / <u>65.6</u>	33.2 / 28.5	0.420 / 0.810	<u>15.0</u> / <u>13.4</u> / <u>12.5</u>	39.6 / 33.0 / 42.0	38.8 / 33.9 / 35.7
PURPLE (Ours)	66.2 / 65.8	38.2 / 33.6	0.405 / 0.788	15.2 / 13.5 / 12.5	40.0 / 33.5 / 42.4	<u>39.1</u> / <u>34.0</u> / <u>35.9</u>
<i>With Llama-3-8B-Instruct (8.03B)</i>						
BM25	56.1 / 55.8	45.7 / 37.7	0.345 / 0.689	16.3 / 14.6 / 14.3	41.0 / 35.1 / 40.8	31.2 / 26.4 / 27.3
Contriever	58.7 / <u>58.6</u>	46.8 / <u>38.8</u>	0.320 / 0.641	<u>17.2</u> / <u>15.5</u> / <u>15.1</u>	41.2 / 35.5 / 40.5	<u>31.9</u> / <u>26.9</u> / <u>28.3</u>
IC-RALM-Llama-3-8B-Instruct	59.4 / 57.0	37.0 / 29.4	0.366 / 0.680	13.8 / 12.2 / 12.0	36.1 / 30.1 / 39.1	30.1 / 25.3 / 26.2
REPLUG-LSR	54.2 / 45.0	40.3 / 30.4	<u>0.318</u> / <u>0.638</u>	14.7 / 13.2 / 11.7	42.6 / 37.3 / <u>40.9</u>	30.7 / 26.3 / 26.2
RankGPT-Llama-3-8B-Instruct	56.7 / 56.3	46.1 / 37.7	0.330 / 0.649	16.7 / 15.1 / 14.4	41.1 / 35.5 / 40.7	31.2 / 26.4 / 27.5
RankGPT-GPT5-nano	<u>59.5</u> / 58.0	45.1 / 36.2	0.321 / <u>0.638</u>	17.1 / 15.4 / 15.0	41.0 / 35.3 / 40.5	31.5 / 26.5 / 27.8
ICR-Llama-3-8B-Instruct	58.7 / 57.8	47.5 / 38.4	0.326 / 0.662	17.1 / 15.4 / 14.9	41.5 / 35.8 / 41.1	31.4 / 26.5 / 27.8
PURPLE (Ours)	60.2 / 59.8	48.8 / 41.0	0.316 / 0.637	17.7 / 15.9 / 15.4	42.0 / 36.7 / 40.8	32.6 / 27.5 / 28.8
<i>With Llama-3-70B-Instruct (70.6B)</i>						
BM25	70.9 / 70.4	54.0 / 46.7	0.254 / 0.554	17.7 / 16.1 / 14.5	43.1 / 37.7 / 39.9	36.1 / 30.7 / 32.8
Contriever	70.2 / 69.9	56.4 / 49.1	<u>0.240</u> / 0.530	18.5 / 16.9 / 15.5	44.2 / <u>38.8</u> / <u>41.1</u>	36.5 / 31.4 / <u>33.3</u>
IC-RALM-Llama-3-8B-Instruct	66.5 / 66.4	49.3 / 41.9	0.260 / 0.553	14.8 / 13.3 / 12.2	39.7 / 34.1 / 38.6	32.0 / 27.4 / 28.8
REPLUG-LSR	66.2 / 65.9	51.7 / 43.9	– / –	15.2 / 13.8 / 12.1	0.0 / 0.0 / 0.0	32.2 / 27.8 / 27.8
RankGPT-Llama-3-8B-Instruct	69.5 / 68.9	<u>56.8</u> / <u>49.3</u>	0.251 / 0.555	17.7 / 16.1 / 14.9	44.0 / 38.5 / 41.0	35.8 / 30.6 / 32.3
RankGPT-GPT5-nano	73.8 / 73.5	55.3 / 48.2	<u>0.240</u> / <u>0.523</u>	18.7 / <u>17.0</u> / 15.8	44.6 / <u>38.8</u> / 41.5	36.6 / 31.3 / 33.2
ICR-Llama-3-8B-Instruct	71.4 / 70.8	56.5 / 48.9	<u>0.240</u> / 0.536	18.3 / 16.7 / 15.1	<u>44.5</u> / 38.9 / 41.5	36.1 / 30.8 / 33.0
PURPLE (Ours)	<u>72.8</u> / <u>72.5</u>	57.1 / 50.4	0.235 / 0.514	18.8 / 17.1 / <u>15.7</u>	44.4 / <u>38.8</u> / 41.0	37.3 / 32.1 / 34.0

297 a user profile \mathcal{P} , a query x , and a ground-truth personalized response y , we define the reward as:

$$R(\text{LLM}(\mathcal{P}, x), y) = \log p_\phi(y \mid \mathcal{P}, x) = \sum_{j=1}^{|y|} \log p_\phi(y_j \mid \mathcal{P}, x, y_{<j}), \quad (4)$$

301 where ϕ are the parameters of the LLM and $p_\phi(\cdot)$ denotes its next-token distribution. Using the
 302 log-likelihood of ground-truth sequences as the reward provides dense feedback signals, in contrast
 303 to downstream metrics such as accuracy, mean squared error, or ROUGE-1 (Liu et al., 2025). More-
 304 over, we show in Appendix C that this objective is equivalent to maximizing the evidence lower
 305 bound (ELBO) of the marginalization-based RAG approach (Lewis et al., 2020), which, however,
 306 becomes intractable in our setting due to the combinatorial explosion. In the next section, we empir-
 307 ically demonstrate that this log-likelihood-based reward is robust across diverse downstream tasks.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION

313 We evaluate the performance of PURPLE using Phi-4-Mini-Instruct (Microsoft, 2025) and
 314 Llama-3-8B-Instruct (Team, 2024) as the frozen LLM for response generation, and further
 315 scale up to Llama-3-70B-Instruct (Team, 2024). Our experiments span a wide range of per-
 316 sonalization settings, including personalized classification, regression, and both short- and long-text
 317 generation from the LaMP (Salemi et al., 2024) and LongLaMP (Kumar et al., 2024) benchmarks.
 318 We follow the prompt templates of Salemi et al. (2024) and Kumar et al. (2024) to incorporate user
 319 profiles into the original queries.

320 Specifically, we evaluate PURPLE on **nine personalization tasks**: two classification tasks — *Per-*
 321 *sonalized Citation Identification* (Citation) and *Personalized Movie Tagging* (Movie), evaluated with
 322 Accuracy and F1; one regression task — *Personalized Product Rating* (Rating), evaluated with MAE
 323 and RMSE; and six generation tasks, evaluated with ROUGE-1 (RG1), ROUGE-L (RGL) (Lin,
 324 2004), and METEOR (MT) (Banerjee & Lavie, 2005). The generation tasks are further divided into

short-text generation — *Personalized News Headline Generation* (News), *Personalized Scholarly Title Generation* (Scholar), and *Personalized Tweet Paraphrasing* (Tweet) — and long-text generation — *Personalized Abstract Generation* (Abstract), *Personalized Topic Generation* (Topic), and *Personalized Product Review Generation* (Review). In all experiments, we first use Contriever (Izacard et al., 2022) to retrieve the top 20 records as the user history \mathcal{H} , and then select 5 of them with different methods to construct the user profile \mathcal{P} .

4.2 BASELINE METHODS

We focus on the setting where the LLM is kept frozen and no ground-truth profile is available for training the reranker. Therefore, we compare with three categories of prior methods that, likewise, neither fine-tune the LLM nor rely on supervision from ground-truth retrieval results.

The baselines we compare with include (i) **Zero-Shot Rerankers** that apply pre-trained LLMs directly without further fine-tuning. We compare with ICR Chen et al. (2025) and RankGPT Sun et al. (2023). For both methods, we adopt Llama-3-8B-Instruct as the reranker LLM. We also report the performance of RankGPT on GPT-5 nano to reflect methods that distill knowledge from the ranking results of state-of-the-art proprietary LLMs (Pradeep et al., 2023a;b; Tamber et al., 2023; Gangi Reddy et al., 2024). (ii) **In-Context Retrieval-Augmented Language Models** that do not fine-tune the LLM. These include REPLUG-LSR Shi et al. (2024) and In-Context RALM Ram et al. (2023). Both methods consider only one record at a time when generating a response. They incorporate multiple records from the user profile either through marginalization (REPLUG-LSR) or through context switching, where reranking is performed multiple times during decoding to swap in new records (In-Context RALM). Additionally, we include (iii) **Efficient Dense and Sparse Retrievers**, applied directly as rerankers. Specifically, we use the dense retriever Contriever Izacard et al. (2022) and the sparse retriever BM25 Robertson & Zaragoza (2009). These methods represent the efficiency-oriented side of the efficiency–performance trade-off. Due to the space limit, we only briefly describe the baseline methods in the main paper. For detailed illustrations of these baselines, please refer to Appendix D.1.

5 EXPERIMENT RESULTS

5.1 OVERALL PERFORMANCE COMPARISON

Table 1 presents the results of PURPLE and baseline methods on the LaMP benchmark, while Table 2 contains the results on the LongLaMP benchmark. The main findings are as follows:

PURPLE consistently outperforms strong baselines across LLM scales Across all tasks and LLMs of varying sizes, PURPLE achieves consistent improvements over existing methods. Compared with Contriever, which is of comparable model size, our learned propensity scores provide more effective ranking signals than raw relevance. Compared with zero-shot rerankers, namely RankGPT and ICR, which use much larger backbone LLMs and incur higher inference cost, PURPLE achieves stronger personalization with a much smaller model, since training with log-probability rewards allows us to better capture the utility of profiles formed by multiple records. Compared with in-context RALMs, namely REPLUG and In-Context RALM, which provide user records one at a time to the LLM and combine multiple records post hoc, our single-stage modeling more effectively captures personalized signals, highlighting the advantage of treating user profiles holistically.

PURPLE outperforms baselines with high computational throughput. Figure 3 shows on a representative LaMP dataset that PURPLE outperforms existing methods while be-

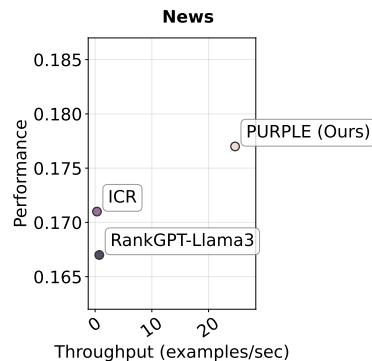


Figure 3: Performance–throughput graph on the News dataset. PURPLE is faster than LLM-based rerankers while achieving better performance.

378 ing more efficient. We can observe that PURPLE maintains higher performance than ICR and
 379 RankGPT-Llama3 while achieving high computational throughput.
 380

381 **PURPLE is effective across task types, including regression.** Although our reward is based on
 382 the log-probability that the LLM assigns to the ground-truth response, it does not directly reflect
 383 numerical distances between regression targets, as shown in Table 2. PURPLE still achieves strong
 384 gains on regression tasks. This demonstrates that log probability provides a principled and broadly
 385 applicable reward signal across diverse task formats.
 386

388 Table 2: Results of PURPLE and baselines on three datasets from the LongLaMP benchmark (Ku-
 389 mar et al., 2024). The best and second-best result in each column is highlighted in **bold** and
 390 underlined.

Task	Abstract	Topic	Review
Metric	R1 / RL / M	R1 / RL / M	R1 / RL / M
<i>With Phi-4-Mini-Instruct (3.84B)</i>			
BM25	38.8 / 22.2 / 26.3	24.7 / <u>12.4</u> / <u>17.3</u>	27.5 / 13.8 / 16.7
Contriever	38.6 / 21.7 / 26.0	23.5 / 12.1 / 16.3	27.6 / 13.8 / 16.8
IC-RALM-Llama-3-8B-Instruct	37.2 / 21.1 / 25.0	23.0 / 11.5 / 16.1	26.7 / 13.3 / 16.0
REPLUG-LSR	36.3 / 21.5 / 23.5	16.8 / 9.3 / 10.6	24.4 / 12.6 / 14.5
RankGPT-Llama-3-8B-Instruct	38.8 / 22.1 / 26.3	24.5 / 12.3 / 17.2	27.1 / 13.6 / 16.4
RankGPT-GPT5-nano	39.1 / <u>22.4</u> / 26.9	24.9 / <u>12.5</u> / 17.5	27.1 / 13.7 / 16.6
ICR-Llama-3-8B-Instruct	38.8 / 22.2 / 26.4	23.6 / 12.1 / 16.2	27.8 / 13.9 / 17.0
PURPLE (Ours)	<u>38.9</u> / <u>22.3</u> / <u>26.5</u>	<u>24.8</u> / <u>12.4</u> / <u>17.3</u>	27.9 / 14.0 / 17.1
<i>With Llama-3-8B-Instruct (8.03B)</i>			
BM25	42.2 / 24.2 / 31.7	28.9 / 14.3 / 20.4	33.4 / 16.3 / <u>21.3</u>
Contriever	42.0 / 23.9 / 31.4	28.9 / 14.6 / 20.0	33.1 / 16.2 / 20.8
IC-RALM-Llama-3-8B-Instruct	39.4 / 21.3 / 29.5	26.1 / 12.7 / 17.9	31.3 / 14.8 / 19.5
REPLUG-LSR	38.7 / 21.1 / 28.7	21.7 / 11.5 / 13.5	18.0 / 9.9 / 10.1
RankGPT-Llama-3-8B-Instruct	42.3 / 24.3 / 31.8	29.1 / <u>14.5</u> / 20.6	<u>33.5</u> / 16.4 / 21.4
RankGPT-GPT5-nano	42.5 / <u>24.5</u> / <u>32.1</u>	28.7 / 14.2 / 20.2	33.6 / <u>16.5</u> / 21.4
ICR-Llama-3-8B-Instruct	42.2 / 24.1 / 31.7	<u>29.0</u> / 14.4 / <u>20.5</u>	33.1 / 16.2 / 20.8
PURPLE (Ours)	<u>42.4</u> / <u>24.4</u> / 32.3	28.4 / 14.1 / 19.5	33.4 / 16.5 / 21.1

5.2 ABLATION STUDIES

412 Table 3 presents the ablation studies of PURPLE using Llama-3-8B-Instruct. Overall, we
 413 examine two key design choices. First, instead of performing token-level cross attention, we test a
 414 simplified variant, referring to w/o CA in Table 3, that encodes the entire query into a single embed-
 415 ding and appends it as an extra token to the Transformer encoder. This approach is less effective,
 416 indicating that fine-grained token-level interactions between the query and user records are crucial
 417 for accurate personalization. Second, we remove the Transformer encoder entirely, referring to w/o
 418 RDM in Table 3, resulting in a point-wise scoring model where each record is scored independently.
 419 This variant shows the largest performance drop across tasks. While it can still leverage individually
 420 informative records, it fails to model dependencies such as redundancy and complementarity among
 421 records. In contrast, the full model with the Transformer encoder captures cross-record depen-
 422 dencies, enabling it to identify overlapping information and combine mutually supportive records,
 423 thereby achieving better personalization quality.

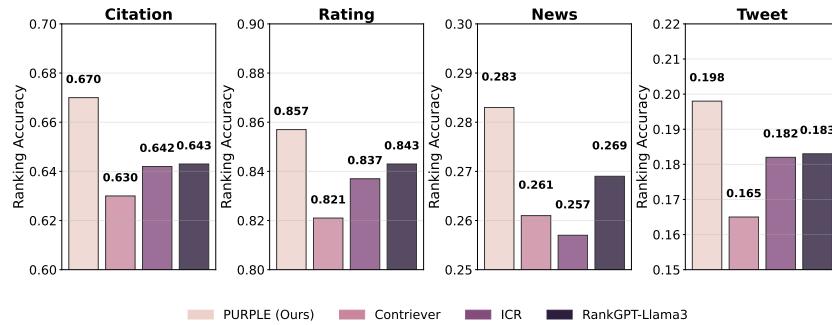
424 These results highlight that both token-level cross attention and cross-record dependency modeling
 425 are indispensable, validating our design of treating user profiles as structured contexts rather than
 426 isolated records.

5.3 ANALYSIS: SELECTING TOPK AT INFERENCE

427 To further examine the quality of the learned propensity scores, we compare our top-5 selection
 428 against baselines including ICR, RankGPT, and Contriever. For each example in the test set, we
 429 consider the top-5 records proposed by each method and enumerate $5! = 120$ possible orderings.
 430 We then randomly sample 5 orderings as controls. As shown in Figure 4, across this expanded

432
 433 Table 3: Ablation study of PURPLE. We use both Phi-4-Mini-Instruct and
 434 Llama-3-8B-Instruct for the experiment. CA and RDM stand for cross-attention and record
 435 dependency modeling, respectively. The former fuses query and record into token-level representa-
 436 tions, while the latter explicitly models dependencies among records.

437 Task	438 Citation	438 Movie	438 Rating	438 News	438 Scholar	438 Tweet
439 Metric	439 Acc. / F1	439 Acc. / F1	439 MAE / RMSE	439 RG1 / RGL / MT	439 RG1 / RGL / MT	439 RG1 / RGL / MT
With Phi-4-Mini-Instruct (3.84B)						
PURPLE	66.2 / 65.8	38.2 / 33.6	0.405 / 0.788	15.2 / 13.5 / 12.5	40.0 / 33.5 / 42.4	39.1 / 34.0 / 35.9
w/o CA	64.8 / 64.5	35.1 / 29.7	0.440 / 0.816	14.8 / 13.2 / 12.4	40.0 / 33.5 / 42.2	39.1 / 34.1 / 36.0
w/o RDM	61.3 / 60.6	35.0 / 31.1	0.449 / 0.850	14.5 / 12.8 / 11.9	39.7 / 33.1 / 41.9	39.0 / 34.0 / 36.1
With Llama-3-8B-Instruct (8.03B)						
PURPLE	60.2 / 59.8	48.8 / 41.0	0.316 / 0.637	17.7 / 15.9 / 15.4	42.0 / 36.7 / 40.8	32.6 / 27.5 / 28.8
w/o CA	57.9 / 57.6	47.0 / 39.0	0.334 / 0.664	16.8 / 15.2 / 14.6	40.4 / 34.6 / 40.0	32.0 / 27.3 / 28.5
w/o RDM	55.6 / 55.0	44.1 / 37.2	0.328 / 0.647	16.2 / 14.6 / 14.3	39.2 / 33.8 / 38.0	32.2 / 27.7 / 28.8



450 Figure 4: Ranking accuracy comparison across tasks using LLaMA-3-8B-Instruct. PURPLE
 451 achieves the highest accuracy on all datasets, consistently outperforming heuristic retrievers (Con-
 452 triever), LLM-based rerankers (RankGPT), and in-context rerankers (ICR).

453 evaluation, we find that orderings induced by our learned propensity scores are more frequently
 454 ranked as the best among the six candidates. This result indicates that our scoring function better
 455 captures relative preferences between records, rather than relying on local pairwise relevance alone.
 456 These findings highlight that our method not only identifies useful records but also arranges them in
 457 an order that maximizes downstream personalization utility.

6 CONCLUSION AND DISCUSSION

471 In this work, we studied the problem of retrieval-augmented personalization for large language mod-
 472 els. Through a systematic motivation study, we revealed two fundamental challenges: (i) *record*
 473 *relevance does not reliably predict personalization utility*, and (ii) *utility is non-monotonic* across
 474 records, making greedy aggregation suboptimal. To address these limitations, we proposed **PUR-
 475 PLE**, a contextual bandit framework that optimizes user profiles by directly leveraging downstream
 476 performance as feedback. PURPLE jointly models query–record interactions and cross-record de-
 477 pendencies, enabling adaptive selection of user profiles beyond static heuristics. Extensive experi-
 478 ments on nine real-world personalization tasks across classification, regression, and text generation
 479 showed that PURPLE consistently outperforms heuristic retrievers, LLM-based rerankers, and in-
 480 context RALMs, while being significantly more efficient. These results establish contextual bandit
 481 retrieval as a principled and scalable paradigm for personalized LLMs. One limitation of our work
 482 is that PURPLE requires separate training on each dataset; in future work, we plan to investigate its
 483 ability to generalize across tasks and domains. We believe PURPLE opens a promising direction for
 484 integrating learning-based profile construction into retrieval-augmented generation, and we hope it
 485 inspires future work on reinforcement learning for efficient personalization.

486 REPRODUCIBILITY STATEMENT
487

488 We place a strong emphasis on reproducibility. In the main text, we provide detailed descriptions of
489 our user record encoder architecture, including the cross-attention mechanism, Transformer encoder
490 design, and the Plackett–Luce formulation for profile selection. In the experiments section, we
491 carefully document the training configurations, such as batch size, learning rate, number of epochs,
492 optimizer settings, and gradient clipping, to facilitate faithful re-implementation. We also release a
493 well-configured codebase that contains scripts for dataset preprocessing, prompt templates, model
494 training, and evaluation. The codebase is designed to be plug-and-play, requiring minimal setup,
495 and ensures that all experiments reported in the paper can be reproduced reliably.

496 LLM USAGE STATEMENT
497

498 During the preparation of this manuscript, we employed large language models (LLMs) to assist
499 with English writing refinement and style polishing. All technical content, including the design of
500 PURPLE, theoretical formulations, experimental setup, and reported results, was conceived, imple-
501 mented, and validated by the authors. The LLMs were used solely for linguistic improvement and
502 did not contribute to the research methodology or experimental findings.

503 REFERENCES
504

505 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
506 Retrieve, Generate, and Critique through Self-Reflection. In *The Twelfth International Conference*
507 *on Learning Representations*, 2024.

508 Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with im-
509 proved correlation with human judgments. In *Proceedings of the ACL Workshop on Intrinsic and*
510 *Extrinsic Evaluation Measures for Machine Translation and/or Summarization*, pp. 65–72, Ann
511 Arbor, Michigan, June 2005. Association for Computational Linguistics.

512 Shijie Chen, Bernal Jimenez Gutierrez, and Yu Su. Attention in Large Language Models Yields
513 Efficient Zero-Shot Re-Rankers. In *The Thirteenth International Conference on Learning Re-*
514 *presentations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.

515 Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu, Md Arafat Sultan, Deevya Swain, Avirup Sil, and
516 Heng Ji. FIRST: Faster improved listwise reranking with single token decoding. In *Proceedings*
517 *of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8642–8652,
518 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.
519 18653/v1/2024.emnlp-main.491.

520 Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Naik, Pengshan Cai, and
521 Alfio Gliozzo. Re2G: Retrieve, Rerank, Generate. In *Proceedings of the 2022 Conference of*
522 *the North American Chapter of the Association for Computational Linguistics: Human Language*
523 *Technologies*, pp. 2701–2715, Seattle, United States, July 2022. Association for Computational
524 Linguistics. doi: 10.18653/v1/2022.naacl-main.194.

525 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval Augmented
526 Language Model Pre-Training. In *Proceedings of the 37th International Conference on Machine*
527 *Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 3929–3938. PMLR,
528 July 2020.

529 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
530 degeneration. In *International Conference on Learning Representations*, 2020.

531 Edward J. Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
532 and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In *International*
533 *Conference on Learning Representations*, 2022.

534 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
535 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
536 *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856.

540 Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar,
 541 Camillo J. Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic
 542 user profiling and personalized responses at scale, 2025.

543 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 544 Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. In
 545 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*
 546 (*EMNLP*), pp. 6769–6781, Online, November 2020. Association for Computational Linguistics.
 547 doi: 10.18653/v1/2020.emnlp-main.550.

548 Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via context-
 549 ualized late interaction over BERT. In *Proceedings of the 43rd International ACM SIGIR*
 550 *Conference on Research and Development in Information Retrieval*, Sigir ’20, pp. 39–48, New
 551 York, NY, USA, 2020. Association for Computing Machinery. ISBN 978-1-4503-8016-4. doi:
 552 10.1145/3397271.3401075.

553 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

554 Ishita Kumar, Snigdha Viswanathan, Sushrita Yerra, Alireza Salemi, Ryan A. Rossi, Franck Der-
 555 noncourt, Hanieh Deilamsalehy, Xiang Chen, Ruiyi Zhang, Shubham Agarwal, Nedim Lipka,
 556 Chien Van Nguyen, Thien Huu Nguyen, and Hamed Zamani. LongLaMP: A Benchmark for
 557 Personalized Long-form Text Generation, 2024.

558 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 559 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 560 serving with PagedAttention. In *Proceedings of the 29th Symposium on Operating Systems Prin-*
 561 *ciples*, Sosp ’23, pp. 611–626, New York, NY, USA, 2023. Association for Computing Machinery.
 562 ISBN 979-8-4007-0229-7. doi: 10.1145/3600006.3613165.

563 John Langford and Tong Zhang. The Epoch-Greedy algorithm for contextual multi-armed bandits.
 564 In *Proceedings of the 21st International Conference on Neural Information Processing Systems*,
 565 NIPS’07, pp. 817–824, Red Hook, NY, USA, 2007. Curran Associates Inc. ISBN 978-1-60560-
 566 352-0.

567 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 568 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 569 Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In *Advances in*
 570 *Neural Information Processing Systems*, volume 33, pp. 9459–9474. Curran Associates, Inc.,
 571 2020.

572 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization*
 573 *Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
 574 tics.

575 Wei Liu, Siya Qi, Xinyu Wang, Chen Qian, Yali Du, and Yulan He. NOVER: Incentive Training for
 576 Language Models via Verifier-Free Reinforcement Learning, 2025.

577 Microsoft. Phi-4-mini technical report: Compact yet powerful multimodal language models via
 578 mixture-of-LoRAs, 2025.

579 Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. Multi-stage document ranking with
 580 BERT, 2019.

581 Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. Document ranking with a pre-
 582 trained sequence-to-sequence model. In *Findings of the Association for Computational Lin-*
 583 *guistics: EMNLP 2020*, pp. 708–718, Online, November 2020. Association for Computational Lin-
 584 guistics. doi: 10.18653/v1/2020.findings-emnlp.63.

585 OpenAI. GPT-4 technical report, 2024.

586 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 587 Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton, Fraser Kel-
 588 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 589 and Ryan Lowe. Training language models to follow instructions with human feedback. In *Ad-*
 590 *vances in Neural Information Processing Systems*, 2022.

594 Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. The expando-mono-duo design pattern for text
 595 ranking with pretrained sequence-to-sequence models, 2021.

596

597 Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. RankVicuna: Zero-shot listwise docu-
 598 ment reranking with open-source large language models, 2023a.

599

600 Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. RankZephyr: Effective and robust zero-
 601 shot listwise reranking is a breeze!, 2023b.

602

603 Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown,
 604 and Yoav Shoham. In-Context Retrieval-Augmented Language Models. *Transactions of the*
604 Association for Computational Linguistics, 11:1316–1331, 2023. doi: 10.1162/tacl_a_00605.

605

606 Stephen Robertson and Hugo Zaragoza. The Probabilistic Relevance Framework: BM25 and Be-
 607 yond. *Foundations and Trends® in Information Retrieval*, 3(4):333–389, 2009. ISSN 1554-0669.
 608 doi: 10.1561/1500000019.

609

610 Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. LaMP: When Large
 611 Language Models Meet Personalization. In *Proceedings of the 62nd Annual Meeting of the Asso-
 612 ciation for Computational Linguistics (Volume 1: Long Papers)*, pp. 7370–7392, Bangkok, Thai-
 613 land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
 399.

614

615 Xiaoteng Shen, Rui Zhang, Xiaoyan Zhao, Jieming Zhu, and Xi Xiao. PMG : Personalized multi-
 616 modal generation with large language models. In *Proceedings of the ACM Web Conference 2024,
 617 Wwww '24*, pp. 3833–3843, New York, NY, USA, 2024. Association for Computing Machinery.
 618 ISBN 979-8-4007-0171-9. doi: 10.1145/3589334.3645633.

619

620 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
 621 Zettlemoyer, and Wen-tau Yih. REPLUG: Retrieval-Augmented Black-Box Language Models.
 622 In *Proceedings of the 2024 Conference of the North American Chapter of the Association for
 623 Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 8371–
 8384, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.
 18653/v1/2024.naacl-long.463.

625

626 Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
 627 and Zhaochun Ren. Is ChatGPT Good at Search? Investigating Large Language Models as Re-
 628 Ranking Agents. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
 629 guage Processing*, pp. 14918–14937, Singapore, December 2023. Association for Computational
 630 Linguistics. doi: 10.18653/v1/2023.emnlp-main.923.

631

632 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 633 ods for reinforcement learning with function approximation. In *Advances in Neural Information
 634 Processing Systems*, volume 12. MIT Press, 1999.

635

636 Manveer Singh Tamber, Ronak Pradeep, and Jimmy Lin. Scaling down, LiTting up: Efficient zero-
 637 shot listwise reranking with seq2seq encoder-decoder models, 2023.

638

639 Llama Team. The llama 3 herd of models, 2024.

640

641 Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
 642 ment learning. *Machine Learning*, 8(3):229–256, May 1992. ISSN 1573-0565. doi: 10.1007/
 BF00992696.

643

644 Bin Wu, Zhengyan Shi, Hossein A. Rahmani, Varsha Ramineni, and Emine Yilmaz. Understanding
 645 the role of user profile in the personalization of large language models, 2024.

646

647 Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue
 648 Liu, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue. Retrieval-augmented generation for natural
 649 language processing: A survey, 2025.

648 Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
649 Bryan Catanzaro. RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in
650 LLMs. In *Advances in Neural Information Processing Systems*, volume 37, pp. 121156–121184.
651 Curran Associates, Inc., 2024.

652 Lemei Zhang, Peng Liu, Marcus Tiedemann, Oakland Henriksboe, Even W. Lauvrak, Jon Atle
653 Gulla, and Heri Ramampiaro. PersonalSum: A user-subjective guided personalized summariza-
654 tion dataset for large language models. In *Advances in Neural Information Processing Systems*,
655 volume 37, pp. 99333–99346. Curran Associates, Inc., 2024.

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A DETAILS OF EMPIRICAL STUDY
703
704
705

706 We study the role of user history records in the *Personalized Product Review Generation* task (Ku-
707 mar et al., 2024). Each data sample corresponds to a unique user with a query x , a ground-truth
708 personalized response y , and a user history \mathcal{H} consisting of a sequence of (query, response) pairs
709 from the same user. For each record $h_i \in \mathcal{H}$, we measure and define: (i) **Relevance**: semantic sim-
710 ilarity between h_i and the query x , computed as cosine similarity of their Contriever embeddings:
711 $\text{rel}(h_i) = \cos(\text{Enc}(x), \text{Enc}(h_i))$. (ii) **Utility**: improvement in generation quality when h_i is included
712 in the LLM’s prompt. Let y' be the LLM’s output without knowing any personalized history records,
713 and y'_i the output with injecting h_i in the prompt. Utility can then be formally defined as the BLEU
714 score improvement by comparing with the ground truth: $\text{util}(h_i) = \text{BLEU}(y'_i, y) - \text{BLEU}(y', y)$.
715 Note that utility can also be extended to a user profile containing multiple records by replacing h_i
716 with a sequence.

717
718 **Observ. 1: Utility \neq Relevance.** We first examine whether semantic relevance between a user
719 record and the current query is a reliable proxy for personalization utility. For visualization, we
720 select 15 representative users from the dataset, 5 with relatively few history records, 5 with a medium
721 number, and 5 with a large number, and compute both the relevance score and utility score for each
722 of their records independently. All records are aggregated into a single scatter plot, where different
723 colors denote different users.

724 Figure 1 (left) plots relevance on the x -axis and utility on the y -axis. A global regression line (black),
725 along with its 95% confidence interval, is overlaid for easier inspection of the overall trend. The re-
726 gression indicates a positive correlation (Pearson $r = 0.41, p < 0.001$), confirming that relevance
727 and utility are generally related. However, the alignment is far from perfect: many highly relevant
728 records provide little or no utility (points near the bottom-right), while some moderately relevant
729 records deliver large improvements (points near the upper-left). This demonstrates that simply se-
730 lecting the most relevant records is insufficient for effective personalization, since relevance alone
731 does not reliably indicate utility.

732 **Observ. 2: Utility is Non-monotonic.** In practice, a user profile generally contains multiple history
733 records. A natural question is whether the best profile (with the highest utility) can be constructed
734 by simply concatenating the individually strongest records, or whether record interactions play a
735 significant role. To test this, we fix the profile size to $k = 3$ and enumerate all $A_5^3 = 60$ ordered
736 profiles formed from the top-5 records of each user, based on their individual utility. We conduct
737 this study on the same 15 users as in Figure 1 (left).

738 As shown in Figure 1 (middle), the x -axis indexes users, sorted by the rank of their naïve top-3
739 profile (formed by greedily selecting the three records with the highest individual utility). The plot
740 contains two y -axes: the left axis (bars) shows the rank position of the naïve profile among all 60
741 possible profiles, while the right axis (green line) shows the utility gap between the naïve profile and
742 the optimal one. A higher bar means the naïve profile is far from the top-ranked profile, and a larger
743 utility gap indicates the greedy strategy performs substantially worse than optimal. Across users, the
744 naïve top-3 profile rarely achieves the best rank and often incurs a non-trivial utility gap, indicating
745 that greedy aggregation even by utility is frequently suboptimal.

746 To further illustrate the interaction of user records, Figure 1 (right) examines user profiles of up to
747 three records, drawn from the same top-3 records (again ranked by individual utility). For simplicity,
748 we ignore the order in each profile and analyze interactions between disjoint profiles. Specifically,
749 for two profiles \mathcal{P}_A and \mathcal{P}_B , we compute $\Delta\text{util}(\mathcal{P}_A, \mathcal{P}_B) = \text{util}(\mathcal{P}_A \cup \mathcal{P}_B) - (\text{util}(\mathcal{P}_A) + \text{util}(\mathcal{P}_B))$,
750 which measures whether the joint utility of the union exceeds (positive) or falls short of (negative) the
751 sum of its components. The heatmap indexes subsets on both axes and each cell reports the average
752 Δutil across the 15 users. Cells with overlapping subsets are omitted, since their union would
753 not meaningfully isolate interaction effects. This visualization shows that even when individual
754 or pairwise profiles appear useful, adding them together can reduce overall utility, while certain
755 combinations of moderate records can yield positive gains. Such non-monotonicity underscores that
effective user profiles cannot be built by greedily aggregating individually strong records, but must
explicitly account for cross-record interactions.

756 B DETAILS OF GRADIENT ESTIMATION

758 To estimate the gradient in Equation 2, we first draw a batch of examples $\{(\mathcal{H}_b, x_b, y_b)\}_{b=1}^B$. For
 759 each example, we sample M profiles $\mathcal{P}_b^1, \dots, \mathcal{P}_b^M$ from $\pi_\theta(\cdot \mid \mathcal{C}_b)$, and finally compute the empirical
 760 mean. This learning procedure corresponds to the REINFORCE algorithm (Sutton et al., 1999), with
 761 gradient estimate:

$$762 \nabla_\theta \mathcal{J}(\theta) \approx \frac{1}{B} \sum_{b=1}^B \frac{1}{M} \sum_{m=1}^M \nabla_\theta \log \pi_\theta(\mathcal{P}_b^m \mid \mathcal{C}_b) \tilde{r}_b^m. \quad (5)$$

766 To reduce variance in gradient estimation, we apply reward normalization over the M profiles sam-
 767 pled for each example. Concretely, for each example with rewards $\mathbf{r}_b = [r_b^1, \dots, r_b^M]^\top$, where
 768 $r_b^m = R(\Phi(\mathcal{P}_b^m, x_b), y_b)$, the normalized reward is computed as $\tilde{r}_b^m = \frac{r_b^m - \text{mean}(\mathbf{r}_b)}{\text{std}(\mathbf{r}_b)}$.

770 C MOTIVATING OUR REWARD

772 The specific choice of using the log probability of ground truth personalized response is grounded in
 773 the generative modeling perspective of retrieval-augmented generation (RAG) (Lewis et al., 2020),
 774 where the user profile is treated as a latent variable and the response likelihood is obtained by
 775 marginalizing over all possible profile selections. Applying Jensen’s inequality to the training ob-
 776 jective in this setting gives:

$$777 \mathbb{E}_{(\mathcal{H}, x, y) \sim \mathcal{D}} \left[\log \left(\sum_{\mathcal{P} \in \text{Perm}_K(\mathcal{H})} \pi_\theta(\mathcal{P} \mid \mathcal{C}) p_\Phi(y \mid \mathcal{P}, x) \right) \right] \quad (6)$$

$$778 \geq \mathbb{E}_{(\mathcal{H}, x, y) \sim \mathcal{D}, \mathcal{P} \sim \pi_\theta(\cdot \mid \mathcal{C})} [\log p_\Phi(y \mid \mathcal{P}, x)].$$

781 Therefore, maximizing the expected reward under our reinforcement learning objective is equivalent
 782 to maximizing the evidence lower bound (ELBO), with p_Φ modeled by a frozen LLM.

784 D EXPERIMENTAL SETUP

786 D.1 DETAILED BASELINE METHODS

788 We focus on the setting where the LLM is kept frozen and no ground-truth profile is available for
 789 training the reranker. This setting is reasonable for personalization as it represents cases where
 790 the retrieval corpus consists of past user records and no additional labeling on golden retrieval is
 791 required. Therefore, we compare with three categories of prior methods that, likewise, neither fine-
 792 tune the LLM nor rely on supervision from ground-truth retrieval results.

793 The baselines we compare with include **(i) Zero-Shot Rerankers** that apply pre-trained LLMs di-
 794 rectly without further fine-tuning. We compare with ICR Chen et al. (2025), which leverages the
 795 LLM’s attention scores to rank user records, as well as RankGPT Sun et al. (2023), which prompts
 796 the LLM to directly output a ranking order. For both methods, we adopt `Llama-3-8B-Instruct`
 797 as the reranker LLM, as larger models would incur prohibitive costs in the retrieval pipeline. In ad-
 798 dition, there exists a line of rerankers that do not rely on ground-truth supervision but instead distill
 799 knowledge from the ranking results of state-of-the-art proprietary LLMs (Pradeep et al., 2023a;b;
 800 Tamber et al., 2023; Gangi Reddy et al., 2024). We therefore report the performance of RankGPT
 801 with GPT-5 nano to reflect an upper bound of such methods. **(ii) In-Context Retrieval-Augmented**
 802 **Language Models** that do not fine-tune the LLM. These include REPLUG-LSR Shi et al. (2024),
 803 which trains the reranker to match the LM likelihood of each user record, as well as In-Context
 804 RALM Ram et al. (2023), which leverages the likelihood of recently generated tokens to rerank
 805 user records. Both methods consider only one record at a time when generating a response. They
 806 incorporate multiple records from the user profile either through marginalization (REPLUG-LSR)
 807 or through context switching, where reranking is performed multiple times during decoding to swap
 808 in new records (In-Context RALM). These design choices arise because directly evaluating all com-
 809 binations of records would be computationally intractable under their frameworks, which is a lim-
 itation our method aims to overcome. Additionally, we include **(iii) Efficient Dense and Sparse**
Retrievers, applied directly as rerankers. Specifically, we use the dense retriever Contriever Izacard

et al. (2022) and the sparse retriever BM25 Robertson & Zaragoza (2009). These methods represent the efficiency-oriented side of the efficiency–performance trade-off.

D.2 IMPLEMENTATION DETAILS

We employ a frozen pre-trained Contriever to first encode both queries and user history records into token embeddings. The only trainable components are the remaining modules of the user record encoder. These include a cross-attention layer that integrates query information into record embeddings, a Transformer encoder that captures inter-record dependencies, and an MLP decoder that maps the updated record encodings into scalar propensity scores. We set the number of Transformer encoder layers to $l = 12$, resulting in a parameter size roughly twice that of Contriever, while still being substantially faster than the baseline ZSRs and In-Context RALMs. For gradient estimation, we use a batch size of $B = 16$ and sample $M = 32$ user profiles for each example. We train the model for 10 epochs using the Adam optimizer (Kingma & Ba, 2017) with $\beta_1 = 0.9$, $\beta_2 = 0.999$, and a learning rate of 1×10^{-4} . During training, we apply a gradient clipping norm of 1.0. The checkpoint achieving the best validation performance is selected for testing.

In all experiments, we use frozen LLMs both to generate personalized responses and to evaluate the log probability of ground-truth responses conditioned on the query and user profiles (i.e., our reward). For generations, we set the temperature to $T = 0.7$ and employ nucleus sampling (Holtzman et al., 2020) with $\text{top-}p = 0.8$. For Phi-4-Mini-Instruct and Llama-3-8B-Instruct, we deploy on a single NVIDIA H100 GPU. For Llama-3-70B-Instruct, we deploy the model across four NVIDIA H100 GPUs using vLLM (Kwon et al., 2023). All LLMs are deployed in BF16 precision. Training of PURPLE is conducted on the same GPUs used for LLM deployment.