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ABSTRACT

Large Language Models (LLMs) excel at general-purpose tasks, but personaliz-
ing their responses to individual users remains challenging. Retrieval augmenta-
tion offers a lightweight alternative to fine-tuning by conditioning LLMs on user
history records, yet existing strategies rely on heuristics (e.g., relevance to the
query) that overlook the true contribution of records to personalization. Through
a systematic motivation study, we show that (i) relevance does not reliably pre-
dict utility, and (ii) utility is non-monotonic across records: the best user profile
is not simply the combination of the best individual records, and adding more
records can even hurt performance. To address these limitations, we propose
PURPLE, a contextual bandit framework that oPtimizes UseR Profiles for Llm
pErsonalization. PURPLE operates as a re-ranking layer over candidate records,
balancing efficiency with personalization quality. Across nine real-world person-
alization tasks spanning classification, regression, and short- and long-text gener-
ation, PURPLE consistently outperforms strong heuristic and retrieval-augmented
baselines, establishing contextual bandit retrieval as a principled and scalable so-
lution for personalized LLMs. Our anonymized code is available at: https:
//anonymous.4open.science/r/ICLR-26-PURPLE-A104/.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable success in various natural language
processing tasks, including text generation, question answering, and dialogue systems. As these
models are increasingly applied to personalized applications, such as drafting emails on behalf
of users, tailoring responses to individuals based on their own preferences has become a crucial
challenge. Existing approaches for personalizing LLMs, such as Parameter-Efficient Fine-Tuning
(PEFT) (Hu et al., 2022) and Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022), generally require modifying model parameters. These approaches incur high compu-
tational costs, demand frequent updates, and are impractical for real-time personalization at scale,
especially when the LLM is not fully open-sourced or the end user cannot afford model fine-tuning.
Moreover, continually fine-tuning models for different individuals would complicate safety evalua-
tion and deployment, since each personalized variant would require separate testing.

In this paper, we focus on a lightweight approach for LLM personalization through retrieval augmen-
tation (Wu et al., 2025), where user profiles are constructed by retrieving and injecting a collection
of past user records into the prompt to guide personalized responses. Building on this retrieval-
augmented view of personalization, prior work has shown that incorporating user profiles can ef-
fectively steer LLM outputs toward individual preferences (Salemi et al., 2024; Jiang et al., 2025).
Compared to parameter-updating methods, this approach is attractive because it is lightweight, trans-
parent, and readily deployable, since the users can directly inspect and edit the records that guide
generation. However, a central challenge remains: which user records should be used to form
the user profile? Simply appending the entire user history records not only risks introducing re-
dundancy and noise, but can also overflow the model’s context window, for example, when histories
span years of interactions. Conversely, overly aggressive pruning may discard personalization sig-
nals. Existing strategies for building user profiles often rely on heuristics, such as selecting user
records with the highest relevance, i.e., the similarity to the query (Karpukhin et al., 2020). How-
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Figure 1: Empirical study of record relevance and personalization utility on Personalized Product
Review Generation task. (Left) Scatter plot of history records from 15 representative users. Each
point is a record, with relevance (semantic similarity to the query) on the x-axis and utility (BLEU
improvement over no-history baseline) on the y-axis. While positively correlated overall (r = 0.41,
p < 0.001), high relevance does not reliably imply high utility. (Middle) For each user, we enu-
merate all profiles of size k = 3 from their top-5 records by individual utility and compare them to
the naı̈ve greedy top-3 profile. Bars indicate the rank of the greedy profile (lower is better), and the
green line shows its utility gap to the optimal profile. Greedy aggregation often yields suboptimal
personalization. (Right) Heatmap of ∆utility for combinations of top-3 records, comparing the joint
utility of profile unions with the sum of their parts. Negative values reveal diminishing returns when
strong records are combined, while positive values highlight synergies among moderate records. To-
gether, the results show that personalization utility is misaligned with relevance and non-monotonic
across records, motivating adaptive selection methods. Full details are provided in Appendix A.

ever, relevance alone does not guarantee personalization gains. What truly matters is the utility of
the chosen records, i.e., how much they improve downstream task performance when injected into
the prompt. To investigate how such a heuristic behaves in real personalization tasks, we conduct
experiments on Personalized Product Review Generation, drawn from the LongLaMP (Kumar et al.,
2024) benchmark. This study (see Figure 1 and Appendix A), reveals two key observations:

• Utility ̸= Relevance: A record that closely matches the query (high relevance) does not always
improve generation quality (utility). Although relevance and utility are often positively correlated,
relevance alone is an unreliable predictor of personalization benefit.

• Utility is Non-monotonic: Combining the records with the highest individual utility does not nec-
essarily yield the best profile. Greedy aggregation can reduce performance when records overlap
or conflict, whereas certain less obvious combinations may provide greater gains.

These two observations highlight what an ideal solution for retrieval-augmented LLM personaliza-
tion must achieve. At its core, the system needs a re-ranking module that can select a subset of user
records whose combined utility is maximized, rather than relying on individual relevance heuris-
tics. To succeed, such a module should satisfy two key requirements. First, its training supervision
must come directly from downstream generation quality, not from semantic similarity between the
query and records, ensuring alignment with the true personalization objective. Second, it must be
list-aware, explicitly modeling dependencies among records so that the selected set captures com-
plementary signals rather than merely aggregating the top individual items. Unfortunately, existing
methods fall short: heuristic RAG pipelines satisfy neither requirement, while recent LLM-based
list-wise rerankers address dependency modeling but still rely on relevance-oriented supervision.

Motivated by these gaps, we propose PURPLE, a framework that models user record selection as a
contextual bandit problem (Langford & Zhang, 2007). In its formulation, the context consists of both
the current query and the user’s past records. The selection policy is guided by a reward function
reflecting downstream personalized text generation performance. PURPLE outputs a propensity
score for each user record, which is passed through a Plackett-Luce ranking model to produce the
final selected user records. This formulation enables the model to capture interactions between
records and adaptively select those that are most beneficial for personalization. We train PURPLE
end-to-end using the policy gradient method (Sutton et al., 1999).
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Our main contributions are as follows:

• We demonstrate using real-world tasks that relevance and utility are misaligned and that utility is
non-monotonic across records, highlighting fundamental limitations of heuristic-based retrieval.

• We introduce PURPLE, a framework that casts retrieval-augmented LLM personalization as a
contextual bandit problem, adaptively optimizing user profiles beyond static heuristics.

• We show through extensive experiments on nine real-world personalization tasks, covering clas-
sification, regression, short-text generation, and long-text generation, that PURPLE consistently
outperforms strong baselines in both effectiveness and efficiency.

2 RELATED WORK

LLMs for Personalization. LLMs demonstrate strong performance across domains (OpenAI,
2024), yet their outputs often diverge from user expectations because pre-training captures gen-
eral rather than individual needs. Reinforcement learning from human feedback (RLHF) (Ouyang
et al., 2022) and parameter-efficient finetuning (PEFT) (e.g., LoRA (Hu et al., 2022)) can align
models with user preferences, but both require model finetuning and are impractical for end users
who lack access or resources. A complementary direction personalizes LLMs through user pro-
files (Salemi et al., 2024), built from prior user interactions or external signals. Incorporating user
profiles into the prompt has shown benefits across multiple tasks requiring personalization, includ-
ing text summarization (Zhang et al., 2024), question answering (Wu et al., 2024), content gener-
ation (Shen et al., 2024), and personalized chatbot interaction (Jiang et al., 2025). Yet it remains
unclear which user history records in a profile truly drive performance improvements, particularly
in retrieval-augmented generation (RAG), where performance hinges on selecting semantically rel-
evant context. Moreover, little analysis has been conducted on how to best select and compose user
records into profiles with high personalization utility. Our work addresses this gap by studying how
user profiles shape personalization in retrieval-augmented LLMs, and by proposing strategies for
selecting user records to maximize downstream performance.

Retrieval-Augmented Language Models. Retrieval-augmented language models (RALMs) en-
hance parametric LMs with external memory to improve factuality and coverage. Early work such as
REALM (Guu et al., 2020) and RAG (Lewis et al., 2020) jointly trained the retriever and LM, while
Re2G (Glass et al., 2022) further incorporated a reranking module into this end-to-end pipeline. To
reduce training costs, subsequent methods froze the LM and applied retrieval in-context. For ex-
ample, In-Context RALM (Ram et al., 2023) leveraged LLMs for reranking, while REPLUG (Shi
et al., 2024) distilled retrievers from LLMs. More recently, instruction-tuned variants such as Self-
RAG (Asai et al., 2024) and RankRAG (Yu et al., 2024) jointly model retrieval and generation, but
their reliance on large-scale finetuning renders them impractical for personalization.

The most relevant to our work are In-Context RALM and REPLUG, yet both incorporate only one
retrieved record at a time, a limitation our method directly addresses. Specifically, REPLUG com-
bines multiple records by weighting generation outputs with retrieval probabilities, while In-Context
RALM periodically triggers retrieval during decoding at fixed steps and replaces previously used
records. These designs arise because jointly reasoning over multiple records leads to a combina-
torial explosion in the number of possible profiles. In contrast, our approach is explicitly designed
to overcome this limitation by modeling cross-record dependencies and directly optimizing over
multi-record profiles without resorting to such approximations.

LLMs for Reranking. Reranking methods are commonly categorized as pointwise, pairwise, or
listwise. Pointwise models such as MonoBERT (Nogueira et al., 2019) and MonoT5 (Nogueira
et al., 2020) score each query–document pair independently, while pairwise models such as
DuoT5 (Pradeep et al., 2021) compare candidates in pairs. In contrast, listwise approaches jointly
model the full candidate set and have recently been advanced by LLMs through prompt-only rank-
ing (RankGPT (Sun et al., 2023)), distillation into smaller models (e.g., RankVicuna, RankZephyr,
Lit5Distill, FIRST (Pradeep et al., 2023a;b; Tamber et al., 2023; Gangi Reddy et al., 2024)), and
inference-time relevance extraction (ICR (Chen et al., 2025)). However, these methods conflate rel-
evance with utility, which is insufficient for personalization. In this work, we instead train rerankers
using downstream generation quality as feedback, prioritizing utility over semantic similarity.
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3 METHODOLOGY

We formulate retrieval-augmented LLM personalization as a contextual bandit problem (Langford
& Zhang, 2007), where the goal is to learn a policy that selects informative user records given the
context. Unlike classic multi-armed bandits, the contextual bandit framework incorporates auxiliary
information (e.g., the current query and user history) before making a selection. This formulation
enables direct optimization of retrieval strategies through policy gradient reinforcement learning,
aligning the selection of user records with downstream personalization objectives.

3.1 PROBLEM FORMULATION

We consider a dataset D = {(Hu, xu, yu)}|D|
u=1, where each example consists of a user’s collection

of history records Hu, a query xu to which the system is asked to provide an answer, and a ground-
truth personalized response yu. Personalization is achieved by retrieving informative records from
Hu and supplying them as context to a frozen LLM, which then generates the final response. In prac-
tice, we apply PURPLE as a re-ranking module on top of a candidate pool selected by lightweight
heuristics, ensuring low-latency inference compatible with large-scale systems. In the following
development, we focus on a single user and omit the superscript index for brevity.

Let H = {h1, . . . , hN} denote the set of N history records for a user, where each record hi =
(xi, yi) is an input–output pair (e.g., a query and its answer from the user). Given a new query x,
our goal is to construct a user profile from H to condition the LLM for generating a personalized
response. Formally, a profile is an ordered tuple P = ⟨p1, . . . , pK⟩ ∈ PermK(H), which is a K-
permutation of H. We stress that the profile is order-sensitive: different permutations of the same K
records correspond to distinct profiles and thus provide different inputs to the downstream LLM.

We formulate the selection of P as a contextual bandit problem, where the context is given by the
user’s history H and the query x, and the action corresponds to selecting K records from H to
construct a profile. Formally, this formulation consists of the following key components:

• Context: C = (H, x), where H is the user’s collection of history records and x is the query.
This representation captures both past user preferences and the immediate intent.

• Actions: P = ⟨p1, . . . , pK⟩ ∈ PermK(H), which corresponds to selecting K distinct
records from H in a particular order. The action thus determines not only which records to
use but also how they are arranged. The size of the action space is N !/(N −K)!.

• Reward: R(LLM(P, x), y), a function that measures the quality of the LLM-generated
response LLM(P, x) relative to the ground-truth personalized response y.

We model the policy for selecting user records with a neural distribution πθ(· | C), parameterized by
θ, which assigns probabilities to candidate user profiles given the context C. The objective is to learn
parameters θ such that the policy assigns higher probabilities to more informative profiles, which
ultimately enhance personalized text generation. To this end, we maximize the expected reward over
sampled user profiles, optimizing the following objective on a dataset D spanning multiple users,
each associated with a set of history records, a query, and the corresponding ground-truth answer:

J (θ) = E(H,x,y)∼D,P∼πθ(·|C)[R(LLM(P, x), y)]. (1)

It is challenging to directly optimize Equation 1 since the reward is not differentiable. To address
this, we employ the likelihood ratio gradient estimator from reinforcement learning and stochastic
optimization (Williams, 1992; Sutton et al., 1999), which allows us to compute the gradient as:

∇θJ (θ) = E(H,x,y)∼D,P∼πθ(·|C)[∇θ log πθ(P | C)R(LLM(P, x), y)]. (2)

Since it is intractable to enumerate all profiles P ∈ PermK(H) during the optimization process,
we estimate Equation 2 by randomly sampling M = 32 profiles. To stabilize training and reduce
variance in gradient estimation, we apply z-score normalization over the rewards of these 32 profiles
sampled for each example. The detailed gradient estimation scheme is provided in Equation 2 in
Appendix B.
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Figure 2: Workflow of the proposed PURPLE framework. User records encoder takes a user query
and a list of user history records as input, outputting the propensity scores of all records. During
training, a Plackett-Luce model is employed to convert the propensity scores to a probability distri-
bution over all possible profiles, followed by sampling M profiles for gradient estimation. During
inference, records with top K propensity scores are provided to the LLM along with the user query
to generate a personalized response.

3.2 MODEL AND FUNCTION DESIGN

Design of πθ(· | C) Since different permutations of the selected records may lead to different
final responses, we adopt the Plackett–Luce (PL) model, which assigns probabilities to profiles
based on the scores of individual user records. Therefore, πθ(· | C) defines a distribution over all
(N)K = N !/(N−K)! permutations of length K drawn from the N history records. The probability
assigned to a specific profile P is given by:

πθ(P | C) =
K∏

k=1

fθ(pk; C)
S −

∑k−1
j=1 fθ(pj ; C))

, (3)

where S =
∑N

i=1 fθ(hi; C), and fθ(·) is the user record encoder that outputs a propensity score
in [0, 1] for each record, indicating the model’s tendency to include that record in the user profile.
During training, profiles are generated by sampling K records without replacement based on Equa-
tion 3 At inference time, the top-K records ranked by propensity scores are selected to construct the
user profile. Because our user record encoder is order-aware and rewards are assigned to ordered
sets, the learned propensity score can be interpreted as each record’s contribution to the selected
set. We further show in Sec. 5.3 that this ordering achieves higher final utility compared with other
baselines.

Design of fθ For the record encoder fθ, we aim to capture the interdependencies among user
records. A key design consideration is the trade-off between modeling dependencies at the token
level versus the sentence level. While the former could, in principle, capture finer-grained interac-
tions, it would quickly exceed the encoder’s context length. To address this, we adopt a late inter-
action strategy (Khattab & Zaharia, 2020), where we first obtain sentence-level embeddings with a
pre-trained encoder, and then apply a Transformer encoder to model dependencies across records.
Figure 2 illustrates the overall workflow of our method. Within the user record encoder, we utilize a
pre-trained Contriever (Izacard et al., 2022) to obtain token embeddings for both the query and the
records. Each record first cross-attends to the query at the token level, producing query-fused record
embeddings that incorporate query information. A subsequent pooling operation is then applied
to the updated record token embeddings to produce fixed-size sentence-level embeddings. embed-
dings are then processed by a Transformer encoder to model cross-record dependencies. We omit
positional encodings to avoid ordering bias among records.

Design of Reward Function In this work, we propose an LLM-driven reward, where the policy is
trained to maximize the log-likelihood that the LLM assigns to the target sequence. Formally, given

5
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Table 1: Results of PURPLE and baselines on six datasets from the LaMP benchmark (Salemi et al.,
2024). Out-of-memory results are indicated by “–”. The best and second-best result in each column
is highlighted in bold and underlined.

Task Citation Movie Rating News Scholar Tweet
Metric Acc. / F1 Acc. / F1 MAE / RMSE RG1 / RGL / MT RG1 / RGL / MT RG1 / RGL / MT

With Phi-4-Mini-Instruct (3.84B)
BM25 63.3 / 62.9 32.7 / 27.8 0.444 / 0.860 14.2 / 12.6 / 11.8 39.8 / 33.2 / 42.3 38.3 / 33.5 / 35.2
Contriever 65.0 / 64.7 35.5 / 30.8 0.409 / 0.792 14.6 / 13.1 / 12.3 39.7 / 33.4 / 41.9 38.5 / 33.8 / 35.8
IC-RALM-Llama-3-8B-Instruct 62.2 / 62.1 33.5 / 28.8 0.460 / 0.836 13.4 / 11.8 / 11.0 37.5 / 30.8 / 40.6 38.3 / 33.5 / 35.4
REPLUG-LSR 51.8 / 46.3 36.8 / 32.6 0.498 / 0.913 14.1 / 12.7 / 11.5 14.1 / 12.7 / 11.5 42.3 / 37.3 / 38.9
RankGPT-Llama-3-8B-Instruct 64.9 / 64.5 33.1 / 27.5 0.444 / 0.852 14.3 / 12.8 / 12.0 39.7 / 33.3 / 42.0 38.2 / 33.5 / 35.3
RankGPT-GPT5-nano 65.9 / 65.6 35.5 / 31.4 0.444 / 0.865 14.6 / 13.0 / 12.1 39.8 / 33.4 / 42.3 38.5 / 33.7 / 35.5
ICR-Llama-3-8B-Instruct 65.8 / 65.6 33.2 / 28.5 0.420 / 0.810 15.0 / 13.4 / 12.5 39.6 / 33.0 / 42.0 38.8 / 33.9 / 35.7
PURPLE (Ours) 66.2 / 65.8 38.2 / 33.6 0.405 / 0.788 15.2 / 13.5 / 12.5 40.0 / 33.5 / 42.4 39.1 / 34.0 / 35.9

With Llama-3-8B-Instruct (8.03B)
BM25 56.1 / 55.8 45.7 / 37.7 0.345 / 0.689 16.3 / 14.6 / 14.3 41.0 / 35.1 / 40.8 31.2 / 26.4 / 27.3
Contriever 58.7 / 58.6 46.8 / 38.8 0.320 / 0.641 17.2 / 15.5 / 15.1 41.2 / 35.5 / 40.5 31.9 / 26.9 / 28.3
IC-RALM-Llama-3-8B-Instruct 59.4 / 57.0 37.0 / 29.4 0.366 / 0.680 13.8 / 12.2 / 12.0 36.1 / 30.1 / 39.1 30.1 / 25.3 / 26.2
REPLUG-LSR 54.2 / 45.0 40.3 / 30.4 0.318 / 0.638 14.7 / 13.2 / 11.7 42.6 / 37.3 / 40.9 30.7 / 26.3 / 26.2
RankGPT-Llama-3-8B-Instruct 56.7 / 56.3 46.1 / 37.7 0.330 / 0.649 16.7 / 15.1 / 14.4 41.1 / 35.5 / 40.7 31.2 / 26.4 / 27.5
RankGPT-GPT5-nano 59.5 / 58.0 45.1 / 36.2 0.321 / 0.638 17.1 / 15.4 / 15.0 41.0 / 35.3 / 40.5 31.5 / 26.5 / 27.8
ICR-Llama-3-8B-Instruct 58.7 / 57.8 47.5 / 38.4 0.326 / 0.662 17.1 / 15.4 / 14.9 41.5 / 35.8 / 41.1 31.4 / 26.5 / 27.8
PURPLE (Ours) 60.2 / 59.8 48.8 / 41.0 0.316 / 0.637 17.7 / 15.9 / 15.4 42.0 / 36.7 / 40.8 32.6 / 27.5 / 28.8
With Llama-3-70B-Instruct (70.6B)
BM25 70.9 / 70.4 54.0 / 46.7 0.254 / 0.554 17.7 / 16.1 / 14.5 43.1 / 37.7 / 39.9 36.1 / 30.7 / 32.8
Contriever 70.2 / 69.9 56.4 / 49.1 0.240 / 0.530 18.5 / 16.9 / 15.5 44.2 / 38.8 / 41.1 36.5 / 31.4 / 33.3
IC-RALM-Llama-3-8B-Instruct 66.5 / 66.4 49.3 / 41.9 0.260 / 0.553 14.8 / 13.3 / 12.2 39.7 / 34.1 / 38.6 32.0 / 27.4 / 28.8
REPLUG-LSR 66.2 / 65.9 51.7 / 43.9 - / - 15.2 / 13.8 / 12.1 0.0 / 0.0 / 0.0 32.2 / 27.8 / 27.8
RankGPT-Llama-3-8B-Instruct 69.5 / 68.9 56.8 / 49.3 0.251 / 0.555 17.7 / 16.1 / 14.9 44.0 / 38.5 / 41.0 35.8 / 30.6 / 32.3
RankGPT-GPT5-nano 73.8 / 73.5 55.3 / 48.2 0.240 / 0.523 18.7 / 17.0 / 15.8 44.6 / 38.8 / 41.5 36.6 / 31.3 / 33.2
ICR-Llama-3-8B-Instruct 71.4 / 70.8 56.5 / 48.9 0.240 / 0.536 18.3 / 16.7 / 15.1 44.5 / 38.9 / 41.5 36.1 / 30.8 / 33.0
PURPLE (Ours) 72.8 / 72.5 57.1 / 50.4 0.235 / 0.514 18.8 / 17.1 / 15.7 44.4 / 38.8 / 41.0 37.3 / 32.1 / 34.0

a user profile P , a query x, and a ground-truth personalized response y, we define the reward as:

R(LLM(P, x), y) = log pϕ(y | P, x) =

|y|∑
j=1

log pϕ(yj | P, x, y<j), (4)

where ϕ are the parameters of the LLM and pϕ(·) denotes its next-token distribution. Using the
log-likelihood of ground-truth sequences as the reward provides dense feedback signals, in contrast
to downstream metrics such as accuracy, mean squared error, or ROUGE-1 (Liu et al., 2025). More-
over, we show in Appendix C that this objective is equivalent to maximizing the evidence lower
bound (ELBO) of the marginalization-based RAG approach (Lewis et al., 2020), which, however,
becomes intractable in our setting due to the combinatorial explosion. In the next section, we empir-
ically demonstrate that this log-likelihood–based reward is robust across diverse downstream tasks.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION

We evaluate the performance of PURPLE using Phi-4-Mini-Instruct (Microsoft, 2025) and
Llama-3-8B-Instruct (Team, 2024) as the frozen LLM for response generation, and further
scale up to Llama-3-70B-Instruct (Team, 2024). Our experiments span a wide range of per-
sonalization settings, including personalized classification, regression, and both short- and long-text
generation from the LaMP (Salemi et al., 2024) and LongLaMP (Kumar et al., 2024) benchmarks.
We follow the prompt templates of Salemi et al. (2024) and Kumar et al. (2024) to incorporate user
profiles into the original queries.

Specifically, we evaluate PURPLE on nine personalization tasks: two classification tasks — Per-
sonalized Citation Identification (Citation) and Personalized Movie Tagging (Movie), evaluated with
Accuracy and F1; one regression task — Personalized Product Rating (Rating), evaluated with MAE
and RMSE; and six generation tasks, evaluated with ROUGE-1 (RG1), ROUGE-L (RGL) (Lin,
2004), and METEOR (MT) (Banerjee & Lavie, 2005). The generation tasks are further divided into
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short-text generation — Personalized News Headline Generation (News), Personalized Scholarly
Title Generation (Scholar), and Personalized Tweet Paraphrasing (Tweet) — and long-text gener-
ation — Personalized Abstract Generation (Abstract), Personalized Topic Generation (Topic), and
Personalized Product Review Generation (Review). In all experiments, we first use Contriever (Izac-
ard et al., 2022) to retrieve the top 20 records as the user history H, and then select 5 of them with
different methods to construct the user profile P .

4.2 BASELINE METHODS

We focus on the setting where the LLM is kept frozen and no ground-truth profile is available for
training the reranker. Therefore, we compare with three categories of prior methods that, likewise,
neither fine-tune the LLM nor rely on supervision from ground-truth retrieval results.

The baselines we compare with include (i) Zero-Shot Rerankers that apply pre-trained LLMs di-
rectly without further fine-tuning. We compare with ICR Chen et al. (2025) and RankGPT Sun
et al. (2023). For both methods, we adopt Llama-3-8B-Instruct as the reranker LLM. We
also report the performance of RankGPT on GPT-5 nano to reflect methods that distill knowledge
from the ranking results of state-of-the-art proprietary LLMs (Pradeep et al., 2023a;b; Tamber et al.,
2023; Gangi Reddy et al., 2024). (ii) In-Context Retrieval-Augmented Language Models that do
not fine-tune the LLM. These include REPLUG-LSR Shi et al. (2024) and In-Context RALM Ram
et al. (2023). Both methods consider only one record at a time when generating a response. They
incorporate multiple records from the user profile either through marginalization (REPLUG-LSR)
or through context switching, where reranking is performed multiple times during decoding to swap
in new records (In-Context RALM). Additionally, we include (iii) Efficient Dense and Sparse Re-
trievers, applied directly as rerankers. Specifically, we use the dense retriever Contriever Izacard
et al. (2022) and the sparse retriever BM25 Robertson & Zaragoza (2009). These methods represent
the efficiency-oriented side of the efficiency–performance trade-off. Due to the space limit, we only
briefly describe the baseline methods in the main paper. For detailed illustrations of these baselines,
please refer to Appendix D.1.

5 EXPERIMENT RESULTS

5.1 OVERALL PERFORMANCE COMPARISON

Table 1 presents the results of PURPLE and baseline methods on the LaMP benchmark, while
Table 2 contains the results on the LongLaMP benchmark. The main findings are as follows:

0 10 20
Throughput (examples/sec)

0.165

0.170

0.175

0.180

0.185

Pe
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ce PURPLE (Ours)

ICR

RankGPT-Llama3

News

Figure 3: Performance–throughput
graph on the News dataset. PUR-
PLE is faster than LLM-based
rerankers while achieving better
performance.

PURPLE consistently outperforms strong baselines
across LLM scales Across all tasks and LLMs of vary-
ing sizes, PURPLE achieves consistent improvements over
existing methods. Compared with Contriever, which is of
comparable model size, our learned propensity scores provide
more effective ranking signals than raw relevance. Compared
with zero-shot rerankers, namely RankGPT and ICR, which
use much larger backbone LLMs and incur higher inference
cost, PURPLE achieves stronger personalization with a much
smaller model, since training with log-probability rewards
allows us to better capture the utility of profiles formed by
multiple records. Compared with in-context RALMs, namely
REPLUG and In-Context RALM, which provide user records
one at a time to the LLM and combine multiple records post
hoc, our single-stage modeling more effectively captures per-
sonalized signals, highlighting the advantage of treating user
profiles holistically.

PURPLE outperforms baselines with high computational
throughput. Figure 3 shows on a representative LaMP
dataset that PURPLE outperforms existing methods while be-
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ing more efficient. We can observe that PURPLE maintains higher performance that ICR and
RankGPT-Llama3 while achieving high computational throughput.

PURPLE is effective across task types, including regression. Although our reward is based on
the log-probability that the LLM assigns to the ground-truth response, it does not directly reflect
numerical distances between regression targets, as shown in Table 2. PURPLE still achieves strong
gains on regression tasks. This demonstrates that log probability provides a principled and broadly
applicable reward signal across diverse task formats.

Table 2: Results of PURPLE and baselines on three datasets from the LongLaMP benchmark (Ku-
mar et al., 2024). The best and second-best result in each column is highlighted in bold and
underlined.

Task Abstract Topic Review
Metric R1 / RL / M R1 / RL / M R1 / RL / M

With Phi-4-Mini-Instruct (3.84B)
BM25 38.8 / 22.2 / 26.3 24.7 / 12.4 / 17.3 27.5 / 13.8 / 16.7
Contriever 38.6 / 21.7 / 26.0 23.5 / 12.1 / 16.3 27.6 / 13.8 / 16.8
IC-RALM-Llama-3-8B-Instruct 37.2 / 21.1 / 25.0 23.0 / 11.5 / 16.1 26.7 / 13.3 / 16.0
REPLUG-LSR 36.3 / 21.5 / 23.5 16.8 / 9.3 / 10.6 24.4 / 12.6 / 14.5
RankGPT-Llama-3-8B-Instruct 38.8 / 22.1 / 26.3 24.5 / 12.3 / 17.2 27.1 / 13.6 / 16.4
RankGPT-GPT5-nano 39.1 / 22.4 / 26.9 24.9 / 12.5 / 17.5 27.1 / 13.7 / 16.6
ICR-Llama-3-8B-Instruct 38.8 / 22.2 / 26.4 23.6 / 12.1 / 16.2 27.8 / 13.9 / 17.0
PURPLE (Ours) 38.9 / 22.3 / 26.5 24.8 / 12.4 / 17.3 27.9 / 14.0 / 17.1
With Llama-3-8B-Instruct (8.03B)
BM25 42.2 / 24.2 / 31.7 28.9 / 14.3 / 20.4 33.4 / 16.3 / 21.3
Contriever 42.0 / 23.9 / 31.4 28.9 / 14.6 / 20.0 33.1 / 16.2 / 20.8
IC-RALM-Llama-3-8B-Instruct 39.4 / 21.3 / 29.5 26.1 / 12.7 / 17.9 31.3 / 14.8 / 19.5
REPLUG-LSR 38.7 / 21.1 / 28.7 21.7 / 11.5 / 13.5 18.0 / 9.9 / 10.1
RankGPT-Llama-3-8B-Instruct 42.3 / 24.3 / 31.8 29.1 / 14.5 / 20.6 33.5 / 16.4 / 21.4
RankGPT-GPT5-nano 42.5 / 24.5 / 32.1 28.7 / 14.2 / 20.2 33.6 / 16.5 / 21.4
ICR-Llama-3-8B-Instruct 42.2 / 24.1 / 31.7 29.0 / 14.4 / 20.5 33.1 / 16.2 / 20.8
PURPLE (Ours) 42.4 / 24.4 / 32.3 28.4 / 14.1 / 19.5 33.4 / 16.5 / 21.1

5.2 ABLATION STUDIES

Table 3 presents the ablation studies of PURPLE using Llama-3-8B-Instruct. Overall, we
examine two key design choices. First, instead of performing token-level cross attention, we test a
simplified variant, referring to w/o CA in Table 3, that encodes the entire query into a single embed-
ding and appends it as an extra token to the Transformer encoder. This approach is less effective,
indicating that fine-grained token-level interactions between the query and user records are crucial
for accurate personalization. Second, we remove the Transformer encoder entirely, referring to w/o
RDM in Table 3, resulting in a point-wise scoring model where each record is scored independently.
This variant shows the largest performance drop across tasks. While it can still leverage individually
informative records, it fails to model dependencies such as redundancy and complementarity among
records. In contrast, the full model with the Transformer encoder captures cross-record depen-
dencies, enabling it to identify overlapping information and combine mutually supportive records,
thereby achieving better personalization quality.

These results highlight that both token-level cross attention and cross-record dependency modeling
are indispensable, validating our design of treating user profiles as structured contexts rather than
isolated records.

5.3 ANALYSIS: SELECTING TOPK AT INFERENCE

To further examine the quality of the learned propensity scores, we compare our top-5 selection
against baselines including ICR, RankGPT, and Contriever. For each example in the test set, we
consider the top-5 records proposed by each method and enumerate 5! = 120 possible orderings.
We then randomly sample 5 orderings as controls. As shown in Figure 4, across this expanded
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Table 3: Ablation study of PURPLE. We use both Phi-4-Mini-Instruct and
Llama-3-8B-Instruct for the experiment. CA and RDM stand for cross-attention and record
dependency modeling, respectively. The former fuses query and record into token-level representa-
tions, while the latter explicitly models dependencies among records.

Task Citation Movie Rating News Scholar Tweet
Metric Acc. / F1 Acc. / F1 MAE / RMSE RG1 / RGL / MT RG1 / RGL / MT RG1 / RGL / MT

With Phi-4-Mini-Instruct (3.84B)
PURPLE 66.2 / 65.8 38.2 / 33.6 0.405 / 0.788 15.2 / 13.5 / 12.5 40.0 / 33.5 / 42.4 39.1 / 34.0 / 35.9

w/o CA 64.8 / 64.5 35.1 / 29.7 0.440 / 0.816 14.8 / 13.2 / 12.4 40.0 / 33.5 / 42.2 39.1 / 34.1 / 36.0
w/o RDM 61.3 / 60.6 35.0 / 31.1 0.449 / 0.850 14.5 / 12.8 / 11.9 39.7 / 33.1 / 41.9 39.0 / 34.0 / 36.1

With Llama-3-8B-Instruct (8.03B)
PURPLE 60.2 / 59.8 48.8 / 41.0 0.316 / 0.637 17.7 / 15.9 / 15.4 42.0 / 36.7 / 40.8 32.6 / 27.5 / 28.8

w/o CA 57.9 / 57.6 47.0 / 39.0 0.334 / 0.664 16.8 / 15.2 / 14.6 40.4 / 34.6 / 40.0 32.0 / 27.3 / 28.5
w/o RDM 55.6 / 55.0 44.1 / 37.2 0.328 / 0.647 16.2 / 14.6 / 14.3 39.2 / 33.8 / 38.0 32.2 / 27.7 / 28.8
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Figure 4: Ranking accuracy comparison across tasks using LLaMA-3-8B-Instruct. PURPLE
achieves the highest accuracy on all datasets, consistently outperforming heuristic retrievers (Con-
triever), LLM-based rerankers (RankGPT), and in-context rerankers (ICR).

evaluation, we find that orderings induced by our learned propensity scores are more frequently
ranked as the best among the six candidates. This result indicates that our scoring function better
captures relative preferences between records, rather than relying on local pairwise relevance alone.
These findings highlight that our method not only identifies useful records but also arranges them in
an order that maximizes downstream personalization utility.

6 CONCLUSION AND DISCUSSION

In this work, we studied the problem of retrieval-augmented personalization for large language mod-
els. Through a systematic motivation study, we revealed two fundamental challenges: (i) record
relevance does not reliably predict personalization utility, and (ii) utility is non-monotonic across
records, making greedy aggregation suboptimal. To address these limitations, we proposed PUR-
PLE, a contextual bandit framework that optimizes user profiles by directly leveraging downstream
performance as feedback. PURPLE jointly models query–record interactions and cross-record de-
pendencies, enabling adaptive selection of user profiles beyond static heuristics. Extensive experi-
ments on nine real-world personalization tasks across classification, regression, and text generation
showed that PURPLE consistently outperforms heuristic retrievers, LLM-based rerankers, and in-
context RALMs, while being significantly more efficient. These results establish contextual bandit
retrieval as a principled and scalable paradigm for personalized LLMs. One limitation of our work
is that PURPLE requires separate training on each dataset; in future work, we plan to investigate its
ability to generalize across tasks and domains. We believe PURPLE opens a promising direction for
integrating learning-based profile construction into retrieval-augmented generation, and we hope it
inspires future work on reinforcement learning for efficient personalization.
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REPRODUCIBILITY STATEMENT

We place a strong emphasis on reproducibility. In the main text, we provide detailed descriptions of
our user record encoder architecture, including the cross-attention mechanism, Transformer encoder
design, and the Plackett–Luce formulation for profile selection. In the experiments section, we
carefully document the training configurations, such as batch size, learning rate, number of epochs,
optimizer settings, and gradient clipping, to facilitate faithful re-implementation. We also release a
well-configured codebase that contains scripts for dataset preprocessing, prompt templates, model
training, and evaluation. The codebase is designed to be plug-and-play, requiring minimal setup,
and ensures that all experiments reported in the paper can be reproduced reliably.

LLM USAGE STATEMENT

During the preparation of this manuscript, we employed large language models (LLMs) to assist
with English writing refinement and style polishing. All technical content, including the design of
PURPLE, theoretical formulations, experimental setup, and reported results, was conceived, imple-
mented, and validated by the authors. The LLMs were used solely for linguistic improvement and
did not contribute to the research methodology or experimental findings.
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A DETAILS OF EMPIRICAL STUDY

We study the role of user history records in the Personalized Product Review Generation task (Ku-
mar et al., 2024). Each data sample corresponds to a unique user with a query x, a ground-truth
personalized response y, and a user history H consisting of a sequence of (query, response) pairs
from the same user. For each record hi ∈ H, we measure and define: (i) Relevance: semantic sim-
ilarity between hi and the query x, computed as cosine similarity of their Contriever embeddings:
rel(hi) = cos(Enc(x),Enc(hi)). (ii) Utility: improvement in generation quality when hi is included
in the LLM’s prompt. Let y′ be the LLM’s output without knowing any personalized history records,
and y′i the output with injecting hi in the prompt. Utility can then be formally defined as the BLEU
score improvement by comparing with the ground truth: util(hi) = BLEU(y′i, y) − BLEU(y′, y).
Note that utility can also be extended to a user profile containing multiple records by replacing hi

with a sequence.

Observ. 1: Utility ̸= Relevance. We first examine whether semantic relevance between a user
record and the current query is a reliable proxy for personalization utility. For visualization, we
select 15 representative users from the dataset, 5 with relatively few history records, 5 with a medium
number, and 5 with a large number, and compute both the relevance score and utility score for each
of their records independently. All records are aggregated into a single scatter plot, where different
colors denote different users.

Figure 1 (left) plots relevance on the x-axis and utility on the y-axis. A global regression line (black),
along with its 95% confidence interval, is overlaid for easier inspection of the overall trend. The re-
gression indicates a positive correlation (Pearson r = 0.41, p < 0.001), confirming that relevance
and utility are generally related. However, the alignment is far from perfect: many highly relevant
records provide little or no utility (points near the bottom-right), while some moderately relevant
records deliver large improvements (points near the upper-left). This demonstrates that simply se-
lecting the most relevant records is insufficient for effective personalization, since relevance alone
does not reliably indicate utility.

Observ. 2: Utility is Non-monotonic. In practice, a user profile generally contains multiple history
records. A natural question is whether the best profile (with the highest utility) can be constructed
by simply concatenating the individually strongest records, or whether record interactions play a
significant role. To test this, we fix the profile size to k = 3 and enumerate all A3

5 = 60 ordered
profiles formed from the top-5 records of each user, based on their individual utility. We conduct
this study on the same 15 users as in Figure 1 (left).

As shown in Figure 1 (middle), the x-axis indexes users, sorted by the rank of their naı̈ve top-3
profile (formed by greedily selecting the three records with the highest individual utility). The plot
contains two y-axes: the left axis (bars) shows the rank position of the naı̈ve profile among all 60
possible profiles, while the right axis (green line) shows the utility gap between the naı̈ve profile and
the optimal one. A higher bar means the naı̈ve profile is far from the top-ranked profile, and a larger
utility gap indicates the greedy strategy performs substantially worse than optimal. Across users, the
naı̈ve top-3 profile rarely achieves the best rank and often incurs a non-trivial utility gap, indicating
that greedy aggregation even by utility is frequently suboptimal.

To further illustrate the interaction of user records, Figure 1 (right) examines user profiles of up to
three records, drawn from the same top-3 records (again ranked by individual utility). For simplicity,
we ignore the order in each profile and analyze interactions between disjoint profiles. Specifically,
for two profiles PA and PB , we compute ∆util(PA,PB) = util(PA∪PB)−

(
util(PA)+util(PB)

)
,

which measures whether the joint utility of the union exceeds (positive) or falls short of (negative) the
sum of its components. The heatmap indexes subsets on both axes and each cell reports the average
∆util across the 15 users. Cells with overlapping subsets are omitted, since their union would
not meaningfully isolate interaction effects. This visualization shows that even when individual
or pairwise profiles appear useful, adding them together can reduce overall utility, while certain
combinations of moderate records can yield positive gains. Such non-monotonicity underscores that
effective user profiles cannot be built by greedily aggregating individually strong records, but must
explicitly account for cross-record interactions.
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B DETAILS OF GRADIENT ESTIMATION

To estimate the gradient in Equation 2, we first draw a batch of examples {(Hb, xb, yb)}Bb=1. For
each example, we sample M profiles P1

b , . . . ,PM
b from πθ(· | Cb), and finally compute the empirical

mean. This learning procedure corresponds to the REINFORCE algorithm (Sutton et al., 1999), with
gradient estimate:

∇θJ (θ) ≈ 1

B

B∑
b=1

1

M

M∑
m=1

∇θ log πθ(Pm
b | Cb)r̃mb . (5)

To reduce variance in gradient estimation, we apply reward normalization over the M profiles sam-
pled for each example. Concretely, for each example with rewards rb = [r1b , . . . , r

M
b ]⊤, where

rmb = R(Φ(Pm
b , xb), yb), the normalized reward is computed as r̃mb =

rmb −mean(rb)
std(rb)

.

C MOTIVATING OUR REWARD

The specific choice of using the log probability of ground truth personalized response is grounded in
the generative modeling perspective of retrieval-augmented generation (RAG) (Lewis et al., 2020),
where the user profile is treated as a latent variable and the response likelihood is obtained by
marginalizing over all possible profile selections. Applying Jensen’s inequality to the training ob-
jective in this setting gives:

E(H,x,y)∼D

[
log

(∑
P∈PermK(H)

πθ(P | C)pΦ(y | P, x)

)]
≥ E(H,x,y)∼D,P∼πθ(·|C)[log pΦ(y | P, x)].

(6)

Therefore, maximizing the expected reward under our reinforcement learning objective is equivalent
to maximizing the evidence lower bound (ELBO), with pΦ modeled by a frozen LLM.

D EXPERIMENTAL SETUP

D.1 DETAILED BASELINE METHODS

We focus on the setting where the LLM is kept frozen and no ground-truth profile is available for
training the reranker. This setting is reasonable for personalization as it represents cases where
the retrieval corpus consists of past user records and no additional labeling on golden retrieval is
required. Therefore, we compare with three categories of prior methods that, likewise, neither fine-
tune the LLM nor rely on supervision from ground-truth retrieval results.

The baselines we compare with include (i) Zero-Shot Rerankers that apply pre-trained LLMs di-
rectly without further fine-tuning. We compare with ICR Chen et al. (2025), which leverages the
LLM’s attention scores to rank user records, as well as RankGPT Sun et al. (2023), which prompts
the LLM to directly output a ranking order. For both methods, we adopt Llama-3-8B-Instruct
as the reranker LLM, as larger models would incur prohibitive costs in the retrieval pipeline. In ad-
dition, there exists a line of rerankers that do not rely on ground-truth supervision but instead distill
knowledge from the ranking results of state-of-the-art proprietary LLMs (Pradeep et al., 2023a;b;
Tamber et al., 2023; Gangi Reddy et al., 2024). We therefore report the performance of RankGPT
with GPT-5 nano to reflect an upper bound of such methods. (ii) In-Context Retrieval-Augmented
Language Models that do not fine-tune the LLM. These include REPLUG-LSR Shi et al. (2024),
which trains the reranker to match the LM likelihood of each user record, as well as In-Context
RALM Ram et al. (2023), which leverages the likelihood of recently generated tokens to rerank
user records. Both methods consider only one record at a time when generating a response. They
incorporate multiple records from the user profile either through marginalization (REPLUG-LSR)
or through context switching, where reranking is performed multiple times during decoding to swap
in new records (In-Context RALM). These design choices arise because directly evaluating all com-
binations of records would be computationally intractable under their frameworks, which is a lim-
itation our method aims to overcome. Additionally, we include (iii) Efficient Dense and Sparse
Retrievers, applied directly as rerankers. Specifically, we use the dense retriever Contriever Izacard
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et al. (2022) and the sparse retriever BM25 Robertson & Zaragoza (2009). These methods represent
the efficiency-oriented side of the efficiency–performance trade-off.

D.2 IMPLEMENTATION DETAILS

We employ a frozen pre-trained Contriever to first encode both queries and user history records into
token embeddings. The only trainable components are the remaining modules of the user record
encoder. These include a cross-attention layer that integrates query information into record em-
beddings, a Transformer encoder that captures inter-record dependencies, and an MLP decoder that
maps the updated record encodings into scalar propensity scores. We set the number of Transformer
encoder layers to l = 12, resulting in a parameter size roughly twice that of Contriever, while still
being substantially faster than the baseline ZSRs and In-Context RALMs. For gradient estimation,
we use a batch size of B = 16 and sample M = 32 user profiles for each example. We train the
model for 10 epochs using the Adam optimizer (Kingma & Ba, 2017) with β1 = 0.9, β2 = 0.999,
and a learning rate of 1 × 10−4. During training, we apply a gradient clipping norm of 1.0. The
checkpoint achieving the best validation performance is selected for testing.

In all experiments, we use frozen LLMs both to generate personalized responses and to evaluate the
log probability of ground-truth responses conditioned on the query and user profiles (i.e., our re-
ward). For generations, we set the temperature to T = 0.7 and employ nucleus sampling (Holtzman
et al., 2020) with top p = 0.8. For Phi-4-Mini-Instruct and Llama-3-8B-Instruct,
we deploy on a single NVIDIA H100 GPU. For Llama-3-70B-Instruct, we deploy the model
across four NVIDIA H100 GPUs using vLLM (Kwon et al., 2023). All LLMs are deployed in BF16
precision. Training of PURPLE is conducted on the same GPUs used for LLM deployment.
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