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Abstract
Modern large language models (LLMs) show
promising progress in formalizing informal math-
ematics into machine-verifiable theorems. How-
ever, these methods still face bottlenecks due to
the limited quantity and quality of multilingual
parallel corpora. In this paper, we propose KELPS
(Knowledge-Equation based Logical Processing
System), a neuro-symbolic framework for syn-
thesizing multiple high-quality formal languages
(Lean, Coq, and Isabelle) from informal mathe-
matical text. First, we translate natural language
into Knowledge Equations (KEs), a novel lan-
guage that we designed, theoretically grounded in
assertional logic. Next, we convert them to target
languages through rigorously defined rules that
preserve both syntactic structure and semantic
meaning. This process yielded a parallel corpus
of over 60,000 problems. Our KELPS transla-
tor, fine-tuned on this dataset, finally achieves a
96.2% syntactic accuracy (pass@1) on MiniF2F
with one-time automated grammar correction,
outperforming SOTA models such as Deepseek-
V3 (87.8%) and Herald (90.3%) across multiple
datasets.

1. Introduction
Formalizing mathematical semantics as machine-verifiable
codes has been a fundamental pursuit since Leibniz to Wu
Wen-Tsun (Wu, 2001), as informal statements’ ambiguity
impedes proof verification, particularly in advanced mathe-
matics. Many sophisticated mathematical proofs span hun-
dreds of pages and require extensive verification by experts,
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Figure 1. An overview of the relationships between natural lan-
guage (NL), Knowledge Equations (KEs), and formal languages
(FLs). KEs are extracted from NL through semantic parsing, then
transformed into various FLs via specific syntactic rules.

while such verification cannot eliminate minor errors or
critical flaws.

A rigorous formal system is therefore essential for unam-
biguous mathematical representation. To bridge the gap be-
tween informal mathematics and such systems,modern proof
assistants (e.g., Coq, Lean) have been developed, demon-
strating significant potential through landmark achievements
such as the formalization of the Four-Color Theorem in
Coq (Gonthier et al., 2008) and the Liquid Tensor Experi-
ment (Scholze, 2022) in Lean4. However, manually writing
formal proofs remains laborious, creating a bottleneck for
widespread adoption. Automating this process is thus criti-
cal, and we focus specifically on statement autoformaliza-
tion—a necessary prerequisite for full proof automation.

The autoformalization challenge has been approached
through evolving methodologies. Initial efforts (Wang et al.,
2018) framed this as a machine translation task, employ-
ing neural models to convert LaTeX-written text into Mizar
formal language. While subsequent work leveraging large-
scale NL-FL parallel datasets through fine-tuning showed
promising results, these approaches face inherent limitations
due to data scarcity and lack of diversity in available NL-
FL pairs. Recent advances (Wu et al., 2022) have shifted
toward exploiting LLMs’ in-context learning capabilities,
with complementary strategies emerging, including forward
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translation of natural language problems (Ying et al., 2024)
and back-translation of formal corpora (Gao et al., 2025).
However, persistent challenges remain in ensuring high-
quality synthetic data generation and maintaining rigorous
semantic alignment between natural and formal language
representations.

To address this problem, We introduce KELPS, a rule-based
framework designed to synthesis multiple formal statements,
including Lean4 (Moura & Ullrich, 2021), Coq (Barras et al.,
1999), and Isabelle (Paulson, 1994). As illustrated in Figure
2, KELPS consists of three core components.

(1) Semantic Parsing. The input natural language is first
translated into an intermediate formal representation—the
Knowledge Equation. The formal definition and implemen-
tation details are in Section 3.1.

(2) Syntactic Alignment. The results in stage 1 are then
parsed and converted into various formal languages via
parallel complex rules. Compilers will help to check its
correctness.

(3) Semantic Verification. Formal statements generated
in Stage 2, even though compiled successfully, still need
semantic checks to be correct. We adopt the approach pro-
posed in (Xin et al., 2025), leveraging a LLM-as-a-Judge
framework.

We propose a data augmentation and expert iteration frame-
work for progressive model enhancement. Our approach
combines two key strategies: (1) A data synthesis module
that efficiently generates various formalization data through
randomized combinations of concepts and operators; (2) An
expert iteration process where our model successfully parsed
>60,000 formalized problems. The synthesized dataset
was used to train our KELPS translator model. Compre-
hensive evaluations demonstrate its superior performance,
achieving a raw 88.9% (pass@1) syntactic accuracy in the
MiniF2F test, outperforming baseline models including Her-
ald (81.3%), DeepSeek-v3 (81%) and Llama (61.4%).

Our main contributions are as follows.

• We develop the first unified framework for auto-
matically synthesizing multiple parallel NL-FL data
via an intermediate representation, enabling quality-
controlled data-generation process.

• We introduce a 60K dataset covering K-12 to under-
graduate mathematics, combining real-world problems
and synthetic examples with verified formalizations.

• We introduce the KELPS translator, which achieves
88.9% accuracy on MiniF2F (+7.6% over Herald),
shows substantial improvements over existing base-
lines on mainstream evaluation benchmarks.

2. Related Work
2.1. Formal System

Natural languages exhibit inherent ambiguity in both textual
and symbolic forms (Ganesalingam, 2013), complicating
syntactic analysis and semantic extraction. This has moti-
vated systematic efforts to formalize mathematical expres-
sions through logical frameworks (Trybulec, 1989; Gordon,
2000; Carneiro, 2024). Existing approaches fall into two
main distinct categories: controlled natural languages and
formal language systems.

Controlled Natural Language (CNL) systems employ re-
stricted natural language subsets with predefined grammars,
as exemplified by Mizar (Grabowski et al., 2010) and Math-
Nat (Humayoun & Raffalli, 2010). Recent advances in-
clude grammatical frameworks like GF (Ranta, 2004), with
GFLean (Pathak, 2024) demonstrating direct text-to-Lean
parsing.

Formal language systems (Lean, Coq) uniformly repre-
sent theorems through three core elements (Declaration,
Fact, Query) despite differing in styles. To our knowl-
edge, this work presents the first automated framework sup-
porting multi-formal-language translation. Compared to
existing formal languages, our knowledge equation frame-
work achieves superior expressiveness and natural language
alignment while maintaining simpler structure and better
extensibility.

2.2. Autoformalization

Autoformalization constitutes a specialized machine trans-
lation task that transforms natural language statements into
formal representations while preserving semantic content
and complying with target syntax requirements. Initial inves-
tigations explored neural approaches like (Wang et al., 2018;
Cunningham et al., 2023), demonstrating the feasibility of
this paradigm.

Current research on LLM-based autoformalization primar-
ily follows two dominant approaches: (1) few-shot in-
context learning (Wu et al., 2022; Patel et al., 2023; Zhou
et al., 2024), and (2) fine-tuning LLMs on NL-FL pairs
(Lu et al., 2024a;b; Gao et al., 2025). While the latter has
shown promising results with 96% (pass@128) accuracy
in MiniF2F (Zheng et al., 2021), performance drops to just
16% (pass@128) on the College CoT benchmark, revealing
the critical limitation of NL-FL data scarcity.

A parallel research direction addresses the more challenging
task of formal proof generation, where natural language
proofs often diverge substantially from their formal counter-
parts. Current approaches include: (1) proof decomposition
into draft skeletons with subsequent completion (Jiang et al.,
2022; Wang et al., 2023), and (2) direct neural translation of
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Figure 2. Overview of Data Synthesis Process. (a) Data Collection. We gather problems from various sources, including online resources
and exercise sets, and construct an ontology library of relevant concepts and theorems. Through filtering and data synthesis strategies, we
obtain a natural language (NL) corpus. (b) Semantic Parsing. We employ the KELPS model to perform semantic parsing, translating
natural language problems into knowledge equations. The initial iteration of data is obtained through annotation. (c) Syntax Validation.
The knowledge equations generated in (b) are validated by the AL Parser. Problems that pass validation are then converted into other
formal languages via rule-based transformation. (d) Semantic Validation. Data that passes the compiler validation in the previous stage
undergoes semantic review by both LLMs and human experts. Finally, the verified data is incorporated into the dataset, which is then used
to continuously train the baseline model.

informal proofs (Wang et al., 2024; Shao et al., 2024). The
first approach uses language models to complete proof steps
within a structured framework, whereas the second aims for
complete automated translation.

2.3. NL-FL Dataset Generation

The scarcity of high-quality, large-scale natural language-
formal language (NL-FL) parallel datasets remains a funda-
mental challenge in autoformalization research. Since hiring
domain experts for annotation is expensive and inefficient,
recent work has investigated leveraging large language mod-
els for scalable dataset generation. Existing approaches
include two main categories:

The first line of work (Jiang et al., 2023; Li et al., 2024; Ying
et al., 2024) exploits the wide availability of informal mathe-
matical texts, using LLMs to translate NL statements into FL
statements. Although this pipeline has yielded some large-
scale datasets, it remains hampered by several limitations:
the translation pipeline requires extensive post-processing,
often produces low-quality statements, and faces challenges
due to the scarcity of cutting-edge domain data.

The alternative paradigm (Wu et al., 2024; Gao et al., 2025)
initiates from formal language corpora, employing LLMs
for backward translation to natural language. While valu-

able, this approach remains fundamentally constrained by
the scope and completeness of existing formal libraries.

Building upon existing work (Huang et al., 2024; Liu et al.,
2025) that generates diverse problems through random-
ized concept selection from a predefined concept library,
we introduce a more controlled synthesis approach. Our
method employs structured Concept-Operator templates
to achieve three key advances: (1) ensuring comprehensive
theorem coverage through a Concept-Operator library, (2)
enabling easy-to-hard theorem synthesis via predefined tem-
plates, and (3) generating theorem diversity through various
Concept-Operator combinations.

3. Methodology
In this section, we present our core methodologies for state-
ment autoformalization and dataset construction. Section 3.1
establishes our theoretical foundations (Assertional Logic
and Knowledge Equations). Section 3.2 presents the com-
plete system architecture, and Section 3.3 details our syn-
thetic data generation strategy.

3.1. Assertional Logic and Knowledge Equation

We introduce Assertional Logic (AL), a knowledge repre-
sentation system with formally specified syntax.
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3.1.1. AN INTRODUCTION TO ASSERTIONAL LOGIC

Assertional Logic (AL) (Zhou, 2017), is an extension of first-
order logic with enhanced power as expressive as higher-
order logic, while these representations are usually human-
friendly.
Definition 3.1. The Syntactic structure of a given domain
in AL is a tripe ⟨I, C,O⟩. I is the collection of individuals,
corresponding to objects in the domain. C is the collection
of concepts, representing all sets of objects that have some
properties in common. O is the collection of all operators,
which acts among concepts and individuals like a function.

This structure has a natural correspondence with set theory,
where individuals map to elements, concepts to sets, and
operators to functions.
Definition 3.2. An assertion is the of form

a = b (1)

where a and b are two terms. From a semantic perspective,
it claims that the left and the right side refer to the same
thing. A term is an individual, either an atomic individual
a ∈ I or the compound individuals O(a1, ..., an). Where
O represents an operator on some individuals a1, ..., an.

Building upon AL, we presented Knowledge Equations (KE)
to represent all knowledge with the same form. There is an
example in Fig 1.

3.1.2. TRANSLATE KE INTO MULTIPLE LANGUAGE

One of the biggest benefits of AL is that it could uniformly
formalize every knowledge into assertions of the form a = b.
Consequently, all mathematical assertions can be systemati-
cally translated into other formal languages, including but
not limited to Lean and Coq.

Unlike GFLean (Pathak, 2024) which handles natural lan-
guage in its entirety, our method specifically targets asser-
tions, concepts, and operators. The simplified syntax works
with just a handful of core elements, enabling efficient trans-
lation to various formal languages.

In summary, a mathematical question can be divide into
three parts: Declaration, Fact and Query. And we give
each of their formal definitions.
Definition 3.3. Declaration part of a knowledge equation
has the form of

var : ConceptType (2)

where “var” represents a free variable (belongs to Individual
in AL) and “ConceptType” is a defined concept. Its seman-
tic meaning is similar to “Assume x is an integer ...” and the
syntactic part of “fixes n :: int” in Isabelle or “(n : Z)” in
Lean4.

Definition 3.4. Fact part of a knowledge equation has the
form of

[Assertion1;Assertion2;Assertion3...] (3)

During the translation process, KELPS model will system-
atically capture all known information, (including inferable
propositions such as “Set S is finite”), and formalize them
as assertions. By leveraging the equivalence of a proposi-
tion A ≡ (A = True), this representation ensures seamless
translation to various formal languages.

Definition 3.5. Query part shares the syntactic structure
with facts, but differs in their semantic meaning.

Assertion (4)

The assertions in the Query typically represent propositions
requiring proof (for closed-form problems) or propositions
we aim to investigate (for open-ended questions). For the
later situation, we use “ ? ” as syntax sugar to replace the
real item. This is just like “ sorry ” in Lean 4.

We designed the Backus-Naur Form (BNF) of Knowledge
Equations based on the formal definitions above. And by
using ANTLR4, we implemented an extensible parser frame-
work that automatically transforms Knowledge Equations
into equivalent representations in target formal languages.
The correctness is guaranteed by translation rules designed
by human experts:

CKE 7→ CTL, OKE 7→ OTL (5)

where CKE and OKE represents concepts and operators in
KE, CTL and OTL represents the same semantic object in
the target language.

3.2. KELPS Framework

In this subsection, we present the KELPS framework (illus-
trated in Figure 2), which comprises three core components:
Semantic Parsing, Syntactic Validation, and Semantic Vali-
dation. We will now describe each component in sequence.

3.2.1. SEMANTIC PARSING

Large-scale data annotation remains highly laborious. We
develop an iterative pipeline that first fine-tunes DeepSeek-
Math-7B-Base on 1,200 manually annotated examples (Fig.
2), then automatically processes unannotated data. The
model’s outputs undergo syntactic and semantic checks,
with validated results expanding the training set through
multiple refinement cycles. After seven iterations, our
model processed > 50K validated samples.
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Table 1. Comparison between KELPS Dataset and Existing Benchmarks (Dataset Scale, Language Support, and Knowledge Coverage)

Benchmark Dataset Size Language Multi-Supported Coverage

MiniF2F 244 Lean4, Isabelle ✓ High-School
PutnamBench 1,709 Lean4, Isabelle, Coq ✓ High-School & Undergraduate
FormalMATH 5,560 Lean4 × High-School & Undergraduate

Lean Workbook 57k Lean4 × High-School
KELPS Dataset 60k Lean4, Isabelle, Coq ✓ High-School & Undergraduate

3.2.2. SYNTAX VALIDATION

To ensure the syntactic correctness of the semantic parsing
results obtained from Section 3.2.1, we implement a two-
stage validation process.

We first perform grammar verification using our ANTLR4-
based knowledge equation parser that guarantees strict com-
pliance with formal specifications. Subsequently, we em-
ploy the target language’s compiler to verify its final cor-
rectness.

For statements processed by the knowledge equation parser,
approximately 80-90% successfully pass validation through
the target language compiler typically. The remaining cases
primarily involve minor type conversion errors, which we
analyze comprehensively in Appendix C.

3.2.3. SEMANTIC VALIDATION

To ensure the semantic correctness of the semantic parsing
results obtained from Section 3.2.2, our evaluation frame-
work incorporates insights from mainstream methods (Wu
et al., 2022; Gao et al., 2025). However, we observe that
back-translation from formal to natural language fails to
preserve semantic fidelity, thereby introducing extra mea-
surement errors. Furthermore, the binary True/False classi-
fication criterion is insufficient for the precise measurement
of semantic alignment in formalized expressions.

We evaluate formalized statements through a graded align-
ment assessment framework (0-5 scale) with corresponding
natural language expressions. Uncompilable statements are
automatically assigned a score of 0. The evaluation is per-
formed using DeepSeek-V3 (version 250324) and Claude
(version sonnet-4-20250514-thinking) with default parame-
ters.

In designing the scoring mechanism, we observe that
DeepSeek-V3 consistently assigned higher scores than
Claude, with an average difference of about 1 point. This
stems from differing evaluation criteria: DeepSeek-V3 is
more lenient, often giving full marks for generally reason-
able outputs, whereas Claude is more stringent, penalizing
even minor errors. To reduce the impact of such bias, we
manually analyzed sampled results and confirmed the con-
sistency of this pattern (see Appendix C). Therefore, we

adopt the arithmetic mean of the two scores as the final met-
ric to better reflect the combined evaluation perspectives.

3.3. AL-FL Data Generation

This section presents the KELPS dataset construction
methodology - a corpus of 60,000+ NL-FL and AL-FL
pairs supporting major formal languages.

Our pipeline first establishes a mathematics ontology, then
employs dual generation strategies: (1) translation of nat-
ural language problems into AL representations, and (2)
template-based synthesis of NL-AL pairs through a com-
bination of templates. Implementation details follow in
subsequent sections.

3.3.1. BUILDING THE MATHEMATICAL ONTOLOGY

We manually constructed a mathematics ontology covering
most K12 and selected undergraduate-level mathematical
topics, which comprises 6 major topics, 40 core concepts,
and 180 operators. This ontology development effort re-
quired approximately three weeks of work by two mathe-
matical graduate students.

The complete specifications and structural details of the
ontology are provided in Appendix A.

3.3.2. COLLECTION AND PROCESSING DATA

This module discusses two main steps in building our dataset
from NL problems —- problem collection, filtering, and
translation.

NL Problems Collection

The Numina (Li et al., 2024) dataset represents the largest
and most comprehensive open-source collection of K12
mathematics materials, incorporating diverse sources rang-
ing from AIME competition problems to Chinese K12 cur-
riculum content. In this study, we selected Numina as our
primary reference dataset due to its unique coverage that sub-
sumes content from numerous other mathematical datasets.

Filtering and Translation

We first filtered out unsupported problems from the Nu-
mina dataset, including out-of-ontology mathematical ques-
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tions, retaining approximately 100,000 items. Subsequently,
we removed problems unsuitable for formalization, such
as questions with graphical representations. Finally, we
yielded a corpus of 70,000 problems for translation.

We adopted an expert-iterative approach for continuous
problem parsing and successfully translated 50,000 prob-
lems after seven iterations.

3.3.3. SYNTHESIS STRATEGIES

This subsection presents our synthetic data generation frame-
work, which consists of two key components: template cre-
ation based on our mathematical ontology, and a systematic
template combination strategy.

Templates Creation

Using the strong in-context learning capabilities of LLM,
we found that providing just 3-shot examples was sufficient
for the model to correctly learn patterns of target concepts
and operators. For our template-based generation tasks,
DeepSeek-v3 (Liu et al., 2024) achieved a 90% syntactic
accuracy.

In addition to templates derived from individual concepts,
we extract specialized templates from concrete problem
instances. For example, the problem “Find all integers such
that [a is a prime and a < 15]” is abstracted into a template
where the condition “[a is a prime and a < 15]” is replaced
with a generic “[property]” placeholder. This approach
enhances the model’s capacity to generate diverse problem
variations.

Templates Combination

However, this approach tended to produce problems with
limited diversity, and the model occasionally made errors
due to incomplete conceptual understanding. To address
these limitations, we developed a composite template strat-
egy that systematically combines templates of varying com-
plexity - from basic concept applications to advanced prob-
lem types. We ultimately constructed a corpus of 50+ high-
quality templates. The combination of templates enables
the model to go beyond simple problem generation, demon-
strating remarkable creativity.

The complete set of prompting templates employed to gen-
erate synthetic data is provided in Appendix B.2.

4. Experiments
We conduct a comprehensive series of experiments to evalu-
ate both the performance of the KELPS translator and the
quality of the KELPS dataset. Section 4.1 details the exper-
imental setup and configurations. Section 4.2 presents the
main results of multiple benchmarks. Section 4.3 provides
an ablation study to analyze the effect of different compo-

nents. Finally, Section 4.4 offers a further analysis of the
influencing factors behind the results.

4.1. Experimental Setup

Fine-tuning. We employ DeepSeek-Math-7B-Base as our
base model and conduct supervised fine-tuning on the
KELPS dataset using a full-parameter training approach.

Dataset. To evaluate the performance of our system,
we conduct comparative benchmarks across three math-
ematical datasets: MiniF2F, FormalMATH, and Numina-
Hard. These established benchmarks comprehensively cover
olympiad/undergraduate mathematics through diverse prob-
lem types, ideal for formalization testing.

• MiniF2F. (Zheng et al., 2021) A widely adopted mul-
tilingual benchmark for auto-formalization tasks, com-
prising K12-level mathematical problems. In this work,
we only evaluate its test set.

• FormalMATH. (Yu et al., 2025) A formalized mathe-
matical benchmark that spans Olympic competitions
and undergraduate-level problems in multiple domains.
We randomly select 200 problems across various math-
ematical domains for evaluation.

• Numina-Hard. The Numina-Hard dataset comprises
300 challenging problems randomly selected from the
KELPS dataset.

Due to the comprehensiveness and practicality of Mathlib
(Blokpoel, 2024), we adopt Lean4 as our primary formaliza-
tion language. All experiments are conducted in Lean4 by
default. In addition, we evaluate the NL to Isabelle transla-
tion on the MiniF2F benchmark. Herald’s results (Gao et al.,
2025) were excluded as their experimental setup diverged
from our task requirements.

Experimental Process. To validate our model’s capabil-
ities, we employ the experimental pipeline illustrated in
Fig 2. It comprises three core steps: semantic parsing,
syntax validation, and semantic validation, with detailed
descriptions provided in Section 3.3. For the Herald model,
we rigorously maintain the original configuration reported
in (Gao et al., 2025). The implementation details and hy-
perparameter settings for all other models are provided in
Appendix B.1.

All KELPS experiments used NL-Lean4 fine-tuning and
translated directly into Lean4 in this chapter, except for
MiniF2F-Isabelle, which employed NL-AL training fol-
lowed by rule-based Isabelle translation.

Our experimental environment utilizes Lean v4.19.0 (with
Mathlib4 of the same version), and Isabelle 2025 (March
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Table 2. Evaluating Performance Across Different Models and Datasets. We highlight the top-performing results for syntactic accuracy in
red and those for semantic accuracy in green. Syntactic accuracy is determined by whether the code passes compiler verification, while
semantic accuracy scores are obtained through LLM majority voting. The version of Deepseek-V3 used is DeepSeek-V3-0324. Given the
substantial volume of problems, we selectively sampled 200 questions from FormalMATH and 300 from Numina-Hard for experiments.
CR (Corrected Results) denotes the outcomes after rectifying erroneous problems by incorporating compiler error messages.

Model MiniF2F MiniF2F-Isabelle Numina-Hard FormalMATH

Syntax Semantic Syntax Semantic Syntax Semantic Syntax Semantic

DeepSeek-V3 (671B) 80.7% 3.90 56.5% 2.67 79.3% 3.73 58.3% 2.84
Herald (7B) 81.3% 3.39 – – 83.7% 2.85 73.8% 2.84

LlaMa-3 (8B) 59.0% 2.28 54.3% 2.04 54.1% 1.94 37.7% 1.37
KELPS (7B) 88.9% 3.83 82.2% 3.22 94.3% 4.29 74.3% 2.99

DeepSeek-V3+CR 87.8%↑36.7 3.92 – – 88.1%↑42.4 3.93 74.8%↑39.6 3.63
Herald+CR 90.3%↑58.4 3.75 – – 90.5%↑54.1 3.12 84.9%↑47.1 3.28

LlaMa-3+CR 85.4%↑64.4 2.82 – – 84.8%↑66.7 2.62 71.2% ↑53.8 2.71
KELPS+CR (7B) 96.2%↑65.9 4.13 – – 98.4%↑72.1 4.47 91.1%↑65.4 3.69

2025). The header files and executable code used in our
experiments are included in our supplementary materials.

4.2. Main Results

In this section, we present a systematic comparison between
the KELPS model and other baseline models across vari-
ous benchmark datasets. Our evaluation framework assesses
two critical dimensions of model performance: (1) syntactic
accuracy, measuring formal correctness, and (2) semantic
accuracy, evaluating meaningful correspondence to mathe-
matical truth. We note that Herald’s calculation method for
the pass rate differs from ours: we evaluate syntactic and
semantic correctness separately, whereas they consider a
case as passed only when both syntax and semantics are
correct.

Syntactic Accuracy quantifies the formal correctness of
model outputs by measuring their ability to pass automated
compiler verification. The overall pass rate is equal to the
ratio of compiler-valid statements to all problems.

Semantic Accuracy assesses the mathematical equivalence
between formally verified statements and their original natu-
ral language formulations, following the evaluation protocol
established in 3.2.3. The semantic scores reported in Table
2 represent the average performance across all problems.
Problems that fail to compile are assigned a score of zero.

As summarized in Table 2, our experimental results demon-
strate that the KELPS translator maintains robust perfor-
mance across all evaluation metrics and datasets. Notably,
while other models exhibit significant accuracy gaps be-
tween Lean and Isabelle formalizations, the KELPS trans-
lator’s consistent performance confirms its capability for
cross-formal-language translation.

The results demonstrate that the KELPS translator excels at
formalizing natural language sentences into various formal
representations. A case study of the formalization results of
the KELPS translator is shown in Appendix C.

4.3. Ablation Study

In this subsection, we perform ablation studies to evaluate
the effectiveness of both the synthetic data strategy and the
KE representation.

Effectiveness of KE. We observe that problems with syn-
tactic errors exhibit varying error types and correction diffi-
culties. To evaluate the effectiveness of the KE representa-
tion, we employ DeepSeek-v3 to correct these syntactically
flawed problems, using the following inputs: (1) the original
problem statement, (2) raw Lean4 code, and (3) compiler
error messages. As shown in Table 2, models trained with
KE-generated problems demonstrate significantly higher
correction success rates.

The error correction pass rate is also influenced by the cor-
rection model’s capability. Notably, even for relatively
more challenging problems (where the original pass rate
was already high), KELPS maintains significantly superior
correction success rates on the remaining unsolved prob-
lems. For further discussion, see Section 4.4. The complete
prompts and experimental configurations are provided in
the appendix B.2.

Effectiveness of Synthetic Data. We compare the results
under different configurations. All models were trained
using a subset of the KELPS dataset containing approx-
imately 15,000 Numina-Basic NL-AL pairs parsed from
Numina combined with various categories of synthetic data.
To systematically evaluate the effects, we controlled two
key factors: (1) dataset diversity and quality by varying the
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Table 3. We compare the performance of KELPS trained on datasets of varying scales and composition ratios across different benchmark
datasets, where the ’Dataset ratio’ denotes the proportion of informal data from natural language problems to model-generated synthetic
data in the training corpus.

Dataset Ratio Dataset Size MiniF2F Numina-Hard FormalMATH

Syntax Semantic Syntax Semantic Syntax Semantic

1 : 0 14k 81.6% 3.75 91.7% 4.33 60.1% 2.54
1 : 0.5 21k 87.6% 4.08 94.5% 4.51 70.3% 3.14
1 : 1 28k 88.4% 4.08 93.4% 4.49 70.9% 3.25

1 : 1.5 35k 88.9% 4.05 94.3% 4.49 74.3% 3.29

templates used for synthetic data generation, (2) the mixing
ratio between synthetic and authentic data samples.

As shown in Table 3, the experimental results demonstrate
that our synthetic data augmentation approach significantly
improves the performance of the model. Compared to the
limited data variety in Numina, synthetic data significantly
enriches training diversity, yielding notable performance
gains by incorporating only 7,000 additional problems. We
also observe a non-linear relationship between the training
data scale and the performance of the model. When the
dataset is small (< 20K samples), increasing its size signifi-
cantly improves both semantic understanding and grammat-
ical accuracy. However, beyond a certain threshold, further
scaling yields diminishing returns. This implies that prior-
itizing high-quality, diverse training data may be more
effective than simply pursuing larger quantities.

4.4. Analysis

In this subsection, we provide an in-depth analysis of the ex-
perimental outcomes and identify key factors that influence
model performance. These factors represent the primary
targets for improvement in our subsequent research.

Effectiveness of KE Framework: We will discuss how
the KE’s data augmentation pipeline enhances experimental
performance. The task of autoformalization can be regarded
as an alignment between NL and FL.

Corollary 4.1. This alignment can be further categorized
along the following two dimensions:

AG(NL,FL) = AGsyn(NL,FL) + AGsem(NL,FL)

where AG denotes the overall alignment gap between the
informal statement (NL) and the formal statement (FL).
AGsyn represents the syntactic alignment gap, while AGsem
denotes the semantic alignment gap.

Corollary 4.2. The term AGsyn primarily depends on the
syntactic rules and stylistic conventions of the FL. And AGsyn

coule be decomposed into two subcomponents

AGsyn(NL,FL) = AGsyn(NL,AL) + AGsyn(AL,FL)

(1) The KE framework’s primary contribution is its struc-
tured data generation process (NL→AL→Lean4), which
ensures high-quality training data through constrained
syntactic-semantic alignment. During the construction of
our dataset, natural language is first translated into a
strictly constrained format (on AL), which is then directly
translated into Lean4 using predefined transformation
rules. This process effectively unifies diverse syntactic rules
within KE’s grammatical framework, ensuring the consis-
tency of the obtained Lean4 data format and significantly
accelerating both the model’s learning speed and perfor-
mance(Table 2).

(2) Another additional benefit of KE is its ease of correc-
tion, as mentioned in the formula above. When we con-
sider syntactic alignment in terms of AGsyn(NL,AL) and
AGsyn(AL,FL), models trained under the KE framework
ensure alignment for AGsyn(NL,AL), while AGsyn(AL,FL)
alignment requires more detailed Lean4 knowledge, such as
dependent types. As shown in Table 2, our KELPS model
achieves a significantly higher error correction success rate
(averaging 60%) compared to other models like DeepSeek-
v3 (averaging 40%), demonstrating that the KE framework
effectively reduces downstream post-processing costs.

Quality of Alignment between NL-FL pairs: Since the
semantic verification module that relies on a large language
model as a referee is not completely reliable, instances of
misalignment between NL and FL persist in the training
dataset. Common misalignment patterns include misinter-
pretation of problem semantics and omission of problem-
specific constraints.

Our preliminary experiments revealed that semantically er-
roneous data can mislead models to generate incorrect re-
sponses. To address this issue, We employed a rigorous
manual verification process to curate a high-quality subset
of 15,000 precisely aligned NL-FL pairs for experiments.

The Diversity and Coverage of the KELPS Ontology:
Due to limited time and resources, we only modeled core
mathematical concepts in natural language. While these
atomic concepts are theoretically sufficient to represent most
mathematical knowledge, our experiments revealed that the
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model tends to self-construct undefined operators (shown
in Appendix C). These operators failed syntax validation
because of the absence of corresponding transformation
rules.

Therefore, to enhance both the practical utility and expres-
sive power of Knowledge Equations, our future research
will focus on comprehensive semantic modeling of natural
language in its entirety.

5. Discussion
Automated Construction of Advanced Ontology. To en-
sure knowledge accuracy, we adopt expert-guided ontology
construction with LLM assistance. The challenges of this
task lie in two aspects: (1) Collecting concepts existing in
natural language, (2) establishing formal representations
and transformation rules for these concepts. While LLMs
excel at extracting natural language concepts, creating for-
mal representations and transformation rules still requires
expert validation due to LLMs’ limited domain knowledge.
However, in the future, a mature agent framework holds the
potential to automate these tasks fully.

Extensibility Properties of KE. As demonstrated in Sec-
tion 3.1, KE’s theoretical foundation ensures its capability to
represent content based on Set Theory. Consequently, KE
can represent more complex mathematical definitions, such
as those in abstract algebra. A further question arises: Can
KE represent knowledge from other disciplines, such as
physics or chemistry? While existing research has con-
firmed that formal methods can encode theories in these
domains ((Tooby-Smith, 2025; Bobbin et al., 2024)), exper-
imental sciences often deal with phenomena lacking strict
theoretical explanations. The most promising candidates
for KE extension are established theoretical frameworks
(like theoretical mechanics), which we plan to explore in
the future.

Limitations. The current KELPS framework has two major
limitations: (1) Inability to represent mathematical proofs.
Modern proof assistants rely heavily on tactics with well-
defined semantics for proof simplification. While KELPS’s
core methodology could theoretically be extended to proof
translation, this capability remains unimplemented. (2) Ab-
sence of dependent types. By grounding its theoretical
foundation in set theory rather than type theory, KELPS
gains usability at the cost of representational precision. This
design choice inherently limits its capacity to express certain
mathematical constructs with type-theoretic dependencies.

6. Conclusion
In this work, we propose KELPS, a novel three-stage frame-
work for autoformalization. Our method introduces an inter-

mediate representation—Knowledge Equation, which trans-
lates natural language into multiple formal languages. This
representation aligns more closely with natural language,
thus improving model accuracy, while the expert-crafted
transformation rules guarantee syntactic correctness.

We introduce a large-scale parallel dataset comprising over
60,000 NL-FL pairs spanning distinct mathematical sub-
fields, with multi-language support (Lean, Coq, Isabelle).
Additionally, we propose an LLM-based synthetic data gen-
eration strategy that controls difficulty levels and targets
specific concepts/operators, effectively enhancing data di-
versity. Fine-tuning the KELPS translator on this dataset
achieved 88.9% syntactic accuracy on the MiniF2F dataset,
outperforming SOTA models like Deepseek-V3 81% and
Herald 81.3% on MiniF2F.

In summary, this work makes three contributions: the de-
sign of Knowledge Equations as a novel formal language,
including its complete BNF specification and parser imple-
mentation; the release of KELPS Dataset, a large-scale mul-
tilingual formal language dataset; and the development of a
high-performance model that achieves new SOTA accuracy.
Due to their simplified formalism, Knowledge Equations
demonstrate strong potential as both an educational and
research-oriented formal language, despite limitations in
automated type conversion between multiple concepts.

In the future, we plan to extend and refine this methodology
along two key dimensions: expanding Knowledge Equa-
tions’ coverage to advanced mathematical domains, and
strengthening its theoretical foundations to address type sys-
tem conversion errors. We posit that Knowledge Equations
possess the potential to emerge as a universal, machine-
learnable language.

7. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Table 4. Representative Ontology Examples

Domain Concept Operator

Numbers

Real Abs, Sqrt, Log, NaturalLog, Sqrt, Cos, Sin,
Tan, Get Number Round, Exp, Is Real

Integers Get GCD, Is OddNumber, Get Remainder,
Get InversedMod, Get LCM,

NaturalNumbers
Factorial, Get Combination, Is Coprime,
Is Prime, Get Digit Number, Get DigitSum,
Get DigitProduct, Get DigitCount

Polynomial Polynomial Get PolyTerm, Is PolyFactor, Get Polyroots,
Get PolyDegree, Get Term Coefficient,

Function Function
Get Function Range, Get Function Zeroes,
Get Inverse Function, Get Function Value,
Get Function Minimum, Is Bijection

Set Set
Set Cardinality, Set Union, Set Difference,
Set Intersection, Build Set, Get Set Sum,
Get Set Maximum, Get Set Minimum

Sequence Sequence
Is GeometricSequence, Get CommonRatio,
Is ArithmeticSequence, Get Sequence Sum,
Get CommonDifference

Special ——– ForAll, Exists, Get Prod, Solve equation,
Get Sum , Negation, Range

Appendix

A. Ontology Examples.
The complete ontology comprises only 40 concepts, 180 operators, and 6 thematic topics. In table 4, we present representative
samples of core concepts and corresponding operators across topics. The full content can be accessed in our materials.

Our method incorporates the core concepts and operations from these fields. Although some concepts are not directly
covered in the ontology library, they can essentially be derived through combinations of our existing operators. This
demonstrates the simplicity and expressive power of the knowledge equation.

In the future, we will further expand the coverage of our ontology library to support more complex mathematical reasoning.
Our plan primarily includes: (1) Completing the ontology library to support geometric and statistical visual reasoning,
and (2) Incorporating foundational undergraduate mathematics, such as abstract algebra, mathematical analysis,
and topology. We hope that KE can provide resources and novel insights for future research in autoformalization and
theorem proving.

Table 5. Hyperparameters in all the experiments.

Type Parameter Value

SFT Training Batch Size 512
Learning Rate 2.0e− 5
Learning Rate Scheduler Cosine
Warm-up Ratio 0.01
Optimizer AdamW
Epoch 15

Evaluation Top-p 0.9
Temperature 0.7
Max tokens 512
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Instruction:
You are an expert in the Isabelle theorem prover. Your task is to translate theorems from natural language into formal
Isabelle statements. Please follow these guidelines:

1. Carefully analyze the given theorem in natural language.

2. Translate it into a correct and precise Isabelle formal statement.

3. Use the following format for your response:
theorem tm name :
fixes 〈variable〉
assumes "〈hypothesis〉"
shows "〈statement〉"
sorry

4. Focus solely on the translation. Do not attempt to prove the theorem or provide additional explanations.

5. Ensure that your translation accurately captures all the mathematical concepts and relationships expressed in the
natural language version.

6. Use appropriate Isabelle syntax, including correct use of quantifiers, implications, and mathematical symbols.

7. If the theorem involves specific mathematical structures (e.g., groups, rings, topological spaces), use the corre-
sponding Isabelle definitions and notations.

8. Do not include any proofs, use sorry as a placeholder. Do not add any explanations.

The goal is to produce a syntactically correct and semantically accurate formalization in Isabelle. Your translation
should faithfully reflect the meaning of the original theorem while following Isabelle conventions and best practices.

Figure 3. Instructions for Translating Natural Language into Isabelle

B. Experiments.
B.1. Training Details

We take a fully fine-tuning setting for training DeepSeek-Math-7B-Base as the base model. All training experiments are
conducted on 4 NVIDIA A100 GPUs with LLaMA-Factory framework. Detailed hyperparameters utilized for training and
evaluation experiments are documented in Table 5.

B.2. Prompt Details

In this section, we present all the prompts used in this work to facilitate progress. The correspondence between all prompt
examples and the tables is shown below.

• Fig 3, Fig 4, Fig 5 and Fig 6, Fig 7, Fig 8 present the prompts used to translate natural language to Lean, Coq, and
Isabelle respectively, with examples randomly sampled from our parallel dataset.

• Fig 9 outlines the prompt used to verify the semantic accuracy of KE during our validation phase.

• Fig 10 outlines the prompt used to guide the large language model to perform data synthesis, with templates randomly
selected from our template library.

• Fig 11 demonstrates the LLM prompt used for correcting statements that fail Lean4 compilation.
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Instruction:
You are an expert in the Lean4 theorem prover. Your task is to translate theorems from natural language into formal
Lean4 statements. Please follow these guidelines:

1. Carefully analyze the given theorem in natural language.

2. Translate it into a correct and precise Lean4 formal statement.

3. Use the following format for your response:
theorem tm name : <Lean4 formal statement> := by sorry

4. Focus solely on the translation. Do not attempt to prove the theorem or provide any explanations.

5. Ensure that your translation accurately captures all the mathematical concepts and relationships expressed in the
natural language version.

6. Use appropriate Lean4 syntax, including correct use of quantifiers, implications, and mathematical symbols.

7. If the theorem involves specific mathematical structures (e.g., groups, rings, topological spaces), use the corre-
sponding Lean4 definitions and notations.

8. Do not include any proofs, use sorry as a placeholder. Do not add any explanations.

The goal is to produce a syntactically correct and semantically accurate formalization in Lean4. Your translation should
faithfully reflect the meaning of the original theorem while following Lean4 conventions and best practices.

Figure 4. Instructions for Translating Natural Language into Lean

Instruction:
You are an expert in the Coq theorem prover. Your task is to translate theorems from natural language into formal Coq
statements. Please follow these guidelines:

1. Carefully analyze the given theorem in natural language.

2. Translate it into a correct and precise Coq formal statement.

3. Use the following format for your response:
Theorem tm name : <Coq formal statement>. Proof. Admitted.

4. Focus solely on the translation. Do not attempt to prove the theorem or provide additional explanations.

5. Ensure that your translation accurately captures all the mathematical concepts and relationships expressed in the
natural language version.

6. Use appropriate Coq syntax, including correct use of quantifiers, implications, and mathematical symbols.

7. If the theorem involves specific mathematical structures (e.g., groups, rings, topological spaces), use the corre-
sponding Coq definitions and notations.

8. Do not include any proofs, use Admitted as a placeholder. Do not add any explanations.

The goal is to produce a syntactically correct and semantically accurate formalization in Coq. Your translation should
faithfully reflect the meaning of the original theorem while following Coq conventions and best practices.

Figure 5. Instructions for Translating Natural Language into Coq
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id: 1

-- Problem: Find all solutions to the equation \sqrt[3]{3 - \frac{x}{3}} = -2.

--lean_theorem:
theorem Unexplored_1 :

{ (x : R ) | ( 3 - x / 3 ) ˆ ( 1 / 3 ) = -2 } = sorry
:= by sorry

--coq_theorem:
Theorem Test_1 : { x : R} | 1 / (x - 2) < 3 / x } = sorry.

Proof.
Admitted.

--Isabelle_theorem:
theorem Test_1 :

shows "{ x :: real . 1 / (x - 2) < 3 / x } = sorry" sorry

id: 2

-- Problem: Given the function f(x) = |1 - 2x| - |1 + x|. Solve the inequality f(x) ≥
4.

--lean_theorem:
theorem Unexplored_2 :

{ x : R | |1 - 2 * x| - |1 + x| ≥ 4 } = sorry
:= by sorry

--coq_theorem:
Theorem Test_2 :

{ x : R | (Rabs (1 - 2 * x) - Rabs (1 + x)) >= 4 } = sorry.
Proof.
Admitted.

--Isabelle_theorem:
theorem Test_2 :

shows "{x :: real. abs (1 - 2 * x) - abs (1 + x) ≥ 4} = {}"
sorry

id: 3

-- Problem: If sequence A is an arithmetic sequence with A(1)=3, A(2)=6; find A(5)

--lean_theorem:
theorem Unexplored_3 (A : N → R)

(h1 : ∃ d : R, ∀ n : N, A (n + 1) = A n + d)
(h2 : A 1 = 3)
(h3 : A 2 = 6) :
A 5 = 15 := by sorry

--coq_theorem:
Theorem Test_3 (A : nat → R)

(h1 : exists d, forall n, A (S n) = A n + d)
(h2 : A 1%nat = 3)
(h3 : A 2%nat = 6) :
A 5%nat = 15.

Proof.
Admitted.

Figure 6. Few Shots for Translating Natural Language into Formal Language (Part I).
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--Isabelle_theorem:
theorem Test_3 :

fixes A :: "nat ⇒ real"
assumes h1: "∃d. ∀n. A (n + 1) = A n + d"

and h2: "A 1 = 3"
and h3: "A 2 = 6"

shows "A 5 = 15"
sorry

id: 4

-- Problem: If Set M = {1, 3, 5}, Set N = {2, 3, 4}. Find the union of M and N.

--lean_theorem:
theorem Unexplored_4 (M N : Set R)

(h1 : M = {1, 3, 5})
(h2 : N = {2, 3, 4}) :
M ∪ N = {1, 2, 3, 4, 5} := by sorry

--coq_theorem:
Theorem Test_4 (M N : Ensemble R)

(h1 : M = [1; 3; 5])
(h2 : N = [2; 3; 4]) :
Union M N = [1; 2; 3; 4; 5].

Proof.
Admitted.

--Isabelle_theorem:
theorem Test_4 :

fixes M N :: "real set"
assumes h1: "M = {1, 3, 5}"

and h2: "N = {2, 3, 4}"
shows "M ∪ N = {1, 2, 3, 4, 5}"
sorry

id: 5

-- Problem: Solve the following equation: 5(1 - cos x) = 4 sin x

--lean_theorem:
theorem Unexplored_5 :

{x : R | 5 * (1 - Real.cos x) = 4 * Real.sin x} = sorry := by sorry

--coq_theorem:
Theorem Test_5 :

{x : R | 5 * (1 - cos x) = 4 * sin x} = sorry.
Proof.
Admitted.

--Isabelle_theorem:
theorem Test_5 :

shows "{x :: real. 5 * (1 - cos x) = 4 * sin x} = {}"
sorry

Figure 7. Few Shots for Translating Natural Language into Formal Language (Part II).
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id: 6

-- Problem: Given that x, y, z are positive real numbers with product xyz = 1,
-- show that the inequality holds

--lean_theorem:
theorem Unexplored_6 (x y z : R)

(hx : x > 0) (hy : y > 0) (hz : z > 0)
(h1 : x * y * z = 1) :
xˆ3 / ((1 + y) * (1 + z)) +
yˆ3 / ((1 + z) * (1 + x)) +
zˆ3 / ((1 + x) * (1 + y)) ≥ 3/4 := by sorry

--coq_theorem:
Theorem Test_6 (x y z : R)

(hx : x > 0) (hy : y > 0) (hz : z > 0)
(h1 : x * y * z = 1) :
(xˆ3 / ((1 + y) * (1 + z)) +
yˆ3 / ((1 + z) * (1 + x)) +
zˆ3 / ((1 + x) * (1 + y))) >= 3/4.

Proof.
Admitted.

--Isabelle_theorem:
theorem Test_6 :

fixes x y z :: real
assumes hx: "x > 0" and hy: "y > 0" and hz: "z > 0"

and h1: "x * y * z = 1"
shows "xˆ3 / ((1 + y) * (1 + z)) +

yˆ3 / ((1 + z) * (1 + x)) +
zˆ3 / ((1 + x) * (1 + y)) ≥ 3/4"

sorry

Figure 8. Few Shots for Translating Natural Language into Formal Language (Part III).
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Instruction:
You are an expert in Lean4 language and natural language. When given a math problem described in natural language
and a math problem described in Lean4 language, your task is to evaluate the consistency of the two math problems
and score them.
Scoring Rules:

1. The full score is 5 points and the lowest score is 0.

2. When the semantics of all statements of the two math problems are consistent, give full marks of 5 points.

3. For each inconsistent statement, deduct 1 point until 0 points.

Response Format:

• Reply with ||your points|| in the final sentence

• Use the exact ”——” format for the score

Input Format:
math problem described in natural language:
<ORIGINAL MATH PROBLEM>

math problem described in Lean4 language:
<LEAN4 MATH PROBLEM>

Output Format:
<SEMANTIC CONSISTENCY SCORE>

Figure 9. Prompt for Semantic Consistency Judgment
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Instruction:
You are an expert at creating integrated math problems combining multiple concepts. When provided with knowledge
K of operators and concepts, and labeled examples E, your task is to return complex math problems and their labeled
results.
Rules:

1. Never use any new concepts or operators except those in the context!

2. Do not include any explanatory text.

3. Strictly follow the style of the context.

4. Combine the provided fragments effectively to create complex mathematical problems or proofs.

5. Return exactly 10 results in the specified format.

Output Format:
Problem: <problem statement>
Declaration: <required declarations>
Facts: <supporting facts>
Query: <specific question>

Input:
knowledge K:
## Concepts ##
<EXPLANATION OF CONCEPTS IN K>

## Operators ##
<EXPLANATION OF OPERATORS IN K>

labeled examples E:
<EXAMPLES OF LABELING MATH PROBLEMS>

Output:
<10 LABELED MATH PROBLEMS>

Figure 10. Prompt for Data Synthesis about Sequence Questions
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Instruction:
You are a Lean4 expert specialized in fixing mathematical formalization errors.
Informal Statement
<informal>

Error Message
<error_message>

Incorrect Code
<lean_theorem>

Correction Rules
1. First identify the error type (type mismatch, syntax error, missing instance)
2. For type errors (N/Z/R/C), add explicit type annotations
3. For syntax errors, fix parentheses/commas/indentation
4. For missing instances, add required typeclass arguments
5. Output ONLY the corrected code, no explanations

Corrected Code
<Corrected Code>

Figure 11. Prompt for Correcting Syntactic-Error Questions
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MiniF2F T29. Show that there exist real numbers a and b such that a is irrational, b is irrational, and ab is rational.

theorem Unexplored_29
(a : R)(h_a : Irrational a)
(b : R)(h_b : Irrational b)
: a ˆ b ∈ Q
:= sorry

Figure 12. A formalization of MiniF2F T29 in Lean 4. ab ∈ Q follows natural language conventions, it constitutes invalid syntax in
Lean4. We note that the problem’s formalization also contains inaccuracies, though our present focus remains on syntactic errors in this
subsection.

C. Case Study.
This section analyzes the common types of errors in KELPS translation results, and discusses the differences between
DeepSeek-V3 and Claude models in semantic scoring, focusing on typical problems at the grammatical and semantic
levels. Overall, grammatical errors are relatively easy to identify, and their rules are relatively fixed, so the types of errors
are limited; while the judgment of semantic consistency is more complex, often involving contextual understanding and
reasoning, and is more challenging.

C.1. Syntax Errors

Grammar Errors. This might be because the model didn’t see enough formal examples, or perhaps there is a discordance
between formal language syntax rules and typical organic natural language patterns. A representative example is illustrated
in Figure 12, where the expression q ∈ Q, though common and clear in natural language, is not valid in formal syntax. The
model may also adopt natural language shortcuts or formats in formal expressions (Figure 13). This could trace back to the
model’s exposure to abundant informal content during pre-training, while having relatively limited contact with formalized
materials.

Type Errors. These errors primarily occur because, in natural language, a number/object often belongs to multiple types
simultaneously, while the informal statement may be insufficient to determine its unique specific type. Generally, Lean4
supports automatic type inference, except for certain specific cases (see Figure 14). In contrast, more rigorous formal
systems like Coq typically require explicit type declarations in formal statements. Version differences can also trigger such
issues. Therefore, file-level (rather than theorem-level) autoformalization is essential for future research.

C.2. Semantic Errors

Misunderstanding about Informal Statement. The process of formalizing natural language math problems presents
varying levels of difficulty. Since some problems lack explicit mathematical declarations and assumptions, their formal-
ization requires first parsing the natural language semantics and then abstracting mathematical content through modeling.
Unfortunately, current mainstream large language models still exhibit limitations in natural language understanding. The
representative example in Figure 15 shows how models lose accuracy when faced with indirect statements.

Misalignment with Informal Statement. Other prevalent error patterns comprise omission of critical information (Fig 16)
and inconsistencies with the informal statement (Fig 17). These resemble human students’ typos in writing solutions, thus
being nearly unavoidable. However, these relatively minor errors are theoretically preventable through self-correction and
secondary checking.
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FormalMath T452. Find all positive integers a, b, c such that ab+ 1, bc+ 1, and ca+ 1 are all equal to factorials of
some positive integers. Prove that the answer is: (k!− 1, 1, 1) (and its permutations), where k ∈ N>1.

Declarations: "a: PositiveIntegers; b: PositiveIntegers; c: PositiveIntegers"

Facts: "a * b + 1 = Factorial(k); b * c + 1 = Factorial(k); c * a + 1 = Factorial(k)"

Query: "(a, b, c) = (k! - 1, 1, 1)",

Figure 13. A formalization of FormalMath T452 in Knowledge Equations. While the notation k! clearly denotes the factorial function
in human-readable mathematics, it fails to comply with the syntactic requirements of Knowledge Equations. Therefore, it fails to be
translated into Lean4.

MiniF2F T111. Solve for a: 8−1

4−1 − a−1 = 1. Show that it is -2.

theorem Unexplored_111
(a : R) (h1 : ( 8 : R ) ˆ ( -1 ) / ( 4 : R ) ˆ ( -1 ) - (a) ˆ (-1: R) = 1)
: a = -2 := by sorry

Figure 14. A formalization of MiniF2F T111 in Lean4. The expression appears almost correct. However, the exponent (−1) in (8 : R)(−1)

is not explicitly declared as a real number, causing Lean4 to default its type to N during computation and resulting in a type mismatch.
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MiniF2F T198. What digit must be placed in the blank to make the four-digit integer 20 7 a multiple of 11? Show that
it is 5.

theorem Unexplored_198
(d : Z) (h1 : 2057 % 11 = 0)
(h2 : 2067 % 11 = 0) (h3 : 2077 % 11 = 0)
(h4 : 2087 % 11 = 0) (h5 : d = 5)
: 2097 % 11 = 0 := by sorry

Figure 15. A formalization of MiniF2F T198 in Lean4. While the generated formal statement is syntactically correct, the model fails to
capture the authentic mathematical intent of the problem, consequently producing erroneous results.

MiniF2F T204. Notice that 35 · 40 = 1400 Find some integer n with 0 ≤ n < 1399 such that n is the multiplicative
inverse to 160 modulo 1399. Show that it is 1058.

theorem Unexplored_204
(n : Z) (h1 : 0 <= n)
(h2 : 35 * 40 = 1400) (h3 : n < 1399)
: n = 1058 := by sorry

Figure 16. A formalization of MiniF2F T204 in Lean4. Although the existing content is correct, the model missed the condition that n is
the multiplicative inverse to 160 modulo 1399. This renders the problem unsolvable under the given constraints.
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MiniF2F T155. If a and b are real numbers, a2b3 = 32
27 , and a

b3 = 27
4 , what is a+ b? Show that it is 8

3 .

theorem Unexplored_155
(a : R) (b : R)
(h1 : a / ( b ˆ 3 ) = 27 / 4) (h2 : a * ( b ˆ 3 ) = 32 / 27)
: a + b = 8 / 3 := by sorry

Figure 17. A formalization of MiniF2F T155 in Lean4. The model incorrectly substituted a for a2, resulting in misalignment with the
informal statement.

C.3. Semantic Consistency Evaluation

We investigate the scoring discrepancies between DeepSeek-V3 and Claude in assessing the semantic consistency between
semantic parsing outputs and the original natural language questions. Empirical results indicate that Claude consistently
assigns lower scores than DeepSeek-V3, with an average difference ranging from 0.2 to 0.5 points and a maximum
discrepancy of up to 1 point. An analysis of representative cases with large score gaps (see Figures 18 and 19) reveals
that DeepSeek-V3 tends to be more lenient—assigning higher scores even when the outputs exhibit certain semantic
deviations—whereas Claude adopts a more conservative scoring approach. Manual inspection suggests that the appropriate
scores generally lie between those given by the two models, highlighting systematic differences in their scoring criteria. To
mitigate potential bias introduced by individual models, we adopt the average of their scores as the final semantic consistency
metric.

FormalMATH T2499. Does there exist a function f : N → N, such that f(f(n)) = n + 1987 for every natural
number n ?

theorem Unexplored_2499 :
∃ f : N → N, ∀ n : N, f (f n) = n + 1987 := by sorry

Figure 19. A formalization of FormalMATH T2499 in Lean4. For the original open-ended question, the model provided a formalized hint
suggesting the proposition is true after reasoning. Therefore, DeepSeek considered this formalization entirely correct, whereas Claude
believed it altered the structure of the original open-ended question and thus only gave it a score of 1.

MiniF2F T50. What is the value of
(∑20

k=1 log5k 3
k2
)
·
(∑100

k=1 log9k 25
k
)
?

(A) 21 (B) 100 log5 3 (C) 200 log3 5 (D) 2,200 (E) 21,000
Show that it is (E) 21,000.

theorem Unexplored_50 :
(Σ k in Finset.range 20, Real.logb (5ˆk) (3ˆ(kˆ2)))
* (Σ k in Finset.range 100, Real.logb (9ˆk) (25ˆk))

= 21000 := by sorry

Figure 18. A formalization of MiniF2F T50 in Lean4. Because the definition of range in Lean4 starts from index 0, DeepSeek overlooked
this mistake and gave a score of 5; whereas Claude considered it a serious error and only gave a score of 2.

24


