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Abstract

Trusted multi-view classification (TMVC) based
on the Dempster-Shafer theory has gained sig-
nificant recognition for its reliability in safety-
critical applications. However, existing meth-
ods predominantly focus on providing confidence
levels for decision outcomes without explaining
the reasoning behind these decisions. Moreover,
the reliance on first-order statistical magnitudes
of belief masses often inadequately capture the
intrinsic uncertainty within the evidence. To
address these limitations, we propose a novel
framework termed Trusted Multi-view Classifi-
cation Constrained with Expert Knowledge (TM-
CEK). TMCEK integrates expert knowledge to en-
hance feature-level interpretability and introduces
a distribution-aware subjective opinion mecha-
nism to derive more reliable and realistic confi-
dence estimates. The theoretical superiority of
the proposed uncertainty measure over conven-
tional approaches is rigorously established. Ex-
tensive experiments conducted on three multi-
view datasets for sleep stage classification demon-
strate that TMCEK achieves state-of-the-art per-
formance while offering interpretability at both
the feature and decision levels. These results po-
sition TMCEK as a robust and interpretable so-
lution for MVC in safety-critical domains. The
code is available at https://github.com/
jie019/TMCEK_ICML2025.
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1. Introduction
Sleep disorder is related to lots of diseases like insom-
nia, narcolepsy, obstructive sleep apnea syndrome (OSA)
(Jahrami et al., 2022). Sleep stage classification (SSC) is
the primary diagnostic tool for sleep disorder (Guillot et al.,
2020; Wulff et al., 2010). Multi-view learning (MVL) is a
powerful paradigm that leverages diverse data representa-
tions to improve model performance and robustness (Zhang
et al., 2020; Liang et al., 2022; Wei et al., 2025; Yuan et al.,
2025), making it particularly valuable in SSC that is mainly
based on multi-view polysomnography signals such as EEG,
EOG and EMG (Phan et al., 2020). By leveraging data from
multiple perspectives, MVL not only enhances diagnostic
accuracy but also offers better generalization across diverse
patient populations.

While MVL addresses many challenges in SSC, trustwor-
thiness and interpretability remain critical concerns (Wang
et al., 2023; Zou et al., 2023). Trusted multi-view learning
aims to improve the reliability of predictions by incorporat-
ing uncertainty estimation (Han et al., 2023). However, two
significant limitations persist: (1) feature-level opacity: Cur-
rent trusted learning methods often function as black boxes
at the feature level, failing to clarify which features are criti-
cal and how they contribute to the decision-making process.
The lack of transparency reduces trust and interpretability
for clinicians and patients. (2) Inaccurate confidence esti-
mates at decision level: Existing methods primarily rely on
the quantity of evidences for uncertainty estimation, with-
out considering their distribution. As a result, confidence
estimates may deviate significantly from expected values,
particularly in scenarios involving ambiguous or conflicting
data, undermining their practical utility.

In this paper, we propose a novel trusted multi-view learn-
ing framework that combines interpretability at both the
feature and decision levels. Specifically, we firstly utilize
Gabor functions in the initial layers of the model to embed
expert knowledge into feature extraction, enabling explicit
representation of critical features. This approach allows for
better understanding of which features contribute to clas-
sification decisions, improving transparency and reliance.
Second, we improve uncertainty estimation by introducing
the distribution of evidence as an additional factor, moving
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beyond traditional reliance on the quantity of evidence. By
capturing both the magnitude and distribution of evidence,
our method provides more reliable confidence estimates,
especially in scenarios with ambiguous or conflicting data.
These innovations enhance the interpretability, reliability,
and robustness of multi-view learning in high-stakes appli-
cations like automated sleep stage classification.

Our main contributions are summarized as follows: (1) We
propose a novel trusted multi-view learning framework that
enhances feature-level interpretability by embedding ex-
pert knowledge, enabling explicit identification of critical
features contributing to classification decisions. (2) We in-
troduce an improved uncertainty estimation mechanism by
incorporating the distribution of evidence, providing more
reliable and realistic confidence estimates. (3) Due to the
rich expert knowledge available in the sleep domain, we
instantiate our method on the sleep datasets, and the experi-
ments show that our approach improves both interpretability
and reliability, while also outperforming baseline methods
in terms of accuracy.

2. Related Work
2.1. Trusted Multi-View Learning

Multi-view learning has become a powerful approach for
integrating complementary information from multiple data
representations, leading to more robust and accurate models
across a range of applications (Liang et al., 2024; Wen et al.,
2024; Zhang et al., 2024). However, these methods often fail
to capture the uncertainty of their predictions. Evidential
deep learning (EDL) (Sensoy et al., 2018) uses subjective
logic-based approaches to avoid sampling by explicitly mod-
eling uncertainty, making them computationally efficient.
Recent work extends EDL into multi-view learning (Liang
et al., 2025). A notable approach, trusted multi-view clas-
sification (TMC) (Han et al., 2023), employs Dempster’s
combination rule (Jøsang & Hankin, 2012), assigning lower
weights to views with high uncertainty, thereby prioritizing
more reliable views. Building on this foundation, several
aggregation methods have advanced uncertainty handling by
refining how views are integrated (Liu et al., 2023; Zhang
et al., 2023). These methods commonly exhibit the prop-
erty that adding another opinion reduces overall uncertainty.
Since data of different views are might not aligned, RCML
(Xu et al., 2024) proposes a new aggregation method to en-
sure that integrating conflicting views appropriately raises
uncertainty. Despite these advances, current methods ex-
hibit notable limitations: feature-level opacity and Inaccu-
rate confidence estimates at decision level. In light of these
shortcomings, this work proposes a novel framework to ad-
dress these gaps by enhancing interpretability at the feature
level and introducing a more comprehensive uncertainty
estimation method that moves beyond evidence magnitude

alone.

2.2. Automatic Sleep Stage Classification

Existing work on automatic sleep staging can be catego-
rized three main categories based on the types of signal
input representation of the network. The first uses raw
one-dimensional (1D) signals directly as input to capture
sequential features by one-dimensional convolutional neural
networks (1D CNNs) (Chambon et al., 2017), recurrent neu-
ral networks (RNNs) (Dong et al., 2016) and attention mech-
anism (Phan et al., 2018b). The second converts raw signals
into two-dimensional (2D) spectrograms using techniques
such as the continuous wavelet transform (Kuo et al., 2022)
or short-time Fourier transform (STFT) (Guillot et al., 2019).
Two-dimensional convolutional neural networks (2D CNNs)
are then used to process these spectrograms, which capture
essential frequency characteristics linked to each sleep stage.
The third combines both temporal and time-frequency repre-
sentations which employs a dual-stream architecture. In this
structure, each branch of the model processes a different
view. Then integrating the outputs from each view to pro-
duce a fusion output by concatenate operation. XSleepNet
(Phan et al., 2020) uses the outputs of three branches to
compute losses. SleepPrintNet (Jia et al., 2020) only uses
the fusion output to compute losses. Compared with the
above methods that focuses on classification performance,
our method focuses on trustworthiness and interpretability
besides classification performance.

3. The Proposed Method
In this study, we propose a method that integrates both time-
domain and time-frequency (T-F) domain representations of
biosignals to establish a robust multi-view learning frame-
work. We design two subnetworks to independently process
the two types of input signals and adopt late fusion at the
decision level, where the classification outputs of the two
subnetworks are combined to produce the final prediction.
The overall architecture of the model is illustrated in Fig. 1.

3.1. The Interpretation of Feature Level

Filter parametrization has become a frequently-used tech-
nique for designing interpretability deep neural networks
(Xie et al., 2023; Zheng et al., 2024). The Gabor function
is often used as filters in signal processing tasks (Chang &
Morgan, 2014). To explicitly examine the features that con-
tribute to decision-making, we follow the strategy (Niknazar
& Mednick, 2024) to parameterize Gabor function, and use
them to fit specific signal patterns that align with expert
knowledge such as slow oscillations (∼1 Hz), alpha (8–13
Hz), theta (3–7 Hz), spindles (15–18 Hz bursts of activity
in a spindle shape), K-complexes (large biphasic waves).
Specifically, some Gabor functions are first embedded into
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Figure 1. The whole framework of model.

the first convolutional layer as its kernels KG, and then a
convolution operation is performed between the input sig-
nal Xt and KG. The outputs of the convolution operation
reflect the correlation between both of them. At the end of
the training, the kernel KG is optimized to be pattern which
facilitates decision-making. The process can be mathemati-
cally expressed as follows:

KG(T ) = e−(
T−u

σ )
2

cos (2πfT ) , (1)

Output = KG ∗Xt, (2)

where u is center of the kernel function (temporal or spatial
location), σ is controls the width of the Gaussian envelope,
f is frequency of the oscillations in the cosine part of the
kernel, T is the time variable used in evaluating the kernel
(−1s ≤ T ≤ 1s), and ∗ is convolution operator.

Feature mapping F1 and Classifier CL1. In order to trans-
form a raw signal Xt into a high-level feature xt, the feature
mapping F1: Xt → xt is realized by convolutional neural
networks (CNNs). The output of the Gabor convolutional
layer (GCL) represents the magnitude of the specific wave-
forms (Gabor kernels KG) across the time. Then the result-
ing Gabor features are used as input to the one-dimensional
CNNs to further extract discriminative features. Then flatten
and randomly discard some of the processed features to form
epoch-wise (30s) feature vector xt =F1(KG ∗Xt) ∈ R3072.
In the end, through three fully connected layers, we get the
probability distribution evidence e1 = CL1(xt) ∈ R5 in the
time domain.

Feature mapping F2 and Classifier CL2. Simultaneously,
the EEG raw signals Xt in the time domain is transformed
into the time-frequency (T-F) domain using the Short-Time
Fourier Transform (STFT), yielding time-frequency repre-
sentation Xtf ∈ R(2×T×F ) where F is frequency bins and
T is time steps. Same as F1, the feature mapping F2: Xtf

→ xtf is also realized by convolutional neural networks
(CNNs). The processed frequency domain features are re-
shaped into one-dimensional feature vector by adaptive av-
erage pooling. Then the vector xtf = F2(Xtf ) ∈ R512

is passed to three fully connected layers, we get the prob-
ability distribution evidence e2 = CL2(xtf ) ∈ R5 in the
time-frequency domain. Details on the network architecture
are provided in the Appendix A.3.

3.2. The Interpretation of Decision Level

In the previous process, we learn view-specific evidence
by F1, CL1, F2 and CL2, which could be termed as the
amount of support the classification collected from data.
Then the view-specific distributions of the class probabil-
ities are modeled by Dirichlet distribution, parameterized
with view-specific evidence. From the distributions, we
can construct mass consisting of the belief quality of each
category and the overall uncertainty. We also combine a
conflicting mass aggregation strategy based on trusted fu-
sion to reduce decision conflicts caused by view-specific F1

and F2.

View-Specific Evidencial Deep Learning. In decision
layer, it is essential to ensure accurate and trustworthy pre-
dictions. Traditional methods like softmax layers often over-
estimate confidence, particularly in incorrect predictions
(Wang et al., 2021). Due to their reliance on single-point
probability estimates, this limits their ability to capture true
model confidence and risk. To overcome the limitation, ev-
idential deep learning (EDL) which is based on evidence
theory under the framework of subjective logic (SL) has
been introduced (Sensoy et al., 2018). Evidence e here
refers to the information extracted from the input data that
supports the classification decision, and it is used to derive a
belief mass bi to each class label and an overall uncertainty
mass u to the whole frame based on the evidence theory.
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Definition 3.1. (Subjective opinion (Han et al., 2023)): Let
e = [e1, e2, · · · , eK ] be the evidences where ek denotes the
k-th category evidence. The parameter α of the Dirichlet
distribution is defined by α = e + 1. Then the subjective
opinion can be denoted as M = [b1, b2, · · · , bK , u] derived
by the Dirichlet distribution Dir(p|α), where p is the class
probability vector on a simplex.

For the vth view, then the belief mass bvj and the uncertainty

uv are computed as: bvj =
evj
Sv , u

v = K
Sv , where Sv =∑K

j=1(e
v
j + 1) =

∑K
j=1 α

v
j is the Dirichlet strength.

The core of this framework is that the more evidence there
is, the higher the quality of belief in a category, and the
more confident the model is in predicting that category.
Conversely, when there is less evidence, the overall uncer-
tainty increases. The mean of the corresponding Dirichlet
distribution p̂v for the class probability p̂vj is computed as

p̂vj =
αv

j

Sv . In subjective opinion, the uncertainty mass is
defined as uv = K

Sv = K∑K
j=1(e

v
j+1)

, which implies that u

depends solely on the aggregate sum of evidences e. So, it
is unsensitive to distribution of evidences e. The problem,
which is called as Evidence Distribution-unaware Problem,
can be illustrated using the below example.
Example 3.2. Given an input x, we feed it into a network
to obtain evidence enormal=[4,1,1,1,0]. From this, we com-
pute αnormal=[5,2,2,2,1] and uncertainty unormal =5/12.
Now, if we add noise to x, the evidence enoisy=[2,2,2,1,0],
leading to αnoisy=[3,3,3,2,1] and unoisy= 5/12. Normally,
as the distribution becomes more concentrated, the uncer-
tainty should increase. Interestingly, after adding noise, the
uncertainty u remains constant, which is counterintuitive
and clearly unreasonable. We present this problem in Fig.
2, the complete presentation is in Fig. 10 Appendix A.8.
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Figure 2. Density of uncertainty before and after adding noise.

To overcome the limitation inherent in Definition 3.1, we
propose a novel distribution-aware subjective opinion frame-
work that extends the conventional model through the incor-
poration of an evidence distribution concentration measure.
Its definition is as follows.
Definition 3.3. (Distribution-aware subjective opinion):
Let e = [e1, e2, · · · , eK ] be the evidences, d denote the

concentration of e. A larger d indicates a more concentrated
evidence distribution, which corresponds to greater uncer-
tainty. And then distribution-aware subjective opinion is
defined as DM = [b1, b2, · · · , bK , d, u], we redefine the
calculation of bvj and uv as follows:

bk =
ek
S
, u =

Kd

S
, d =

(1 +Gini(e))

2
(3)

where S =
∑K

j=1(ej+d), Gini(e) = 1−
∑K

k=1 p
2
k is Gini

coefficient where pk = ek∑K
j=1 ej

is probability of class k.

In contrast to conventional subjective opinion frameworks,
our approach determines the uncertainty measure u through
a dual consideration of both the cumulative evidence sum
and its distribution characteristics, represented by e. This
enhanced formulation is formally characterized by the the-
oretical analysis in Subsection 3.3, which demonstrates its
superior sensitivity in uncertainty quantification compared
to existing methods.

Evidential Multi-View Fusion via Distributed Mass Ag-
gregation. After obtaining V independent sets of prob-
ability masses assignments {DMv}V1 , where DMv =[{
bvj
}K
j=1

, dv, uv
]

under each view, we next need to com-

bine them to obtain a joint mass DM =
[
{bj}Kj=1 , d, u

]
.

Misalignment of multi-view data in feature mapping can
cause conflicts. We would diminish their impact in the
fusion stage.

The joint mass DM =
[
{bj}Kj=1 , d, u

]
is calculated from

the two sets of masses DM1 =
[{
b1j
}K
j=1

, d1, u1
]

and

DM2 =
[{
b2j
}K
j=1

, d2, u2
]

in the following manner:

DM1♢2 = DM1♢DM2 = (b1♢2, u1♢2, d1♢2), (4)

b1♢2
j =

b1ju
2 + b2ju

1

u1 + u2
, u1♢2 =

2u1u2

u1 + u2
, d1♢2 =

2d1d2

d1 + d2
.

(5)

The averaging belief fusion can be computed simply by
d2e1k+d1e2k

d1+d2 in Appendix A.2. We can fusion the final joint
mass DM from different views with the following rule:

DM = DM1♢DM2♢ · · ·♢DMv. (6)

Based on the above combination rule, we can obtain the
estimated multi-view joint evidence e and the corresponding
parameters of joint Dirichlet distribution α to produce the
final probability of each class and the overall uncertainty.

Loss Function. For instance {Xv
i }

V
1 , evi = CLv(Fv(Xv

i ))
represent the evidence vector predicted by the network for
the classification. To ensure that the network outputs non-
negative values, we need to replace the softmax layer of the
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traditional neural network based classifier with the activation
function layer (ReLU). Different from the typical cross-
entropy loss used in traditional neural networks below:

Lce = −
K∑
j=1

yij log pij , (7)

where pij is the predicted probability of the ith sample for
class j. For our model, we can get the parameter αi of the
Dirichlet distribution by αi = ei + d. Based on Eq. (7), we
have the adjusted cross-entropy loss using evidence-based
approach:

Lace(αi) =

∫  K∑
j=1

−yij log pij

 1

B(αi)

K∏
j=1

p
αij−1
ij dpi

=

K∑
j=1

yij (ψ(Si)− ψ(αij)) , (13)

where ψ(·) is the digamma function. The above loss func-
tion does not guarantee that the evidence generated by the
incorrect labels is lower. To address this issue, we can in-
troduce an additional term in the loss function, namely the
Kullback-Leibler (KL) divergence:

LKL(αi) = KL [D(pi|α̃i) ∥ D(pi|1)] (8)

= log

 Γ
(∑K

j=1 α̃ij

)
Γ(K)

∏K
j=1 Γ(α̃ij)


+

K∑
j=1

(α̃ij − 1)

ψ(α̃ij)− ψ

 K∑
j=1

α̃ij

 ,
where D(pi|1) is the uniform Dirichlet distribution, α̃i =
yi + (1− yi)⊙ αi is the Dirichlet parameters after removal
of the non-misleading evidence from predicted parameters
αi for the i-th instance, and Γ(·) is the gamma function.

Therefore, given the Dirichlet distribution with parameter
αi for the i-th instance, the loss is:

Lacc(αi) = Lace(αi) + λtLKL(αi), (9)

where λt = min(1.0, t/T ) ∈ [0, 1] is the annealing coeffi-
cient, t is the index of the current training epoch, and T is
the annealing step. By gradually increasing the influence of
KL divergence in loss, premature convergence of misclassi-
fied instances to uniform distribution can be avoided.

In order to ensure the consistency of results between differ-
ent mass during training, minimizing the conflicts between
mass was adopted. The consistency loss for the instance
{xvi }Vv=1 is calculated as (Xu et al., 2024):

Lcon1 =

V∑
m=1

V∑
n̸=m

(

∑K
j=1 |pmj − pnj | · (1− um) · (1− un)

2 · (V − 1)
),

Lcon2 =
1

V (V − 1)

V−1∑
m=1

V∑
n=m+1

em · en

∥em∥∥en∥
,

Lcon = ζLcon1 + ηLcon2. (10)

To sum up, the overall loss function for a specific instance
{Xv

i }Vv=1 can be calculated as:

L = Lacc(αi) + β

V∑
v=1

Lacc(α
v
i ) + γLcon. (11)

3.3. Theoretical Analysis

To demonstrate the superiority of the distribution-aware sub-
jective opinion framework, we conduct a comprehensive
theoretical analysis. This examination reveals several key
advantages: (1) enhanced modeling capability for uncer-
tainty quantification through explicit distribution considera-
tion, (2) the relation between distribution-aware subjective
opinion aggregation and evidence aggregation, and (3) ag-
gregation properties. The theoretical framework establishes
a rigorous mathematical foundation that not only justifies
its practical effectiveness but also provides insights into its
relationship with conventional subjective logic approaches.

Proposition 3.4. Given two evidences e1 =
[e11, e

1
2, · · · , e1K ] and e2 = [e21, e

2
2, · · · , e2K ]. If∑K

j e1j =
∑K

j e2j and d(e1) ≤ d(e2), then u1 ≤ u2.

Proposition 3.4 establishes that our modified opinion frame-
work properly captures the uncertainty quantification of evi-
dence through its dispersion characteristics. The complete
mathematical proof is provided in Appendix A.1.

Proposition 3.5. The distribution-aware subjective opinion
aggregation operation DM1♢2 = DM1♢DM2 is mathe-
matically equivalent to the weighted evidence pooling:

e1♢2 =
d2e1 + d1e2

d1 + d2
. (12)

Proposition 3.5 demonstrates that the proposed distribution-
aware aggregation mechanism can be effectively imple-
mented through a dispersion-weighted evidence pooling
scheme. The detailed proof is available in Appendix A.2.

Proposition 3.6. Let DM1 = [b11, b
1
2, · · · , b1K , d1, u1] and

DM2 = [b21, b
2
2, · · · , b2K , d2, u2] represent distribution-

aware subjective opinions from two distinct views, with
u1 < u2. The aggregation process exhibits the following
properties:

• When DM1 is aggregated into DM2, the resulting
uncertainty mass decreases: u2new < u2;

• When DM2 is aggregated into DM1, the resulting
uncertainty mass increases: u1new > u1.
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Figure 3. The normalized confusion matrix.

Proposition 3.6 reveals that the proposed aggregation
method naturally accounts for potential conflicts between
different opinions through its uncertainty-aware fusion
mechanism. Based on Eq. 5, its proof is obvious.

4. Experiments
4.1. Experimental Setups

Datasets. In this experiments, we use three public datasets
including Sleep-EDF 20, Sleep-EDF 78 and Sleep Heart
Health Study (SHHS) as shown in Appendix A.4. For each
dataset, we use a single EEG channel for various models in
our experiments.

Compared Methods. We compared our model with the
several representative methods on three datasets includ-
ing DeepSleepNet (Supratak et al., 2017), ARNN+SVM
(Phan et al., 2018b), SleepEEGNet (Mousavi et al., 2019),
ResNetLSTM (Sun et al., 2018), MultiTaskCNN (Phan et al.,
2018a), DFSC (Liu et al., 2018), ResAtten (Qu et al., 2020),
AttnSleep (Eldele et al., 2021) and MISC (Niknazar & Med-
nick, 2024). For a detailed description of these methods,
please refer to Appendix A.5.

Evaluation Metrics and Implementation Details. To eval-
uate the performance of the proposed method of sleep stage
scoring. We used accuracy (Acc), macro F1-score (MF1),
and Cohen’s kappa (Kappa). Among these measures, F1-
score showed the performance of the method with respect
to each sleep stage separately. The experimental setups are
detailed in Appendix A.6

4.2. Experimental Results

In the section, we conduct the following experiments to eval-
uate our model from three aspects: performance comparison,
confusion matrix analysis and hypnogram visualization.

Performance Comparison. To verify the superiority of
the proposed sleep scoring system, we compare the three
evaluation metrics of our model with the baseline on two

Table 1. Results comparison between the proposed method and
some other deep learning methods.

DATASET STUDY ACC MF1 KAPPA

EDF20

DEEPSLEEPNET 81.9 76.6 0.760
ARNN+SVM 79.1 69.8 0.700
MULTITASKCNN 83.1 75.0 0.77
DFSC 84.44 78.25 0.784
RESATTEN 84.3 79.0 0.78
MISC 81.9 74.4 0.75
TMCEK (OURS) 85.0 80.2 0.80

EDF78

DEEPSLEEPNET 77.8 73.9 0.73
SLEEPEEGNET 74.2 69.6 0.66
RESNETLSTM 78.9 71.4 0.71
MULTITASKCNN 79.6 72.8 0.72
ATTNSLEEP 81.3 75.1 0.74
MISC 77.4 69.8 0.68
TMCEK (OURS) 81.4 77.5 0.75

SHHS

DEEPSLEEPNET 81.0 73.9 0.73
SLEEPEEGNET 73.9 68.4 0.65
RESNETLSTM 83.3 69.4 0.76
MULTITASKCNN 81.4 71.2 0.74
ATTNSLEEP 84.2 75.3 0.78
MISC 79.1 72.6 0.71
TMCEK (OURS) 84.3 78.0 0.79

datasets. The evaluation metrics include Acc, MF1 and
Kappa. The rxperimental results on the three datasets are
reported in Table 1, one can draw the following conclusions:
(1) TMCEK achieves the best results in terms of all met-
rics. This indicates that the proposed method which deeply
integrates time-domain and frequency-domain features ef-
fectively improve performance. (2) Compared with methods
which focus on either temporal or frequency modeling, our
method achieved better results, which further verified this
effectivity of fusing complementary information. (3) Com-
pared to DFSC, our superior performance may be attributed
to fusion method leverages preliminary feature interaction
and post-fusion, ensuring deeper integration of complemen-
tary information.

Confusion Matrix Analysis. The classification results of
the confusion matrix are shown in Fig. 3. From the results,
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Figure 4. Example of ground truth (expert’s scoring) and predicted hypnogram for one fold. The red dots indicate that the network
misclassified the 30 s epoch.

it can be observed that TMCEK has the best classification
results on W and N3 stages. The classification performance
of the N1 stage is the worst among all sleep stages. The
reasons of the results may be that the N1 stage, as a tran-
sitional state between wakefulness and deeper sleep stages
like N2, exhibits overlapping features with both. For ex-
ample, EEG characteristics of N1, such as low-amplitude
theta waves and occasional alpha waves, are also present in
wakefulness and N2, leading to blurred boundaries. This
feature ambiguity makes it difficult for traditional feature
extraction methods and deep learning models to distinguish
N1 from other stages, particularly W and N2. In addition,
the N1 stage is typically underrepresented in sleep staging
datasets: N1 accounts for approximately 5% of a night’s
sleep, much lower than other stages like N2 or REM. This
imbalance biases classification models towards dominant
stages, thereby degrading the performance for the N1 stage.

Hypnogram Visualization. In Fig. 4 we present an origi-
nal manually scored hypnogram and its corresponding esti-
mated sleep hypnogram using the trained single-epoch and
multi-epoch networks for one fold on the Sleep-EDF 20. Its
score is approximately equal to the mean score across the
entire dataset. From Fig. 4, it can be observed that there are
many misclassified points in the single epoch network out-
put. Using the multi-epoch network to model transition rules
between epochs can eliminate partial misclassified points

and increased the classification performance significantly.

4.3. Interpretation

To increase the system’s interpretability and reliability, we
introduce the Gabor kernel at the first convolution layer in
time domain. In addition, we can know whether the decision
is credible by uncertainty estimation. Next, we analyze these
two aspects respectively.

4.3.1. INTERPRETABILITY AT FEATURE-LEVEL

In terms of interpretability, the trainable Gabor kernels in
the first layer are used to learn meaningful waveform pat-
terns that are directly associated with sleep stages. These
kernels are adjusted during training to capture representa-
tive time-frequency structures within the EEG signals. The
outputs of this Gabor layer reflect how prominently each
learned waveform appears in the input, effectively highlight-
ing characteristic features relevant to sleep staging. The
calculation of the overall qualitative impact of each kernel
waveform is given in Appendix A.7.

In Fig. 5, we show the top eight EEG optimized Gabor
waveforms along with their frequency domain by overall im-
portance (the complete figure is shown in Fig. 8 in Appendix
A.8). Some of the optimized kernels were perfectly matched
to well-known EEG waveforms including slow waves (SW,
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Figure 5. Waveform and frequency domains of important opti-
mized Gabor kernels.

1Hz), deta waves(1 to 4Hz), theta waves(3 to 8Hz). Opti-
mized Gabor kernels 8 and 17 is similar to SW and deta
waves, kernels 5, 24 and 25 are fitted to theta waves.

Fig. 9 in Appendix A.8 displays the importance of the cor-
responding Gabor waveforms in the overall sleep staging
process and different sleep stages of the single-epoch net-
work. The results in this figure are compatible to the experts’
knowledge and the sleep scoring manuals. For example, Ga-
bor kernels 8 and 17 which represent SW and deta waves
have highest impact in stage S2 and SWS. On the other hand,
the results in Fig. 9 show that some Gabor kernels are not
important because the training process could not optimize
them or they had redundant information, and other opti-
mized kernels produced enough information for decision
making. To improve kernel optimization, our subsequent
work considers to apply diversity regularization for explic-
itly penalizing similarity among kernels and encouraging
each to capture distinct patterns.

4.3.2. UNCERTAINTY ESTIMATION AT DECISION LEVEL

To further evaluate the estimated uncertainty, we visualize
the distribution of normal and noisy data on the Sleep-EDF
20 dataset in Fig. 11 in Appendix A.8. To construct noisy
test sets, we introduce Gaussian noise with standard de-
viation σ = 10, 30, 50, 100 to of the test instances. The
experimental results are presented in Fig. 6. The results
reveal that, when the noise intensity is low (σ = 10), the dis-
tribution curve of the noisy instances closely aligns with that
of the normal instances. However, as the noise intensity in-
creases, the uncertainty of the noisy instances also increases.
This finding indicates that the estimated uncertainty is cor-
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Figure 6. Density of uncertainty.

related with the quality of the instances, thereby validating
the capability of our method in uncertainty estimation.

4.4. Robustness

The robustness of the model can be improved through
trusted learning. In order to verify the robustness improve-
ment brought by trusted learning, we select the first fold (the
first subject is used as the test set, and the others are used as
the training set) for robustness testing on Sleep-EDF 20. We
compare the evaluation indicators of the model trained with
trusted learning and the model without trusted learning by
adding the Gaussian noise with different levels of standard
deviations (δ) to time domain view on the test set. From
Fig. 7, it can be observed that models using trusted learning
are more robust than those without it, which highlights the
importance of the reliability of decision results.

0 10 30 50 100
Standard deviation (δ)

0.7

0.8

0.9

Trusted Acc
No-Trusted Acc
Trusted MF1

No-Trusted MF1
Trusted Kappa
No-Trusted Kappa

Figure 7. Comparison on Sleep-EDF 20 with different noise levels.

4.5. Comparison with Trusted Multi-view Methods

To validate the effectiveness of the proposed trustworthy
multi-view learning method, we conducted experiments on
several benchmark multi-view datasets, including the Hand-
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Table 2. Classification accuracy (%) on different datasets. ∗ indicates results from CCML (Liu et al., 2024).

DATA EDL∗ DCCAE∗ CAML∗ ETMC∗ RCML∗ CCML TMCEK (OURS)

HANDWRITTEN 97.00 ± 0.16 97.05 ± 0.24 98.10 ± 0.12 98.32 ± 0.22 98.70 ± 0.19 98.75 ± 0.27 98.80 ± 0.76
SCENE15 60.60 ± 0.13 64.26 ± 0.42 70.17 ± 0.13 66.87 ± 0.29 71.28 ± 0.32 72.60 ± 0.87 74.84 ± 0.39
CUB 89.51 ± 0.24 85.39 ± 1.36 94.33 ± 0.73 91.05 ± 0.63 93.28 ± 2.75 94.58 ± 1.30 94.67 ± 1.55
PIE 87.99 ± 0.56 81.96 ± 1.04 93.38 ± 0.80 93.82 ± 0.82 93.89 ± 2.46 94.56 ± 1.83 97.06 ± 1.80

Written (HW) and Scene15, CUB and PIE datasets (details
in Appendix A.4). We compare our methods with EDL
(Sensoy et al., 2018), DCCAE (Wang et al., 2015), CALM
(Zhou et al., 2023), ETMC (Han et al., 2023), RCML (Xu
et al., 2024) and CCML (Liu et al., 2024). Among them,
EDL, ETMC, RCML, and CCML are four widely trusted
multi-view methods. Detailed descriptions of the compared
methods and implementation specifics are provided in Ap-
pendix A.5 and A.6. From Table 2, one can get that TM-
CEK achieves the best classification accuracy across all
datasets. To further demonstrate the superiority of TMCEK,
we select a sample from Scene15 and show its classifica-
tion performance and uncertainty estimate before and after
adding noise. The result is illustrated in Fig. 12. From
Fig. 12, it can be observed that (1) RCML misclassifies the
noisy sample, whereas our method correctly classifies it. (2)
RCML shows a decrease in uncertainty after noise injection
due to an overall increase in the amount of evidence. In
contrast, TMCEK provides a more accurate uncertainty esti-
mation. This improvement stems from our method’s novel
dual consideration of both the cumulative evidence and its
distributional properties during uncertainty quantification.

5. Conclusion
In this paper, we have presented a novel trusted multi-view
classification framework constrained with expert knowledge
to address critical challenges in trusted multi-view learn-
ing. TMCEK effectively integrates expert knowledge by
embedding Gabor kernels into the feature extraction module,
thereby achieving interpretability at the feature level. This
design improves the transparency of the decision-making
process, making it more understandable and trustworthy for
clinicians and patients. We further improved the reliability
of uncertainty estimation by introducing a novel approach
that considers not only the quantity but also the distribu-
tion of evidence, enhancing trustworthiness in high-stakes
medical applications. We theoretically proved that it can
enable more precise uncertainty estimation. Furthermore,
experimental results on multiple datasets validated the effec-
tiveness of TMCEK, confirming its superior performance in
terms of accuracy, interpretability and reliability for multi-
view classification tasks. In the future, we focus on the
embedded strategies of the expert knowledge from other
domain into TMCEK.
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A. Appendix
In the supplemental material:

• A.1. Proof of Proposition 3.4.

• A.2. Proof of Proposition 3.5.

• A.3. Sleep Model Architecture.

• A.4. Datasets.

• A.5. The Compared Methods.

• A.6. The Implementation Details and Evaluation Metrics.

• A.7. The Quantification of Gabor Kernel Influence.

• A.8. Supplementary Figures.

A.1. Proof of Proposition 3.4
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A.2. Proof of Proposition 3.5

Proof. Based on Eqs. 3 and 5, we have

bk =
ek
S
, u =

Kd

S

bk =
b1ku

2 + b2ku
1

u1 + u2

u =
2u1u2

u1 + u2

d =
2d1d2

d1 + d2

Hence,

ek = bkS (∵ bk =
ek
S
)

=
bkKd

u
(∵ u =

Kd

S
)

=
b1ku

2 + b2ku
1

u1 + u2
· u

1 + u2

2u1u2
· 2Kd

1d2

d1 + d2
(∵ bk =

b1ku
2 + b2ku

1

u1 + u2
, u =

2u1u2

u1 + u2
, d =

2d1d2

d1 + d2
)

=
Kd1d2

d1 + d2
· b

1
ku

2 + b2ku
1

u1u2

=
Kd1d2

d1 + d2
·

(
Ke1kd

2

S1S2 +
Ke2kd

1

S1S2

Kd1

S1
Kdj

S2

)

=
d2e1k + d1e2k
d1 + d2

A.3. Sleep Model Architecture

Single-Epoch Network. The proposed model consists of two main modules: the time-domain module and the frequency-
domain module. The time-domain module processes raw signals through a series of one-dimensional convolutional layers.
These include five convolutional layers with kernel size 3, gradually increasing the number of filters (64, 128, 128, 256, 256)
and applying strides to reduce temporal resolution while maintaining key features. Batch normalization is applied after each
layer, and ReLU activation is used throughout. The output is flattened, and three fully connected layers with dropout (p=0.6)
are employed to map features to a final probability distribution. In the frequency-domain module, the raw signals are first
transformed into time-frequency representations Xtf using Short-Time Fourier Transform (STFT). The window size is set
as 256, with 50% overlap between adjacent frames. 256-point FFT is utilized, leading 256 to 129-D in the feature axis.
These representations are passed through convolutional layers with wider kernels (3×9) to capture complex spectral patterns.
Filters progressively increase from 64 to 512, with strides along the frequency axis to ensure real-time processing capability.
Adaptive average pooling is applied to reshape the features, producing one-dimensional feature vectors for classification.
This design leverages complementary information from both time and frequency domains, enhancing feature extraction and
ensuring robust and accurate classification.

Multi-Epoch Network. As the consideration of transition rules between epochs can effectively improve the performance of
sleep scoring (Supratak et al., 2017), we use the multi-epoch network to analyze the inter-epoch temporal context. We obtain
the classification results of each epoch (O1 to On) through the above network. Based on the experts suggestion (Iber et al.,
2007), we take ten epochs as input of the multi-epoch network (On−4 to On and On to On+4). The multi-epoch network
consists of two long short-term memory (LSTM) layers and a fully connected layer (FC) for classification. The first LSTM
feeds the output of the first level network in the forward direction and the second LSTM feeds the output of the first level
network in the backward direction. The LSTM layers in the multi-epoch network consist of two layers with a hidden state
size of 10. We use the cross-entropy loss function to train the multi-epoch network.
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Table 3. Details of three datasets used in our experiments(each sample is a 30-second epoch).

DATASETS SUBJECTS EEG CHANNEL SAMPLING RATE W N1 N2 N3 REM TOTAL

EDF20 20 FPZ-CZ 100 HZ 8285 2804 17799 5703 7717 42308
EDF78 78 FPZ-CZ 100 HZ 65951 21522 69132 13039 25835 195479
SHHS 329 C4-A1 125 HZ 46319 10304 142125 60153 65953 324854

A.4. Datasets

Multi-view Datasets. HandWritten1 comprises 2000 instances of handwritten numerals ranging from ‘0’ to ‘9’, with 200
patterns per class. It is represented using six feature sets. Scene152 includes 4485 images from 15 indoor and outdoor scene
categories. We extract three types of features HOG, LBP, and GIST. CUB3consists of 11788 instances associated with
text descriptions of 200 different categories of birds, we focus on the first 10 categories and extract image features using
GoogleNet and corresponding text features using doc2vec. PIE4 contains 680 facial instances belonging to 68 classes. We
extract intensity, LBP, and Gabor as three views.

Sleep Datasets. We used three public datasets, namely, Sleep-EDF 20, Sleep-EDF 78 and Sleep Heart Health Study (SHHS)
as shown in Table 3.

1) The Sleep-EDF dataset, sourced from PhysioBank (Goldberger et al., 2000), includes two subsets: Sleep-EDF 20
(EDF-20) and Sleep-EDF 78 (EDF-78). Sleep-EDF 20 contains data from 20 subjects, while Sleep-EDF 78 extends this
to 78 subjects. These datasets originate from two distinct studies. The first study, Sleep Cassette (SC* files), examines
the effects of aging on sleep and involves healthy participants aged 25 to 101 years. The second study, Sleep Telemetry
(ST* files), investigates the impact of temazepam on sleep, focusing on 22 Caucasian males and females who were not on
any other medications. For both studies, each polysomnography (PSG) file includes two EEG channels (Fpz-Cz, Pz-Oz)
sampled at 100 Hz, as well as one EOG channel and one chin EMG channel. We select the Fpz-Cz channel as the input for
our experimental models.

2) The SHHS dataset (Zhang et al., 2018), (Quan et al., 1997) is a large-scale, multi-center cohort study designed to explore
the cardiovascular and other health impacts of sleep-disordered breathing. Participants in this study presented a range of
medical conditions, including pulmonary and cardiovascular diseases. To reduce the influence of these conditions, we
followed the subject selection criteria outlined in (Fonseca et al., 2017), focusing on individuals with relatively normal sleep
patterns (Apnea Hypopnea Index or AHI below 5). This resulted in a subset of 329 participants from the original pool of
6,441 subjects. For this dataset, we utilized the C4-A1 EEG channel with a sampling rate of 125 Hz.

Across all datasets, the following preprocessing steps were applied. First, any UNKNOWN stages not corresponding
to specific sleep stages were excluded. Second, N3 and N4 stages were merged into a single N3 stage following the
AASM standard. Finally, only 30 minutes of wakefulness before and after the primary sleep periods were retained to better
emphasize the sleep stage classification. We use per-subject 20-fold cross validation, dividing the subjects in each dataset
into 20 groups. The recordings in one group were considered as test data, and the rest were used as training data. This
process was repeated until all folds were iterated.

A.5. The Compared Methods

Multi-view Methods. There are six compared multi-view methods:

• EDL (Sensoy et al., 2018) quantifies classification uncertainty by placing a Dirichlet distribution on the class probabili-
ties. It models the evidence for each class and uses this evidence to compute the Dirichlet distribution parameters. The
Dirichlet distribution provides a measure of uncertainty, which is used to make more reliable predictions.

• DCCAE (Wang et al., 2015) is a deep multi-view representation learning method that uses autoencoders to learn
a common representation across multiple views. It maximizes the correlation between the views to extract shared

1https://archive.ics.uci.edu/dataset/72/multiple+features
2https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177/1
3https://www.vision.caltech.edu/visipedia/CUB-200.html
4http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Home.html
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information.

• CALM (Zhou et al., 2023) is an enhanced encoding and confidence evaluating framework for trustworthy multi-view
classification. It combines early and late fusion strategies to leverage the complementarity of multiple views and
improve classification reliability.

• ETMC (Han et al., 2023) extends the Trusted Multi-view Classification (TMC) method by introducing a pseudo-view
to enhance interaction between different views. It dynamically evaluates the quality of different views and makes
trusted decisions based on uncertainty.

• RCML (Xu et al., 2024) proposes a conflictive opinion aggregation strategy to handle conflictive multi-view data. It
ensures the consistency of results between different views during training and quantifies the conflictive degree between
views.

• CCML (Liu et al., 2024) constructs view-specific evidential DNNs to learn view-specific evidence. It dynamically
decouples the consistent and complementary evidence and processes them according to different principles.

Sleep Staging Methods. We compared our model with the following nine baselines:

• DeepSleepNet (Supratak et al., 2017) is a model based on a two-stage neural network architecture, combining 1D
CNNs and Bi-LSTMs. It extracts time-frequency features through 1D CNNs and then uses Bi-LSTMs for sequence
modeling, and is good at processing long-term sleep stage data.

• ARNN+SVM (Phan et al., 2018b) utilizes bidirectional RNN with an attention mechanism to extract sequential features
from EEG, combined with an SVM classifier for sleep staging. Performance is enhanced through learned filter banks.

• MultitaskCNN (Phan et al., 2018a) first converts the original EEG signal into a power spectrum image, and then
optimizes the main task (classification) and the related auxiliary task (prediction) by sharing the feature extraction layer,
thereby improving the generalization ability of the model.

• DFSC (Liu et al., 2018) applies diffusion geometry to fuse EEG raw signal and spectral information for sleep dynamics
visualization and stage prediction, with automatic annotation using SVM.

• ResAtten (Qu et al., 2020) uses CNNs to extract multi-band features and employs the multi-head attention module of
the Transformer to model global temporal context, achieving efficient sleep staging.

• SleepEEGNet (Mousavi et al., 2019) focuses on processing specific features of EEG signals. It uses 1D CNNs combined
with lightweight design to achieve efficient sleep staging in environments with limited device resources.

• ResnetLSTM (Sun et al., 2018) combines residual networks (ResNet) and LSTM, first extracting spatial features
through ResNet and then using LSTM for time series modeling, thereby improving the accuracy and robustness of
model.

• AttnSleep (Eldele et al., 2021) first extracts and optimizes features through a multi-resolution convolutional neural
network (MRCNN) and an adaptive feature recalibration module. In addition, the temporal dependency of the signal
can be captured through the temporal context encoder (TCE) of the multi-head attention mechanism.

• MISC (Niknazar & Mednick, 2024) integrates domain knowledge and data-driven methods through a multi-level
structural design. The model injects expert knowledge into deep neural networks to improve the interpretability and
performance of the model.

A.6. The Implementation Details and Evaluation Metrics

Multi-view Classification. We briefly introduce the details of the experiment. We utilize fully connected networks
with a ReLU layer to extract view-specific evidence. The Adam optimizer is used to train the network, where L2-norm
regularization is set to 1e−5. We employ 5-fold cross-validation to select the learning rate from the options of 3e−3. In all
datasets, 20% of the instances are allocated as the test set. The average performance is reported by running each test case
five times.
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Sleep Staging. To extract the time-frequency input, the window size is set as 12 ms, with 50% overlap between adjacent
frames. 256-point FFT is utilized, leading to 129-D in the feature axis. The model is trained on Pytorch platform with a
NVIDIA RTX 4090 GPU. We use the Adam optimizer with a batch size of 16 to train the proposed model, and the learning
rate is initialized as 3.125e−5 (0.0005/batch size) and 6.25e−4 (0.01/batch size) in single-epoch network and multi-epoch
network, respectively. In addition, the frequency f of the Gabor kernels was clamped between 0 to 35 Hz. In the training,
batch samples were randomly selected from the train subset with normalized probability equal to inverse of the number of
samples in each class to overcome an unbalanced distribution of classes.

Evaluation Metrics. To evaluate the performance of the proposed sleep stage classification method. We use accuracy (Acc),
macro F1-score (MF1), and Cohen’s kappa (Kappa). They are defined as follows:

Acc =

∑
stages TP

N
, (13)

Kappa =
P̄ − P̄e

1− P̄e
, (14)

MF1 =

∑
stages F1

M
, (15)

where F1 = 2×Pre×Rec
Pre+Rec , Rec = TP

TP+FN , Pre = TP
TP+FP . Here, P̄ denotes the proportion of observed agreements, and

P̄e represents the expected agreement by chance. N denotes the number of all samples and M denotes the number of sleep
stage classes. For a specific sleep stage S, TP refers to the number of 30-second epochs correctly classified as stage S, FN
is the number of epochs that truly belong to stage S but are misclassified as other stages, and FP denotes the number of
epochs incorrectly classified as stage S when they actually belong to a different stage.

A.7. The Quantification of Gabor Kernel Influence

Since the output of the Gabor convolutional layer (GCL) can not be directly used to estimate the contribution of each Gabor
kernel to the final decision, we compute the sensitivity of the decision layer output with respect to the output of the Gabor
convolutional layer and use it as the normalization weights. Specifically, the sensitivity is quantified by computing the local
gradient of the decision output O[class] with respect to the time series output of the ith GCL filter, defined as:

Sen(t)GCLi→O[class] =
dO[class]

dGCLi(t)
. (16)

This sensitivity reflects how changes in the GCL output at time t influence the decision. We compute the functional effect of
each kernel by combining its output with the corresponding positive sensitivity (Ancona et al., 2019). Then the positive
contribution of each Gabor kernel is quantified as the squared sum of its output modulated by the corresponding positive
sensitivities:

EffXt

GCLi→O[class](t) = GCLi(t)Sen(t)GCLi→O[class]

× θ(Sen(t)GCLi→O[class]), (17)

Eff
Xt

GCLi→O[class] =
∑
t

(EffXt

GCLi→O[class](t))
2, (18)

where θ(·) is the Heaviside step function, and Eff
Xt

GCLi→O[class] (Eff ) denotes the positive functional effect of the ith
Gabor kernel on the classth element of the output given input Xt (EEG). By averaging Eff across all test samples, the
overall impact of each kernel on sleep stage classification is summarized by Effi.

Effi =
∑
j

1

Nj

∑
Xt

Eff
Xt

GCLi→O[class]δ(classX − j), (19)

where Nj is total number of the test epochs in sleep stage j, δ(·) is the unit impulse function and O[classX ] is the real sleep
stage of the relative input signals Xt. Effi which is the average of the positive functional effect on the real output class,
can represent the overall qualitative impact of each of the Gabor kernels on the decision making process.

A.8. Supplementary Figures
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Figure 8. Waveform and frequency domains of all optimized Gabor kernels.
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Figure 9. Impact of the Gabor kernels on sleep stage scoring.
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Figure 10. Density of uncertainty.
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Figure 11. Density of data.
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(b) Noisy (RCML)
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(c) Clean (Ours)
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Figure 12. Comparison of our method and RCML under one sample of Scene15.
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