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Abstract

Most conventional Neural Architecture Search (NAS) approaches are limited in
that they only generate architectures without searching for the optimal parameters.
While some NAS methods handle this issue by utilizing a supernet trained on a
large-scale dataset such as ImageNet, they may be suboptimal if the target tasks
are highly dissimilar from the dataset the supernet is trained on. To address
such limitations, we introduce a novel problem of Neural Network Search (NNS),
whose goal is to search for the optimal pretrained network for a novel dataset and
constraints (e.g. number of parameters), from a model zoo. Then, we propose a
novel framework to tackle the problem, namely Task-Adaptive Neural Network

Search (TANS). Given a model-zoo that consists of network pretrained on diverse
datasets, we use a novel amortized meta-learning framework to learn a cross-modal
latent space with contrastive loss, to maximize the similarity between a dataset and
a high-performing network on it, and minimize the similarity between irrelevant
dataset-network pairs. We validate the effectiveness and efficiency of our method on
ten real-world datasets, against existing NAS/AutoML baselines. The results show
that our method instantly retrieves networks that outperform models obtained with
the baselines with significantly fewer training steps to reach the target performance,
thus minimizing the total cost of obtaining a task-optimal network. Our code and
the model-zoo are available at https://github.com/wyjeong/TANS.

1 Introduction

Neural Architecture Search (NAS) aims to automate the design process of network architectures
by searching for high-performing architectures with RL [76, 77], evolutionary algorithms [43, 11],
parameter sharing [6, 42], or surrogate schemes [38], to overcome the excessive cost of trial-and-error
approaches with the manual design of neural architectures [47, 23, 27]. Despite their success, existing
NAS methods suffer from several limitations, which hinder their applicability to practical scenarios.
First of all, the search for the optimal architectures usually requires a large amount of computation,
which can take multiple GPU hours or even days to finish. This excessive computation cost makes
it difficult to efficiently obtain an optimal architecture for a novel dataset. Secondly, most NAS
approaches only search for optimal architectures, without the consideration of their parameter values.
Thus, they require extra computations and time for training on the new task, in addition to the
architecture search cost, which is already excessively high.
For this reason, supernet-based methods [8, 37] that search for a sub-network (subnet) from a network
pretrained on large-scale data, are attracting more popularity as it eliminates the need for additional
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Figure 1: Comparison between conventional NAS and our method: Conventional supernet-based NAS
approaches (Left) sample subnets from a fixed supernet trained on a single dataset. TANS (Right) can dynamically
select the best-fitted neural networks that are trained on diverse datasets, adaptively for each query dataset.

training. However, this approach may be suboptimal when we want to find the subnet for a dataset that
is largely different from the source dataset the supernet is trained on (e.g. medical images or defect
detection for semiconductors). This is a common limitation of existing NAS approaches, although
the problem did not receive much attention due to the consideration of only a few datasets in the NAS
benchmarks (See Figure 1, left). However, in real-world scenarios, NAS approaches should search
over diverse datasets with heterogeneous distributions, and thus it is important to task-adaptively

search for the architecture and parameter values for a given dataset. Recently, MetaD2A [31] has
utilized meta-learning to learn common knowledge for NAS across tasks, to rapidly adapt to unseen
tasks. However it does not consider parameters for the searched architecture, and thus still requires
additional training on unseen datasets.
Given such limitations of NAS and meta-NAS methods, we introduce a novel problem of Neural

Network Search (NNS), whose goal is to search for the optimal pretrained networks for a given
dataset and conditions (e.g. number of parameters). To tackle the problem, we propose a novel and
extremely efficient task-adaptive neural network retrieval framework that searches for the optimal
neural network with both the architecture and the parameters for a given task, based on cross-modal
retrieval. In other words, instead of searching for an optimal architecture from scratch or taking a
sub-network from a single super-net, we retrieve the most optimal network for a given dataset in a
task-adaptive manner (See Figure 1, right), by searching through the model zoo that contains neural
networks pretrained on diverse datasets. We first start with the construction of the model zoo, by
pretraining state-of-the-art architectures on diverse real-world datasets.
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Then, we train our retrieval model via amortized meta-learning of
a cross-modal latent space with a contrastive learning objective.
Specifically, we encode each dataset with a set encoder and obtain
functional and topological embeddings of a network, such that a
dataset is embedded closer to the network that performs well on it
while minimizing the similarity between irrelevant dataset-network
pairs. The learning process is further guided by a performance
predictor, which predicts the model’s performance on a given dataset.
The proposed Task-Adaptive Network Search (TANS) largely outper-
forms conventional NAS/AutoML methods (See Figure 2), while significantly reducing the search
time. This is because the retrieval of a trained network can be done instantly without any additional
architecture search cost, and retrieving a task-relevant network will further reduce the fine-tuning
cost. To evaluate the proposed TANS, we first demonstrate the sample-efficiency of our model zoo
construction method, over construction with random sampling of dataset-network pairs. Then, we
show that the TANS can adaptively retrieve the best-fitted models for an unseen dataset. Finally,
we show that our method significantly outperforms baseline NAS/AutoML methods on real-world
datasets (Figure 2), with incomparably smaller computational cost to reach the target performance.
In sum, our main contributions are as follows:

• We consider a novel problem of Neural Network Search, whose goal is to search for the
optimal network for a given task, including both the architecture and the parameters.

• We propose a novel cross-modal retrieval framework to retrieve a pretrained network from
the model zoo for a given task via amortized meta-learning with constrastive objective.

• We propose an efficient model-zoo construction method to construct an effective database
of dataset-architecture pairs, considering both the model performance and task diversity.

• We train and validate TANS on a newly collected large-scale database, on which our
method outperforms all NAS/AutoML baselines with almost no architecture search cost and
significantly fewer fine-tuning steps.
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2 Related Work

Neural Architecture Search Neural Architecture Search (NAS), which aims to automate the
design of neural architectures, is an active topic of research nowadays. Earlier NAS methods use
non-differentiable search techniques based on RL [76, 77] or evolutionary algorithms [43, 11].
However, their excessive computational requirements [44] in the search process limits their practical
applicability to resource-limited settings. To tackle this challenge, one-shot methods share the
parameters [42, 6, 35, 65] among architectures, which reduces the search cost by orders of magnitude.
The surrogate scheme predicts the performance of architectures without directly training them [38,
75, 54], which also cuts down the search cost. Latent space-based NAS methods [38, 54, 67] learn
latent embeddings of the architectures to reconstruct them for a specific task. Recently, supernet-
based approaches, such as OFA [8], receive the most attention due to their high-performances. OFA
generates the subnet with its parameters by splitting the trained supernet. While this eliminates the
need for costly re-training of each searched architecture from scratch, but, it only trains a fixed-
supernet on a single dataset (ImageNet-1K), which limits their effectiveness on diverse tasks that are
largely different from the training set. Whereas our TANS task-adaptively retrieves a trained neural
network from a database of networks with varying architectures trained on diverse datasets.

Meta-Learning The goal of meta-learning [55] is to learn a model to generalize over the distribution
of tasks, instead of instances from a single task, such that a meta-learner trained across multiple tasks
can rapidly adapt to a novel task. While most meta-learning methods consider few-shot classification
with a fixed architecture [56, 20, 48, 40, 33, 30], there are a few recent studies that couple NAS
with meta-learning [46, 34, 17] to search for the well-fitted architecture for the given task. However,
these NAS approaches are limited to small-scale tasks due to the cost of roll-out gradient steps. To
tackle this issue, MetaD2A [31] proposes to generate task-dependent architectures with amortized
meta-learning, but does not consider parameters for the searched architecture, and thus requires
additional cost of training it on unseen datasets. To overcome these limitations, our method retrieves
the best-fitted architecture with its parameters for the target task, by learning a cross-modal latent
space for dataset-network pairs with amortized meta-learning.

Neural Retrieval Neural retrieval aims to search for and return the best-fitted item for the given
query, by learning to embed items in a latent space with a neural network. Such approaches can be
broadly classified into models for image retrieval [21, 14, 66] and text retrieval [73, 9, 63]. Cross-
modal retrieval approaches [32, 74, 58] handle retrieval across different modalities of data (e.g. image
and text), by learning a common representation space to measure the similarity across the instances
from different modalities. To our knowledge, none of the existing works is directly related to our
approach that performs cross-modal retrieval of neural networks given datasets.

3 Methodology

We first define the Neural Network Search (NNS) problem and propose a meta-contrastive learning
framework to learn a cross-modal retrieval space. We then describe the structural details of the query
and model encoders, and an efficient model-zoo construction strategy.

3.1 Problem Definition

Our goal in NNS is to search for an optimal network (with both architectures and parameters) for a
dataset and constraints, by learning a cross-modal latent space over the dataset-network pairs. We
first describe the task-adaptive network retrieval with amortized meta-contrastive learning.

3.1.1 Meta-Training
We assume that we have a database of neural networks (model zoo) pretrained over a distribution
of tasks p(⌧) with each task ⌧ = {D⌧ ,M⌧ , s⌧}, where D⌧ denotes a dataset, M⌧ denotes a neural
network (or model) trained on the dataset, and s⌧ denotes a set of auxiliary constraints for the
network to be found (e.g. number of parameters or the inference latency). Then, our goal is to learn a
cross-modal latent space for the dataset-network pairs (D⌧ ,M⌧ ) while considering the constraints
s⌧ over the task distribution p(⌧), as illustrated in Figure 1. In this way, a meta-trained model from
diverse (D⌧ ,M⌧ ) pairs, will rapidly generalize on an unseen dataset D̃; D⌧ \ D̃ = ; by retrieving a
well-fitted neural network on the dataset that satisfies the conditions s⌧ .
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Figure 3: Illustration for overall framework of our proposed method (TANS): We first construct our model-
zoo with pareto-optimal pairs of dataset and network, rather than exhaustively train all possible pairs. We then
embed a model and a dataset with a graph-functional model and a set encoder. After that, we meta-learn the
cross-modal retrieval network over multiple model-query pairs, guided by our performance predictor.

Task-Adaptive Neural Network Retrieval To learn a cross-modal latent space for dataset-network
pairs over a task distribution, we first introduce a novel task-adaptive neural network retrieval problem.
The goal of task-adaptive retrieval is to find an appropriate network M⌧ given the query dataset
D⌧ for task ⌧ . To this end, we need to calculate the similarity between the dataset-network pair
(D⌧ ,M⌧ ) 2 Q⇥M, with a scoring function f that outputs the similarity between them as follows:

max
✓,�

X

⌧2p(⌧)

f(q,m), q = EQ(D
⌧ ;✓) and m = EM (M⌧ ;�), (1)

where EQ : Q ! Rd is a query (dataset) encoder, EM : M ! Rd is a model encoder, which
are parameterized with the parameter ✓ and � respectively, and fsim : Rd ⇥ Rd ! R is a scoring
function for the query-model pair. In this way, we can construct the cross-modal latent space for
dataset-network pairs over the task distribution with equation 1, and use this space to rapidly retrieve
the well-fitted neural network in response to the unseen query dataset.

We can learn such a cross-modal latent space of dataset-network pairs for rapid retrieval by directly
solving for the above objective, with the assumption that we have the query and the model encoder:
Q and M . However, we further propose a contrastive loss to maximize the similarity between a
dataset and a network that obtains high performance on it in the learned latent space, and minimize
the similarity between irrelevant dataset-network pairs, inspired by Faghri et al. [19], Engilberge
et al. [18]. While existing works such as Faghri et al. [19], Engilberge et al. [18] target image-to-text
retrieval, we tackle the problem of cross-modal retrieval across datasets and networks, which is a
nontrivial problem as it requires task-level meta-learning.

Retrieval with Meta-Contrastive Learning Our meta-contrastive learning objective for each
task ⌧ 2 p(⌧) consisting of a dataset-model pair (D⌧ ,M⌧ ) 2 Q ⇥ M, aims to maximize the
similarity between positive pairs: fsim(q,m+), while minimizing the similarity between negative
pairs: fsim(q,m�), where m+ is obtained from the sampled target task ⌧ 2 p(⌧) and m� is
obtained from other tasks � 2 p(⌧); � 6= ⌧ , which is illustrated in Figure 3. This meta-contrastive
learning loss can be formally defined as follows:

Lm(⌧ ;✓,�) = L(fsim(q,m+), fsim(q,m�);✓,�) (2)

q = EQ(D
⌧ ;✓), m+ = EM (M⌧ ;�), m� = EM (M� ;�).

We then introduce L for the meta-contrastive learning:

max

0

@0,↵� log
exp(fsim(q,m+))

exp
⇣P

�2p(⌧),� 6=⌧ fsim(q,m�)
⌘

1

A , (3)

where ↵ 2 R is a margin hyper-parameter and the score function fsim is the cosine similarity.
The contrastive loss promotes the positive (q,m+) embedding pair to be close together, with
at most margin ↵ closer than the negative (q,m�) embedding pairs in the learned cross-modal
metric space. Note that, similar to this, we also contrast the query with its corresponding model:
Lq(fsim(q+,m), fsim(q�,m)), which we describe in the supplementary material in detail.

With the above ingredients, we minimize the meta-contrastive learning loss over a task distribution
p(⌧), defined with the model Lm and query Lq contrastive losses, as follows:

min
�,✓

X

⌧2p(⌧)

Lm(⌧ ;✓,�) + Lq(⌧ ;✓,�). (4)
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Meta-Performance Surrogate Model We propose the meta-performance surrogate model to pre-
dict the performance on an unseen dataset without directly training on it, which is highly practical in
real-world scenarios since it is expensive to iteratively train models for every dataset to measure the
performance. Thus, we meta-train a performance surrogate model a = S(⌧ ; ) over a distribution of
tasks p(⌧) on the model-zoo database. This model not only accurately predicts the performance a
of a network M⌧ on an unseen dataset D⌧ , but also guides the learning of the cross-modal retrieval
space, thus embedding a neural network closer to datasets that it performs well on.

Specifically, the proposed surrogate model S takes a query embedding q⌧ and a model embedding
m⌧ as an input for the given task ⌧ , and then forwards them to predict the accuracy of the model
for the query. We train this performance predictor S(⌧ ; ) to minimize the mean-square error loss
Ls(⌧ ; ) = (s⌧acc � S(⌧ ; ))2 between the predicted accuracy S(⌧ ; ) and the true accuracy s⌧acc for
the model on each task ⌧ , which is sampled from the task distribution p(⌧). Then, we combine this
objective with retrieval objective in equation 4 to train the entire framework as follows:

min
�,✓, 

X

⌧2p(⌧)

Lm(⌧ ;✓,�) + Lq(⌧ ;✓,�) + � · Ls(⌧ ; ), (5)

where � is a hyper-parameter for weighting losses.

3.1.2 Meta-Test

By leveraging the meta-learned cross-modal retrieval space, we can instantly retrieve the best-fitted
pretrained network M 2 M, given an unseen query dataset D̃ 2 Q̃, which is disjoint from the
meta-training dataset D 2 Q. Equipped with meta-training components described in the previous
subsection, we now describe the details of our model at inference time, which includes the following:
amortized inference, performance prediction, and task- and constraints-adaptive initialization.

Amortized Inference Most existing NAS methods are slow as they require several GPU hours for
training, to find the optimal architecture for a dataset D̃. Contrarily, the proposed Task-Adaptive

Network Search (TANS) only requires a single forward pass per dataset, to obtain a query embedding
q̃ for the unseen dataset using the query encoder Q(D̃;✓⇤) with the meta-trained parameters ✓⇤, since
we train our model with amortized meta-learning over a distribution of tasks p(⌧). After obtaining
the query embedding, we retrieve the best-fitted network M⇤ for the query based on the similarity:

M⇤ = max
M⌧

{fsim(q̃,m⌧ ) | ⌧ 2 p(⌧)}, (6)

where a set of model embeddings {m⌧ | ⌧ 2 p(⌧)} is pre-computed by the meta-trained model
encoder EM (M⌧ ;�⇤).

Performance Prediction While we achieve the competitive performance on unseen dataset only
with the previously defined model, we also use the meta-learned performance predictor S to select
the best performing one among top K candidate networks {M̃i}Ki=1 based on their predicted per-
formances. Since this surrogate model with module to consider datasets is meta-learned over the
distribution of tasks p(⌧), we predict the performance on an unseen dataset D̃ without training on it.
This is different from the conventional surrogate models [38, 75, 54] that additionally need to train
on an unseen dataset from scratch, to predict the performance on it.

Task-adaptive Initialization Given an unseen dataset, the proposed TANS can retrieve the network
trained on a training dataset that is highly similar to the unseen query dataset from the model zoo
(See Figure 4). Therefore, fine-tuning time of the trained network for the unseen target dataset D̃ is
effectively reduced since the retrieved network M has task-relevant initial parameters that are already
trained on a similar dataset. If we need to further consider constraints s, such as parameters and
FLOPs, then we can easily check if the retrieved models meet the specific constraints by sorting them
in the descending order of their scores, and then selecting the constraint-fitted best accuracy model.

3.2 Encoding Datasets and Networks
Query Encoder The goal of the proposed query encoder EQ(D;✓) : Q ! Rd is to embed a
dataset D as a single query vector q onto the cross-modal latent space. Since each dataset D consists
of n data instances D = {Xi}ni=1 2 Q, we need to fulfill the permutation-invariance condition over
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the data instances Xi, to output a consistent representation regardless of the order of its instances. To
satisfy this condition, we first individually transform n randomly sampled instances for the dataset D
with a continuous learnable function ⇢, and then apply a pooling operation to obtain the query vector
q =

P
Xi2D ⇢(Xi), adopting Zaheer et al. [69].

Model Encoder To encode a neural network M⌧ , we consider both its architecture and the model
parameters trained on the dataset D⌧ for each task ⌧ . Thus, we propose to generate a model
embedding with two encoding functions: 1) topological encoding and 2) functional encoding.

Following Cai et al. [8], we first obtain a topological embedding v⌧
t with auxiliary information

about the architecture topology, such as the numbers of layers, channel expansion ratios, and kernel
sizes. Then, our next goal is to encode the trained model parameters for the given task, to further
consider parameters on the neural architecture. However, a major problem here is that directly
encoding millions of parameters into a vector is highly challenging and inefficient. To this end, we
use functional embedding, which embeds a network solely based on its input-output pairs. This
operation generates the embedding of trained networks, by feeding a fixed Gaussian random noise
into each network M⌧ , and then obtaining an output v⌧

f of it. The intuition behind the functional
embedding is straightforward: since networks with different architectures and parameters comprise
different functions, we can produce different outputs for the same input.

With the two encoding functions, the proposed model encoder generates the model representation by
concatenating the topology and function embeddings [v⌧

t ,v
⌧
f ], and then transforming the concatenated

vector with a non-linear function � as follows: m⌧ = �([v⌧
t ,v

⌧
f ]) = EM (M⌧ ;�). Note that, the

two encoding functions satisfy the injectiveness property under certain conditions, which helps with
the accurate retrieval of the embedded elements in a condensed continuous latent space. We provide
the proof of the injectiveness of the two encoding functions in Section C of the supplementary file.

3.3 Model-Zoo Construction
Given a set of datasets D = {D1, . . . , DK} and a set of architectures M = {M1, . . . ,MN}, the
most straightforward way to construct a model zoo Z , is by training all architectures on all datasets,
which will yield a model zoo Z that contains N ⇥K pretrained networks. However, we may further
reduce the construction cost by collecting P dataset-model pairs, {D,M}Pi=1, where P ⌧ N⇥K, by
randomly sampling an architecture M 2 M and then training it on D 2 D. Although this works well
in practice (see Figure 8 (Bottom)), we further propose an efficient algorithm to construct it in a more
sample-efficient manner, by skipping evaluation of dataset-model pairs that are certainly worse than
others in all aspects (memory consumption, latency, and test accuracy). We start with an initial model
zoo Z(0) that contains a small amount of randomly selected pairs and its test accuracies. Then, at each
iteration t, among the set of candidates C(t), we find a pair {D,M} that can expand the currently
known set of all Pareto-optimal pairs w.r.t. all conditions (memory, latency, and test accuracy on the
dataset D), based on the amount of the Pareto front expansion estimated by fzoo(·;Z(t)):

{D,M}(t+1) = argmax
(D,M)2C(t)

fzoo({D,M};Z(t)) (7)

where fzoo({D,M};Z) := E
ŝacc

[gD(Z [ {D,M, ŝacc})� gD(Z)], ŝacc ⇠ S({D,M}; zoo) with

parameter  zoo trained on Z , and the function gD measures the volume under the Pareto curve, also
known as the Hypervolume Indicator [41], for the dataset D. We then train M on D, and add it to
the current model zoo Z(t). For the full algorithm, please refer to Appendix A.

4 Experiments
In this section, we conduct extensive experimental validation against conventional NAS methods and
commercially available AutoML platforms, to demonstrate the effectiveness of our proposed method.

4.1 Experimental Setup
Datasets We collect 96 real-world image classification datasets from Kaggle*. Then we divide
the datasets into two non-overlapping sets for 86 meta-training and 10 meta-test datasets. As some
datasets contain relatively large number of classes than the other datasets, we adjust each dataset

*https://www.kaggle.com/
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Table 1: Performance of the searched networks on 10 unseen real-world datasets. We report the averaged
accuracy on ten unseen meta-test datasets over 3 different runs with 95% confidence intervals.

Target Dataset Method # Epochs FLOPs Params Search Time Training Time Speed Up Accuracy
(M) (M) (GPU sec) (GPU sec) (%)

Averaged
Performance

MobileNetV3 [26] 50 132.94 4.00 - 257.78±09.77 1.00⇥ 94.20±0.70

PC-DARTS [65] 500 566.55 3.54 1100.37±22.20 5721.13±793.71 0.04⇥ 79.22±1.69
DrNAS [10] 500 623.43 4.12 1501.75±43.92 5659.77±403.62 0.04⇥ 84.06±0.97

FBNet-A [60] 50 246.69 4.3 - 293.42±57.45 0.88⇥ 93.00±1.95
OFA [8] 50 148.76 6.74 121.90±0.00 226.58±03.13 0.74⇥ 93.89±0.84
MetaD2A [31] 50 512.67 6.56 2.59±0.13 345.39±28.36 0.74⇥ 95.24±1.14

TANS (Ours) 10 181.74 5.51 0.002±0.00 40.19±03.06 - 95.17±2.20
TANS (Ours) 50 181.74 5.51 0.002±0.00 200.93±11.01 1.28⇥ 96.28±0.30

Colorectal
Histology
Dataset
(Easy)

MobileNetV3 [26] 50 132.94 4.00 - 577.18±04.15 1.00⇥ 96.23±0.07

PC-DARTS [65] 500 534.64 4.02 2062.42±49.14 12124.18±1051.16 0.04⇥ 96.17±0.68
DrNAS [10] 500 614.23 4.12 4183.20±188.60 11355.18±1352.62 0.04⇥ 97.51±0.13

FBNet-A [60] 50 215.45 4.3 - 696.00±295.19 0.83⇥ 95.43±0.57
OFA [8] 50 134.85 6.74 121.90±0.00 537.61±03.52 0.88⇥ 96.40±0.52
MetaD2A [31] 50 506.88 5.93 2.58±0.12 784.45±79.32 0.73⇥ 96.57±0.56

TANS (Ours) 10 171.74 4.95 0.001±0.00 98.56±04.24 - 96.87±0.21
TANS (Ours) 50 171.74 4.95 0.001±0.00 492.81±21.19 1.17⇥ 97.67±0.05

Food
Classification

Dataset
(Hard)

MobileNetV3 [26] 50 132.94 4.00 - 235.57±07.57 1.00⇥ 87.52±0.78

PC-DARTS [65] 500 567.85 3.62 1018.49±6.31 6323.40±938.83 0.03⇥ 55.42±2.46
DrNAS [10] 500 632.67 4.12 1276.38±0.00 5079.89±161.05 0.04⇥ 61.45±0.68

FBNet-A [60] 50 251.29 4.3 - 251.24±3.31 0.94⇥ 84.33±1.41
OFA [8] 50 152.34 6.74 121.90±0.00 190.86±03.48 0.75⇥ 87.43±0.59
MetaD2A [31] 50 521.11 8.23 2.60±0.23 324.62±34.97 0.72⇥ 89.72±1.53

TANS (Ours) 10 179.83 5.07 0.002±0.00 40.59±04.84 - 93.11±0.24
TANS (Ours) 50 179.83 5.07 0.002±0.00 202.93±24.21 1.16⇥ 93.71±0.24

Query Retrieval Query Retrieval Query Retrieval

Figure 4: Retrieved examples for meta-test datasets. We visualize the dataset used for pretraining the
retrieved model with the unseen query dataset. For more examples, see Figure 9 in Appendix.

to have up to 20 classes, yielding 140 and 10 datasets for meta-training and meta-test datasets,
respectively (Please see Table 5 for detailed dataset configuration). For each dataset, we use randomly
sampled 80/20% instances as a training and test set. To be specific, our 10 meta-test datasets include
Colorectal Histology, Drawing, Dessert, Chinese Characters, Speed Limit Signs, Alien vs Predator,
COVID-19, Gemstones, and Dog Breeds. We strictly verified that there is no dataset-, class-, and
instance-level overlap between the meta-training and the meta-test datasets, while some datasets
may contain semantically similar classes.

Baseline Models We consider MobileNetV3 [26] pretrained on ImageNet as our baseline neural
network. We compare our method with conventional NAS methods, such as PC-DARTS [65]
and DrNAS [10], weight-sharing approaches, such as FBNet [60] and Once-For-All [8], and data-
driven meta-NAS approach, e.g. MetaD2A [31]. All these NAS baseline approaches are based on
MobileNetV3 pretrained on ImageNet, except for the conventional NAS methods that are only able
to generate architectures. As such conventional NAS methods start from the scratch, we train them
for sufficient amount of training epochs (10 times more training steps) for fair comparison. Please
see Appendix B for further detailed descriptions of the experimental setup.

Model-zoo Construction We follow the OFA search space [8], which allows us to design resource-
efficient architectures, and thus we obtain network candidates from the OFA space. We sample 100
networks condidates per meta-training dataset, and then train the network-dataset pairs, yielding
14,000 dataset-network pairs in our full model-zoo. We also construct smaller-sized efficient model-
zoos from the full model-zoo (14,000) with our efficient algorithm described in Section 3.3. We use
the full-sized model-zoo as our base model-zoo, unless otherwise we clearly mention the size of the
used model-zoo. Detailed descriptions, e.g. training details and costs, are described in Appendix D.2.

4.2 Experimental Results
Meta-test Results We compare 50-epoch accuracy between TANS and the existing NAS methods
on 10 novel real-world datasets. For a fair comparison, we train PC-DARTS [65] and DrNAS [10] for
10 times more epochs (500), as they only generate architectures without pretrained weights, so we
train them for a sufficient amount of iterations. For FBNet and OFA (weight-sharing methods) and
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(a) Number of Parameters (b) FLOPs

(c) The Cross-Modal Latent Space (d) Effectiveness of Topology (e) Analysis on Arch. & Parameters

Method Averaged Acc.

FBNet-A [60] 93.00±1.95
OFA [8] 93.89±0.84
MetaD2A [31] 95.24±1.14

TANS w/o Topol. 95.24±0.21
TANS (Ours) 96.28±0.30

Method (1/20 Model-Zoo) Averaged Acc.

TANS (Ours) 95.07%

TANS w/ Random Init. 74.89%
TANS w/ ImageNet 94.84%

TANS w/ MetaD2A Arch. 95.38%

Figure 6: In-depth analysis of TANS: Performance comparison with constraints, such as (a) the number of
parameters and (b) FLOPs. (c) Visualization for the cross-modal latent space using T-SNE and performance
comparison depending on the distance (d) Ablation study on topology information. (e) Analysis on the
architecture and pretrained knowledge.

MetaD2A (data-driven meta-NAS), which provide the searched architectures as well as pretrained
weights from ImageNet-1K, we fine-tune them on the meta-test query datasets for 50 epochs.

Figure 5: Meta-test Accuracy Curves

As shown in Table 1, we observe that TANS out-
performs all baselines, with incomparably smaller
search time and relatively smaller training time.
Conventional NAS approaches such as PC-DARTS
and DrNAS repeatedly require large search time
for every dataset, and thus are inefficient for this
practical setting with real-world datasets. FBNet,
OFA, and MetaD2A are much more efficient than
general NAS methods since they search for subnets within a given supernet, but obtain suboptimal
performances on unseen real-world datasets as they may have largely different distributions from the
dataset the supernet is trained on. In contrast, our method achieves almost zero cost in search time,
and reduced training time as it fine-tunes a network pretrained on a relevant dataset. In Figure 5, we
show the test performance curves and observe that TANS often starts with a higher starting point, and
converges faster to higher accuracy.

In Figure 4, we show example images from the query and training datasets that the retrieved models
are pretrained on. In most cases, our method matches semantically similar datasets to the query
dataset. Even for the semantically-dissimilar cases (right column), for which our model-zoo does
not contain models pretrained on datasets similar to the query, our models still outperform all other
base NAS models. As such, our model effectively retrieves not only task-relevant models, but also
potentially best-fitted models even trained with dissimilar datasets, for the given query datasets. We
provide detailed descriptions for all query and retrieval pairs in Figure 9 of Appendix.

We also compare with commercially available AutoML platforms, such as Microsoft Azure Custom
Vision [1] and Google Vision Edge [2]. For this experiment, we evaluate on randomly chosen five
datasets (out of ten), due to excessive training costs required on AutoML platforms. As shown in
Figure 2, our method outperforms all commercial NAS/AutoML methods, with a significantly smaller
total time cost. We provide more details and additional experiments, such as including real-world
architectures, in Appendix E.

Analysis of the Architecture & Parameters To see that our method is effective in retrieving
networks with both optimal architecture and relevant parameters, we conduct several ablation studies.
We first report the results of base models that only search for the optimal architectures. Then we
provide the results of the network retrieved using a variant of our method which does not use the
topology (architecture) embedding, and only uses the functional embedding v⌧f (Tans w/o Topol).
As shown in Figure 6 (d), TANS w/o Topol outperforms base NAS methods (except for MetaD2A)
without considering the architectures, which shows that the performance improvement mostly comes
from the knowledge transfer from the weights of the most relevant pretrained networks. However, the
full TANS obtains about 1% higher performance over TANS w/o Topol., which shows the importance
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(a) Effectiveness of Performance Predictor (b) Analysis of Retrieval Performance

Model Performance of The Same Pair Retrieval
R@1 R@5 R@10 Mean Median

Random 2.14 2.86 8.57 69.04 70.0
Largest Parameter 3.57 7.14 10.00 51.85 52.0

TANS + Cosine 9.29 12.86 22.14 46.02 38.0
TANS + Hard Neg. 72.14 84.29 88.57 4.86 1.0
TANS + Contrastive 80.71 96.43 99.29 1.90 1.0
TANS w/o Func.Emb. 5.00 11,43 18.57 63.20 63.0
TANS w/o Predictor 80.00 96.43 97.86 2.23 1.0

Method MSE on 5 Meta-test Datasets
Food Gemstones Dogs A. vs P. COVID-19

Predictor w/o v⌧q 0.0178 0.0782 0.0194 0.0185 0.0418
Predictor w/o v⌧f 0.0188 0.0323 0.0016 0.0652 0.0328

Predictor (Ours) 0.0036 0.0338 0.0013 0.0028 0.0233

Method MSE on 5 Meta-test Datasets
Food Gemstones Dogs A. vs P. COVID-19

Random Estimation 0.1619 0.1081 0.1348 0.2609 0.2928
1/100 Model-Zoo 0.0088 0.0369 0.0034 0.0077 0.0241

Top 10 Retrievals 0.0036 0.0338 0.0013 0.0028 0.0233

(c) Analysis of Performance Predictor (d) Effectiveness of Performance Predictor

Figure 7: In-depth analysis of TANS (2): (a) The effectiveness of meta-performance predictor. (b) Ablation
study on retrieval performance. Additional (c) analysis and (d) the effectiveness of our performance predictor.

of the architecture and the effectiveness of our architecture embedding. In Figure 6 (e), we further
experiment with a version of our method that initializes the retrieved networks with both random
weights and ImageNet pre-trained weights, using 1/20 sized model-zoo (700). We observe that they
achieve lower accuracy over TANS on 10 datasets, which again shows the importance of retrieving
relevant tasks’ knowledge. We also construct the model-zoo by training on the architectures found by
an existing NAS method (MetaD2A), and see that it further improves the performance of TANS.

Contraints-conditioned Retrieval TANS can retrieve models with a given dataset and additional
constraints, such as the number of the parameters or the computations (in FLOP). This is practically
important since we may need a network with less memory and computation overhead depending on
the hardware device. This can be done by filtering networks that satisfy the given conditions among
the candidate networks retrieved. For this experiment, we compare against OFA that performs the
same constrained search, as other baselines do not straightforwardly handle this scenario. As shown
in Figure 6 (a) and (b), we observe that the network retrieved with TANS consistently outperforms
the network searched with OFA under varying parameters and computations constraints. Such
constrained search is straightforward with our method since our retrieval-based method allows us to
search from the database consisting of networks with varying architectures and sizes.

Analysis of the Cross-Modal Retrieval Space We further examine the learned cross-modal space.
We first visualize the meta-learned latent space in Figure 6 (c) with randomly sampled 1,400 models
among 14,000 models in the model-zoo. We observe that the network whose embeddings are the
closest to the query dataset achieves higher performance on it, compared to networks embedded the
farthest from it. For example, the accuracy of the closet network point for UCF-AI is 98.94% while
the farthest network only achieves 91.53%.

Table 2: Latent Distance and Performance

Spearman’s Correlation on 5 Meta-test Datasets
Food Drawing Chinese A. vs P. Colorectal

0.752 0.583 0.322 0.214 0.213

We also show Spearman correlation scores on 5
meta-test datasets in Table 2. Measuring correlation
with the distances is not directly compatible with
our contrastive loss, since the negative examples
(models that achieve low performance on the target
dataset) are pushed away from the query point, without a meaningful ranking between the negative
instances. To obtain a latent space where the negative examples are also well-ranked, we should
replace the contrastive loss with a ranking loss instead, but this will not be very meaningful. Hence,
to effectively validate our latent space with correlation metric, we rather select clusters, such that 50
models around the query point and another 50 models around the farthest points, thus using a total of
100 models to report the correlation scores. In the Table 2, we show the correlation scores of these
100 models on the five unseen datasets. For Food dataset (reported as "hard" dataset in Table 1), the
correlation scores are shown to be high. On the other hand, for Colorectal Histology dataset (reported
as "easy" dataset), the correlation scores are low as any model can obtain good performance on it,
which makes the performance gap across models small. In sum, as the task (dataset) becomes more
difficult, we can observe a higher correlation in the latent space between the distance and the rank.
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Meta-performance Predictor The role of the proposed performance predictor is not only guiding
the model and query encoder to learn the better latent space but also selecting the best model among
retrieval candidates. To verify its effectiveness, we measure the performance gap between the top-1
retrieved model w/o the predictor and the model with the highest scores selected using the predictor
among retrieved candidates. As shown in Figure 7 (a), there are 1.5%p - 8%p performance gains
on the meta-test datasets. The top-1 retrieved model from the model zoo with TANS may not be
always optimal for an unseen dataset, and our performance predictor remedies this issue by selecting
the best-fitted model based on its estimation. We also examine ablation study for our performance
predictor. Please note that we do not use ranking loss which does not rank the negative examples.
Thus we use Mean Squared Error (MSE) scores. We retrieve the top 10 most relevant models for
an unseen query datasets and then compute the MSE between the estimated scores and the actual
ground truth accuracies. As shown in Figure 7 (c), we observe that removing either query or model
embeddings degrades performance compared to the predictor taking both embeddings. It is natural
that, with only model or query information, it is difficult to correctly estimate the accuracy since the
predictor fails to recognize what or where to learn. Also, we report the MSE between the predicted
performance using the predictor and the ground truth performance of each model for the entire set of
pretrained models from a smaller model zoo in Figure 7 (d). Although the performance predictor
achieves slightly higher MSE scores for this experiment compared to the MSE obtained on the top-10
retrieved models (which are the most important), the MSE scores are still meaningfully low, which
implies that our performance model successfully works even toward the entire model-zoo.
Retrieval Performance We also verify whether our model successfully retrieves the same paired
models when the correspondent meta-train datasets are given (we use unseen instances that are
not used when training the encoders.) For the evaluation metric, we use recall at k (R@k) which
indicates the percentage of the correct models retrieved among the top-k candidates for the unseen
query instances, where k is set to 1, 5, and 10. Also, we report the mean and median ranking of
the correct network among all networks for the unseen query. In Figure 7 (b), the largest parameter
selection strategy shows poor performances on the retrieval problem, suggesting that simply selecting
the largest network is not a suitable choice for real-world tasks. In addition, compared to cosine
similarity learning, the proposed meta-contrastive learning allows the model to learn significantly
improved discriminative latent space for cross-modal retrieval. Moreover, without our performance
predictor, we observe that TANS achieves slightly lower performance, while it is significantly
degenerated when training without functional embeddings.

Method Architecture Retrieved Dataset
Search Cost Pre-training Cost

Conventional NAS O(N) O(N)
MetaD2A O(1) O(N)
TANS (Ours) O(1) O(1)

Figure 8: Search & Pretraining Costs
(Top), Model-Zoo Analysis (Bottom)

Analysis of Model-Zoo Construction Unlike most existing
NAS methods, which repeatedly search the optimal architec-
tures per dataset from their search spaces, TANS do not need
to perform such repetitive search procedure, once the model-
zoo is built beforehand. We are able to adaptively retrieve
the relevant pretrained models for any number of datasets
from our model-zoo, with almost zero search costs. Formally,
TANS reduces the time complexities of both search cost and
pre-training cost from O(N) to O(1), where N is the num-
ber of datasets, as shown in Figure 8 (Top). Furthermore, a
model zoo constructed using our efficient construction algo-
rithm, introdcued in Section 3.3, yields models with higher
performance on average, compared to the random sampling
strategy when the size of the model-zoo is the same as shown in Figure 8 (Bottom).

5 Conclusion
We propose a novel Task-Adaptive Neural Network Search framework (TANS), that instantly retrieves
a relevant pre-trained network for an unseen dataset, based on the cross-modal retrieval of dataset-
network pairs. We train this retrieval model via amortized meta-learning of the cross-modal latent
space with contrastive learning, to maximize the similarity between the positive dataset-network
pairs, and minimize the similarity between the negative pairs. We train our framework on a model
zoo consisting of diverse pretrained networks, and validate its performance on ten unseen datastes.
The results show that the proposed TANS rapidly searches and trains a well-fitted network for unseen
datasets with almost no architecture search cost and significantly fewer fine-tuning steps to reach the
target performance, compared to other NAS methods. We discuss the limitation and the societal
impact of our work in Appendix F.
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