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Abstract

LLM routers balance the cost and quality of responding to queries by
routing them to a cheaper or more expensive LLM depending on the query’s
estimated complexity. Routers are a type of what we call “LLM control
planes,” i.e., systems that orchestrate multiple LLMs.

In this paper, we investigate adversarial robustness of LLM control planes
using routers as a concrete example. We formulate LLM control-plane
integrity as a distinct problem in Al safety, where the adversary’s goal is to
control the order or selection of LLMs employed to process users’ queries.
We then demonstrate that it is possible to generate query-independent
“gadget” strings that, when added to any query, cause routers to send
this query to a strong LLM. In contrast to conventional adversarial inputs,
gadgets change the control flow but preserve or even improve the quality
of outputs generated in response to adversarially modified queries.

We show that this attack is successful both in white-box and black-box
settings against several open-source and commercial routers. We also show
that perplexity-based defenses can be evaded, and investigate alternatives.

1 Introduction

Large language models (LLMs) exhibit remarkable capabilities on many tasks. Today,
hundreds of open-source and proprietary LLMs are available at different prices, ranging
from expensive, state-of-the-art models to cheaper, smaller, less capable ones. Operators of
LLMs (especially higher-quality models) typically charge per query, imposing non-trivial
costs on LLM-based applications and systems.

Developers who want to integrate LLMs into their applications must therefore consider both
utility and cost, i.e., how to maximize the quality of responses while minimizing the cost.
The two objectives conflict with each other: larger models tend to generate higher-quality
answers but charge more per query. For example, at the time of this writing, GPT-3.5-turbo
costs $0.5/$1.5 per 1M input/output tokens, GPT-40-mini $0.15/%$0.6, GPT-40 $2.5/$10,
ol-preview $15/$60. The difference in quality between models is not uniform across queries.
For some queries, even a cheap model can generate an acceptable response. More complex
queries require an expensive model to obtain a quality answer.

A natural solution to balancing performance and economic considerations is to take advan-
tage of the availability of multiple LLMs at different price-performance points. Recently
proposed LLM routing systems (Sakota et al., 2024; Ong et al., 2024; Ding et al., 2024; Mar-
tian; Unify) orchestrate two or more LLMs and adaptively route each query to the cheapest
LLM they deem likely to generate a response of sufficient quality. In the two-LLM case, let
M; be an expensive, high-quality model and M, a weaker, lower-grade one. Given query
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g, the routing algorithm R(-) applies a classifier to g that outputs 0 if My, is sufficient for
answering g, or 1 if M; is required. The system then routes g accordingly.

LLM routing is an example of a general class of systems we call LLM control planes, which
orchestrate the use of multiple LLMs to process inputs, as further described in Section 2.

Our contributions. First, we introduce LLM control plane integrity, i.e., adversarial ro-
bustness of inference flow (rather than inference outputs), as a novel problem in Al safety.
Robustness of control-plane algorithms to adversarial queries is distinct from adversarial
robustness of the LLMs they orchestrate. Attacks on LLMs aim to degrade their outputs. In
contrast, control-plane attacks introduced in this paper aim to change the order or selection
of LLMs employed by the system while producing the same or even better outputs.

Second, we show that existing LLM routing algorithms can be manipulated by malicious
users. We design, implement, and evaluate a method that generates query-independent
adversarial token sequences which we call “confounder gadgets.” If a gadget is added to
any query, this query is routed to the strong model with high probability. Next, we show
that this attack is effective even in the transfer setting where the adversary does not have
full knowledge of the target LLM router but has access to another router (e.g., an internally
trained surrogate). We also evaluate the integrity of commercial LLM routers, showing that
they can be confounded as well.

While our gadgets act like universal adversarial examples against query classifiers used by
LLM routers, their objectives are different. Adversarial examples simply aim to change the
output of the classifier. Our gadgets need to change the output of the target system’s router
and also ensure that the system’s response to the confounded query is the same or better
than the response to the original query.

Third, we investigate defenses. Our basic method generates gadgets that have anomalously
high perplexity and can be easily filtered out. This defense can be evaded by incorporating a
low-perplexity objective into gadget generation. We also discuss higher-level defenses, such
as identifying users whose queries are routed to the strong model with abnormal frequency.

Routing attacks can be deployed for various adversarial objectives, e.g., to ensure that the
adversary always obtains the highest-quality answer regardless of the target application’s
internal routing policies and cost constraints, or to maliciously inflate the target’s LLM costs.
They can affect other users, e.g., by wasting the target’s strong-model quota and causing
their queries to be routed to the weak model. As LLM control planes grow in importance
and sophistication, we hope to motivate further research on their adversarial robustness.

2 LLM Control Planes and Routing

Inference using large language models (LLMs) is traditionally monolithic: a single model is
applied to an input or sequence of inputs. Today, this methodology can be sub-optimal. State-
of-the-art models are often expensive, charging as much as several dollars per API query.
Different LLMs may excel at different tasks, and selectively using an appropriate LLM may
improve overall quality on a diverse workload. Finally, combining multiple LLMs, even if
trained for similar tasks, may become increasingly prevalent as performance improvements
of individual LLMs plateaus (Reuters, 2024; The Information, 2024; Bloomberg, 2024).

Researchers and practitioners are developing inference architectures that use multiple LLMs
to answer queries. These LLMs are orchestrated by what we call an LLM control plane
(borrowing the terminology from networking (IBM, 2024)). The control plane may route
queries or parts of queries to different LLMs, derive new strings to query to underlying
LLMs, combine answers from underlying LLMs, and more.

LLM routers. A prominent example of this emerging class of LLM control planes are LLM
routers (Ding et al., 2024; Ong et al., 2024; Stripelis et al., 2024; Sakota et al., 2024; Lee et al.,
2024). LLM routers decide which of the two (or, sometimes, more) LLMs to use to answer a
query. In prescriptive routing, the router applies some lightweight classifier to the input
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query that determines which underlying LLM to utilize for a response. The classifier is itself
a learned function that scores the complexity of the query. Deployments can then configure
a score threshold for when to route a query to the more expensive LLM. This threshold can
be tuned using representative workloads to achieve a desired cost-performance trade-off.
Figure 4 shows the basic workflow of binary LLM routers.

Non-prescriptive routing (Chen et al., 2023; Aggarwal et al., 2023; Yue et al., 2024) picks
a response from those produced by multiple LLMs. For example, FrugalGPT (Chen et al.,
2023) submits the query to a cascade of models (ordered by price), stopping when it obtains
a response classified by the router as sufficient.

In contrast to routers motivated by controlling costs, several LLM router designs focus
solely on improving quality of responses (Shnitzer et al., 2023; Narayanan Hari & Thomson,
2023; Feng et al., 2024; Srivatsa et al., 2024).

The LLM routers described thus far do not modify the queries or individual LLM responses.
Other types of control planes do. Ensemble approaches such as mixture-of-expert (MoE) (Du
et al., 2022; Fedus et al., 2022; Riquelme et al., 2021; Shazeer et al., 2016) architectures select
a subset of underlying models to apply to each token of a query and merge their responses.
LLM synthesis (Jiang et al., 2023b) architectures operate similarly, but route the entire query
to a subset of underlying LLMs and merge their responses. These approaches reduce
inference costs by using fewer and/or less complex underlying models.

A key use case for LLM routers is to help LLM-based applications reduce cost. Several com-
mercial routers, including Unify (Unify), Martian (Martian), NotDiamond (NotDiamond),
and others, offer this as a service. These services select the optimal LLM and forward the
queries, apparently resulting in significant cost savings: up to 98% in the case of Martian
(Martian), and 10x in the case of NotDiamond (NotDiamond).

2.1 LLM Control Plane Integrity

In this section, we provide a high-level definition of LLM control plane integrity. A formal
and detailed discussion is provided in Appendix A.

An LLM control plane R, is a potentially randomized algorithm, parameterized by a
string w. It utilizes some number n of LLMs denoted by M. We will mostly focus on the
case of n = 2, and, for reasons that will be clear in a moment, use Mg (“strong”) and My

“weak”) to denote the underlying LLMs. Given an input x, inference flow is the sequence
of LLM invocations that process x. This flow is dictated by an inference flow policy that
represents the control plane designer’s intention regarding the use of the underlying LLMs.
For example, in the context of binary LLM routers, the policy might specify that the strong
and expensive model is used at most an € fraction of inferences.

A control plane integrity adversary seeks to maliciously guide the inference flow by overriding
the intended inference flow policy for obtaining some adversarial goal. Informally, control
plane integrity means that decisions made by control plane algorithms cannot be subverted
by adversarial queries. We focus on predictive LLM routing as a concrete example of a
control plane used in real-world LLM-based systems to manage inference cost.

Threat models. An adversary may seek to inflate the costs of a victim application that utilizes
an LLM control plane for cost management. Another adversarial goal is arbitrage. Consider
an application that charges X dollars per query, whereas directly using Mg costs ¥ > X.
This makes economic sense if the bulk of queries are routed internally to a cheaper model
M. An input adaptation attack in this setting can gain (indirect) access to Mg, obtaining
an arbitrage advantage of Y — X per query. To be effective, adaptations should not lower
response quality (i.e., extract all value out of rerouting to Ms).

A lot of prior research on adversarial ML focused on attacks like jailbreaking and poisoning
that impact the end users of LLMs. In our setting, the primary victims are applications that
employ vulnerable LLM control planes. Furthermore, their users will be affected, too, if
their queries are unfairly routed to the weak model. The adversary, on the other hand, gains
unfair access to the high-quality LLM.
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Figure 1: Overview of our attack on LLM control plane integrity. The attack adds to each
query a prefix (represented by the gear), called a “confounder gadget,” that causes the router
to send the query to the strong model.

We assume that the victim application’s prompt includes a substring that can be controlled
by the adversary. For example, chatbots, coding assistants, writing assistants, and other
LLM-based applications include user inputs into their prompt. We consider several levels
of knowledge that an adversary may have about the victim application’s internal router.

In the white-box case, the adversary knows the control plane algorithm and its parameters w.
In the black-box (transfer) case, the adversary does not know the control plane algorithm R
and w for the target model, but knows instead another control plane algorithm R/ , and its
parameters. We refer to R/ , as the surrogate. For example, this could arise if an adversary
trains their own router. In this setting our attacks are also zero-shot in that they do not require
any prior interaction with the target control plane.

3 Confounding Control Planes with Gadgets

Control plane attacks modify queries to mislead or “confound” the routing logic into routing
these queries to an LLM of the adversary’s choosing. We focus on the binary router setting
in which the router applies a learned parameterized scoring function Sy(-), where 6 refers
to the parameters, and routes any query whose score exceeds some threshold 7 to the strong
LLM Ms. This setting has been the focus of (Ong et al., 2024; Ding et al., 2024; Lee et al,,
2024) and is deployed in practice (see Section 6). We provide a more formal definition
in Appendix B. See Figure 1 for a depiction of our attack setting.

Confounder gadgets. Our approach works as follows. Given a query x;, we prepend
a confounder gadget c;, which is a short sequence of adversarially chosen tokens. The
modified query is £; = c;||x; where || denotes string concatenation. Intuitively, we will use
optimization to search for confounders that trick the scoring function into ranking £; as
sufficiently complex to require the strong model.

In the white-box, query-specific setting, we can choose ¢; as a function of x; and the known
parameters w = (S, 6, 7). To avoid searching a confounder for every query, we focus instead
on the query-independent setting, where a single confounder can be prepended to all queries.

We begin by fixing a confounder length of n tokens and let Z be a token dictionary (it should
be a sufficiently large subset of the token dictionary used by S). Then we set the gadget to
initially be n tokens all fixed to the same value from Z. The exact choice of the initialization
token is not important; in our implementation, we used the first token in the dictionary ('!").
0) 0) .(0) C(O)]

17Cy s
Then, we perform a hill-climbing style approach to find a good confounder. For each
iteration t € [T], where T is the total number of iterations, do the following:

Denote this initial confounder as c¢(®) = [c

(1) Select a target index j € [1, 1] uniformly.

(2) Generate a set B of B+ 1 candidates. First set & = c(*), the current confounder. To
generate B additional candidates, select replacement tokens from 7 uniformly, forming
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theset {t, < Z} E:l' Replace the j token in the current confounder & with t;, forming

ép = [cgt),...,c/(.i)l,tb,c](.ﬁzl,...,c,(f)} .Let B={¢éy,...,Cp}-

(3) Find the candidate that maximizes the score: D) argmax .z Sg(c) .

The final confounder c(T) can be used with any query x; by prepending it to obtain £; = c||x;.
We early abort if, after 25 iterations, there is no update to the confounder gadget. Technically,
we could abort early if we find a confounder whose score exceeds T. Running further can
be useful when an adversary does not know t.

The attack’s runtime is dominated by T - B times the cost of executing S. In practice, S are
designed to be fast (otherwise routers would significantly increase the latency of applications
that use them). We report precise timings later; in summary, the attack is fast because we
can set T to be relatively small and still find high-scoring confounders.

Due to the randomness in index and token selection, the method converges to different,
yet similarly effective, confounder gadgets on each run. Our evaluation will thus measure
average performance over multiple gadgets.

The black-box setting: confounders that transfer. Finally, the attacks so far are in the
white-box setting, where the attacker can optimize directly against Sg. While in some cases
routing control planes will be public knowledge, in others, including the proprietary control
planes we explore in Section 6, they are hidden. This gives rise to the black-box setting.
While an attacker might seek to perform model extraction attacks (Tramer et al., 2016; Lowd
& Meek, 2005) to learn 6, we instead explore attacks that transfer from one router to another.

We assume the adversary has access to a surrogate router R/ , that is trained on data similar
to that used for the target router. Then the attack is the same as above, except that we
use the surrogate’s scoring function S), instead of the target’s Syg. Again, we will see that
query-independent confounders found for the surrogate transfer well to other routers.

We have experimented with variations of this approach that don’t work quite as well, for
example adding c as a suffix instead of a prefix. See Appendix I for details.

4 Open-Source Routers: Experimental Setup

This section explains our experimental setup (summarized in Figure 3). We provide more
details in Appendix D. In all experiments, we assume that the adversary’s goal is to reroute
queries to the strong model. In Appendix L, we evaluate rerouting to the weak model.

Target routers. We evaluate the four prescriptive routing algorithms from Ong et al. (2024),
which provides open-source code and trained parameters for a representative variety of
approaches: similarity-based classification (Stripelis et al., 2024; Lee et al., 2024), an MLP
constructed via matrix factorization (Stripelis et al., 2024), BERT-based classification (Ding

et al., 2024; Stripelis et al., 2024; Sakota et al., 2024), and a fine-tuned LLM.

Underlying LLMs. Ong et al. (2024) trained the routers with GPT-4-1106-preview (Achiam
et al., 2023) as the strong model and Mixtral 8x7B (Jiang et al., 2024) as the weak model. They
report successful generalization between the underlying LLMs, stating that their routers
trained for a particular strong-weak LLM pair can be used with other pairs as well.

To allow our evaluation to scale, we use as the strong model Mg the open-sourced Llama-
3.1-8B (Meta, 2024b) and as My, the 4-bit quantized version of Mixtral 8x7B (for efficiency
reasons). This reduced the cost of our experiments by avoiding expensive GPT API calls
and lowering the computational costs of Mixtral. Unless mentioned otherwise, all of our
results are for this router pair (LLM Pair 1). In Appendix M.2, we perform less extensive
experiments with the original strong/weak model pair (LLM pair 4). We additionally
performed experiments for the case where the weak model produces much worse responses
than the strong model—see Appendix M.
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MT-Bench MMLU GSMBK
Upgrade Strong Upgrade Strong Upgrade Strong

Rsw 1000 81 —100£0 0+l 43— 94=£1 980 52— 99+0
Rmr 1000 58 —100£0 784 53— 90+£2 1000 54 —100£0
Rers 1000 67 — 100£0 100+0 47 —100+£0 1000 56 — 100£0
Riim 73+£5 57— 88+£2 9%B+1 53— 98=£1 94+3 53— 97+£1

Table 1: The white-box attack’s rerouting success rate. “Upgrade” is the percentage of
“Weak” queries successfully rerouted to the strong model by adding a confounder gadget.
“Strong” is the change in the percentage of queries that are routed to the strong LLM M.

Evaluation datasets. We will evaluate our attacks using three standard LLM benchmarks as
workloads: MT-Bench (Zheng et al., 2023), a dataset of 160 open-ended questions, MMLU
(Hendrycks et al., 2021), a dataset of 14,042 multi-choice questions, and GSM8K (Cobbe
et al., 2021), a dataset of 1,319 grade-school math problems. We provide more details about
benchmark evaluation in Appendix D.

Router calibration. For each workload, we must calibrate each router by setting the
threshold 7 to achieve some target fraction € of queries routed to the strong model. For our
experiments here, we set € = 0.5, meaning the goal is to have about half the queries routed
to the strong model. We provide more details about calibration in Appendix D and evaluate
other values of € in Appendix E.

5 Rerouting Open-Source Routers

Unless otherwise specified, our evaluation focuses on the setting where the attacker first
finds a fixed, query-independent set of gadgets and uses them to attack all queries. In Ap-
pendix N, we evaluate query-specific gadgets which are more effective but also more expen-
sive to generate. In Appendix J, we evaluate optimization-free alternatives for generating
confounder gadgets. We discuss defense mechanisms in Section 7.

White-box confounder gadget generation. Following our attack framework described
in Section 3, we construct a query-independent control-plane gadget designed to confuse
each router. For the white-box setting, we set batch size B = 32 and iteration number T =
100, ignoring thresholds. We generate four sets of n = 10 gadgets per router (see Appendix C
for examples). We discuss runtime and optimization convergence in Appendix F.

When reporting the scores below, we average over n gadgets used with all 72 MT-bench
queries, and sets of 100 randomly selected queries from MMLU and GSM8K. None of these
test queries were used in the training of the routers or their calibration.

Rerouting success rates. We measure the percentage of upgraded queries, i.e., queries that
were originally routed to the weak model and after being modified with the confounder
gadget, were rerouted to the strong model. Table 1 shows that our attack successfully
reroutes almost all weak queries to the strong model. No queries are “downgraded,” i.e.,
rerouted from the strong to weak model. We also show the increase in the percentage of
queries routed to the strong model before and after modifying queries with our gadgets.

Quality of responses. A successful gadget must reroute queries to the strong model while
preserving or improving quality of responses to the modified query. We use perplexity
and benchmark-specific scores to evaluate response quality. Table 2 shows that for LLM
pair 1, average response perplexity does not significantly change. To the extent that it
does, it usually somewhat decreases, indicating more “natural” responses. Table 3 shows
that responses to confounded queries” average scores (1-10 quality scores for MT-bench, %
correct for MMLU/GSMSK) are typically no worse (sometimes better) than responses to the
original queries. We provide full details and further discussion in Appendix G.
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MT-Bench MMLU GSMS8K
Original Confounded Original Confounded Original Confounded
Rsw 13.8 123£0.2 20.4 20.1+0.1 171 151+£0.3
Rumr 12.6 123+£0.2 20.0 20.34+0.1 17.0 152403
Rers 13.1 121£0.2 20.2 205+0.1 17.0 15.0£0.2
Rrrm 12.7 127 +0.4 21.0 19.6 £0.1 16.4 152403

Table 2: Average perplexity of responses to the original and confounded queries, in the
white-box setting for LLM pair 1.

MT-Bench MMLU GSMS8K
Original Confounded Original Confounded Original Confounded
Rsw 8.4 8.3+0.0 61 66 £0 46 64£1
Rumr 8.4 8.440.0 64 64+1 50 67 £1
Rers 8.4 8.3+0.0 63 65+0 50 63+1
Rrrm 8.3 82401 67 66 +0 44 641

Table 3: Average benchmark-specific scores of responses to the original and confounded
queries, in the white-box setting for LLM pair 1.

Black-box attack results. Consider an attacker that does not know the algorithm used by
the target router but has access to a surrogate router to mount a transferability-based attack.
We evaluate all combinations of surrogate and target routers. Upgrade rates are lower than
in the white-box setting, with an average of 80%, 66%, 71%, and 62% for Rsyw, Rpr, Rcrs, and
Ry 1M respectively, but still high, i.e., the attack transfers. The LLM-based algorithm Ry
has the lowest rates, perhaps because it is the most complex of the four. The downgrade
rate is 1.2% on average and 0% in most cases.

We additionally evaluate the response quality and show that as in the white-box setting,
the attack does not increase the average perplexity for LLM pair 1 nor does it decrease the
average benchmark-specific scores, in most cases. We provide full results in Appendix H.

6 Rerouting Commercial Routers

We evaluate our rerouting attack on several commercial routers: Unify (Unify), NotDiamond
(NotDiamond), OpenRouter (OpenRouter), and Martian (Martian). As these are only
available via black-box APIs, we use our black-box attack with the 40 gadgets optimized for
the open-sourced routers Rsy, Rpr, Rers, and Rpppr (10 per router). We evaluate using the
MT-bench benchmark.

Unify. This router lets users specify a list of models from different providers and a metric
configuration for routing decisions. The available metrics are quality, time to first token,
inter-token latency, and cost. We configure the router to choose between GPT-40 (OpenAl,
2024b) as the strong model and Mixtral 8x7B as the weak model. We manually calibrate the
router such that 49% of the original, unmodified queries being routed to the strong model
and 51% to the weak model, resulting in a total cost of $0.13 for the 72 MT-bench queries.

Adding confounder gadgets generated for the four open-source routers results in upgrade
rates of 79%, 88%, 91%, and 89%, respectively, averaged across 10 gadgets. Downgrade rates
are all zero. Average cost across the 10 gadgets increased to $0.22, $0.23, $0.22, and $0.21,
respectively reflecting an average cost increase by a factor of 1.7 x.

NotDiamond. This router lets users route their queries to a list of predefined models.
Available objectives are to maximize quality, or balance quality and cost, or balance quality
and latency. Exact details of routing logic are not specified. We focus on “cost-aware”
routing, for which the docs state “NotDiamond will automatically determine when a query
is simple enough to use a cheaper model without degrading the quality of the response.”
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Again we use GPT-4o (strong) and Mixtral-8x7b (weak). The router sends 18% of the original
queries to the weak model. Our gadgets for Rgyw, Rpmr, Rers, and Ry p upgrade the LLM
at rates of 21%, 18%, 21%, and 15%, respectively. Downgrade rates are 1-3%.

To begin with, NotDiamond aggressively routes to the stronger model even for unmodified
queries, which may be the reason the attack’s success rate is not as high as in other settings.
We explored using NotDiamond with various other LLM pairs, and observed similarly
unbalanced routing and similar upgrade and downgrade rates.

OpenRouter. This API offers routing between Llama-3-70b (weakest, cheapest), Claude-
3.5-Sonnet (middle option), and GPT-4o (strongest, most expensive). Queries are routed

“depending on their size, subject, and complexity.”!

With OpenRouter, 96% of the original queries are routed to the weaker Llama, 4% to the
stronger GPT, and none to Claude. The total cost for all original queries is $0.03. After
adding confounder gadgets, queries originally routed to Llama (96% of queries) present an
interesting pattern: for some gadgets, all of those queries are rerouted to GPT, and for other
gadgets, there is no impact whatsoever. The universally effective gadgets are generated at
roughly similar rates across most of the attacker’s surrogate routers (20%-40% of gadgets
generated using Rsw, Rpmr, Ry, 0% using Rers). Using any of the universally effective
gadgets increases the overall cost by 8, to an average of $0.25.

Martian. This router is supposed to let the user provide a list of models and to specify the
maximum amount the user is willing to pay for a query or for 1M tokens. Unfortunately, as
of November, 2024, the router appears to forward queries to the same LLM regardless of the
user’s list. We notified Martian about this behavior and excluded it from our evaluation.

7 Defenses

Perplexity-based filtering. Perplexity is a measure of how “natural” the text looks (see 5),
and it can be used to detect adversarial manipulation (Jain et al., 2023; Alon & Kamfonas,
2023). In this defense, we assume the defender has access to a set of unmodified queries.
The defender computes their perplexity to establish a baseline threshold; new queries whose
perplexity exceed the threshold (i.e. are abnormally “unnatural”) are flagged as adversarial.

To evaluate the efficacy of this defense, we compare the perplexity values of the original
GSMSK queries and queries confounded with one randomly selected gadget produced
using Rgy. Perplexity is calculated using GPT-2. Figure 2 presents histograms of perplexity
values of original vs. confounded queries, and the ROC curve for the defense that uses a
perplexity threshold to distinguish between original and confounded queries. These results
indicate that confounded queries are readily distinguishable from the original queries using
perplexity values (ROCAUCA1). Results are similar for other gadgets and benchmarks,
which we omitted due to space constraints.

Unfortunately, this defense can be evaded if an adversary incorporates a perplexity con-
straint into the gadget generation process, such that it maximizes the score of the routing
algorithm R and simultaneously aligns the gadget’s perplexity to some predefined value.
We find that this adaptive attack attains comparable success rates to the original attack,
but renders perplexity values of confounded queries similar to those of original queries,
with a distinguisher’s ROCAUC values of 0.5-0.7. Appendix O provides full details of this
adaptive attack and its evaluation.

LLM-based filtering. Even though adversarially modified queries cannot be easily detected
using perplexity, they may still be “unnatural.” A possible defense is to employ an oracle
LLM to determine if the query is natural or not. This defense requires the router to invoke
an additional LLM for every processed query, which is computationally expensive. In
fact, this would undermine the very purpose of routing, which is to save costs (Section 1).

1https ://openrouter.ai/openrouter/auto
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Figure 2: Perplexity of the original queries in the GSM8K benchmark compared to the
perplexity of confounded queries using a single uniformly sampled gadget. We additionally
present the ROC curve of the defense that detects confounded queries by checking if they
cross a perplexity threshold, and it’s corresponding ROCAUC score. Confounded queries
have significantly higher perplexity values, and are thus easy to recognize and filter out.

MT-Bench MMLU GSMS8K
N=1 N=2 N=3 N=1 N=2 N=3 N=1 N=2 N=3

Rgw 80+4 96+£2 91+3 68+4 8£2 755 84+3 971 95+2
Rumr 815 99+1 97+1 66£3 861 82+3 86E£2 98+£0 96+1
Rers 785 96+2 89+4 6245 84+£3 695 763 91+£2 83+5
Rppm 703 92+2 98+4 52+4 65+3 48+4 74+4 87£3 78+6

Table 4: Average upgrade rate when evaluating against N + 1 routers, including the router
used for optimization (represented by the left column). For a given value of N all possible
combinations were evaluated and averaged. Attack effectiveness decreases in comparison
to the standard white-box setting in Table 1, yet a significant upgrade rate persists.

Furthermore, it is possible to optimize gadgets so that they both have low perplexity and
appear “natural” to LLM evaluators (Zhang et al., 2024a).

Paraphrasing. We can consider an “active” defense that paraphrases queries using an oracle
LLM before dispatching them to the router. The paraphrased query might not contain
the original gadget, and might not confound the router. This defense is likely impractical.
First, as with LLM-based filtering, it requires an expensive LLM invocation for each query.
Second, it may degrade the quality of LLM responses, which are sensitive to phrasing.

Detecting anomalous user workloads. Another possible defense requires the router to
monitor individual user workloads, identify users whose queries are routed to the strongest
model with an abnormally high frequency, and impose user-specific thresholds dynamically
calibrated to route a consistent fraction of queries to the strong model. Such user-specific
routing would complicate implementations and make inaccurate decisions for a user until
there is sufficient data about their queries. The defense could still be circumvented in
settings where attackers can create a large number of Sybil users.

Multiple routers. Another possible defense can utilize multiple routers by making the
routing decision based on the majority vote of these routers. We evaluate this defense in the
white-box setting, where we use gadgets optimized against a single router and the routing
decision is based on the router used for optimization and N other routers (where N ranges
from 1 to 3, given 4 total routers), testing all combinations. Table 4 shows that this method
decreases attack effectiveness, yet a significant upgrade (i.e., successful attack) rate persists.

As a possible countermeasure, we evaluate the effect of optimizing the gadgets against M
routers. The optimization objective in this case is to maximize the average score, with M
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MT-Bench MMLU GSMS8K
M=2 M=3 M=4 M=2 M=3 M=4 M=2 M=3 M=4

85+2 1000 1000 74£1 91+£1 88x2 90£1 99£0 9940

Table 5: Average upgrade rate when optimizing against M > 1 routers and evaluating
using N = M routers. For a given value of M all possible combinations were evaluated and
averaged. This degrades the performance of the multi-router defense although at the cost of
slower gadget generation

ranging from 2 to 4. Table 5 indicates that optimizing against multiple routers degrades
the performance of using N = M routers as a defense mechanism, although at the cost of
slower gadget generation.

8 Related Work

There is a large body of research on adversarial examples Goodfellow et al. (2015); Papernot
et al. (2016; 2017). For example, HotFlip Ebrahimi et al. (2017) is an early attack against text
classifiers that employed token-swapping optimization similar to ours. More recent prompt
injection adversarial examples specifically target LLMs to extract information or bypass
safety guardrails Liu et al. (2023); Schulhoff et al. (2023); Zou et al. (2023); Wei et al. (2023);
Zhu et al. (2023); Chu et al. (2024). As explained in Section 1, the purpose of adversarial
examples in our case is to change the control flow while maintaining or improving the
quality of the system’s responses. See Appendix P for a survey of other attacks against
LLM-based systems.

9 Conclusion

LLM routers balance quality and cost of inference by routing different queries to different
LLMs. They are an example of a broader, emerging class of systems we call “LLM control
planes” that orchestrate multiple LLMs to respond to queries.

We introduced and defined a new safety property, LLM control plane integrity. Informally,
this property holds if an adversarial user cannot influence the routing decisions made
by the control plane. To show that existing LLM routers do not satisfy this property, we
designed, implemented, and evaluated a black-box optimization method for generating
query-independent “confounder gadgets.” When added to any query, the gadget confuses
the router into routing the query to the adversary-chosen LLM, yet preserves the quality of
that LLM’s response to the query.

We demonstrated the efficacy of confounder gadgets on multiple open-source and commer-
cial LLM routers, discussed defenses, and indicated directions for future research.
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Routers Notation
Similarity-weighted ranking  Rgw
Matrix factorization Rmr
BERT classifier Rcrs
LLM scoring Riim
LLM pair  Strong (Ms) Weak (M)
1 Llama-3.1-8B 4-bit Mixtral 8x7B
2 Llama-3.1-8B Mistral-7B-Instruct-v0.3
3 Llama-3.1-8B Llama-2-7B-chat-hf
4 GPT-4-1106-preview  4-bit Mixtral 8x7B
Benchmark Description
MT-Bench (Zheng et al., 2023) 160 open-ended questions
MMLU (Hendrycks et al., 2021) 14,042 multi-choice questions
GSMSK (Cobbe et al., 2021) 1,319 grade-school math problems

Figure 3: Summary of our setup for routers, underlying LLMs, and benchmark datasets
used in the experiments.

A LLM Control Plane Integrity

In Section 2.1 we provided a high-level definition of LLM control planes, inference flows,
and the control plane integrity adversary. In this section we provide a more formal and
extensive discussion of these definitions.

Formalizing control planes. An LLM control plane Ry, is a potentially randomized algo-
rithm, parameterized by a string w called the parameters. It utilizes some number n of LLMs
denoted by M. We will mostly focus on the case of n = 2, and, for reasons that will be clear
in a moment, use Mg (“strong”) and My (“weak”) to denote the underlying LLMs. Then
inference on an input x € X" for some set X of allowed queries is performed by computing
y s RM(x). Here we use <s to denote running R with fresh random coins; we use <
when R is deterministic. We focus on inference for a single query, but it is straightforward
to extend our abstraction to sessions: the controller would maintain state across invocations,
potentially adapting its behavior as a function of a sequence of queries and responses.

LLM control planes should, in general, be computationally lightweight, at least compared to
the underlying LLMs. When a control plane is deployed to reduce inference costs by using
a cheaper LLM for some queries, an expensive control plane would eat into the savings.
For example, predictive binary LLM routers use relatively simple classifiers to determine
whether to use Mg or My, to respond to a query.

Router

Strong /_\

complex?

Weok
Moo(el

Figure 4: LLM routers classify queries and route complex ones to an expensive/strong
model, others to a cheaper/weak model.

Inference flow. Given a set of LLMs M, a control plane R, and an input x, an LLM
inference flow is the sequence of LLM invocations M;; (zj) for1 < j < mandi; € {ws}

made when executing Rﬁl (x). Here m is the total number of invocations, and z1, . .., zy, are
the queries. Should R be randomized, the sequence and its length are random variables. An
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inference flow can be written as a transcript

T = (i],Zl), (121 ZZ)/ g (iWI/Zm)
of pairs of model indexes i; € {w, s} and model inputs z;. For simplicity, we assume that

execution proceeds serially. For binary routers, we have m = land T € {(w,x), (s, x)}. We
write submitting a sequence of inferences X = ¥y, ..., ¥, to a control plane as

RG' (%) = (RE' (1), ..., RE (%))

In the binary router case, each inference results in a single LLM invocation, but in general
inference could involve multiple LLM invocations.

An inference flow policy dictates the control plane designer’s intention regarding use of the
underlying models. For example, an application may want to ensure that only a small
fraction of queries go to the expensive model Ms. We can define this as a predicate over
a sequence of transcripts. In our binary router example, the policy can be more simply
defined as a predicate P over (input, model) pairs (¥1,i1), ..., (¥;,i;) since this fully defines
the sequence of transcripts. For example, a policy might specity that the strong model is
used in at most an € fraction of inferences:

P((Rrir), .., (T i) = (il(if) - e)

where I(i;) = 1ifi; = s and I(i;) = 0if i; = w. In other words, the predicate is that the
fraction of queries routed to the strong model is bounded by e.

Control plane integrity. A control plane integrity adversary is a randomized algorithm A that
seeks to maliciously guide inference flow.

In an unconstrained LLM control plane integrity attack, the adversary A seeks to gen-
erate inputs ¥ = Xp,...,X; such that running RM (%) generates a transcript for which

P((x1,i1),--.,(xq4,17)) = 0. This attack could be launched by an adversary who wants to
maximize inference costs for a victim application using an LLM router.

A harder setting requires input adaptation, where the adversary is given inputs
X1,.--,%g and it must find new inputs %4,.. ., ﬁq for which the transcript resulting from

P((%1,i1),---,(%,ig)) = 0. There will be some competing constraint, such as that x; and £;
are very similar for each j, or that the outputs y; s RM (xj) and §; < RM (%;) are close.
In the routing context, the adversary’s goal is to increase the fraction of queries that get

routed to the strong model, in order to improve the overall quality of responses, drive up
the victim application’s inference costs, or both.

Relationship to adversarial examples. Evasion attacks (Dalvi et al., 2004; Lowd & Meek,
2005; Szegedy et al., 2013) against inference systems, aka adversarial examples (Goodfellow
etal., 2015; Papernot et al., 2016; 2017), would, in our setting, seek to find a small modification
A to an input x such that RY!(x + A) # R}!(x) where addition is appropriately defined
based on input type (e.g., slight changes to query text).

Our attack setting is not the same because in our case, the adversary’s goal is not just
to mislead the classifier. Instead, the goal is defined with respect to the overall system
behavior, e.g., to drive up the victim’s inference cost or unfairly improve the quality of
outputs. Attacking the control-plane component with adversarial inputs is but a means
towards these goals.

Simply changing routing decisions with adversarial examples (i.e., an unconstrained attack
on control plane integrity) is not enough. In the input adaptation attack, the adversary seeks
to modify the inference flow yet not change the responses of the strong underlying LLM to
the extent possible. Adversarial inputs against the control plane must preserve or even
improve the outputs generated by the overall system.

In the other direction, undermining LLM control plane integrity could facilitate evasion
attacks. For example, if R}Y! is used to classify malicious content by combining LLMs tuned
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to different types of harm categories, then modifying inputs to force inference flows away
from appropriate models could aid evasion. We leave this to future work.

B LLM Routers

In Section 3 we discuss our methodology for attacking LLM control plane integrity. We
focus on the binary router setting in which the router applies a learned scoring function to
input queries and routes any query whose score exceeds some threshold 7 to the strong
LLM M. In this section we provide a more formal description of LLM routers.

We consider a router Ri\,’t for M = {My, Ms}, where w consists of a scoring function
S, scoring function’s parameters 6, and a threshold T € R™. For notational brevity we
just write R, below, with M clear from context. Here S and 0 define a scoring function
Sg : X — R™. Since our focus is LLMs, we assume that queries X’ are strings of text tokens.
The routing algorithm then works as follows:

 [Mg(x) ifSp(x) <t
Ro(x) = {Ms(x) otherwise
where w = (S, 6, 7). We detail scoring functions in Section 4 and Appendix D; prior work
has suggested linear models, light-weight LLMs, and more. Note that, consistent with
this application, scoring functions are computationally cheap (as compared to Mg, My).
Deployments calibrate T to limit the fraction of queries routed to the strong model Ms,
giving rise to the type of control plane integrity policy discussed in Section 2.1.

C Gadget Examples

Below are a few examples of the optimized confounder gadgets ¢ produced by our method
for different routing algorithms:

* Rsw:

' )

legationbelongs967reglo’hui
(DictionaryizedNameantal bidi.numberOf

demanding_RESULTS! XVI-ioibili Written Hormchriftlatable

\.

* Rmr:

7 ~

041 personne.nama tomeTN Exact relagdo tinha seis.Description

NUMAGEMENTMedian157_mut-camerauacao nije Hir Ter

\

* Rcrs:

contiene DEM USERNAME fourteen chees781 consultants200 inici DOJ

571:
Ord:nth Norwegian Mercer_docs Abr226_ METADATA

* Rprme
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D Experimental Setup

In this section we provide additional details regarding our experimental setup for the open-
source routers evaluations, described in Section 4. All settings are summarized in Figure 3.

Target routers. As discussed in Section 4, we focus our evaluation on the prescriptive
routing algorithms by Ong et al. (2024). These routers were trained in a supervised fashion
using a set of reference (training) queries whose performance score on each of the considered
models is known. The scores were computed from a collection of human pairwise rankings
of model answers for each of the queries. There is no reason to believe a non-learning-based
(e.g., rule-based) routing algorithm would be more adversarially robust. We now outline
the four routing methods (see Ong et al. (2024) for full implementation details).

Similarity-weighted ranking: The first method is based on the Bradley-Terry (BT)
model (Bradley & Terry, 1952). For a given user query, this model derives a function
to compute the probability of the weak model being preferred over the strong model. The
probability-function expressions all share parameters, which are optimized to minimize
the sum of cross-entropy losses over the training-set queries, where each element in the
sum is weighted by the respective query’s similarity with the user’s query (computed as
embeddings cosine similarity, with the embedding derived using OpenAl’s text-embedding-
3-small (OpenAl, 2024a)). We denote this method as Rgyy.

Matrix factorization: The second method is based on matrix factorization. The training
queries are used to train a bilinear function mapping a model’s embedding and a query’s
embedding to a score corresponding to how well the model performs on the query. Routing
is done by computing the score of the input query for each model, and choosing the highest-
scoring model. We denote this method as Ryr.

BERT classifier: The third method involves fine-tuning a classifier, based on the BERT-base
architecture (Devlin et al., 2019), to predict which of the two models produces a better
response for the given query or whether they do equally well (a tie). The routing decision is
based on the probability of the weak model providing a better response versus the strong
model or the tie. We denote this method as R¢g.

LLM classifier: The last method is based on asking an LLM to provide a score in the range
1-5 of how an Al expert would struggle to respond to a given query based on the query’s
complexity. For this, Ong et al. fine-tuned a Llama-3-8B model (Meta, 2024a) using their
reference set of queries and corresponding scores. We denote this method as Ry .

Evaluation datasets. As discussed in Section 4, we evaluate our attacks using three standard
LLM benchmarks as workloads: MT-Bench (Zheng et al., 2023), a dataset of 160 open-ended
questions, MMLU (Hendrycks et al., 2021), a dataset of 14,042 multi-choice questions, and
GSMSK (Cobbe et al., 2021), a dataset of 1,319 grade-school math problems. In this section
we provide more details regarding our evaluation of these benchmarks.

We first note that Ong et al. (2024) flagged that some data points are “contaminated”, i.e.,
they are too similar to the ones used in their training of the routers. We use these datasets
without these contaminated elements, resulting in 72 MT-bench queries, 14,037 MMLU
queries, and 1,307 GSM8K queries.

For MMLU and GSM8K, we will require that the LLMs respond in a predefined format so
we can parse and compare the responses to ground-truth answers. To facilitate this, we
prepended formatting instructions to the query, inserted as a prefix before the gadget in the
case of confounded queries. We phrase this instruction as follows: “Answer the question using
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the format: “Answer: [A/B/C/D]. Explanation: [EXPLANATION]”” for the multi-choice queries
of the MMLU benchmark, and a similar version for GSM8K. In other words, a confounded
query ends up defined as £; = instr||c||x; for instruction template instr, confounder gadget
¢, and original query x;. Thus in this case we model a scenario where the adversary only
controls a part of the prompt rather than the entire prompt. See Appendix I ablations.

When assessing the quality of responses in Section 5, we use both the perplexity scores of
the responses as well as the following benchmark-specific metrics:

e MT-bench: We score the responses on a scale of 1-10 using an LLM-as-a-judge method-
ology (Zheng et al., 2023). We use GPT-40 (OpenAl, 2024b) as the judge and ask it to
provide a score given a pair of a query and a corresponding response.

e MMLU: We parse the responses and compare the answer to the ground truth. In cases
where the response did not fit any known multi-choice format, we marked the response
as a mistake. We report accuracy as the percentage of responses that match the ground
truth.

e GSMBSK: similar to MMLU except questions are math rather than multiple choice, thus
we parse the answers according to the expected format.

Router calibration. As mentioned in Section 4, for each workload, we must calibrate
each router by setting the threshold 7 to achieve some target fraction € of queries routed
to the strong model. For our experiments, we set € = 0.5. This reflects an application
developer that seeks to control for costs, even if it may mean sacrificing some performance
for some workloads. We evaluate other values of € in Appendix E. Note that the calibration
process we use is agnostic to the underlying LLM pair. We therefore must define 12 distinct
thresholds, one for each router, dataset pair. We now provide more details regarding the
calibration process.

To calibrate for MT-bench, we use the Chatbot Arena (Chiang et al., 2024) dataset as the
calibration set, computing the threshold using the 55 K queries for which Ong et al. precom-
puted the scoring function outputs. To calibrate for MMLU and GSM8K, we select 1,000
queries uniformly at random and uses these to set thresholds. Looking ahead, we do not
use these queries during evaluation of the attacks.

Note that it important that the distribution of calibration queries be similar to the distribution
of the target workload (and, in our experiments, the test queries). We observed that the
Chatbot Arena-based threshold did not transfer well to MMLU and GSMSK, resulting in
the majority of queries (= 98%) routed to the strong model.

E Effect of stricter router thresholds

As mentioned in Section 4 and Appendix D, in all of our experiments we set e = 0.5. Figure 5
shows that even when using more restrictive, i.e. lower, thresholds that route fewer queries
to the strong model, our attack can still reroute a significant number of queries to the strong
model.

F Runtime and convergence

Figure 6 shows the convergence rates for 10 different gadgets, against different routing
algorithms. The overall average number of iterations before convergence is 58. Generation
against Rgy converges the fastest (50 iterations on average), Ry the slowest (66 iterations
on average). Interestingly, the score of Rgyy does not increase much during optimization but
is still sufficient for a successful attack.

Runtime varies significantly when generating gadgets against different routing methods.
On a machine with one A40 GPU, 4 CPUs, and 180G RAM, a single iteration takes 36.9s,
8.4s,0.8s, and 6.9s for the Rg, Ryr, Rers, and Ry routers, respectively. On average, it
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Figure 5: Average upgrade rate as a function of the threshold €. Lower thresholds indicate a
stricter setting, where only a small number of queries are intended for the strong model.
50% represents the threshold used for our main results. Even in the strict setting, our attack
consistently achieves a significant upgrade rate across all evaluated routers and benchmarks.
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Figure 6: Convergence of gadget generation against different routing algorithms.

takes around 31 minutes to generate a gadget for the Rgyy router, 9 minutes for Ry, 50s for
Rcrs, and 6 minutes for Ry ;.

G Quality of attack responses

In Section 5 we evaluate the effectiveness of our attack in the white and black box settings.
As previously discussed, a successful rerouting attack must not only reroute originally weak
queries to the strong model, it must do so while preserving or even improving the quality of
the LLM responses. Due to space limitations, we provide additional details and discussions
over the quality evaluation in this section.

As a first measure of response quality, we compare the perplexity scores for unmodified
responses and confounded query responses. Text perplexity (Jelinek, 1980) is a well-known
method for approximating “naturalness” of text sequences. Perplexity can be computed
using an LLM, we use GPT-2 (Radford et al., 2019) for this purpose as it is a standard
choice(Alon & Kamfonas, 2023; Zhang et al.,, 2024a);? Table 2 shows the results. As can
be seen, adding the confounder gadget to queries does not significantly change response
perplexity. To the extent that it does, it usually somewhat decreases response perplexity, i.e.,
makes it more “natural”. That said, perplexity is a coarse measure of “naturalness,” and it
does not measure whether the response is correct. In particular, responses of strong and
weak LLMs tend to have similar perplexities. We further discuss this issue in Appendix K.

2A few responses had abnormally high perplexity values (> 100), which we found do not correlate
with quality, but these variations disproportionately contribute to the average. We thus filter out such
high-perplexity responses as outliers in both benign and attack settings. We provide examples and the

number of filtered responses in Appendix K.
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MT-Bench MMLU GSMS8K
Original Confounded Original Confounded Original Confounded
Rsw 10.0 87+03 19.5 20.1+0.1 14.5 151+£0.3
Rumr 10.0 8.6+04 19.5 20.240.2 14.5 152+0.1
Rers 10.0 82+05 19.5 20.3+0.2 14.5 15.0£0.2
Rrrm 10.0 10.14+0.5 19.5 19.7£0.1 14.5 15.0+0.3

Table 6: Average perplexity of responses to the original and confounded queries, in the
white-box setting, using only the strong model of LLM pair 1.

MT-Bench MMLU GSM8K
Original Confounded Original Confounded Original Confounded
Rsw 8.5 83+0.0 66 66 +0 57 65+1
Rumr 8.5 83+0.1 66 66 +£0 57 67 £1
Rers 8.5 84+0.1 66 66+ 1 57 63+1
Rrim 8.5 83+0.1 66 66 +0 57 65E1

Table 7: Average benchmark-specific scores of responses to the original and confounded
queries, in the white-box setting, using only the strong model of LLM pair 1.

We thus also evaluate using benchmark-specific metrics to assess response quality. For
MT-bench, each response is ranked on a scale of 1-10 and we report the average, while for
MMLU and GSMS8K we report the percentage of correct responses. We provide full details
of these metrics in Appendix D.

Table 3 shows that in most cases responses to the confounded queries are no worse, and in
some cases even better, than responses to the original queries. We attribute the improvement
on the GSM8K benchmark to the fact that the strong model performs significantly better
than the weak model on this benchmark (57% vs. 33%). On the MT-bench and MMLU
benchmarks, strong and weak models have comparable performance (8.5 vs. 7.6 for MT-
bench and 66% vs. 64% for MMLU), thus routing does not degrade quality of responses and,
consequently, the attack cannot improve it.

To further demonstrate the effect of adding the gadgets and disentangle it from the effect
of rerouting to the stronger model, we compare the perplexity and benchmark scores of
confounded and original queries using only the strong model. Table 6 and Table 7 show
that, in most cases, the inclusion of the gadget does not significantly impact the quality of
responses. Also, when manually inspecting the outputs, we observed that when the LLM
produced a wrong answer for both the original and confounded queries, in most cases the
answer was the same for both queries. In summary, gadgets are effective against the routers
but do not substantially affect the target LLMs.

In Appendix M.1 we further demonstrate that the attack improves the quality of responses
when there is a significant gap between the weak and strong LLMs by evaluating LLM pairs
for which the weak model is weaker than in LLM pair 1.

LLM responses are sometimes affected by the confounder gadget. For example, an LLM
responded with “I can’t answer that question as it appears to be a jumbled mix of characters”.
Still, the response continued with “However, I can help you with the actual question you're
asking,” followed by the actual answer. We observed very few cases where an LLM refused
to answer due to the presence of the gadget. In most cases, the response did not mention
anything abnormal about the query. Intuitively, this reflects the fact that while LLMs are
built to be robust to noisy inputs, the router itself is not.

H Black-box attack results

In addition to the evaluation of the white-box attack setting in Section 5, we evaluated the
black-box transfer setting, where the attacker that does not know the algorithm used by the
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Surrogate Target MT-Bench MMLU GSMS8K

R 941  66+5 99+1
Rsw Rers 8845 44411 72411
Riim 4545 81+3 63+4
Rsw 1000 8244 9242
Rupr Rers 96+2 56+7 8843

Riim 39+3  74+2  62+4
Rsw 1000 6446 7646

Rers Rur 79+9  16+7  60+9
Riim 5145 8045 6548
Rsw 1000 53+4 60+8
Riim Rumr 83+5 2045 7047
Rers 85+7  46+11 73410

Table 8: Average upgrade rates for our attack in the black-box (transfer) setting. The average
downgrade rate (i.e., strong-to-weak rerouting) is 1.2% across all routers.

Surrogate  Target MT-Bench MMLU GSMS8K
PPL Bench PPL Bench PPL Bench
. Rmr 04 -01 01 —0.1 1.9 14.9
Rsw Rers 08 —01 08 03 17 9.6
Rrim 0.6 00 11 —-02 06 15.2
Rsw 14 -01 02 48 16 18.6
Ryir Rers 07 -01 02 1.0 17 13.8
Rrim 0.3 00 11 05 02 14.7
Rsw 17 -01 03 25 1.7 13.4
Reps Rmr 0.3 00 08 -13 1.0 6.8
Rrim 0.7 01 09 -08 04 12.6
A Rsw 08 —-02 13 26 13 13.6
Rrim Rmr —-06 —0.1 1.2 -09 13 11.3
Rers 00 -02 09 03 17 10.4

Table 9: Differences between average perplexity (“PPL”) and benchmark-specific scores
(“Bench”) of responses to the original and confounded queries, in the black-box setting
and for LLM pair 1. Positive values indicate a lower average perplexity (more natural) and
higher average score of responses to the confounded queries; higher values are better for
the attacker. Standard errors were omitted for readability but are 0.2 on average for the
perplexity evaluation and 0.1, 0.8, and 1.8 for MT-bench, MMLU and GSMSK, respectively,
for the benchmark-specific evaluation.

target router but has access to a surrogate router to mount a transferability-based attack.
Due to space limitations, we only briefly mentioned the results of this evaluation in Section 5
and provide the full results here.

Table 8 shows the results for all combinations of surrogate (denoted by R) and target routers.
Upgrade rates are lower than in the white-box setting, but still high, i.e., the attack definitely
transfers. This is also evident by the successful transferability to the commercial routers
presented in Section 6. Downgrade rate is 1.2% on average and 0% in most cases.

Table 9 shows that the black-box attack does not increase the average perplexity for LLM
pair 1. Table 9 also shows that the attack does not decrease benchmark-specific scores, other
than a few small decreases for MMLU queries. For GSM8K, like in the white-box setting,
we see an improvement with our attack as the performance gap is larger between weak
and strong models. This effect is further demonstrated in Appendix M.1. In summary,
confounding affects only the routing, not the quality of responses, even in the black-box
setting.
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| | MT-Bench MMLU  GSMSK

R Prefix 1000 90+1 98+ 0
sw Suffix 100+ 0 82+2 94+1

R Prefix | 100+0 78+4 100+0
MF | GQuffix 100 + 0 63+3 10040

R Prefix | 1000  100+0 10040
CLS | Suffix 100 £ 0 93+1 10040

R Prefix 7345 95+1 100+0
LLM | guffix 8444 93+1 9443

Table 10: Average upgrade rates for different ways of adding the gadget to queries, in the
white-box setting. Results are similar in both methods, with a slight preference to the prefix
approach.

I Ablation Study

In this section, we evaluate the effect of different hyperparameters and design choices (in
the white-box setting).

Prefix vs. suffix. As described in Section 3, we prepend the confounder gadget to the
query. An alternative is to append it. This is straightforward for MT-bench and GSMS8K, but
MMLU consists of multi-choice questions followed by a list of possible answers, and the
term “Answer:”. We insert the gadget at the end of the question text and before the possible
answers. If we append it at the very end, after “Answer:”, the LLM assumes the query was
answered and in many cases does not generate any output at all.

Table 10 shows that average upgrade rates are similar regardless of whether the gadget was
inserted as a prefix or a suffix. For MMLU, prefix works better. The downgrade rate is 0% in
all cases.

As mentioned in Appendix D, to encourage the LLMs to follow the specific format in their
responses (so they can be parsed and compared with the ground-truth answers), we add
a short prefix to the MMLU and GSMS8K queries that instructs the model how to respond.
We add this instruction after modifying the queries with the confounder gadget, i.e. the
instruction is prepended to the gadget.

An alternative to insert the instruction after the gadget but before the query, however we
observed this to slighly underperform its counterpart. In the white-box setting we observe
a slight decrease in the average (across all four routers) upgrade rate from 91% to 89% for
the MMLU benchmark, and from 98% to 91% for the GSM8K benchmark. In the black-box
setting, the average upgrade rate on MMLU reduces from 57% to 49% and on GSMS8K from
73% to 64%.

Token sampling method. When generating the confounder gadget (see Section 3), we
iteratively replace tokens with the goal of maximizing the routing algorithm’s score for the
gadget. Candidate replacement tokens are chosen uniformly at random. An alternative is to
choose candidates based on their probability of appearing in natural text. To evaluate this
method, we compute token probabilities by parsing and tokenizing the wikitext-103-raw-v1
dataset (Merity et al., 2016).

Table 11 shows that in most cases uniform sampling of replacement tokens yields better
upgrade rates. We conjecture that uniform sampling produces more unnatural text, con-
fusing the router. For example, for the Rgyy routing algorithm, uniform sampling produces
the following gadget: “legationbelongs967reglo’hui(DictionaryizedNameantal bidi.numberOf”,
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| | MT-Bench MMLU  GSMSK

R Uni. | 100+0 90+1 9840
SW | Nat. 100+ 0 77+2  88+2

R Uni. | 100+0 78+4 100+0
ME | Nat. 97 +2 41+3  92+3

R Uni. | 100£0 100+0 100+0
CLS | Nat. | 10040 96+2 10040

R Uni. 7345 95+1 9443
LLM | Nat. 70+5 87+4  83+9

Table 11: Average upgrade rates for different ways of sampling candidate tokens during
gadget generation - uniformly (“Uni”) or based on their probability of appearing in natural
text (“Nat”) , in the white-box setting. Uniformly sampling the tokens yields better upgrade
rates in most cases.

whereas sampling according to natural probabilities produces “total occurred According
number Letar final Bab named remainder”.

Number of tokens in the gadget. In our main evaluation, the gadgets are composed of
n = 10 tokens. We evaluate the effect of using less (1 = 5) or more (1 = 20 or n = 50) tokens.
We observed that 5 tokens were insufficient to make changes to the routing algorithm’s
score and thus we were not able to optimize the gadget in this setting. As for 20 tokens,
we observe a a small improvement in the white-box setting, increase the average upgrade
rate from 93.9% to 95.8%, and a bigger improvement in the black-box setting, increase the
average upgrade rate from 70.2% to 81.3%. Using 50 tokens further increases the upgrade
rates, to 98.2% in the white-box setting and 84.2% in the black box setting. The average
convergence rate increases as well, from 60 iterations for 10 tokens, to 70 for 20 tokens, and
100 for 50 tokens. Overall this evaluation suggests that our rerouting attack can be even
further improved by using longer gadgets, however it is important to be careful not to make
them too long to the point that they might degrade the performance of the underlying LLM.

J Optimization-Free Gadget Generation

We evaluate optimization-free alternatives to our black-box optimization method for gener-
ating confounder gadgets.

Fixed gadget. A simple way to create a gadget without resorting to optimization is to repeat

possibility is to select n tokens uniformly at random. Table 12 shows the upgrade rates for
both options, were in the latter setting we repeat the process 10 times and report the average
result and the standard error. While they are non-negligible, especially for the randomly
sampled gadgets, they significantly underperform the upgrade rates reported in Table 1 for
optimized gadgets.

Instruction injection. Prompt injection is a known attack on LLMs (Perez & Ribeiro, 2022;
Toyer et al., 2023), thus we consider a gadget consisting of a direct instruction to the router
to treat the query as a complex one and obtain a high-quality response.

We evaluated 4 differently phrased instructions: two created manually and two generated by,
respectively, Gemini (Team et al., 2023) and GPT-4o0 (OpenAl, 2024b), denoted as “ours-1”,
“ours-2”, “Gemini”, and “GPT".

Table 13 reports the results. This method works well in a few cases but poorly in most. This
highlights the difference between attacking LLMs and attacking LLM routers.
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gadget | MT-Bench MMLU GSMS8K

R Init 7 21 21
SW | Random 97 +2 4945 58+8
R Init 3 4 20
ME | Random 37+8 6+3 34+8
R Init 8 0 0
CLS | Random | 62+10 1447 3749
R Init 3 13 9
LLM | Random 38 +4 68+5 41+7

Table 12: Average upgrade rates when the gadget is not optimized and is either defined to
be the the initial set of tokens or a set of uniformly sampled tokens. The optimization-based
approach outperforms these optimization-free approaches.

intro type MT-Bench MMLU GSMSK \

Up. Down. | Up. Down. | Up. Down.

Ours-1 100 0 28 0 4 46

R Ours-2 | 100 0 32 0 6 63
SW Gemini | 100 0 35 0 4 56
GPT 100 0 54 0 4 77

Ours-1 0 31 0 57 0 100

R Ours-2 0 60 0 66 0 100
MF Gemini 0 50 0 60 0 100
GPT 0 48 0 51 0 100

Ours-1 33 8 2 47 0 77

R Ours-2 75 0 19 26 16 43
CLS Gemini | 100 0 100 0 98 0
GPT 46 2 0 66 0 95

Ours-1 26 7 0 42 4 36

R Ours-2 35 5 0 42 2 43
LLM | Gemini 55 0 21 21 9 9
GPT 19 7 26 23 6 25

Table 13: Average upgrade and downgrade rates of gadgets containing injected instructions
to the router. This method significantly underperforms the optimization-based approach in
most cases.

K Perplexity Issues

In Section 4, we use perplexity as one of the metrics for evaluating the effect of our attack on
generated responses. In general, perplexity measures “naturalness” of the text rather than its
quality. Figure 7 shows the distribution of perplexity values of the clean responses generated
by weak and strong models, as well as the ROCAUC scores. Perplexity of responses is
similar for the weak and strong models, with ROCAUC scores ranging between 0.38 to 0.47.

As mentioned in Section 4, throughout our evaluations we filter out responses with perplex-
ity values higher than 100. This is due to a handful of valid responses that have abnormally
high perplexity. For example, for the query:

Suppose you are a mathematician and poet. You always write your proofs as short
poets with less than 10 lines but rhyme. Prove the square root of 2 is irrational
number.

The weak model responds with:
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Figure 7: Histograms of the perplexity values of clean responses generated by the strong
and weak models.

MT-Bench MMLU GSMSK
Up. Down. Up. Down. Up. Down.

Rew | 040 2442 843 9£2 4+2 4849
Ruyp | 0£0 674+6 04£0 774£7 1+1 78+11
Rers | 040 2943 040 5044 040 8044
Riim | 2443 140 5544 541 2144 442

Table 14: Upgrade and downgrade rates for the downgrading variant of our rerouting
attack, where the goal is to reroute queries to the weak model (white-box).

In squares, two seeks a home, Two whole numbers, never roam. If it did, in pairs
combined, A different square would it find. But take root, two’s square, or four, Still
leaves a remainder’s roar. The square root of two’s no child of two, Its irrational
nature ever true.

which has a high perplexity value of 166. We also observed a few responses containing lists,
code, or equations that result in abnormally high perplexity values. In total, we filtered
8 responses for the MT-bench dataset, 1 for MMLU, and 8 for GSM8K. We stress that this
is the total across all evaluated settings (i.e., for all routers in the white-box setting and
all surrogate-target router combinations in the black-box setting). In many settings, no
responses were filtered. The maximum amount of filtered responses in a specific setting
was 5.

L Rerouting to the Weak Model

In this section we evaluate the generality of our attack and show that generation of con-
founder gadgets can be optimized for the opposite objective from what we consider so far:
reroute queries to the weak model. For this, we repeat the same optimization process as
in Section 3 but minimize the router’s score. Table 14 shows the upgrade and downgrade
rates for this variant of the attack, in the white-box setting. In most cases we see a significant
downgrade rate and a minimal upgrade rate, meaning that most of the modified queries
were routed to the weak model. One notable exception is the LLM-based router Ry, for
which the attack does not work well. Future work will be needed to explore improving
confounder generation for this setting further.
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MT-Bench MMLU GSM8K
Original Confounded Original Confounded Original Confounded
Rsw 9.2 9.2+0.0 76 84+1 62 860
Rmr 9.1 9.3+0.0 76 81+0 65 88+1
Rers 9.2 9.1£0.0 76 8440 68 90+2
Rrim 8.9 9.1+0.1 78 84+1 66 85+2

Table 15: Benchmark-specific average scores of responses to the original and confounded
queries with GPT-4-1106-preview as the strong model (LLM pair 4), in the white-box setting.
Results demonstrate a higher increase in performance with respect to the LLM pair 1 setting,
due to the larger performance gap between the models.

M Results for Other LLM Pairs

As discussed in Section 4, for allowing our evaluation to scale, we use as the strong model
Mg the open-sourced Llama-3.1-8B (Meta, 2024b) and as My the 4-bit quantized version of
Mixtral 8x7B, denoted in our work as LLM pair 1. In this section we extend our evaluation
to other LLM pairs.

We begin by evaluating the case where the weak model produces much worse responses than
the strong model. We define LLM pair 2 as the strong model plus Mistral-7B-Instruct-v0.3
(Jiang et al., 2023a) and LLM pair 3 as the strong model plus Llama-2-7B-chat-hf (Touvron
et al., 2023). The weaker models in pairs 2 and 3 were chosen to represent smaller (Mistral
7B) and older-generation (Llama-2) models: according to the Chatbot Arena leaderboard
(Face, 2024; Chiang et al., 2024), Llama-3.1-8B is ranked in the 58th place, Mixtral 8x7B at
the 88th place, Mistral-7B at the 108th place, and Llama-2-7B at the 125th place.

We additionally perform some smaller-scale evaluations using the LLM pair originally used
by Ong et al. (2024), i.e., GPT-4-1106-preview (Achiam et al., 2023) as the strong model and
Mixtral 8x7B (Jiang et al., 2024) as the weak model. We refer to this setting as LLM pair 4.

Figure 3 in the appendix shows the strong-weak pairs in our experiments.

M.1 Results for LLM Pairs 2 and 3

The discussion over quality of attack responses in Section 5 shows that for the white-box
setting, in most cases, responses to the confounded queries are no worse, and in some cases
even better, than responses to the original queries. To further demonstrate that the attack
improves the quality of responses when there is a significant gap between the weak and
strong LLMs, we perform an additional evaluation with Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023a) and Llama-2-7B-chat-hf (Touvron et al., 2023) as the weak LLMs (LLM pairs 2 and
3). Mistral-7B achieves 7.4, 57%, and 25% on MT-bench, MMLU, and GSMS8K, respectively.
Llama-2-7B achieves 6.4, 44%, and 21%. Table 16 shows that the rerouting attack improves
the quality of responses when either of these LLMs is the weak model, and in particular for
the weaker Llama-2-7B model.

Table 17 shows similar behaviour for the black box setting, with the benchmark-specific
scores improving when the weak model is significantly weaker than the strong model, i.e.,
LLM pairs 2 and 3.

M.2 Results for LLM Pair 4

As discussed in Section 4, we replace the strong model that was used by Ong et al. (2024),
GPT-4-1106-preview (rank 28 in the Chatbot Arena leaderboard (Face, 2024; Chiang et al.,
2024)), with the open-sourced Llama-3.1-8B (rank 58) to reduce the costs of our extensive
set of evaluations. In this section we perform a smaller-scale evaluation of the quality-
enhancing attack performance when using GPT as the strong model, i.e., LLM pair 4. We
evaluate this setting using three of the n = 10 confounder gadgets for each router.
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MT-Bench MMLU GSMS8K
Orig. Conf. Orig. Conf. Orig. Conf.
LLM pair 2

Rew | 85 83+£00 55 6441 46  64+1
Rur | 84 834+01 63 64+0 51 67+1
Rors | 84 84401 58  66+1 49  63+1
Ry | 84 83+£01 62 6640 38 63+2

LLM pair 3

Rgw 8.4 83+£0.0 51 6411 40 64+1
Rmr 8.1 83+0.1 57 63£1 44 67 £1
Rers 8.3 84+0.1 52 661 45 63+1
Rirm 8.1 82+0.1 59 66 £1 37 64+1

Table 16: Average benchmark-specific scores of responses to the original and confounded
queries with Mistral-7B-Instruct-v0.3 (LLM pair 2) or Llama-2-7B-chat-hf (LLM pair 3) as the
weak model, in the white-box setting. Results further emphasize that the rerouting attack
improves quality of responses when there is a significant gap between the weak and strong
LLMs.

Surrogate  Target LLM pair 2 LLM pair 3
MT-Bench MMLU GSMS8K | MT-Bench MMLU GSMS8K
A Rumr —-0.1 1.6 13.6 0.2 5.0 20.5
Rsw Rers —-0.1 4.0 8.7 0.0 6.8 134
Riim —-0.1 42 18.5 0.1 5.8 20.9
A Rgw —-0.2 7.9 18.9 -0.1 11.3 24.3
Rumr Recrs —-0.2 5.0 14.4 —-0.1 9.1 18.6
Riim —-0.2 44 18.3 0.0 4.7 21.6
A Rsw —-0.1 5.0 13.1 0.0 8.1 17.9
Rers Rumr —-0.1 -2.9 4.0 0.2 -3.7 11.2
Riim 0.0 3.2 15.5 0.2 4.8 18.9
Rgw —-0.2 52 11.3 —-0.1 7.8 16.7
ﬁLLM Ry —-0.2 —-0.9 8.4 0.1 0.1 15.2
Rers —-0.2 3.8 10.8 —-0.1 7.2 14.2

Table 17: Differences between average benchmark specific scores of responses to the original
and confounded queries, when the confounder gadget was generated for a different surro-
gate router than the target (black-box setting) for LLM pairs 2 and 3. Positive values indicate
a higher average score for responses to the confounded queries; higher values are better for
the attacker. Results are averaged across gadgets. Standard errors were omitted for read-
ability and are on average 0.1,0.8, and 1.8 for MT-bench, MMLU and GSMSK, respectively.
Aligned with the white-box setting, results show almost no decrease in performance, and
improvement when there is a performance gap for the LLM pair.

Table 15 shows the results across benchmarks in the white-box setting. Compared to the
pair 1 setting (Table 3), the attack results in a higher increase in benchmark performance.
This further demonstrates higher attack effect on response quality when the performance
gap between the weak and strong models is higher.

N Query-specific Gadgets

By default, our gadget generation method is query-independent and the same gadget can
be used to reroute any query. An adversary with more resources may instead generate a
dedicated gadget for each query. Our confounder gadget approach, provided in Section 3,
extends to this setting readily by replacing Sy(c) in Eq. 3 with Sy(c||x;).
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| MT-Bench MMLU GSMSK

Rsw 100 100 100
Rumr 100 9% 100
Rers 100 100 100
Riim 100 100 100

Table 18: Upgrade rates for query-specific gadgets, in the white-box setting. Results are
nearly perfect, i.e. nearly all confounded queries are routed to the strong model.

Surrogate  Target \ MT-Bench MMLU GSMS8K

Rur 100 9% 100
Raw Rers 83 57 68
Riim 71 89 74
Rsw 100 95 100
Ryr Rers 83 43 73
Rirm 48 83 68
Rsw 100 74 81
Rers Rumr 73 13 65
Rirum 52 83 70
Rsw 100 77 88
Rirm RyF 67 11 54
Rers 83 30 64

Table 19: Upgrade rates for query-specific gadgets, in the black-box setting. In most cases
results are better than in the query-independent setting, at the cost of a more resource
intensive process.

Table 18 and Table 19 show the results for the white-box and black-box settings, respectively.
(Here, percentage numbers are not averaged and there is no standard error since we used a
single gadget per query.) The white-box results are nearly perfect; the black-box results are
often better but sometimes somewhat worse than those for query-independent gadgets. We
conjecture that this is due to some level of overfitting.

O Adaptive Attack Against Perplexity Defense

In each iteration t € [T|, we uniformly sample a target index j € [1, n] and generate a set B
of B + 1 candidates as explained in Section 3. We then modify Eq. 3 such that we now find
the candidate that maximizes the difference between the router’s score and the perplexity
constraint for the confounder:
¢« argmax (Sp(c||x;) —a - [PPL(c) —p|),
ceB

where PPL(-) denotes the perplexity function computed using GPT-2, the value p denotes a
target perplexity value to which we want gadgets’ perplexity to be close, and the value « is
a balancing coefficient. For the experiments below, we set p to be the average perplexity
value of 100 uniformly sampled queries® from the GSM8K benchmark.

Figure 8 shows the results when setting « = 0.01, for the GSM8K benchmark and one
confounder gadget generated for the Rgyy router. Modified queries can no longer be easily
distinguished from normal queries by their perplexity alone. For instance, in the case of
the Rgw router, setting the threshold value at 55 as before, no confounded queries are
flagged as anomalous, meaning the true-positive rate is zero. We note that there is some
variability across gadgets. The average ROCAUC scores of the defense across ten gadgets
with standard deviation indicated parenthetically, are 0.66 (£0.04), 0.69 (£0.02), 0.71 (£0.02),
and 0.69 (£0.03) for the Rsw, Ryr, Rers, and Rppp routers, respectively.

3The perplexity calibration queries were chosen such that they do not overlap with the queries
used for evaluation.
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Figure 8: Perplexity values of the original and confounded queries, and the corresponding
ROC curves of the defense that detects confounded queries by checking if they cross a
perplexity threshold, when the confounder gadget is optimized for low perplexity, in
the GSM8K benchmark and for one gadget sampled uniformly at random. Confounded
queries have similar perplexity values as the original queries, and can no longer be easily
distinguished based on perplexity alone.

MT-Bench MMLU GSMS8K
Orig.  PPL-opt. Orig. PPL-opt. Orig.  PPL-opt.

Rgy | 100£0 1000 90+£1 59+5 9840 70+7
Ryp | 10020 98+2 7844 7445 100£0 9842
Rers | 10020  98+£1 10040 66+12 100£0  88+6
Rium | 7345 5148 9541 89+3 9443  81+8

Table 20: Average upgrade rates for gadgets generated without (“Orig.”) and with (“PPL-
opt.”) low-perplexity optimization, for the balancing coefficient « = 0.01. In some cases,
optimizing for low perplexity has a negative effect on the attack success rate, however the
attack can still be considered successful. A more careful choice of & can potentially limit the
effect on the attack success.

At the same time, optimizing for low perplexity does not significantly impact the attack
success rate. Table 20 compares the average upgrade rates (over n = 10 gadgets) of
the original perplexity-agnostic optimization approach from Section 3 and the perplexity-
minimizing one described above. The attack efficacy might be improvable further by
adjusting « to find a sweet spot that avoids the defense effectively while ensuring high
rerouting success rate.

We additionally compare both optimization approaches in terms of response quality. Table 21
and Table 22 compare the average perplexity values and benchmark-specific scores of
responses. Results indicate that both types of gadgets have similar (minor) effect on the
quality of responses.

The attack is not particularly sensitive to the choice of queries used to obtain the calibration
value p. Although p was computed using GSM8K queries, we observe similar performance
when evaluating on MT-bench and MMLU, with average ROCAUC scores of 0.50 (+0.01),
0.51 (£0.01), 0.52 (£0), and 0.51 (£0.01) for MT-bench, and 0.52 (£0.03), 0.54 (£0.02),
0.55 (£0.01), and 0.53 (£0.02) for MMLU. One might also remove the calibration value
altogether, instead simply minimizing the gadget’s perplexity value. This can produce an
“overshooting” effect, where the perplexity value is significantly lower than that of normal
queries, thereby making it still distinguishable from standard queries.

In summary, perplexity-based filtering is not an effective defense against against rerouting.
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MT-Bench MMLU GSMS8K
Orig. PPL-opt. Orig. PPL-opt. Orig. PPL-opt.

Rsw | 123+£02 120+£02 201+01 199+£02 151+03 158404
Ryr | 123+£02 119£01 203+01 204+02 152£03 159+03
Rers | 121+£02  123+£02 205+£01 200+02 150£02 151403
Ripm | 127£04 119+01 196£01 195+£02 1524+03 15.0£0.3

Table 21: Average perplexity of responses to gadgets generated without (“Orig.”) and with
(“PPL-opt.”) low-perplexity optimization, for the balancing coefficient « = 0.01. Both
methods perform similarly.

MT-Bench MMLU GSMS8K
Orig. PPL-opt. Orig. PPL-opt. Orig. PPL-opt.

Rsw | 8300 83+01 66=£0 631 64£1 61+2
Ryr | 8400 82+£01 64=£1 661 67 1 63+1
Rers | 8300 83+£0.0 65+0 63£1 631 63+1
Ripm | 82£01 83+£00 660 67 £0 6411 612

Table 22: Average benchmark-specific scores of responses to gadgets generated without
(“Orig.”) and with (“PPL-opt.”) low-perplexity optimization, for the balancing coefficient
« = 0.01. Both methods perform similarly.

P Extended Survey of Related Work

Evasion attacks against ML systems. A large body of work investigated evasion attacks
against ML systems Dalvi et al. (2004); Lowd & Meek (2005); Szegedy et al. (2013), aka
adversarial examples Goodfellow et al. (2015); Papernot et al. (2016; 2017), including text-
only (e.g., Cho et al. (2024)) and multi-modal LLMs Dong et al. (2023). In Appendix A, we
explained the differences and similarities between LLM control plane attacks and adversarial
examples.

Prompt injection against LLMs. Prompt injection involves manipulating the prompt, i.e.,
input to the LLM, causing it to generate outputs that satisfy some adversarial objective Perez
& Ribeiro (2022); Toyer et al. (2023). Evasion attacks discussed above can use prompt
injection. For example, jailbreaking attacks bypass some safety guardrail of the target LLM,
such as “do not output expletives” Liu et al. (2023); Schulhoff et al. (2023); Zou et al. (2023);
Wei et al. (2023); Zhu et al. (2023); Chu et al. (2024).

Prompt injection can also extract information from or about the model, e.g., the system
prompt Perez & Ribeiro (2022); Zhang et al. (2024b); Schulhoff et al. (2023), training data Nasr
et al. (2023), or model parameters Carlini et al. (2024). In indirect prompt injection Gre-
shake et al. (2023), adversaries do not directly interact with the target LLM and instead
inject adversarial inputs into third-party data, which is then added to the LLM prompt
(intentionally or unintentionally) by the victim application and/or its users. A related
category of attacks exploits weaknesses of LLMs to compromise RAG, retrieval-augmented
generation Chaudhari et al. (2024); Shafran et al. (2024).

Our attacks, too, modify LLM queries, but the objective is different: to change routing
decisions while preserving or improving outputs. Future work may investigate indirect
attacks that somehow trick users into forming queries that confound control planes of
LLM-based applications.

Attacks against MoE. Mixture-of-Experts (MoE) architectures reduce inference cost by
routing different tokens of the query to different “expert” sub-models Du et al. (2022); Fedus
etal. (2022); Riquelme et al. (2021); Shazeer et al. (2016). This can be thought of as an internal
router within a single LLM.
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Hayes et al. Hayes et al. (2024) identified a vulnerability in MoE systems that can be
exploited for denial of service. The connection between token-routing, single-LLM attacks
and multi-LLM attacks studied in this paper can be explored in future work.

Yona et al. Yona et al. (2024) presented a side-channel attack on MoE that enables an attacker
to infer other users” prompts. There may exist side-channel attacks against multi-LLM
control planes that, for example, identify the underlying LLMs. These attacks would target
confidentiality rather than integrity.
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