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ABSTRACT

Understanding the dynamics of causal structures is crucial for uncovering the un-
derlying processes in time series data. Previous approaches rely on static assump-
tions, where contemporaneous and time-lagged dependencies are assumed to have
invariant topological structures. However, these models fail to capture the evolv-
ing causal relationship between variables when the underlying process exhibits
such dynamics. To address this limitation, we propose DyCAST, a novel frame-
work designed to learn dynamic causal structures in time series using Neural Or-
dinary Differential Equations (Neural ODEs). The key innovation lies in model-
ing the temporal dynamics of the contemporaneous structure, drawing inspiration
from recent advances in Neural ODEs on constrained manifolds. We reformu-
late the task of learning causal structures at each time step as solving the solution
trajectory of a Neural ODE on the directed acyclic graph (DAG) manifold. To ac-
commodate high-dimensional causal structures, we extend DyCAST by learning
the temporal dynamics of the hidden state for contemporaneous causal structure.
Experiments on both synthetic and real-world datasets demonstrate that DyCAST
achieves superior or comparable performance compared to existing causal discov-
ery models.

1 INTRODUCTION

Learning causal structures from time series data has been recognized as a fundamental and chal-
lenging problem due to its widespread use in various domains, such as traffic (Cheng et al., 2024b),
biology (Sachs et al., 2005; Yu et al., 2023), healthcare (Lucas et al., 2004) etc. Recently, Pamfil
et al. (2020); Sun et al. (2023); Gao et al. (2022) have made significant efforts in this direction of
causal discovery through the directed acyclic graphs (DAGs), which provide important clues about
the relationship between variables particularly in a multivariate dynamical system.

Existing methods typically adhere DYNOTEARS (Pamfil et al., 2020) to a paradigm that classifies
causal structures in time series into contemporaneous (intra-slice) and time-lagged (inter-slice) de-
pendencies. As shown in Figure. 1 (b), the weight of each edge between nodes (drawn as solid
lines) at the same time t represents the intra-slice dependencies, while the weight of edges between
nodes (drawn as dashed lines) at different times captures inter-slice. However, most such results
(Pamfil et al., 2020; Sun et al., 2023; Li et al., 2024) mainly focused on static DAGs, i.e. intra-
and inter-slice structures with invariant topology over a given set of variables. A major challenge
in dynamic data in real-world is its inherently non-stationary properties, in which DAG topological
structures (i.e. variables’ causality) can evolve over time. Examples include traffic networks, where
roads may have periodically variable lanes, and the network can undergo significant changes due
to sudden accidents or temporary traffic controls (For more details, please refer to the visualization
results in Section 4.3). In these scenarios, modeling evolutionary intra-slice causal patterns is crucial
for accurately capturing the underlying dynamic properties of the system.

A significant challenge in learning dynamic causal structures is that the edges in DAGs can emerge
or disappear over time while still maintaining the directed acyclic property, see Figure. 1 (c) for the
dynamic of the DAGs across time. However, current methodologies are still insufficient for model-
ing such a dynamic causal structure. More recent efforts have concentrated on recovering dynamic
inter-slice structures, as their continuous evolution avoids the hard constraints of maintaining a DAG
structure (Song et al., 2009). For instance, Gao & Yang (2022) proposed a time-varying Granger
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Figure 1: Illustration of the intra-slice (solid lines) and inter-slice (dashed lines) dependencies in
a SEM with d = 3 variables and autoregression order p = 1 under different dynamical settings.
(a) The original multivariate time series. (b) The causal discovery framework with a static setting.
(c) Our causal discovery framework with dynamic intra-slice dependencies and static inter-slice
dependencies settings.

causal network, where the inter-slice structures are learned via kernel-reweighted group lasso; such
approach requires prior knowledge for appropriately selecting the kernel and does not model intra-
slice dependencies. Nevertheless, we still expect to recover dynamic intra-slice structures from
multivariate time series. This is the main goal of our work.

To this end, we propose DyCAST, a dynamic causal structure learning approach for time series
based on Neural Ordinary Differential Equations (Neural ODEs). Targeting the dynamic intra-slice
structures, we devise a constrained Neural ODE to model the temporal latent states dynamics of
DAGs. See Figure. 1 for the difference between previous work and our proposed DyCAST. Com-
pared with DYNOTEARS, we enforce DAG manifold constraint for the dynamics function to model
how the change of intra-slice structure over time. Further, the dynamic function is transformed into
latent space to model the complex structure’s change for high-dimension time series. Empirical
results across synthetic dynamic and real world datasets substantiate the effectiveness of DyCAST.

RELATED WORK

Static causal structures learning. Inspired by the success of NOTEARS-based methods of causal
discovery (Zheng et al., 2018), a series of NOTEARS variants were proposed to recover the causal
structures in time series. Specifically, DYNOTEARS (Pamfil et al., 2020) pioneered extended instan-
taneous linear NOTEARS exploiting autoregression. NTS-NOTEARS (Sun et al., 2023) proposed
to capture nonlinear relations with 1-D CNN. IDYNO (Gao et al., 2022) and TECDI (Li et al., 2023)
incorporated intervention data into the DYNOTEARS framework to enhance identifiability. How-
ever, the above existing methods for learning temporal causal structure typically assume that the
intra-slice and inter-slice topologies remain static.

Dynamic causal structures learning. With the assumption that the causal structures are varing
across time, works used various methods for recovering dynamic structures. TVDBN (Song et al.,
2009) and KWgL (Gao & Yang, 2022) proposed to adopt kernel-reweighted ℓ1-regularized auto-
regressive procedure for modeling the structurally varying. TVGL (Hallac et al., 2017) derived a
scalable message-passing algorithm to infer time-varying structures. However, these works only
model the dynamics of inter-slice, and none of them address the dynamics of intra-slice.

Neural ODEs. Neural ODEs were originally introduced to model time series with continuous latent
dynamics, offering a natural way to capture the dynamical behavior of systems (Chen et al., 2018).
However, they have not been extensively explored in the context of dynamic causal structures, as
most prior work has applied them to model node interactions in time series forecasting tasks. For
instance, HOPE (Luo et al., 2023) incorporated second-order graph ODEs to model higher-order
temporal dependencies, while GDERec implicitly captures the temporal evolution of user-item in-
teraction graphs using GNN-based ODEs. SGODE (Chen et al., 2024) extended signed graph Neural
ODEs to leverage both positive and negative node information during continuous dynamics. LCCM
(Brouwer et al., 2021) leveraged latent dynamics for causal discovery but is limited to static or
quasi-static relationships, overlooking dynamic intra-slice structures. Despite these advancements,
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most existing models focus primarily on time series forecasting, rather than addressing changes in
intra-slice causal structures.

2 PRELIMINARIES

Notations. We let D denote the space of DAGs on d variables. Given N independent realizations
of a multivariate time series represented as X = {X:,0,X:,1, · · · ,X:,t, · · · ,X:,T }, where X:,t =
{x1

1:N,t,x
2
1:N,t, · · · ,xi

1:N,t, · · · ,xd
1:N,t} ∈ RN×d is the recording of d variables at time step t,

where d represents the number of variables in the dataset. With a slight abuse of notation, we will
use Xt interchangeably.

Causal structure model for time series. Let Y = [Xt−1| · · · |Xt−p] be the N × pd matrix of
p-order time-lagged version of Xt, W be the d × d matrix of intra-slice and A = [AT

1 | · · · |AT
p ]

T

be the pd × d matrix of inter-slice. A causal structure model for time series can be equivalently
represented by a structural equation model (SEM) (Pamfil et al., 2020):

Xt = XtW + Y A+Zt, (1)

where t ∈ {1, 2, · · · , T} with horizon T , Zt ∼ N (0, σ2I) is a noise vector with independent
elements across time. The intra-slice structure is defined by the nonzero elements in W , i.e. Xi

t is
dependent on Xj

t if and only if the coefficient W ij is nonzero. The inter-slice structure is defined
by the nonzero elements in Ak, i.e. Xi

t is dependent on Xj
t−k if and only if the Aij

k is nonzero.

Neural ODEs. Neural ODEs (Chen et al., 2018) are a class of deep learning models that effectively
learn temporal dynamics for time series modeling. They use a neural network to map x0 into a
hidden space z0, where a continuous model fθ governs the dynamics, described with following:

zt = z0 +

∫ t

0

fθ(zs) ds where z0 = ζ(x0), and xt = ξ(zt), (2)

where ξ and ζ are parametrized neural networks that model the relationship x0 7→ z0 and zt 7→ xt,
respectively. The dynamics of the hidden state, fθ, are specified by another learnable neural network.

3 LEARNING DYNAMIC CAUSAL STRUCTURE

3.1 PROBLEM DEFINITION

We will target recovering the dynamic causal structures. That is, the intra-slice dependencies be-
tween variables in time t and t − 1 is not fixed, and W changes over time. Following the practice
in causal structure discovery (Pamfil et al., 2020), we formulate the problem as finding a series
snapshots of DAG W = {W0, · · · ,WT } to capture the time-dependent causal structure, and a
series of graph A = {A1, · · · ,Ak, · · · ,Ap} for time-lagged. Each graph Wt = (V, Et,Wt) or
Ak = (V, E ,Ak) is a weighted graph with a shared variable set V , a causal link set E , and weighted
adjacency matrix Wt ∈ Rd×d or Ak ∈ Rd×d. Thus, a linear form of the dynamic causal discovery
model in SEM is:

Xt = XtWt + Y A+Zt. (3)

In order to accurately manipulate the time-dependent causal structure of time series, we use a smooth
dynamics assumption to characterize the changes in intra-slice structure. Then, we further find a
function Fθ to model the evolution of dynamic causal structure,

Wt = Fθ(t,W0) s.t. Wt ∈ D. (4)

Thus, minimizing the least-squares loss under the DAG constraint leads to the following optimiza-
tion problem:

argmin
θ,A

L(Wt(θ),A) =
1

2NT

T∑
t=0

∥Xt −XtWt(θ)− Y A∥22 s.t. Wt ∈ D. (5)
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3.2 CONSTRAINED NEURAL ODE FOR DYNAMIC DAGS

The change of intra-slice can reflect the underlying dynamics of time series data. To fully capture
the dynamic causal structure, inspired by the idea of Neural ODEs, we propose to adopt a continuous
dynamical system fθ for parameterizing the function Fθ, i.e.

Wt = W0 +

∫ t

0

fθ(Ws, s) ds, s ∈ [0, t] s.t. Ws ∈ D. (6)

where W0 is also a learnable matrix that denotes the intra-slice matrix when time t = 0; fθ(·)
specifies the dynamics of time-dependent intra-slice structure and is a neural network to be learned.

Since our setting introduces additional complexity compared to DYNOTEARS, we found that the
difficulty in solving the dynamical system in Eq. (6) is the directed acyclicity constraint on Ws. We
are confronted with a primary question: how to guarantee the solution trajectory Ws for the Neural
ODE governed by fθ consistently satisfies the constraint?

Dynamic acyclicity constraint. We adopt an equivalent formulation via the trace exponential func-
tion studied in (Zheng et al., 2018) to characterize the DAG constraint,

h(W ) = tr(eW ◦W )− d (7)

where “◦” denotes the Hadamard product of two matrices. They show that the function h satisfies
h(W ) = 0 if and only if W is acyclic. Replacing the acyclicity constraint with the equality con-
straint h(W ) = 0, we can regard the Neural ODE Eq. (6) as an underlying ODE (Rheinboldt, 1984)
to address the main concern. We further reformulate the vector field fθ with an invariant manifold
M = {Ws ∈ Rd×d, h(W ) = 0} as a constrainted Neural ODE (i.e. underlying Neural ODE),

Wt = W0 +

∫ t

0

fθ(Ws, s)− γS(Ws)h(Ws) ds, s ∈ [0, t] (8)

where γ ≥ 0 is a scalar parameter, S(·) : Rd×d → Rd×d in our paper is a stabilization matrix to
guarantee the manifold M constraint gradually and consistently satisfied. Note that the underlying
Neural ODE Eq.(8) is equivalent to the neural ODE Eq.(6) on the manifold M in the sense that they
have the same (analytical) solution set for Ws on M. By controlling the trajectory of the dynamic
causal structure to asymptotically satisfy DAG constraints, hard enforcement techniques, such as the
augmented Lagrangian, are unnecessary.

Inspired by White et al. (2023), we choose the Moore-Penrose pseudoinverse of the Jacobian matrix
G(W ) of function h as the stabilization matrix, where G(W ) = ∇h(W ) = (eW ◦W )T ◦ 2W .
This matrix aims to guarantee that S(W )G(W ) is symmetric positive definite with the smallest
eigenvalue bounded away from zero near M and be compatible with gradient-based optimization
of θ as part of a neural underlying ODE. Then, for each time t, a G+(Ws) matrix is employed to
obtain the trajectories of dynamic causal structures belonging to M,

Wt = W0 +

∫ t

0

fθ(Ws, s)− γG+(Ws)h(Ws) ds, s ∈ [0, t] (9)

where G+(Ws) = GT (Ws)(G(Ws)G
T (Ws))

−1.

3.3 CONSTRAINED NEURAL LATENT ODE FOR DYNAMIC DAGS

When inferring dynamic causal structure, fθ(Ws, s) can be expensive to solve directly using stan-
dard Dormand–Prince methods (Hartman, 2002), especially in real-world applications. This is
because Ws can be very high-dimensional. Fortunately, a variety of works provided both theo-
retical (Holmes, 2012) and empirical evidence (Noack et al., 2011; Sholokhov et al., 2023) that
many dynamical systems evolve on a latent space with lower dimensions. Therefore, we follow the
“Encoder-Process-Decoder” (Battaglia et al., 2018) fashion to design the neural latent ODE for the
intra-slice structure, as sketched in Figure. 2. We now present the details of each component.

Encoder. The goal of the encoder is to efficiently compress the intra-slice structure into a compact,
lower-dimensional representation, while preserving essential dynamic characteristics, leveraging the
inherent sparsity of the DAG structure. For the initial time step t0, the intra-slice structure W0 ∈
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Rd×d, derived from the observation X0, represents a high-dimensional state, especially when d is
sufficiently large. To represent the causal properties of each variable more explicitly, we transform
the initial intra-slice structure W0 into S0 ∈ Rd×2d,

S0 = CONCAT[W0,W
T
0 ]. (10)

Note that the i-th row of W0 indicates which variables depend on xi at the initial time 0, while the i-

Time

𝒛0 𝒛1 𝒛2 𝒛3 𝒛𝑡

Initial intra-slice 𝑾0

t0 1 2 3

𝑾0 𝑾1 𝑾2 𝑾3 𝑾𝑡

Decoder 𝜓𝜃

Encoder 𝜙𝜃

𝑿𝑡 − 𝑿𝑡𝑾𝑡 − 𝑨𝒀 2
2 + 𝜆1 𝑾𝑡 + 𝜆2 𝑨

Static inter-slice 𝑨

Regularized Least Squares Loss

Reconstructed 𝑿𝑡 Observed 𝑿𝑡

Causal Structure

𝑠. 𝑡. ℎ 𝑾𝑡 = 0

Latent ODE
𝜉𝜃 𝒛𝑡 , 𝑡

Figure 2: Constrained Neural Latent ODE for constructing causal structures from hidden states.

th column shows which variables xi depends on. Therefore, the i-th row of S0 reflects the variables
that xi is linked to in the DAG within the entire slice. Then, we consider using an encoder ϕθ to
distill S0 into key features within a r-dimensional (r < d) latent space. Given the high-dimensional
intra-slice structure W0, a vectorized latent representation z0 ∈ Rdr is obtained as:

z0 := FLATTEN(ReLU(S0P ))
∆
= ϕθ(S0) (11)

where ϕθ : Rd×2d 7→ Rdr is a mapping parameterized by a neural network, which involves a linear
transformation P ∈ R2d×r followed by a ReLU activation function.

Processor: latent ODE. In the Processor, the latent state zt is determined by the mapping ϕ from
the high-dimensional casual structure matrix Wt. Therefore, we can apply the chain rule to derive
the dynamics of zt,

dzt
dt

=
dzt
dSt

dSt

dWt

dWt

dt
=
dzt
dst

dst
dWt

fθ(Wt, t)
∆
= ξθ(zt, t). (12)

Additionally, since zt corresponds to Wt, and the trajectory of Wt must lie within the DAG mani-
fold, the dynamics of zt must satisfy some kind of constraint to ensure that the corresponding Wt

remains a DAG,
h(ψθ(zt, t)) = 0, (13)

where ψθ is the decoder neural network to map the compressed latent state zt at a given time back
to the corresponding intra-slice structure Wt and its details will be described later. Thus, we can
integrate such constraint into the latent neural ODE for zt as follows:

zt = z0 +

∫ t

0

ξθ(zs, s)− γG+(ψθ(zs, s))h(ψθ(zs, s)) ds, s ∈ [0, t] (14)

This Neural ODE aims to learn the dynamic causal structure of time series by exploiting latent states,
which can be estimated using a numerical ODE solver,

z1, . . . ,zt = ODESolver(ξθ, z0, (t0, . . . , t)) (15)

Decoder. In some real-world scenarios, e.g. traffic, the dynamics of the Wt do not only depend
on zt, but also explicitly on the time t due to the periodicity of dependency relationship between
variables. To deal with this case, we concatenate the latent state zt with the time variable t to form
a temporal-conditioned latent representation z̃t ∈ Rdr+1,

z̃t = CONCAT[zt, t] (16)
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This approach enables the decoder to effectively incorporate time-dependent dynamics in its recon-
struction of the intra-slice structure Wt. Utilizing the temporal-conditioned latent representation z̃t,
the intra-slice structure Wt can be reconstructed as follows:

Wt = σ(PL · · ·σ(P1z̃t)) = ψθ(zt, t) (17)

where ψθ : Rdr+1 7→ Rd2

is a mapping parameterized by a L-layers neural network with non-
linear activation function σ. We note that if Wt exhibits periodic dynamic behavior, the activation
function in ψθ should effectively capture this periodicity. In such cases, we recommend utilizing the
SIREN activation function (Sitzmann et al., 2020); otherwise, the SiLU activation function can be
employed.

Optimization problem. To further enhance the model, we introduce ℓ1 penalty terms to enforce
sparsity in both Wt and A, leading to the following regularized optimization problem:

argmin
θ,W0,A

L(A,W0,Wt) =
1

2NT

T∑
t=0

∥Xt −XtWt(θ)− Y A∥22 + λ1

T∑
t=0

∥Wt(θ)∥1 + λ2∥A∥1.

(18)
where θ represents all the trainable parameters involving in Wt, including the encoder ϕθ, decoder
ψθ, and vector field function ξθ. We use the Adam algorithm (Kingma & Ba, 2015) to solve this
objective function.

Extension of DyCAST. Our DyCAST modeling framework is flexible, which can be easily incor-
porated into other casual discovery approaches, particularly those for modeling complex inter-slices
temporal causal discovery. When p = 1, the summary graph coincides with the inter-slice graph,
allowing the use of Granger-causal methods for learning inter-slice structures. For instance, Dy-
CAST can be introduced to CUTS+ (Cheng et al., 2024a), a nonlinear model for inferring inter-slice
relationships with summary graphs. Following Section 3.3 as well as the work of NTS-NOTEARS
(Sun et al., 2023), the foundational model (Eq.(3)) of DyCAST can be extend as:

Xi
t = XtWt + φi(X

1
t−p:t−1,X

2
t−p:t−1, · · · ,Xd

t−p:t−1) +Zi
t , (19)

where the i-th neural network φi predicts the expectation E[Xi
t −XtWt] of the target variable Xi

t
at each time step t, conditioned on preceding variables. Here, φi can be implemented as d separate
MLPs or LSTMs to ensure disentanglement. Instead of modeling the full-time DAG, we utilize
CUTS+ as φ to extract a summary graph that captures the causal effects of the lagged version on
Xi

t .
Xt = XtWt +Φ(Xt−p:t−1,M) +Zi

t

= XtWt + [...,Linearφ2
i
(MLPφ1

i
(MPGNNν(Xt−p:t−1, h

i
0;m:,i))]

T +Zi
t

(20)

where hi0 is the initial value of GRU hidden states and irrelevant to Xt−p:t−1, M is a binary causal
matrix, where m:,i = 1 denotes i-th hidden states Granger cause the prediction. Notably, when the
preceding variables span only a single time step, the summary graph is equivalent to the full-time
DAG.

4 EXPERIMENTAL RESULTS

We evaluate the efficacy of DyCAST through extensive experiments on both synthetic and real-world
datasets. For synthetic data, we perform a series of simulation experiments with known ground
truth. To demonstrate the broad applicability of our method, we apply it to two real-world datasets:
NetSim (Smith et al., 2011) and CausalTime (Cheng et al., 2024b). Additional experiments on
variable counts, sequence lengths, and noise robustness, along with ablation studies, are provided in
Appendix C. We also demonstrate DyCAST’s ability to detect dynamic nonlinear interactions using
the Human3.6M dataset, detailed in Appendix E.

Evaluation Metrics. We assess the performance of our proposed method for learning dynamic
causal structures using three key metrics: 1) F1 score, representing the harmonic mean of preci-
sion and recall. 2) Structural Hamming Distance (SHD), which counts discrepancies (e.g., reversed,

6
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missing, or redundant edges) between two DAGs; Since the number of potential non-causal rela-
tionships vastly outnumbers true causal relationships in real datasets, we also utilize Area Under
the Precision-Recall Curve (AUPRC) and Area Under the ROC Curve (AUROC) to evaluate the
effectiveness of DyCAST in identifying genuine causal relationships.

𝐴 (Inter-slice) 𝑊1 (Intra-slice) 𝑊3(Intra-slice) 𝑊5(Intra-slice) 𝑊7(Intra-slice)
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Figure 3: Example results using DyCAST on data with Gaussian noise, consisting of N = 500
samples, T = 7 time steps, d = 5 variables, and p = 1 autoregressive term. The First Row: The
ground truth 1-order dynamic causal structure. The Second Row: The difference between ground
truth and learned dynamic structures over time.

4.1 SYNTHETIC DATASETS

We first follow the procedure outlined in Appendix A.1 to generate data with Gaussian noise, con-
sisting of N = 500 samples, T = 8 time steps, d = 5 variables, and p = 1 autoregressive term. The
evolution function F is represented by a linear transformation matrix, with both intra- and inter-slice
DAGs simulated using an Erdős–Rényi (ER) model (Erdős & Rényi, 1960), where the mean degree
is set to 2. We implement DyCAST to this dataset using regularization parameters λ1 = λ2 = 0.05
and scalar parameter γ = 1. In Figure. 3, we demonstrate the performance of DyCAST on this
synthetic dataset. We can clearly see that the estimated weights closely match the ground truth for
both Wt and A. Furthermore, the temporal dynamics of Wt are effectively captured.

TECDI

Figure 4: F1 scores for different temporal causal discovery algorithms and different numbers of
variables d ∈ {5, 10, 15, 20} on synthetic dataset with dynamic causal structure. Each panel contains
results for both intra- and inter-slice structures. Every marker corresponds to the mean performance
across 4 algorithm runs, each on a different simulated dataset.

Performance on time series with dynamic causal structure. We compare DyCAST against sev-
eral causal discovery baselines, including DYNOTEARS (Pamfil et al., 2020), NTS-NOTEARS
(Sun et al., 2023) and TECDI (Li et al., 2023), on a synthetic dataset with variables dimension
d ∈ {5, 10, 15, 20}, N = 500 samples, T = 8 time steps, and p = 1 autoregressive term. The
results are presented in the Figure 4. The vertical axis indicates the performance of each algorithm
measured by the F1 score, computed separately for intra- and inter-slice structures. It is clear that
DyCAST outperforms the others, consistently attaining F1 scores near 1 over time. The selection of
hyperparameter values for the four algorithms is discussed in Appendix B.
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SH
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SH
D

Intra-slice Inter-slice

Inter-slice Inter-slice

Number of variables (d) Number of variables (d) Number of variables (d) Number of variables (d)

TECDI

Figure 5: Left two panels: the intra-slice F1 scores and SHD metrics for various temporal causal
discovery algorithms across different variable counts d ∈ {5, 10, 20, 50} on synthetic dataset with
static causal structure. Right two panels: the inter-slice F1 scores and SHD metrics for various
temporal causal discovery algorithms.

Table 1: Ablation study on synthetic datasets with d = 5.

Structure
DYNOTEARS w/o S0 w/o Latent state DyCAST

TPR SHD F1 TPR SHD F1 TPR SHD F1 TPR SHD F1

DYNAMIC

W2 0.40 3 0.67 0.86 3 0.75 1.00 2 0.67 1.00 0 1.00
W4 0.40 3 0.69 0.86 3 0.75 1.00 2 0.78 1.00 0 1.00
W6 0.80 3 0.68 0.86 4 0.75 1.00 2 0.82 1.00 0 1.00

DATASET W8 0.40 3 0.68 1.00 6 0.59 1.00 2 0.93 1.00 0 1.00
A 0.20 3 0.00 1.00 12 0.37 1.00 3 0.86 1.00 1 0.97

STATIC W 0.80 1 0.89 1.00 7 0.53 1.00 1 0.89 1.00 0 1.00
DATASET A 0.00 5 0.00 1.00 7 0.67 1.00 4 0.82 1.00 0 1.00

The best results are in bold.

Performance on time series with static causal structure. Here we show that DyCAST can also
naturally adapt to time series with a static causal structure. We apply it to a synthetic dataset similar
to that in Pamfil et al. (2020), where only Wt remains fixed over time. As anticipated, DyCAST
emerges as the best-performing algorithm in Figure 5, demonstrating high F1 scores and low SHD
values. The second-best algorithm is NTS-NOTEARS. However, its performance tends to degrade
as we add the number of variables. Moreover, DyCAST reduces the running time by more than 20%
across various variable dimensions. See Appendix C.6 for more details.

Ablation study. We conduct an ablation study by evaluating DyCAST without latent states,
as shown in Table 1. Specifically, we run DYNOTEARS, DyCAST, DyCAST w/o S0 (which
means z0 := FLATTEN(ReLU(W0P ))) and DyCAST w/o Latent states (which means z0 :=
FLATTEN(W0)) on two datasets: a 5-variable synthetic dataset with dynamic causal structure, and a
5-variable synthetic dataset with static causal structure. The results from these experiments provide
insights into the contribution of latent states and S0 to the overall performance of DyCAST. The
gray shadows in tables that are highlighted in all tables indicate our choice for our method. We
find that S0 plays an important role in improving the performance, while latent states can further
enhance the effect. See Appendix D for real world datasets ablation study.

4.2 NETSIM DATASETS

Baseline methods. For NetSim datasets, we compare DyCAST with GC (Granger, 1969),
DYNOTEARS (Pamfil et al., 2020), NTS-NOTEARS (Sun et al., 2023), PCMCI (Peters et al.,
2013), NGC (Tank et al., 2022), CUTS+ (Cheng et al., 2024a), LCCM (Brouwer et al., 2021),
eSRU (Khanna & Tan, 2020), TECDI (Li et al., 2023).

NetSim is an fMRI dataset aimed at learning gradual changes in brain networks to enhance the
understanding of brain functions and intelligence (Smith et al., 2011). It contains 28 simulation
datasets, from which we select 17 simulations with the same sequence length, each featuring 50
independent time series recordings for d = {5, 10, 15} nodes over 200 time steps. A detailed
comparison of AUPRC is shown in Table 2, see Appendix C.10 for AUROC results and Appendix D
for ablation study. Given that the NetSim dataset explores brain network causal relationships, whose
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Table 2: Performance on NetSim Dataset Under AUPRC.
Metric DATASET GC DYNOTEARS NTS-NOTEARS PCMCI NGC CUTS+ LCCM eSRU TECDI DyCAST DyCAST (Not DAG) DyCAST-CUTS+

A
U

PR
C

Sim1 0.40±0.08 0.41±0.08 0.41±0.06 0.39±0.09 0.42±0.15 0.85±0.11 0.71±0.14 0.40±0.14 0.67±0.03 0.90±0.13 0.79±0.05 0.92±0.03

Sim2 0.32±0.12 0.33±0.12 0.24±0.04 0.29±0.11 0.29±0.11 0.79±0.12 0.82±0.12 0.27±0.11 0.79±0.04 0.91±0.11 0.85±0.04 0.89±0.12

Sim3 0.29±0.14 0.32±0.13 0.16±0.02 0.26±0.12 0.26±0.12 0.77±0.10 0.78±0.08 0.23±0.12 0.73±0.04 0.84±0.04 0.87±0.01 0.85±0.04

Sim8 0.38±0.11 0.36±0.08 0.42±0.04 0.36±0.10 0.40±0.14 0.85±0.09 0.84±0.04 0.39±0.14 0.58±0.10 0.89±0.14 0.76±0.08 0.90±0.08

Sim10 0.39±0.12 0.38±0.10 0.46±0.05 0.40±0.12 0.42±0.16 0.71±0.02 0.68±0.11 0.42±0.15 0.71±0.05 0.90±0.14 0.77±0.05 0.91±0.10

Sim11 0.26±0.06 0.26±0.04 0.21±0.02 0.25±0.07 0.25±0.08 0.78±0.04 0.70±0.02 0.24±0.08 0.74±0.02 0.84±0.10 0.67±0.02 0.85±0.08

Sim12 0.33±0.11 0.36±0.08 0.21±0.02 0.29±0.11 0.28±0.11 0.79±0.02 0.73±0.02 0.26±0.11 0.79±0.02 0.92±0.08 0.69±0.02 0.90±0.03

Sim13 0.48±0.07 0.47±0.05 0.53±0.05 0.47±0.10 0.47±0.10 0.83±0.01 0.85±0.15 0.47±0.11 0.68±0.02 0.81±0.10 0.84±0.11 0.80±0.12

Sim14 0.41±0.09 0.41±0.08 0.42±0.02 0.38±0.09 0.41±0.13 0.77±0.04 0.73±0.10 0.39±0.13 0.67±0.04 0.87±0.13 0.73±0.07 0.80±0.07

Sim15 0.40±0.09 0.38±0.07 0.42±0.03 0.41±0.10 0.47±0.20 0.82±0.01 0.81±0.06 0.44±0.19 0.72±0.04 1.00±0.20 0.74±0.08 0.98±0.02

Sim16 0.45±0.07 0.44±0.05 0.50±0.05 0.44±0.06 0.46±0.10 0.80±0.09 0.79±0.04 0.45±0.10 0.64±0.05 0.81±0.10 0.77±0.08 0.82±0.08

Sim17 0.36±0.10 0.39±0.09 0.22±0.02 0.35±0.10 0.40±0.19 0.77±0.15 0.84±0.10 0.35±0.19 0.86±0.02 0.89±0.19 0.82±0.12 0.90±0.13

Sim18 0.42±0.12 0.42±0.07 0.41±0.01 0.40±0.11 0.42±0.16 0.85±0.02 0.83±0.06 0.40±0.15 0.68±0.05 0.88±0.16 0.72±0.15 0.86±0.08

Sim21 0.41±0.08 0.42±0.08 0.43±0.06 0.38±0.09 0.41±0.14 0.85±0.09 0.87±0.08 0.39±0.14 0.68±0.03 0.92±0.14 0.76±0.04 0.92±0.09

Sim22 0.38±0.08 0.38±0.06 0.45±0.04 0.37±0.08 0.35±0.09 0.86±0.10 0.86±0.09 0.34±0.09 0.83±0.04 0.80±0.09 0.76±0.03 0.88±0.12

Sim23 0.40±0.12 0.35±0.06 0.41±0.03 0.41±0.14 0.45±0.20 0.79±0.06 0.79±0.07 0.42±0.19 0.78±0.02 0.73±0.20 0.76±0.14 0.81±0.06

Sim24 0.34±0.10 0.31±0.07 0.47±0.07 0.35±0.11 0.34±0.11 0.56±0.08 0.60±0.03 0.34±0.11 0.79±0.02 0.61±0.11 0.75±0.05 0.76±0.07

Average 0.38±0.10 0.38±0.08 0.37±0.04 0.36±0.10 0.38±0.13 0.79±0.07 0.82±0.08 0.36±0.14 0.73±0.04 0.85±0.13 0.77±0.07 0.87±0.08

The best results are in bold and the second best are underlined.

structure does not fully adhere to the DAG constraint. We also evaluated a variant of DyCAST
without the DAG manifold constraint, referred to as DyCAST (No DAG). While TECDI performs
better than other variants of NOTEARS (DYNOTEARS, NTS-NOTEARS), DyCAST outperforms
TECDI on 82.4% of datasets. Overall, DyCAST achieves an average AUPRC increase of 16.43%,
demonstrating adaptability to low-resolution datasets with significant time intervals.

Additionally, we found that DyCAST (Not DAG) can obtain an AUROC value close to 1.0 on some
sub-datasets of the NetSim dataset. This is because after eliminating the DAG constraint, DyCAST
can identify the influence relationship between variables, but it is not accurate in identifying the
direction of the influence. Therefore, the AUPRC of DyCAST (Not DAG) is relatively low. More-
over, due to the highly nonlinear relationships between variables in the NetSim dataset, nonlinear
causal modeling methods like CUTS+ and LCCM demonstrate higher accuracy compared to linear
methods. Similarly, the DyCAST variant integrated with CUTS+ achieves an average 2.4% higher
accuracy than the vanilla DyCAST.

4.3 CAUSALTIME DATASETS

Baseline methods. For CausalTime datasets, we compare DyCAST with GC (Granger, 1969),
SVAR, NTS-NOTEARS (Sun et al., 2023), PCMCI (Peters et al., 2013), Rhino (Gong et al.,
2023), CUTS (Cheng et al., 2023), CUTS+ (Cheng et al., 2024a), NGC (Tank et al., 2022), NGM
(Bellot et al., 2022), LCCM (Brouwer et al., 2021), eSRU (Khanna & Tan, 2020), SGCL (Xu et al.,
2019), TCDF (Nauta et al., 2019), TECDI (Li et al., 2023).

𝑥5 → 𝑥1

𝑥5 → 𝑥3

𝑥5 → 𝑥5

𝑥5 → 𝑥18

Figure 6: Visualization of the dynamic causal structure on Traffic. Left: the original traffic time
series. Right: the periodic changes of some part edge links in intra-slice structures discovered by
DyCAST.

We evaluate DyCAST on the CausalTime dataset, a real-world temporal causal discovery benchmark
(Cheng et al., 2024b). CausalTime includes three distinct scenarios: weather (AQI subset), traffic
(Traffic subset), and healthcare (Medical subset). The Traffic and Medical subsets each consist of
d = 20 variables, while the AQI subset contains d = 36 variables. Table 3 shows the performance
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comparison on temporal causal discovery, see Appendix D for ablation study. We can observe that:
(1) Among all the compared methods, DyCAST performs best in the Traffic subset and second-
best in Medical. One possible reason is that DyCAST is more effective on datasets with rapidly
changing causal structures. See Figure 6 for more details. (2) Our DyCAST achieves the best aver-
age performance, likely due to the explicit incorporation of both instantaneous and lagged causality
information, which enhances its ability to capture complex causal dynamics.

Table 3: Performance on CausalTime Dataset Under AUROC and AUPRC. DyCAST-CUTS com-
bines DyCAST for dynamic intra-slice discovery and CUTS+ for nonlinear inter-slice discovery,
achieving the best performance.

Methods AUROC AUPRC

AQI Traffic Medical AQI Traffic Medical

GC 0.45±0.04 0.42±0.03 0.57±0.03 0.63±0.02 0.28±0.00 0.42±0.03

SVAR 0.62±0.04 0.63±0.00 0.71±0.02 0.79±0.02 0.58±0.00 0.68±0.04

NTS-NOTEARS 0.57±0.02 0.63±0.03 0.71±0.02 0.71±0.02 0.58±0.05 0.46±0.02

PCMCI 0.53±0.07 0.54±0.07 0.70±0.01 0.67±0.04 0.35±0.06 0.51±0.02

Rhino 0.67±0.10 0.63±0.02 0.65±0.02 0.76±0.08 0.38±0.01 0.49±0.03

CUTS 0.60±0.00 0.62±0.02 0.37±0.03 0.51±0.04 0.15±0.02 0.15±0.00

CUTS+ 0.89±0.02 0.62±0.07 0.82±0.02 0.80±0.08 0.64±0.12 0.55±0.13

NGC 0.72±0.01 0.60±0.01 0.57±0.01 0.72±0.01 0.36±0.05 0.46±0.01

NGM 0.67±0.02 0.47±0.01 0.56±0.02 0.48±0.02 0.28±0.01 0.47±0.02

LCCM 0.86±0.07 0.55±0.03 0.80±0.02 0.93±0.02 0.59±0.05 0.76±0.02

eSRU 0.83±0.03 0.60±0.02 0.76±0.04 0.72±0.03 0.49±0.03 0.74±0.06

SCGL 0.49±0.05 0.59±0.06 0.50±0.02 0.36±0.03 0.45±0.03 0.48±0.02

TCDF 0.41±0.02 0.50±0.00 0.63±0.04 0.65±0.01 0.36±0.00 0.55±0.03

TECDI 0.56±0.02 0.60±0.00 0.63±0.02 0.65±0.00 0.63±0.01 0.49±0.01

DyCAST (Not DAG) 0.85±0.03 0.68±0.05 0.74±0.01 0.70±0.03 0.60±0.02 0.69±0.03

DyCAST 0.85±0.02 0.63±0.01 0.81±0.03 0.82±0.00 0.70±0.01 0.74±0.03

DyCAST-CUTS+ 0.91±0.02 0.65±0.01 0.84±0.01 0.93±0.00 0.73±0.01 0.77±0.03

The best results are in bold and the second best are underlined.

Since our method focuses primarily on the dynamic intra-slice structure, we do not heavily address
the inter-slice structure. To comprehensively account for both aspects, we combine DyCAST with
other methods that emphasize inter-slice structure. As expected, DyCAST-CUTS+ achieves the best
performance across all three datasets.

Visualization of the dynamic causal structure. Figure 6 provides visualizations of the dynamic
causal structure learned by DyCAST, using the Traffic subset as an illustrative example. The left
panel shows the changes in the original traffic time series within a day. The right panel shows the
periodic changes in the intra-slice edge links between x5 and other variables found by DyCAST. We
use blue to represent x1, orange to represent x3, green to represent x5, and red to represent x18. We
can observe that within a period of 1 day, the causal relationship between intersection x5 and other
intersections x1, x3, x5, x18 shows obvious dynamics and periodicity.

5 CONCLUSION

In this work, we introduce DyCAST, a novel constrained latent Neural ODE-based temporal causal
discovery framework, specifically designed to learn dynamic causal structures from time series data.
We conduct extensive experiments on dynamic synthetic, static synthetic, and real-world time series
datasets, demonstrating DyCAST’s superior performance in recovering causal structures across all
scenarios. In the future, we plan to explore new architectural designs for neural networks in the
latent dynamics model constrained by the DAG manifold. Another direction involves integrating
both intra-slice and inter-slice latent dynamics within a unified neural network framework.
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APPENDIX

A IMPLEMENTATION DETAILS

In this section, we first provide the specific steps and details of synthetic data generation. Secondly,
we introduce the structure of each component of DyCAST in its specific implementation.

A.1 DATA GENERATION PROCESS

We provide more details about the data generation process that we use in our numerical experiments
form Section 4.1.

Dynamic intra-slice model. As in Zheng et al. (2018), we use the Erdős–Rényi (ER) model to
generate the initial intra-slice DAG W0. Similarly, the intra-slice DAG WT at the final time step
is generated using the same approach as the initial structure. To assign weights to the DAG, we
sample uniformly from the intervals [−2.0,−0.5] ∪ [0.5, 2.0]. Given the assumption of smooth
causal transitions, we generate the intra-slice DAGs for the remaining t − 1 transition times using
linear interpolation. At the i-th time step, the interpolated matrix Wi is defined as follows:

Wi = (1− ti) ·W0 + ti ·Wt (21)

where ti = i
T−1 , with i representing the interpolation step. As i increases, the interpolation coeffi-

cient ti linearly progresses from 0 to 1, smoothly transitioning from W0 to WT .

Static inter-slice model. We employ a directed Erdős–Rényi (ER) model to generate inter-slice
DAGs. Specifically, we sample entries of the binary adjacency matrix Abin using independent and
identically distributed (i.i.d.) Bernoulli trials with probabilities of k/d. Given the binary inter-slice
adjacency matrix Abin, we sample edge weights uniformly from a specified interval that depends
on the parameter p. More precisely, edge weights from slice t − p to slice t are sampled from
the intervals [−0.5α,−0.3α] ∪ [0.3α, 0.5α], where α = 1/ηp−1 and η = 1.5. This weight decay
parameter η effectively reduces the influence of variables that are farther back in time relative to the
current time slice.

Once we have Wt and A, we utilize the SEM from Eq. (1) to generate a data matrix X of size
n × T × d. The noise term Zt in Eq. (1) consists of independent and identically distributed (i.i.d.)
random variables.

A.2 DYCAST IMPLEMENTATION DETAILS

The encoder part: Similar to Neural LAD, we solve the constrained Neural latent ODE with defined
ϕθ, which is parameterized as a single layer MLP with ReLU.

The vector field part: The vector field of DyCAST is constructed by stacking multiple linear layers,
each followed by a tanh activation function. This structure enables the model to capture complex
dynamics of hidden states.

The decoder part: we stack multiple linear layers with a non-linear activation function to param-
eterize the neural network ψθ. Specifically, we configure the first layer as a multi-layer perceptron
(MLP) with an input dimension of r×d and an output dimension corresponding to the hidden layer.
The final layer has an input dimension equal to the hidden layer and an output dimension of d × d
to generate the intra-slice structure. Typically, the decoder employs the SiLU activation function.
However, if the intra-slice structure is known to exhibit periodicity, we select the SIREN activation
function instead.

B EXPERIMENTS DETAILS

We show the detailed settings of hyper-parameters including learning rate, hidden dimensions, and
stable matrix scale factor. We run all experiments on an NVIDIA GeForce RTX 4090 GPU. It is
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worth that the DyCAST converges faster than the other variants NOTEARS, so it achieves better
performance earlier than baselines.

Table 4: Detailed hyper-parameter settings of all networks on all datasets.

Type Dataset Lags lr r γ Activation

DYNAMIC

d=5 1 1.00E-03 4 1 SiLU
d=10 1 1.00E-03 8 1 SiLU
d=15 1 1.00E-03 12 1 SiLU
d=20 1 1.00E-03 16 1 SiLU
d=50 1 1.00E-03 40 1 SiLU
d=100 1 1.00E-03 80 0.1 SiLU
d=200 1 1.00E-03 180 0.01 SiLU
d=300 1 1.00E-03 240 0.01 SiLU

STATIC

d=5 1 1.00E-03 4 1 SiLU
d=10 1 1.00E-03 8 1 SiLU
d=20 1 1.00E-03 16 1 SiLU
d=50 1 1.00E-03 40 1 SiLU

NETSIM

d=5 1 1.00E-03 4 1 SiLU
d=10 1 1.00E-03 8 1 SiLU
d=15 1 1.00E-03 12 1 SiLU

CAUSALTIME

d=20 (Traffic) 1 1.00E-03 16 1 Siren
d=36 (AQI) 1 1.00E-03 30 1 SiLU

d=20 (Medical) 1 1.00E-03 16 1 SiLU

HUMAN3.6M d=16 1 1.00E-03 16 1 SiLU

C ADDITIONAL QUANTITATIVE RESULTS

In this section, we add several quantitative experiments, including analyses on variable counts, sam-
ple sizes, sequence lengths, the rank of causal structures, unknown autoregressive order, noise ro-
bustness, and running times.

C.1 LARGE-SCALE VARIABLE OF DATASETS.

This section provides additional results of DyCAST on the large-scale variable datasets for Section
4.1, as shown in Table 5. We run DyCAST and other baselines on the synthetic datasets with
variables dimension d ∈ {50, 100, 200, 300}, N = 500 samples, T = 8 time steps, and p = 1
autoregressive term.

Table 5: Performance on large-scale variable datasets.

Methods
d = 50 d = 100 d = 200 d = 300

TPR SHD F1 TPR SHD F1 TPR SHD F1 TPR SHD F1

DYNOTEARS 1.00±0.00 2500±0.00 0.00±0.00 - - - - - - - - -

NTS-NOTEARS 1.00±0.00 2500±0.00 0.00±0.00 - - - - - - - - -

TECDI 1.00±0.00 2500±0.00 0.00±0.00 - - - - - - - - -

DyCAST 0.89±0.02 9.91±3.14 0.73±0.05 0.87±0.12 16±4.17 0.68±0.08 0.61±0.10 18.89±5.53 0.67±0.04 0.43±0.04 49.11±7.14 0.56±0.03

We can see that DYNOTEARS, NTS-NOTEARS, and TECDI fail to converge when the number of
variables reaches 50, incorrectly inferring causal relationships for all edges. In contrast, DyCAST
achieves an average F1 score of 0.73 under the same conditions. Scaling up to 300 variables, these
baselines remain non-convergent, while DyCAST maintains an average F1 score of 0.56 and a low
SHD ( 49.11±7.14 ), demonstrating robustness in handling large-scale causal structures.
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C.2 SMALL SAMPLE SIZES DATASETS.

This section provides additional results of DyCAST on small sample sizes for Section 4.1, as
shown in Figure 7. We run DyCAST and other baselines on the synthetic datasets with sample
size n ∈ {20, 50, 100, 200, 300, 400}, d = 20 variables dimension, T = 8 time steps, and p = 1
autoregressive term.

TECDI

Figure 7: Performance on small sample sizes datasets. Left panel: Average F1 scores for different
temporal causal discovery algorithms and different sample sizes n ∈ {400, 300, 200, 100, 50, 20} on
synthetic dataset with dynamic causal structure. Right panel: Average SHD for different temporal
causal discovery algorithms and different sample sizes on the synthetic dataset with dynamic causal
structure.

As sample size decreases, accuracy drops across all methods, but DYNOTEARS, NTS-NOTEARS,
and TECDI fail to converge with fewer than 100 samples. In contrast, DyCAST achieves an av-
erage F1 score of 0.41 with just 20 samples, maintaining a low average SHD (20) per time step,
highlighting its data efficiency compared to other methods.

C.3 DIFFERENT TIME STEPS OF DATASETS.

This section provides additional results of DyCAST on different time steps of datasets for Section
4.1, as shown in Figure 8. We run DyCAST and other baselines on the synthetic datasets with
time steps T ∈ {8, 16, 32, 64, 128}, d = 10 variables dimension, N = 500 samples, and p = 1
autoregressive term.

As time steps increase, the complexity of intra-slice dynamics grows, leading to a gradual decline
in DyCAST’s accuracy. Nonetheless, even with ultra-long time steps (T = 128), DyCAST achieves
an average F1 score of 0.5, while avoiding the SHD surge observed in baseline algorithms.

C.4 DIFFERENT NOISE STRENGTH AND TYPES OF DATASETS.

This section provides additional results of DyCAST on noise strength and types of datasets for
Section 4.1, as shown in Figure 9.

As noise increases, the performance of causal graphs estimated by DyCAST declines. Notably,
the intra-slice matrix of the first time step is the most sensitive to noise. While the accuracy of
intra-slice matrices for subsequent time steps also decreases, the overall performance remains high.
This is because the first time step relies solely on initial conditions, lacking prior variables to aid in
estimating its dynamics. Additionally, we also run DyCAST on datasets with various types of noise,
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TECDI

Figure 8: Performance on small sample sizes datasets. Left panel: Average F1 scores for different
temporal causal discovery algorithms and time steps T ∈ {8, 16, 32, 64, 128} on synthetic dataset
with dynamic causal structure. Right panel: Average SHD for different temporal causal discovery
algorithms and different time steps on the synthetic dataset with dynamic causal structure.

and the results demonstrated that DyCAST performs robustly across different noise conditions, as
shown in the right two panels of Figure 9.

SH
D

SH
D

Figure 9: Left two panels: F1 scores and SHD for different temporal causal discovery algorithms
and different noise strengths {0.1, 0.5, 1, 1.5, 2, 5, 10} of the synthetic dataset with dynamic causal
structure. Right two panels: F1 scores and SHD for different temporal causal discovery algorithms
and different noise types {Gaussian, Exponential, Gumbel, Uniform} of the synthetic dataset with
dynamic causal structure. Each panel contains results for both intra- and inter-slice structures. Every
marker corresponds to the mean performance across 4 algorithm runs, each on a different simulated
dataset.

C.5 AUTOREGRESSIVE ORDER.

This section provides additional results of DyCAST on the correct value of the autoregressive order
p is unknown, as shown in Figure 10 and 12. We first follow the procedure outlined in Appendix
A.1 to generate data with Gaussian noise, consisting ofN = 500 samples, T = 8 time steps, d = 10
variables, and ptrue = 1 autoregressive term, as shown in the first row of Figure 10. We then run
DyCAST to this dataset using an estimate autoregressive term p = 3, regularization parameters
λ1 = λ2 = 0.05 and scalar parameter γ = 1. We can clearly see that the estimated weights closely
match the ground truth for both Wt and A, the estimated inter-slice matrices reveal that only the
2nd-order matrix A2 contains entries with very small values, while the 3rd-order matrix A3 aligns
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Figure 10: Example results using DyCAST on data with Gaussian noise, consisting of N = 500
samples, T = 8 time steps, d = 10 variables, and p = 1 autoregressive term, while the p̂=3. The
First Row: The ground truth 1-order dynamic causal structure. The Second Row: The learned
3-order dynamic causal structure. The third Row: The difference between ground truth and learned
dynamic structures over time.

closely with the ground truth. Thus, we suggest that when p is unknown, opting for a slightly larger
value is preferable.

𝑝 > 𝑝𝑡𝑟𝑢𝑒 𝑝 > 𝑝𝑡𝑟𝑢𝑒

Figure 11: Left panel: Objective value as a function of p. Right panel: Largest absolute value in Ap

as a function of p.

Following DYNOTEARS, we also illustrate two diagnostic methods for selecting p in a simulated
dataset with ptrue = 5 as shown in Figure 12. In the left panel, the objective function decreases
as p increases, plateauing when p > ptrue, indicating no improvement in model fit with additional
complexity. For real-world data, where ptrue is unknown, plateaus in the BIC score can guide the
selection of p. p can also be estimated by analyzing the weights of the inter-slice matrix, as shown
in the right panel. When p is unknown, we increment p until the entries of Ap become negligible.

C.6 PARAMETER SELECTION.

The hyperparameters in DyCAST include the ℓ1 sparsity terms, λ1 and λ2, the scale coefficient of
the γ stable matrix, and the embedding dimension r of the hidden state. For the sparsity terms λ1
and λ2, we adopt the values reported in the DYNOTEARS (Pamfil et al., 2020) to ensure a fair
comparison. For the remaining parameters, r and γ, which are specific to DyCAST, we conducted
experiments on the simulated dataset, using the F1 score as the evaluation metric.
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Figure 12: Left panel: F1 score values under different embedding dimensions under dynamic syn-
thetic dataset. Right panel: F1 score values under different stable matrix scale coefficient under
dynamic synthetic dataset.

Fang et al. (2024) observed that causal DAGs often exhibit a central structure, resulting in low
rank. To evaluate this, we conducted experiments on low-rank and high-rank simulated datasets
with d = 10, where the rank of the Wt matrix corresponds to 30% and 60% of the number of
variables, respectively. The results are presented in Figure 12.

Embedding-to-Variable Dimension Ratio (r) F1 Score under different value of

Figure 13: Left panel: F1 score values under different embedding dimensions under dynamic syn-
thetic dataset. Right panel: F1 score values under different stable matrix scale coefficient under
dynamic synthetic dataset.

In both low-rank and high-rank scenarios, increasing the embedding dimension r improves DAG
accuracy. However, in the low-rank case, even when r is only 20% of the number of variables,
the average F1 score still reaches around 0.8. Notably, when the rank is only 10% of the number
of variables, as shown in the left panel of Figure 13, DyCAST is relatively insensitive to both hy-
perparameters. To ensure that the hidden states remain in a low-dimensional space, we select r as
80% of the number of variables. For the scale coefficient γ, as shown in the left panel of Figure 13,
we simply choose a value of 1, as it has minimal impact on the final recovery performance of the
intra-slice structure.

C.7 RUNNING TIMES

In this section, we provide some illustrative running times for different numbers of variables d in
Figure 14.

We ensure consistent density and edge weights for both intra-slice and inter-slice connections across
graphs with varying numbers of variables. The runtime of DyCAST scales gradually with the num-
ber of nodes, maintaining a lead of approximately 20%. Notably, TECDI’s runtime exceeds 12
hours when the number of variables reaches 100. While DYNOTEARS achieves faster runtimes
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Figure 14: Running times for the simulations from Figure 4 (N = 500 samples, T = 8 time steps,
and p = 1 autoregressive term).

with fewer variables, it fails to converge when the variable count exceeds 50, leading to shorter but
incomplete runs. Additionally, we test the runtime of the DyCAST extension against DyCAST, Dy-
CAST (Not DAG), and DyCAST-CUTS+ on a synthetic dataset. Each model runs for 1000 epochs,
and the total runtime is presented in Table 6.

Table 6: Runtime comparison of DyCAST variants on synthetic data with d = 20, T = 8 time steps.

Methods DyCAST DyCAST (Not DAG) DyCAST-CUTS+

Running times 16.67 min 16.53min 17.34min

The integration with CUTS+ introduces minimal overhead, ensuring DyCAST-CUTS+ remains
computationally efficient despite the added complexity of modeling non-linear inter-slice relation-
ships.

C.8 VISUALIZATION OF THE HIDDEN STATES

Figure 15: Visualization of the hidden states on synthetic datasets. Left: the hidden states weights
of a periodic dynamic intra-slice structure with d = 10, r = 9, T = 24. Right:the hidden states
weights of a static intra-slice structure. The vertical axis represents the time step, and the x-axis
represents the dimension of the hidden states.

We visualize the hidden states of intra-slice structures under a predicted dynamic synthetic dataset
and a static synthetic dataset expansion in Figure 15. The left panel shows the hidden states weights
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of a periodic dynamic intra-slice structure, and the right is the hidden states weights of a static intra-
slice structure. We can see that the hidden states under a periodic dynamic intra-slice structure can
capture the obvious mutation point, which is the midpoint of the periodicity. Correspondingly, under
the static ground truth, the hidden states show the same values.

C.9 CHALLENGES OF EVALUATING SEPARATE LEARNING ON DYNAMIC SYNTHETIC DATA.

Causal structure over time Causal structure over time Causal structure over time Causal structure over time

TECDI

Figure 16: F1 scores for different temporal causal discovery algorithms and different numbers of
variables d ∈ {5, 10, 15, 20} on synthetic dataset with dynamic causal structure. Each panel contains
results for both intra- and inter-slice structures. Every marker corresponds to the mean performance
across 4 algorithm runs, each on a different simulated dataset.

We observe from the experimental results in Figure 4 that NOTEARS and its variants perform poorly
on datasets with dynamic modes. To address this, we applied a multi-stage trick to these methods
and then compared them with DyCAST. Specifically, we apply the baseline method T times on
a dataset of length T to obtain T intra-slice DAGs. Then we compare it with DyCAST obtained
from a single run, and the results are shown in Figure 16. We show that the separate learning trick
improves the causal discovery performance of DYNOTEARS, NTS-NOTEARS, and TECDI on
dynamic datasets but requires running their respective algorithms T times per dataset. Despite this,
DYNOTEARS and TECDI with the trick still fall short of or only close to DyCAST. Notably, while
NTS-NOTEARS slightly outperforms DyCAST on intra-slice relationships when the variable count
is 20, its inter-slice performance remains significantly inferior. In conclusion, DyCAST’s ability to
jointly learn from all time steps while capturing the dynamic evolution of intra-slice matrices over
time provides significantly better results in terms of both accuracy and generalization.

C.10 NETSIM EVALUATION UNDER AUROC

Due to space constraints in the main text, we report the AUROC results for each method on the
NetSim dataset in Table 7. It can be seen that under the AUROC evaluation criteria, DyCAST still
achieved the best results.

Table 7: Performance on NetSim Dataset Under AUROC.
Metric DATASET GC DYNOTEARS NTS-NOTEARS PCMCI NGC CUTS+ LCCM eSRU TECDI DyCAST DyCAST (Not DAG) DyCAST-CUTS+

A
U

PR
C

Sim1 0.67±0.11 0.73±0.08 0.64±0.07 0.64±0.12 0.65±0.12 0.75±0.12 0.75±0.07 0.63±0.13 0.67±0.03 0.79±0.01 0.77±0.05 0.81±0.02

Sim2 0.75±0.11 0.81±0.08 0.50±0.04 0.70±0.12 0.68±0.11 0.73±0.09 0.74±0.04 0.66±0.12 0.79±0.04 0.77±0.01 0.95±0.07 0.80±0.10

Sim3 0.77±0.14 0.85±0.07 0.68±0.12 0.73±0.13 0.72±0.12 0.73±0.02 0.75±0.06 0.69±0.12 0.73±0.04 0.75±0.04 0.98±0.07 0.80±0.01

Sim8 0.63±0.11 0.66±0.10 0.49±0.16 0.61±0.11 0.62±0.12 0.75±0.09 0.75±0.07 0.61±0.13 0.58±0.10 0.74±0.12 0.70±0.02 0.75±0.05

Sim10 0.65±0.15 0.69±0.12 0.58±0.05 0.66±0.15 0.65±0.16 0.66±0.09 0.68±0.01 0.64±0.16 0.71±0.05 0.75±0.16 0.76±0.02 0.78±0.07

Sim11 0.72±0.09 0.77±0.04 0.47±0.06 0.68±0.10 0.67±0.09 0.70±0.02 0.72±0.04 0.65±0.10 0.74±0.02 0.69±0.10 0.79±0.05 0.79±0.07

Sim12 0.76±0.12 0.83±0.05 0.47±0.02 0.70±0.13 0.68±0.12 0.73±0.06 0.75±0.07 0.66±0.13 0.79±0.02 0.80±0.02 0.81±0.05 0.80±0.05

Sim13 0.62±0.10 0.66±0.08 0.43±0.08 0.59±0.12 0.59±0.12 0.80±0.10 0.81±0.10 0.59±0.12 0.68±0.02 0.76±0.12 0.75±0.05 0.80±0.01

Sim14 0.69±0.10 0.74±0.08 0.39±0.02 0.64±0.11 0.65±0.13 0.76±0.02 0.78±0.06 0.63±0.14 0.67±0.04 0.76±0.13 0.68±0.12 0.78±0.06

Sim15 0.64±0.12 0.68±0.07 0.46±0.07 0.66±0.12 0.68±0.16 0.82±0.07 0.80±0.10 0.65±0.16 0.72±0.04 0.78±0.13 0.63±0.04 0.83±0.05

Sim16 0.60±0.10 0.64±0.07 0.45±0.15 0.59±0.09 0.59±0.11 0.76±0.07 0.75±0.07 0.58±0.12 0.64±0.05 0.77±0.07 0.65±0.01 0.77±0.06

Sim17 0.78±0.14 0.87±0.05 0.52±0.02 0.76±0.13 0.77±0.13 0.87±0.10 0.90±0.12 0.73±0.14 0.86±0.02 0.72±0.13 0.92±0.13 0.80±0.07

Sim18 0.68±0.15 0.74±0.08 0.45±0.12 0.64±0.14 0.65±0.16 0.75±0.09 0.74±0.06 0.63±0.16 0.68±0.05 0.86±0.16 0.65±0.05 0.86±0.05

Sim21 0.68±0.12 0.74±0.08 0.44±0.10 0.63±0.12 0.64±0.13 0.75±0.11 0.75±0.07 0.62±0.13 0.68±0.03 0.81±0.13 0.77±0.02 0.80±0.10

Sim22 0.62±0.13 0.66±0.07 0.48±0.07 0.61±0.12 0.58±0.13 0.83±0.11 0.85±0.05 0.56±0.13 0.83±0.04 0.75±0.13 0.78±0.13 0.78±0.03

Sim23 0.62±0.09 0.64±0.06 0.43±0.07 0.65±0.11 0.67±0.15 0.65±0.04 0.62±0.01 0.63±0.16 0.78±0.02 0.78±0.13 0.70±0.05 0.69±0.01

Sim24 0.54±0.11 0.53±0.11 0.47±0.12 0.57±0.12 0.55±0.13 0.46±0.02 0.71±0.04 0.55±0.13 0.79±0.02 0.70±0.13 0.67±0.05 0.48±0.03

Average 0.67±0.11 0.72±0.08 0.46±0.07 0.65±0.12 0.65±0.13 0.74±0.07 0.76±0.08 0.63±0.13 0.73±0.04 0.85±0.13 0.76±0.07 0.77±0.08

The best results are in bold and the second best are underlined.
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We also provide the results of running cLSTM, LINGAM, and CUTS on the NetSim dataset, as
shown in Table 8. In each column of results, the first column is the AUROC value, followed by the
AUPRC value.

Table 8: Performance of other algorithms on the NetSim dataset.
Metric DATASET cLSTM LiNGAM SRU CUTS

A
U

PR
C

&
A

U
R

O
C

Sim1 0.64±0.12 / 0.41±0.14 0.66±0.13 / 0.43±0.15 0.62±0.13 / 0.39±0.14 0.74±0.13 / 0.77±0.14

Sim2 0.67±0.11 / 0.28±0.11 0.69±0.12 / 0.30±0.11 0.66±0.11 / 0.26±0.10 0.91±0.06 / 0.84±0.09

Sim3 0.70±0.12 / 0.24±0.12 0.73±0.13 / 0.27±0.13 0.69±0.12 / 0.22±0.12 0.96±0.05 / 0.86±0.06

Sim8 0.61±0.11 / 0.39±0.11 0.61±0.11 / 0.36±0.10 0.61±0.13 / 0.38±0.13 0.65±0.10 / 0.70±0.08

Sim10 0.64±0.16 / 0.42±0.15 0.66±0.15 / 0.42±0.16 0.63±0.16 / 0.42±0.15 0.74±0.02 / 0.77±0.12

Sim11 0.66±0.13 / 0.24±0.08 0.68±0.10 / 0.25±0.08 0.65±0.10 / 0.23±0.08 0.77±0.09 / 0.63±0.10

Sim12 0.66±0.13 / 0.27±0.11 0.69±0.13 / 0.30±0.11 0.65±0.13 / 0.26±0.11 0.78±0.05 / 0.68±0.10

Sim13 0.59±0.12 / 0.47±0.13 0.59±0.12 / 0.42±0.13 0.58±0.12 / 0.43±0.19 0.74±0.03 / 0.80±0.01

Sim14 0.64±0.11 / 0.41±0.13 0.66±0.13 / 0.42±0.13 0.62±0.15 / 0.39±0.13 0.66±0.05 / 0.71±0.04

Sim15 0.67±0.16 / 0.45±0.20 0.70±0.16 / 0.48±0.21 0.64±0.16 / 0.43±0.19 0.60±0.03 / 0.72±0.04

Sim16 0.59±0.11 / 0.45±0.10 0.60±0.11 / 0.46±0.10 0.58±0.12 / 0.45±0.10 0.63±0.07 / 0.76±0.05

Sim17 0.75±0.14 / 0.37±0.19 0.78±0.13 / 0.42±0.19 0.71±0.15 / 0.34±0.19 0.89±0.01 / 0.80±0.01

Sim18 0.64±0.16 / 0.41±0.16 0.67±0.15 / 0.43±0.16 0.62±0.16 / 0.39±0.15 0.63±0.07 / 0.69±0.09

Sim21 0.62±0.13 / 0.40±0.14 0.65±0.13 / 0.42±0.15 0.61±0.13 / 0.38±0.13 0.75±0.08 / 0.73±0.05

Sim22 0.57±0.13 / 0.34±0.09 0.60±0.12 / 0.37±0.09 0.56±0.13 / 0.34±0.09 0.77±0.10 / 0.73±0.05

Sim23 0.67±0.15 / 0.43±0.19 0.68±0.15 / 0.47±0.21 0.61±0.17 / 0.41±0.19 0.66±0.08 / 0.71±0.07

Sim24 0.55±0.13 / 0.34±0.11 0.57±0.12 / 0.35±0.11 0.54±0.13 / 0.33±0.11 0.63±0.07 / 0.73±0.09

Average 0.64±0.13 / 0.37±0.13 0.66±0.13 / 0.39±0.12 0.62±0.14 / 0.36±0.12 0.77±0.07 / 0.74±0.08

D ADDITIONAL ABLATION STUDY

This section provides additional ablation study results of DyCAST on the NetSim and CausalTime
dataset, as shown in Table 9 and Table 10.

Table 9: Ablation study on NetSim datasets.

Methods
Sim1 Sim2 Sim3

AUROC AUPRC AUROC AUPRC AUROC AUPRC

DYNOTEARS 0.64±0.12 0.41±0.08 0.81±0.08 0.33±0.12 0.85±0.07 0.32±0.13

w/o S0 0.65±0.03 0.68±0.08 0.63±0.01 0.61±0.05 0.71±0.03 0.78±0.10

w/o Latent State 0.73±0.02 0.79±0.01 0.74±0.02 0.82±0.05 0.69±0.05 0.75±0.06

DyCAST (No DAG) 0.77±0.02 0.79±0.05 0.95±0.03 0.85±0.04 0.98±0.04 0.87±0.01

DyCAST 0.79±0.01 0.90±0.13 0.77±0.01 0.91±0.11 0.75±0.04 0.84±0.04

DyCAST-CUTS+ 0.81±0.02 0.92±0.03 0.80±0.10 0.89±0.12 0.80±0.01 0.85±0.04

We conduct the ablation study by evaluating DyCAST without latent states and S0. Moreover,
the causal graph of NetSim and CausalTime is not necessarily DAG, so we added the ablation
of DAG constraint. In addition, since DyCAST can be combined with other Granger causality-
based methods, we also added the results of DyCAST-CUTS+ for comparison. Specifically, we run
DYNOTEARS, DyCAST w/o Latent states, DyCAST w/o S0, DyCAST without DAG constraint,
and DyCAST on SimNet and CausalTime.

The results from these experiments provide insights into the contribution of latent states and S0 to the
overall performance of DyCAST. We observe that latent states are crucial in DyCAST, with S0 being
particularly significant. This is because each row of the matrix derived from S0 fully preserves the
influence and dependency information of the variables. Embedding S0 enhances the latent states’
ability to capture the intra-slice matrix dynamics. Furthermore, on the NetSim and CausalTime
datasets, DyCAST achieves comparable results even without enforcing DAG constraints. However,
the absence of DAG constraints makes it harder to identify directed causal relationships, leading to
higher AUROC but relatively lower AUPRC.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: Ablation study on CausalTime datasets.

Methods
AQI Traffic Medical

AUROC AUPRC AUROC AUPRC AUROC AUPRC

DYNOTEARS 0.58±0.02 0.65±0.04 0.60±0.07 0.55±0.12 0.65±0.07 0.40±0.13

w/o S0 0.73±0.02 0.61±0.03 0.65±0.01 0.57±0.03 0.74±0.01 0.63±0.10

w/o Latent State 0.80±0.07 0.65±0.04 0.67±0.02 0.60±0.05 0.77±0.06 0.70±0.02

DyCAST (No DAG) 0.85±0.03 0.70±0.03 0.68±0.05 0.60±0.02 0.74±0.01 0.69±0.03

DyCAST 0.85±0.02 0.82±0.00 0.63±0.01 0.70±0.01 0.81±0.03 0.74±0.03

DyCAST-CUTS+ 0.91±0.02 0.93±0.00 0.65±0.01 0.73±0.01 0.84±0.01 0.77±0.03

E CASE STUDY: HUMAN3.6M

In this section, We apply DyCAST to a human motion dataset of Human3.6M (Ionescu et al., 2014).
The dataset contains activities by 11 professional actors in 17 scenarios, as well as provides accu-
rate 3D joint positions. Although the Human3.6M dataset lacks ground truth for the causal matrix
between human joints, human kinematics offers a theoretical foundation for qualitative analysis.
Combined with our intuitive understanding of human activities, we can effectively evaluate the plau-
sibility of the dynamic causal DAGs inferred by the algorithm.

We select the Smoking scenario in which the amplitude changes before and after the characters
complete the more obvious actions and run DyCAST for analysis, as shown in the right panel of
Figure 17. It can be easy to see that, during the smoking action, the key joint system comprising
the elbow (No.12 joint), shoulder (No.11 joint), and head (No.10 joint) exhibit dynamic behavior
distinct from other joints. These dynamic joints are highlighted with larger red dots in the original
trajectory shown in the first row of Figure 17. Our experiment focuses on analyzing the causal
relationships within this dynamic system.

Smoking

Human mo�on
trajectory

Sta�c causal
with CUTS+

Sta�c causal
with DYNOTEARS

Dynamic causal
with DyCAST

t=1 t=10 t=30 t=40 t=50

Figure 17: Visualization of the dynamic intra-slice relationships of the Smoking scenario in Hu-
man3.6M. Left three rows: Original human motion trajectories across time, alongside static causal
relationships of the joint inferred by CUTS+ and DYNOTEARS, and dynamic causal relationships
by DyCAST. Right rows: A complete motion trajectory in the Smoking scene across the 50s.

We apply DyCAST with p = 1, T = 50, and embedding dim r=12, and also run DYNOTEARS and
CUTS+ for a more intuitive comparison. The static method CUTS+ captures constant, inappropriate
causal links between the hands and head, even after the smoking action ends, as shown in Figure
17 second row. Similarly, DYNOTEARS, despite identifying the lagged influence of the left elbow
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and its link to the head, misses the dynamic relationship with the shoulder, as shown in Figure 17
third row. In contrast, DyCAST captures the intra-slice relationships among the elbow, shoulder,
and head, as well as the inter-slice dynamics of the elbow during the smoking action. When the
smoking action ends at the 40th second, the intra-slice relationships disappear, leaving only the
elbow’s inter-slice dynamics. This provides a realistic and accurate dynamic representation of the
smoking action at the joint level. Thus, in this system with evident complex dynamics, DyCAST,
specifically designed for discovering dynamic intra-slice relationships, proves particularly suitable
and performs exceptionally well.

F DREAM CHALLENGE

Baseline methods. For DREAM-3 datasets (Prill et al., 2010), we compare DyCAST with GC
(Granger, 1969), DYNOTEARS (Pamfil et al., 2020), NTS-NOTEARS (Sun et al., 2023), PCMCI
(Peters et al., 2013), NGC (Tank et al., 2022), CUTS+ (Cheng et al., 2024a), LCCM (Brouwer
et al., 2021), eSRU (Khanna & Tan, 2020), TECDI (Li et al., 2023).

In this section, we apply DyCAST to the DREAM-3 network inference challenge, which aims to
infer gene regulatory networks from gene expression data. The DREAM-3 dataset consists of 5
independent datasets, each containing 10 time series recordings from 100 genes across 21 time
steps. These datasets are widely used for evaluating causal discovery methods. As shown in Table
11, DyCAST-CUTS+ outperforms other methods, demonstrating its effectiveness.

Table 11: Performance on the DREAM-3 dataset.

Methods DREAM-3 (d=100)

GC 0.50±0.07

DYNOTEARS 0.50±0.08

NTS-NOTEARS 0.52±0.05

PCMCI 0.55±0.03

NGC 0.56±0.03

CUTS+ 0.64±0.07

LCCM 0.50±0.03

NGM 0.55±0.03

eSRU 0.56±0.03

CUTS 0.59±0.03

TEDCI 0.50±0.08

DyCAST 0.55±0.05

DyCAST (Not DAG) 0.57±0.05

DyCAST-CUTS+ 0.65±0.05

From the Table 11, we observe that on the real-world dataset with d = 100, DyCAST maintains
highly competitive performance, significantly outperforming similar methods like DYNOTEARS
and NTS-NOTEARS. Given the complexity and nonlinearity of the DREAM-3 dataset, integrating
it with the nonlinear CUTS+ further enhances performance, achieving the best results.
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