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ABSTRACT

Data augmentation is a popular technique to improve the generalization perfor-
mance of neural networks, particularly when dealing with limited data. How-
ever, simply applying augmentation techniques to generative models can lead to
a distribution shift problem, producing unintended augmented-like output sam-
ples. While this issue has been actively studied in generative adversarial networks
(GANs), little attention has been paid to diffusion models despite their widespread
use. In this paper, we conduct the first comprehensive study of data augmentation
for diffusion models, primarily investigating the relationship between distribution
shifts and data augmentation. Our study reveals that distribution shifts in diffusion
models originate exclusively from specific timestep intervals, rather than from the
entire timesteps. Based on these findings, we introduce a simple yet effective data
augmentation strategy that flexibly adjusts the augmentation strength depending
on timesteps. Experiments on diverse diffusion model settings (e.g., noise sched-
ule, model size, and sampling steps), datasets, and a training setup (e.g., training
from scratch or transfer learning) show that our approach is applicable across dif-
ferent design choices, with minimal adjustments to the data processing pipeline.
We expect that our data augmentation method can benefit various diffusion model
designs and tasks across a wide scope of applications. We will make our code
publicly available.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015) have emerged as a de facto standard method for var-
ious tasks, including unconditional image synthesis (Ho et al., 2020; Nichol & Dhariwal, 2021),
text-to-image synthesis (Rombach et al., 2022; Saharia et al., 2022), image restoration (Kawar et al.,
2022), and image editing (Couairon et al., 2023; Kim et al., 2023). Recent diffusion models have
demonstrated that their generation quality is on a par with those of generative adversarial networks
(GANs) (Goodfellow et al., 2014) while offering the advantages of high diversity and stable train-
ing (Dhariwal & Nichol, 2021; Song et al., 2021). However, diffusion models depend on a sub-
stantial amount of training data, and they have not outperformed GANs in small datasets (e.g.,
AFHQ (Choi et al., 2020)). This limits the use of diffusion models in various applications, such as
medical imaging and industrial design, where the amount of available data is restricted.

Data augmentation, a widely acknowledged approach to addressing this challenge, increases the
number of training data by generating new data instances from existing data through various trans-
formations (Shorten & Khoshgoftaar, 2019). While data augmentation is a common training tech-
nique in discriminative models (Cubuk et al., 2018; 2020), its application to generative models
presents unique challenges. When generative models are trained with augmented data, they often
produce augmented-like transformed samples caused by distribution shift (Zhao et al., 2020). This
shift leads to the generation of unintended out-of-distribution samples (Jun et al., 2020; Zhao et al.,
2020). Distribution shift has been actively discussed in the GANs literature, and many studies were
conducted to address this problem (Karras et al., 2020; Zhao et al., 2020; Jiang et al., 2021).

Nevertheless, data augmentation for diffusion models remains less explored in the research com-
munity. To the best of our knowledge, only Karras et al. (2022) have utilized data augmentation to
mitigate overfitting in diffusion models, employing a method similar to Jun et al. (2020) proposed
for likelihood-based models. Specifically, they condition the model with the augmentation type dur-
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ing training. This enables the model to generate in-distribution samples when the condition is set to
an identity function. However, integrating conditional input requires additional complexity, and the
performance of diffusion models with conditional input can vary depending on the design choice
(Appendix H).

In this study, we propose a data augmentation strategy that seamlessly integrates into the data pre-
processing pipeline, requiring no extra modifications to the training procedure. Our inspiration
comes from recent studies that diffusion models play a different role depending on the timesteps
(i.e., noise levels) (Choi et al., 2022; Balaji et al., 2022; Feng et al., 2023). We begin by carefully in-
vestigating the impact of naive data augmentation on the reverse process of diffusion models. Specif-
ically, we measure the prediction error along the sampling procedure. Through an in-depth analysis,
we identify vulnerable timesteps where data augmentation has a substantial effect on performance
degradation. We further unveil that specific timesteps contribute to alterations in the sampling tra-
jectory, arriving at either out-of-distribution (i.e., unintended transformed outputs) or in-distribution
sample generation. Based upon these findings, we propose Timestep-Aware Data Augmentation
(TADA), which adaptively adjusts the strength of augmentation along timesteps.

Our augmentation pipeline, denoted as T (xt, wt), modulates the augmentation strength wt based
on the timestep t. In specific, we train the model with strongly augmented training samples (large
wt) when input contains a high level of noise. During the vulnerable timesteps, we apply small
perturbations (wt near zero) to training samples. Finally, we increase the strength again when inputs
become nearly clean images with a low-level noise. This approach allows diffusion models to benefit
from data augmentation while preventing a potential distribution shift in the generated output.

Our method is simple, effective, and flexible. With extensive experiments, we confirm that TADA
is applicable regardless of diverse diffusion model settings (e.g., noise schedule or sampling steps),
high-resolution image generation, and various types of data augmentations. Our method achieves
high-quality results when combined with transfer learning, a popular training technique for limited
data scenarios. Our main contributions are summarized as follows:

• We present the first comprehensive study of data augmentation for diffusion models.

• We find that data augmentation plays a critical role in specific timesteps, which leads to distri-
bution shifts.

• We propose a timestep-aware data augmentation technique, dubbed TADA, that requires mini-
mal engineering and is applicable across various diffusion model settings.

• We empower diffusion models to achieve high performance with limited data, to be effective
for both training from scratch or transfer learning.

2 RELATED WORK

Timestep-wise role of diffusion models. Recent studies have interpreted training diffusion mod-
els as a form of mixture-of-experts, where each noise-level (or timestep) corresponds to a different
task (Go et al., 2023). Choi et al. (2022) propose a weighting scheme for diffusion models by cat-
egorizing the forward process into multiple stages based on the perceptual noise level. Similarly,
Hang et al. (2023) apply different weights according to task difficulty for more efficient training.
Deja et al. (2022) divide the model into the generator and the denoiser, based on their observa-
tions that the final steps in the reverse diffusion process are data-agnostic. Balaji et al. (2022) and
Feng et al. (2023) utilize ensembles of diffusion models for text-to-image synthesis, while Lee et al.
(2023) employ distinct architectures for each expert to balance frequency components. These stud-
ies collectively leverage the role of timesteps in diffusion models and develop a mixture of multiple
experts, where each expert specializes in the role of a specific timestep. Our work shares a similar
intuition with these studies. We explore the role of timesteps in diffusion models to devise a novel
data augmentation strategy tailored for diffusion models.

Data augmentation for generative models. There have been many studies to solve the distribu-
tion shift problem in the literature of GANs. Zhao et al. (2020) apply differentiable augmentation to
both real and fake images during training to the generator and the discriminator. Concurrent work
by Karras et al. (2020) uses a similar approach while they demonstrated the effectiveness, partic-
ularly in limited data settings. Meanwhile, Jun et al. (2020) introduce a distribution augmentation
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(DistAug) for likelihood-based models (especially auto-regressive models) by inducing the model to
learn the conditional data density, taking the transformation parameters as a condition. Karras et al.
(2022) utilize a method similar to DistAug in order to mitigate overfitting in diffusion models. In
contrast to previous methods, our approach does not require extra effort in formulating conditional
inputs. Instead, we train the diffusion model by simply adjusting the degree of augmentation at the
data-processing stage.

3 METHOD

In this section, we investigate the impact of data augmentation on the sampling process of diffu-
sion models. Our analysis reveals that specific timesteps (or noise levels) play a pivotal role in
determining the sampling trajectories, either toward the original data distribution or the augmented
data distribution. Built upon this analysis, we introduce a simple and effective data augmentation
method: Timestep-Aware Data Augmentation (TADA).

3.1 PRELIMINARIES

Diffusion models. Consider a dataset of n data points {x1
0, . . . ,x

n
0 } sampled from the distribution

q(x0). Diffusion models aim form a model pθ(x0) that closely approximates the distribution q(x0).
Training diffusion models involves two key processes: the forward process where noisy data xt is
generated by adding standard Gaussian noise z ∼ N (0, I) at timestep t, and the reverse process
which aims to remove this noise to recover the original data.

In the forward process, xt can be computed from each data point x0 as xt = αtx0 + σ
2
t z, where

αt > 0 and σt > 0 are scalar-valued functions defined for t ∈ [0, T ]. The model ϵ̂θ(xt, t) is trained
to predict the added noise z at timestep t, by minimizing weighted mean squared error (Ho et al.,
2020).

In the reverse process, xt−1 can be sampled from pθ(xt−1∣xt), starting from xT ∼ N (0, I). That
is,

x̂t−1 = αt−1x̂θ(xt, t) + σ
2
t−1z, (1)

where x̂θ(xt, t) = (xt − σ
2
t ϵ̂θ(xt, t))/αt.

Note that various options exist for αt and σ
2
t , training objectives, and sampling methods. In our

work, we adopt the approach proposed by Nichol & Dhariwal (2021), which is an enhanced version
of the method introduced by Ho et al. (2020). Other choices have been explored in the literature, as
mentioned in Song et al. (2020; 2021); Kingma et al. (2021); Karras et al. (2022).

Signal-to-noise ratio (SNR). Kingma et al. (2021) introduced the concept of signal-to-noise ratio,
denoted as SNR(t) = α

2
t/σ2

t , which quantifies the noise level at each timestep t. Note that SNR is
a monotonically decreasing function of t.

Data augmentation. Throughout this paper, we denote our data augmentation as T (x0, w). Here,
w ∈ [0, 1] represents the normalized hyper-parameter which controls the strength of augmentation.
A large value of w denotes strong augmentation, while a small value of w indicates weak augmen-
tation.

3.2 ANALYZING THE EFFECT OF DATA AUGMENTATION ON LEARNED REVERSE PROCESS

We conduct exploratory experiments to investigate the impact of data augmentation on the learned
reverse process of diffusion models. We specifically compare the reverse process of diffusion mod-
els trained with and without augmentation, aiming to identify the timesteps where the model is
susceptible to producing unintended output as a result of data augmentation.

Toy experiment 1. During the reverse process, a diffusion model predicts x̂0 = x̂θ(xt, t) at each
timestep. We design a simple experiment by examining x̂0 throughout the reverse process of a
model trained with data augmentation. In essence, this can reveal when in the sampling process the
diffusion model is prone to producing unintended output due to data augmentation.

Our analysis focuses on comparing the reverse process of two diffusion models: (ϵ̂base) a baseline
solely trained with horizontal-flip and (ϵ̂aug) a model trained on the augmented data. Here, we
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(a) Toy experiment 1 (b) Toy experiment 2

Figure 1: Results of toy experiments. (a) Blue and pink lines show the average LPIPS between
x0 and x̂0 produced by each model at every timestep, on 200 randomly selected input images from
the FFHQ-5k dataset. Yellow line traces the LPIPS difference between the two lines with standard
deviation (shaded). We plot based on a log(SNR) scale to align with perceptual aspects of LPIPS.
(b) Sampling trajectory of the same input image with added noise. Each row shows xts and x0s
for every log(SNR) from -5 to 5, respectively. Samples in the first two rows corresponds to a case
where a noisy sample is denoised by ϵ̂base and then denoised by ϵ̂aug from the middle. The last two
rows illustrate the opposite case.

adopted the augmentation pipeline used in Karras et al. (2020). For each timestep t, we (1) ran-
domly select N samples x0 ∼ q(x0), (2) add noise to obtain xt, (3) perform a single step of the
reverse process to obtain x̂0 from each model, which we denote as x̂base(xt, t) and x̂aug(xt, t),
and (4) measure the perceptual similarity (Zhang et al., 2018) between x̂0 and input image x0:
LPIPS(x̂base(xt, t),x0) and LPIPS(x̂aug(xt, t),x0).

In Figure 1a, we marked the difference between the two models with corresponding values reported
on the right axis. The result shows that there is no clear difference between the two models during
both the initial and final stages of the reverse process. During the initial stage, both models predict
results far from x0 because xt contains little information about x0 (low SNR). In other words, when
a high level of noise is added to both the original image x0 and the augmented sample, these two
images become perceptually indistinguishable (Choi et al., 2022). In the final timesteps, both models
achieved nearly perfect predictions of the original image x0. This can be interpreted as the role
of the final timesteps being data-agnostic refinement, without modifying or introducing additional
contextual information to the sample (Deja et al., 2022). Intriguingly, Choi et al. (2022) and Deja
et al. (2022) have reported similar findings, while the exact timestep region is slightly different from
our observations. In this regard, we denote initial timesteps as rough and final timesteps as fine from
this section.

Toy experiment 2. Meanwhile, during the timesteps in the middle, the distinction between the two
models becomes apparent, as in the green line of Figure 1a. To examine this further, we performed
another experiment. We create the two different sampling processes by interchanging the reverse
process between ϵ̂aug and ϵ̂base at the middle intervals: ϵ̂base → ϵ̂aug and ϵ̂aug → ϵ̂base. The results
of both sampling procedures are visualized in Figure 1b.

The first two rows of Figure 1b illustrate a case of ϵ̂base → ϵ̂aug , where a sample initially fol-
lows the data distribution but ends up in the augmented data distribution. In other words, even
if a sample follows the trajectory towards the data distribution by ϵ̂base, it can be altered and re-
sult in an augmented-like output by ϵ̂aug . On the contrary, the last two rows demonstrate a case
where a sample initially following the trajectory of ϵ̂aug was adjusted by ϵ̂base during the middle
timesteps, ultimately aligning with the data distribution. These two examples demonstrate that the
middle timesteps in a diffusion model can alter the sampling trajectory, determining whether the
final sample adheres to the original data distribution or the augmented one. We further performed
this experiment by swapping the trajectory at the other timesteps. However, these modifications did
not affect the generated data distribution (can be found in Appendix C.2). To this end, we denote
the timesteps of the middle as sensitive timesteps.

In summary, the experiments in this section indicate that data augmentation has a significant im-
pact on sensitive timesteps, while the rough and fine timesteps remain relatively unaffected. Note
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Figure 2: Illustration of TADA. Purple line indicates augmentation strength wt with our default
parameters. Image illustrates an example of xt at corresponding log(SNR(t)). Note that this show-
cases an instance of rotation. In practice, we apply different types of augmentations simultaneously.

that the choice of different settings does not change the trend of this experiment (please refer to
Appendix C.1).

3.3 TIMESTEP-AWARE DATA AUGMENTATION FOR DIFFUSION MODELS

Based on the empirical study of the previous section, we propose to apply strong augmentation for
both the rough and fine timesteps while decreasing the augmentation strength during the sensitive
timesteps.

Our Timestep-Aware Data Augmentation (TADA) assigns different strengths of data augmentation
according to its timesteps, adhering to the following rules:

• Sensitive timesteps (t ∈ [trough, tfine]): Augmentations of weak strength are applied to the
training data to ensure that the generated samples remain close to p(x).

• Rough (t ∈ (trough, T ]) & Fine (t ∈ [0, tfine)) timesteps: Strong augmentations are used to
prevent overfitting and improve the generalization capability of diffusion models.

By following this design philosophy, our augmentation strategy denoted as T (xt, wt) can be ex-
pressed in terms of the augmentation strength wt:

wt = κ(rt − rrough)(rt − rfine) + δ, (2)

where rt = log(SNR(t)), and δ denotes the maximum augmentation strength in the sensitive region.
We clipped wt to ensure its values remained within the available augmentation strength range (i.e.,
0 ≤ wt ≤ 1). We set δ = 0.1 as we observed that sufficiently low wt does not cause distribution
shifts (Appendix D.1). By default, we automatically compute κ so that the value of wt becomes
0 before clipping occurs (Appendix D.2). Albeit the simplicity, our formulation in Equation 2 can
represent various profiles for wt, including a sharp transition at rrough and rfine or smooth transi-
tions, depending on the choice of κ (Figure 5). Herein, the optimal choice of rrough and rfine varies
slightly depending on the datasets (Appendix E). However, for the sake of robustness, we set the
same rrough and rfine across all our experiments. An intuitive illustration of Equation 2 is provided
in Figure 2. Please refer to Section 4.1 for more details on our augmentation pipeline.

SNR calibration. Our method and toy experiments are developed upon experiments on 64 × 64
resolution. This can be easily extended to various resolutions. Recent studies (Hoogeboom et al.,
2023; Chen, 2023) have highlighted that the perceptual noise level of diffusion models varies with
resolution, necessitating an adjustment in SNR. As our approach was performed based on perceptual
similarity, we adjusted the augmentation strength using the equation proposed by Hoogeboom et al.
(2023),

SNRcalibrated(t) = SNR(t) / (d/64)2, (3)

where d and t denote the image resolution and timestep, respectively. This adjustment on different
resolutions can be done by simply plugging this equation into rt of Equation 2, enabling general
usage of our method and thereby reducing the need for extra experiments at different resolutions.
More details on SNR calibration can be found in Appendix F.3.
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Table 1: Results on different subsets of FFHQ 64×64. We measured FID and KID every 10,000
training iterations and reported the value achieved at the iteration with the best FID. Both FID and
KID were measured using 10,000 samples generated using 250 sampling timesteps.

Methods 1k 2k 5k 10k 30k
FID ↓ KID (×103) ↓ FID ↓ KID (×103) ↓ FID ↓ KID (×103) ↓ FID ↓ KID (×103) ↓ FID ↓ KID (×103) ↓

h-flip 17.46 11.18 36.22 30.10 14.84 9.30 13.31 9.87 12.00 7.79
AR 22.98 17.11 16.33 9.58 12.95 8.45 11.34 7.79 10.82 7.56
TADA 14.37 8.91 18.83 14.39 12.92 7.74 12.19 8.06 10.39 6.80

4 EXPERIMENTS

4.1 SETUPS

To evaluate our method under a limited data setting, we use a subset of FFHQ (Karras et al., 2019),
as done in previous studies (Karras et al., 2020; Hou et al., 2021). Furthermore, we performed
evaluations on AFHQ-v2 (Choi et al., 2020; Karras et al., 2021).

To demonstrate the effectiveness of TADA, we compare it with two augmentation methods from
previous works: 1) 50% horizontal flip (i.e., h-flip), which has been commonly employed in dif-
fusion models (Ho et al., 2020), and 2) Augmentation regularization method (AR) used in Karras
et al. (2022). Our implementation is based on ADM (Dhariwal & Nichol, 2021), a commonly used
baseline in recent studies (Choi et al., 2021; 2022; Go et al., 2023). Unless specified otherwise, we
trained all models using linear scheduling with T = 1000. More details, including model configura-
tions, can be found in Appendix A.

Evaluation metrics. To assess the quality of generation, we use Fréchet Inception Distance
(FID) (Heusel et al., 2018) and Kernel Inception Distance (KID) (Bińkowski et al., 2018), as used
in previous studies (Karras et al., 2020; Choi et al., 2022). Recently, Parmar et al. (2022) observed
that resizing functions have a critical impact on these metrics and suggested the use of clean resizing
methods (i.e., PIL Bicubic). To address this concern, we report FID and KID using clean resizing
methods. If not specified otherwise, we measured FID and KID using 10,000 samples.

Augmentation pipeline. Following EDM (Karras et al., 2022), we implement TADA using a sub-
set of augmentations proposed by Karras et al. (2020). Additionally, we incorporate color trans-
formations, which were not used in EDM. We simultaneously apply n ∼ {1, . . . ,M} number of
augmentations with a probability p, where M indicates the maximum number of augmentations that
can be applied to a training sample. This controls the extent to which the augmented data distribu-
tion deviates from the original distribution. For the strength of each augmentation, we use the same
minimum and maximum strengths as defined by Karras et al. (2020). We control the strength at
each timestep with wt, as defined in Equation 2. Throughout the experiments, we set p = 0.8 and
M = 2, with horizontal flip applied with the probability of 0.5, independent of other augmentations.
See Appendix D.3 for further details.

4.2 BENEFIT OF TADA

In this section, we evaluate the effectiveness of TADA on the quality of generated images under
limited data settings. We show that our method does not produce distribution-shifted samples, due
to the adjustment of augmentation strength during sensitive timesteps. Furthermore, we show that
our method mitigates the overfitting problem, thereby enhancing the diffusion model’s performance
on small datasets.

Effectiveness on limited data. To evaluate TADA on different dataset sizes, we train the model
on the subsets of FFHQ. Table 1 shows the best FID and KID results, with a total training iteration
is 100,000. On each subset, we evaluate 10,000 samples generated with 250 sampling steps. In all
datasets, TADA performs better than h-flip with a noticeable gap. The performance of our method is
comparable to AR, suggesting that our simple solution can perform as effectively as AR, without any
additional conditioning modules. We keep the same rrough and rfine values across all experiments
for robustness on various design choices. Please refer to Appendix E for the results on different
rrough and rfine.
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Figure 3: Mean faces. Figure 4: Learning curves. Figure 5: κ variation.

Table 2: Results for the 256×256 resolution. We mea-
sured FID and KID at the last training iteration, as gen-
erating samples at 256×256 requires substantial computa-
tional resources. Both FID and KID were calculated using
10,000 samples generated over 50 sampling timesteps.

Methods FFHQ 1k FFHQ 2k FFHQ 5k
FID ↓ KID (×103) ↓ FID ↓ KID (×103) ↓ FID ↓ KID (×103) ↓

h-flip 64.54 43.18 47.64 32.04 45.30 30.89
AR 39.73 20.56 40.45 25.61 38.50 29.24
TADA 41.29 22.53 35.75 23.17 39.15 28.53

Table 3: Transfer learning on
256×256 dataset. All models were
trained for 60,000 iterations on each
domain of AFHQ-v2 using a model
pre-trained on the FFHQ dataset.

Dataset AR TADA
FID ↓ KID (×103) ↓ FID ↓ KID (×103) ↓

Cat 17.30 14.85 16.76 14.45
Dog 35.07 24.79 32.03 21.84
Wild 13.77 8.05 12.17 6.96

Distribution shift. To verify whether TADA generates in-distribution samples, we visualize mean
faces, similar to Karras et al. (2020). Figure 3 shows the mean faces of 10,000 samples generated
by each method, where ‘Real’ indicates the mean face of the 70,000 FFHQ dataset. With naive
augmentation (trained with augmented samples in all timesteps), its mean face shows noticeable
blurry eyes and huge color shifts compared to real images, evidence of distribution shift. Unlike
naive augmentation, TADA produces a mean face with clear eyes.

Note that the colors of h-flip, AR, and TADA are slightly different from that of real images, where
h-flip and TADA result in slightly darker images and AR results in slightly brighter images. We
conjecture that this little color difference is due to an inherent problem of diffusion models, as
mentioned by Choi et al. (2022). We further measure our effectiveness in addressing the distribution
shift problem quantitatively, as further explained in Appendix F.1.

Alleviating overfitting. Previous studies (Karras et al., 2022; Jun et al., 2020) have demonstrated
that data augmentation brings a regularization effect, thus mitigating overfitting. To investigate the
impact on overfitting, we trained the baseline models without any augmentation (gray), with h-flip
(blue), and compared the learning curve with our TADA (purple) on the FFHQ-5k dataset. Figure 4
depicts the FID scores at different training iterations. TADA shows its effectiveness in alleviating
overfitting than h-flip.

4.3 GENERALIZATION

To demonstrate that TADA can be generalized to various design configurations in diffusion models,
we conduct experiments with higher image resolutions, transfer learning scenarios, various noise
scheduling, and different model sizes. Furthermore, we show our method is robust to different
sampling timesteps.

Higher resolution and transfer learning. We tested our augmentation pipeline on 256×256 reso-
lution, commonly used for comparing generative models (Karras et al., 2020; Rombach et al., 2022).
Consistent with the results on lower resolution in Table 1, TADA achieves a clear improvement
over h-flip and presents the competitiveness against AR without additional conditioning overhead
in Table 2. Figure 6 shows the qualitative results of the model trained using TADA. Furthermore,
we evaluated TADA in a transfer learning setting, frequently employed in a data-limited environ-
ment (Karras et al., 2020). Table 3 highlights that our method consistently outperforms AR with a
noticeable margin across three subsets of the AHFQ-v2 dataset in a transfer learning scenario. This
improvement is particularly meaningful because data augmentation with transfer learning is often a
final solution for handling limited data. See Appendix I.1 for qualitative comparisons.
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(a) AFHQ-v2 Cat (b) FFHQ 5k

Figure 6: Qualitative results. We trained models from scratch at a 256×256 resolution using (a)
AFHQ-v2 cat and (b) a 5k subset of FFHQ. We generated samples using 250 sampling timesteps.

Table 4: Generalization. We reported the FID value after 50,000 iteration of training. FID was
measured using 10,000 samples generated with 250 timesteps, except for columns in the middle that
used different sampling steps.

Noise scheduling Sampling steps Model size

linear cosine 50 100 500 1000 small (17M) base (68M) large (95M)

h-flip 14.84 14.70 18.48 16.25 14.41 14.06 20.78 14.84 14.18
TADA 12.92 14.29 17.86 15.04 12.64 12.55 22.10 12.92 12.04

Noise scheduling. To test whether TADA works under different noise scheduling, we evaluate our
method on both linear (Ho et al., 2020) and cosine (Nichol & Dhariwal, 2021) noise schedule. As
shown in Table 4, TADA outperforms h-flip in both noise schedules. As we used the same rrough
and rfine under different noise schedules, our method can be simply plugged in even under cosine
noise scheduling, without any modification on the values of sensitive region boundaries.

Sampling step. Recent research has attempted to improve the inference efficiency by investigating
further into the sampling procedure (Song et al., 2020; Nichol & Dhariwal, 2021) of diffusion mod-
els. Since data augmentation methods must coexist with other training and inference techniques,
we evaluate our method across various sampling steps. Table 4 shows the performance trend of our
TADA and h-flip at {50, 100, 500, 1000} sampling steps. Our TADA consistently outperforms h-flip,
with the best FID achieved at 1000 steps, similar to previous studies (Choi et al., 2022).

Model size. We assessed the impact of TADA on different scales of the model. TADA shows a
clear benefit with a large-scale model while less effective in a small-scale model. This outcome
is expected because data augmentation is a critical recipe for enhancing the performance of large
models.

4.4 ABLATION STUDY

To dissect the impact of each component within our TADA, we conducted three ablation studies.
That is, we examine the impact of each time range under two different sampling steps (Table 5a,
FID scores) and the choices of M (Table 5b, FID and KID) and κ (Table 5c, FID scores).

Augmentation range. In Table 5a, we exclusively apply wt at a specific timestep range while
setting wt = 0 for other ranges to obtain the FID scores for rough, sensitive, and fine. Considering
the results of ‘none’ as the baseline performances (h-flip), we observe that the contributions from
each range slightly vary across sampling steps: the sensitive range is the most influential in 50
sampling steps, while the fine range is the most impactful in 250 sampling steps. Nonetheless, we
consistently observe TADA enjoys the benefit of augmentations from various ranges regardless of
sampling steps, with a clear gain over the baseline.

M variation. We test our TADA with different values of M ∈ {0, 1, 2, 3, 4} and observe the
resulting FID scores at 250 sampling steps in Table 5b. Compared to the baseline performance of
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Table 5: Ablation study. All models are trained on FFHQ-5k (64x64) dataset. We measure FID
and KID of 10k samples, generated with 250 timesteps. The best values are marked in bold, and the
second-best values in each column are underlined.

(a) Augmentation range. (b) M variation. (c) κ variation.

Range 50 steps 250 steps M FID ↓ KID (×103) ↓ κ linear cosine

none 18.48 14.84 0 14.84 9.30 0.1 13.19 13.22
rough 18.33 16.26 1 13.88 8.67 0.2 14.81 11.37
sensitive 17.71 14.65 2 12.92 7.74 0.5 14.46 12.22
fine 18.60 13.85 3 13.43 8.34 5.0 14.66 12.15
TADA 17.74 12.92 4 17.28 11.92 default 12.92 14.29

M = 0 (h-flip), we confirm that applying augmentations proves beneficial when M is moderately
small, such as 2. However, a large M can deviate the training data distribution too far from the
original training data, which may hinder model training. From this empirical study, we set M = 2
for all settings throughout this paper.

κ variation. To evaluate the impact of κ on TADA, we tested our method with varying κ for both
linear and cosine noise scheduling. As κ varies, the augmentation strength varies accordingly (See
Figure 5). Table 5c shows the FID scores by varying κ. Despite the fact that manually chosen
κ outperforms our default setting, it still consistently outperforms the h-flip method. The results
demonstrate that our default value is a reasonable choice, but the performance of TADA can be
improved with further hyper-parameter tuning.

5 DISCUSSION

Comparison between TADA and augmentation regularization. As shown in Section 4, TADA
used for training from scratch achieved competitive results compared to augmentation regularization
(AR) methods used in previous studies (Kingma et al., 2021; Karras et al., 2022). It should be noted
that our TADA can further achieve improved performance by tuning thresholds per dataset by sacri-
ficing robustness. Besides, our method is applied to the data processing pipeline without additional
modules like AR. Finally, when our TADA is combined with transfer learning, it demonstrates clear
gains in generation quality. Furthermore, while EDM did not find color transformations useful, we
also take advantage of color transformations, which have been useful for TADA (Appendix 12).

Limitation & future work. Similar to other data augmentation methods for generative models,
our approach cannot fully address the data scarcity issue, less effective than collecting more data.
In addition, the augmentation set used in this paper was adapted from those commonly used in
GANs, which may not be the optimal choice for diffusion models. Investigating the most effective
augmentation combinations for diffusion models or designing a new augmentation transformation
for diffusion models can be an interesting avenue for future research.

6 CONCLUSION

In this study, we conducted the first in-depth investigation on the relationships between data aug-
mentation and distribution shift in diffusion model training. We discovered that data augmentation
significantly influenced specific timestep intervals, giving rise to distribution shifts in diffusion mod-
els. Drawing from these observations, we introduced TADA, a method that adjusts data augmentation
strength depending on the timestep. Our results demonstrate that even a very simple implementa-
tion of TADA consistently enhances the diffusion models across datasets, model configurations, and
sampling steps. TADA effectively improves the generation performance of diffusion models in data-
limited environments, addressing overfitting, and facilitating improved training from scratch and
transfer learning. We expect our research to stimulate fresh avenues of exploration within the field,
encouraging advanced training techniques for diffusion models and their applications.
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ETHICS STATEMENT

Despite the remarkable contributions of recent advancement of image generation methods, several
malicious usages have been reported such as deepfake and fake news. Since TADA is a simple and
robust training method for diffusion models for unconditional image generation in limited training
data, our method might be less likely to be used in malicious usages, compared to conditional gen-
eration such as text-to-image generation. Because our experiments are based on verified standard
datasets, there are no ethical issues on data.

REPRODUCIBILITY STATEMENT

We ensure that TADA is reproducible with all hyper-parameters and design choices described in
Appendix 6 and 7. We will make our code and checkpoints available at the time of release.
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More details of our paper is explained throughout this appendix section.
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Table 6: Hyperparameters for 64×64 experiments.

FFHQ / AFHQ-v2 Tab. 4 small Tab. 4 big

T 1000 1000 1000
βt linear / cosine linear linear
Num. params (M) 68 17 95
Channels 128 64 128
Num. res blocks 1 1 2
Self-attn 16, bottle 16, bottle 16, bottle
Heads channels 64 64 64
BigGAN block yes yes yes
Dropout 0.1 0.1 0.1
Learning rate 2e-5 2e-5 2e-5
FP16 - - -

EMA rate 0.9999 0.9999 0.9999
Batch size 64 64 64
Total steps ≤ 100k 50k 50k
Num. images (M) ≤ 6.4 3.2 2.5

Table 7: Hyperparameters for 256×256 experiments.

FFHQ subset (1k, 2k, 5k) AFHQ-v2 Cat (Fig. 6a) Transfer (Tab. 3)

T 1000 1000 1000
βt linear linear linear
Num. params (M) 138 138 94
Channels 128 128 128
Num. res blocks 2 2 1
Self-attn 32, 16, 8, bottle 32, 16, 8, bottle 16, bottle
Heads channels 64 64 64
BigGAN block yes yes yes
Dropout 0.1 0.1 0.1
Learning rate 2e-5 2e-5 2e-5
FP16 yes yes -

EMA rate 0.9999 0.9999 0.9999
Batch size 16 16 16
Total steps 50k, 60k, 156250 156250 60k
Num. images (M) 0.8, 0.96, 2.5 2.5 0.96
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Figure 7: Example of generated images from a model trained with naive augmentation on FFHQ-5k
64 x 64 resolution.

A IMPLEMENTATION DETAILS

We employed the training objectives Lhybrid, as proposed by Nichol & Dhariwal (2021). Our imple-
mentations, including h-flip, AR, and TADA, used ADM (Dhariwal & Nichol, 2021) as the baseline
architecture. For detailed configurations, including model architecture and training hyperparame-
ters, please see Table 6 and Table 7.

B DISTRIBUTION SHIFT

Throughout this paper, we used the term distribution shift to describe a phenomenon where the
generative model produces transformed samples, often reflecting the applied data augmentation.
This terminology aligns with the usage in Zhao et al. (2020), and shares a similar meaning with the
term leaking introduced in Karras et al. (2020).

Here, we provide the randomly sampled generated images in Figure 7.

C MORE RESULTS OF TOY EXPERIMENTS

C.1 RESULTS ON DIFFERENT SETTINGS (TOY EXPERIMENT 1)

We show the result of toy experiment 1 (Section 3.2) on different settings. Figure 8a shows the
LPIPS difference in cosine noise scheduling. Similar to the result in Figure 1a, the LPIPS difference
in the sensitive region becomes significant, indicating that data augmentation has a comparably
large effect in this region compared to the rough and fine timesteps. We further perform the same
experiment on a different dataset. Figure 8b demonstrates the result on the AFHQ-v2 dataset, which
shows a similar trend to the experiment done on FFHQ. In summary, this suggests that sensitive
timesteps play a different role than other timestep intervals, regardless of different diffusion model
settings or datasets.

C.2 EFFECT OF SWAPPING IN DIFFERENT REGIONS (TOY EXPERIMENT 2)

This sections shows the result of toy experiment 2 (Section 3.2), by changing the timesteps for swap-
ping region of ϵ̂base → ϵ̂aug and ϵ̂aug → ϵ̂base. Figure 9a and 9b each illustrates a case when the
model is swapped during fine region, which starts from rfine (when log(SNR) = 0). The resulting
samples of both figures did not present the change in the resultant distribution (e.g., change from the
in-distribution to out-of-distribution and vice versa). This differs from Figure 1b, where the swap-
ping occurred during sensitive timesteps. In other words, ϵ̂aug did not lead to producing distorted
outputs and ϵ̂base did not result in-distribution samples. This indicates that when log(SNR) becomes
larger than rfine, both models cannot change the sampling trajectory as it becomes invertible after
sensitive region, where no modifications are made to the context of the image.

We further provide results on AFHQ-v2 in Figure 10a, where the swapping occurs during sensitive
region, thereby producing augmented-like output, similar to the result shown in Figure 1b. That is,
ϵ̂aug leads to producing augmented-like outputs while ϵ̂base makes the output not deviate too far
from the original data distribution. On the contrary, in Figure 10b, the sampling trajectory remains
unchanged, similar to the result on FFHQ (Figure 9b). Overall, the results of these experiments
imply that data augmentation plays a critical role during the sensitive timesteps.
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(a) Different noise schedule. Both models are trained on the FFHQ-5k dataset with a cosine noise schedule.

(b) Different dataset. Both models are trained on the AFHQ-v2 dataset.

Figure 8: Results of toy experiments 1 on different configurations.

D DETAILS OF TADA

D.1 ON THE CHOICE OF δ

To take advantage of data augmentation (e.g., generalization capability) in the sensitive timesteps,
we chose to apply weak augmentations during this interval. However, to prevent distribution shift,
we test the choice of δ by varying the augmentation strength. Specifically, we differ the degree of
augmentation with wt = δ ×max, where max denotes maximum augmentation strength defined in
previous work (Karras et al., 2020). Figure 11 illustrates the mean faces when different values of
delta are used (multiplied to the maximum scale strength). As δ approaches 1, the size of the face
becomes larger. We iterated this for every augmentation (e.g., scale, rotation) and found the safe
value of δ as 0.1.

D.2 CALCULATION OF κ

By default, we automatically compute the κ so that the minimul wt is 0 before clipping. More
specifically, given rrough, rfine and δ, we found the value of κ that makes the minimum value of
Equation 2 equal to 0. This can be implemented as follow:

1 import numpy as np
2

3 def adapt(calibrated_snr, r_rough, r_fine, kappa=None, delta=0.1):
4 logsnr = np.log10(calibrated_snr)
5 if kappa is None: # automatically compute the kappa parameter.
6 kappa = 4.0*delta / (r_rough - r_fine)**2
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(a) Swap at rfine.

(b) Swap in fine region.

Figure 9: Results of toy experiment 2 on different regions. Both models are trained on the FFHQ-
5k dataset.

7 w = kappa * (logsnr-r_rough) * (logsnr-r_fine) + delta
8 return np.clip(w, 0, 1)

D.3 AUGMENTATION PIPELINE

We adopted the augmentation pipeline from ADA (Karras et al., 2020), although we did not utilize
all of its components. Specifically, we chose not to use pixel blitting as it falls within the category
of geometric augmentations. We also excluded lumaflip because it is difficult to control its strength.
Additionally, we opted not to employ image-space filtering (filter), as recent studies demonstrated
that blurring (Hoogeboom & Salimans, 2023) and sharpening (Das et al., 2023) are directly related
to diffusion models. Note that, the result of applying filter to our method can be found in Table 12.
During the exploration stage of this paper, we conducted experiments with image-space corruption
(i.e., cutout (DeVries & Taylor, 2017)) and obtained positive results. However, we decided not to
include them for the sake of simplicity.

1 import numpy as np
2 transforms = [
3 scale, rotate_frac, aniso, translate_frac,
4 brightness, contrast, hue, saturation,
5 ]
6

7 def augment(image, snr, p=0.8, M=2, r_fine, r_rough, kappa, delta):
8 if np.random.rand(1) < p:
9 return image

10 w_t = adapt(snr, r_rough, r_fine, kappa, delta)
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(a) Swap in sensitive region. Both models are trained on the AFHQ-v2 dataset.

(b) Swap in fine region. Both models are trained on the AFHQ-v2 dataset.

Figure 10: Results of toy experiment 2 on different regions. Both models are trained on the
AFHQ-v2 dataset.

Figure 11: On the Choice of δ. Example of scale augmentation.

11 num_apply = np.random.randint(1, M+1)
12

13 ops = np.random.choice(transforms, num_apply)
14 for op in ops:
15 image = op(image, w_t)
16 return image

E ABLATION ON sensitive REGION

We further evaluate our TADA by differing the values of rrough and rfine. Table 8 and Table 9
show the results on FFHQ-5k and AFHQ-v2 Cat dataset, respectively. The best FID values of both
tables are achieved when [rrough, rfine] = [−2, 0], while the result of TADA ([−3, 0]) achieved
the second best. On AFHQ-v2 Cat, the resulting FID of [−2, 1] shows the second-best values.
We conjecture that the different trend in the AFHQ-v2 Cat is highly related to Figure 8b, as its
peak in the LPIPS difference (green line) starts near -2, which is slightly different from the result
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Table 8: Ablation on FFHQ-5k. (64 x 64) Results with 10k images and sampling steps = 250. Note
that, [rrough, rfine].

Sensitive FID ↓ KID (×103) ↓ Precision Recall

[−2, 1] 14.28 8.92 0.78 0.30
[−2, 0] 12.76 7.47 0.76 0.33
[−3, 1] 15.94 10.73 0.77 0.31
[−3, 0] 12.92 7.74 0.76 0.33
h-flip 14.84 9.30 0.78 0.30

Table 9: Ablation on AFHQ-v2 Cat. (64x64) Results with 10k images and sampling steps = 250.
Note that, [rrough, rfine].

Sensitive FID ↓ KID (×103) ↓ Precision Recall

[−2, 1] 6.11 2.46 0.81 0.32
[−2, 0] 5.80 2.29 0.80 0.35
[−3, 1] 6.29 2.68 0.82 0.31
[−3, 0] 8.33 3.87 0.77 0.27

h-flip 9.60 5.18 0.81 0.24

on FFHQ (Figure 1a). Although setting the sensitive regions narrower leads to a better FID score,
we observed a trade-off between distribution shift and quality. Therefore, for devising a unified
and simple augmentation solution, we safely set [rrough, rfine] to [−3, 0]. Note that the values of
rrough and rfine can be simply changed by the design choice.

F IN-DEPTH ANALYSIS ON DISTRIBUTION SHIFT

To further scrutinize into the relationship between timestep interval and distribution shift, we per-
form an in-depth analysis by seperating the whole timesteps into 10 intervals. Specifically, we
seperate an interval each with 1 log(SNR) and train 10 distinct diffusion models, each trained with
augmented data on specific interval. For example, the model is trained with augmented data dur-
ing −4 ≤ log(SNR) ≤ −3 and trained with original data distribution on the remaining intervals
(−inf ≤ log(SNR) ≤ −4 and 4 ≤ log(SNR) ≤ inf ). We test with various types of augmentations
(e.g., jigsaw (Jun et al., 2020) or cutmix (Yun et al., 2019)). Figure 14a and 14b each show the
quantitative and qualitative analysis of distribution shift in each interval. For quantitative analysis,
we count the number of unaligned samples among 10k generated samples by using our metric (Ap-
pendix F.1). For Figure 14b, we qualitatively evaluate the samples of each interval and mark whether
the model generated augmented-like samples. Similar to the result of Figure 1a, the result of this
section indicates that the distribution shift mainly occurs in sensitive interval.

F.1 EVALUATION ON DISTRIBUTION SHIFT

We observed that FID does not penalize the emergence of distribution shift (Appendix F.2). While no
previous studies have quantitatively assessed the distribution shift in generative samples, Karras et al.
(2018; 2019) used qualitative visualizations to depict the significance of distribution shifts using the
geometrically aligned dataset, such as FFHQ. By adopting this practice to design a quantitative
metric, we measure the normalized number of generated samples with a noticeable difference in
geometric alignment compared to the statistics of the FFHQ dataset (denoted as “Shift” (%)).

Specifically, We extract position vectors from facial landmarks, one for each of the center of the
eyes (c), the x-axis (x), the y-axis (y), and the scale of the image (s). We then compute the mean and
standard deviation of the position vectors extracted from 70,000 real FFHQ images and compare
them to the vector values of a generated sample. By determining the threshold as 3 × std of real
images, any generated sample that falls outside this threshold is identified as a leaked sample. With
this criterion, we count the number of leaked samples among 10k generated images for each timestep
range.
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Figure 12: FID values of each interval.

Figure 13: Number of Shift (%) in 256 × 256 resolution.

F.2 FID DOES NOT PENALIZE DISTRIBUTION SHIFT

Along this experiment, we discovered that FID itself does not penalize distribution shift. We mea-
sured the FID values on 10,000 generated samples of each interval, as shown in Figure 12, under
the same setting as Figure 14a. Despite the generation of considerable number of unaligned dataset
(Figure 14a), FID does not reflect the degree of distribution shift.

F.3 SNR CALIBRATION

In this section, we measure the number of shifted samples on 256 x 256 resolutions. We perform the
same experiment by training 10 models on the FFHQ-5k dataset of 256x256 resolutions, each with
augmented training data on the corresponding interval. Figure 13 shows the result of this analysis,
where the regions where distribution shift occurs are shifted by 1 log(SNR) in comparison with
results on the 64x64 dataset (Figure 14a). Therefore, we perform SNR calibration as mentioned in
Section 3.3.

G EFFECTNESS OF TADA ON VARIOUS DATASETS

We further evaluate TADA on AFHQ-v2 Cat dataset. We compared the result with the model without
any augmentation and the model trained on h-flip. TADA achieves the best results as shown in
Table 10.

H ON DESIGN OF CONDITIONAL INPUTS

Augmentation regularization requires additional conditional inputs for diffusion models. However,
there is no standard implementation to on formulating these conditions. Therefore, we tested two
publicly available implementations: the augmentation regularization (AR) (Karras et al., 2022) and
DistAug (Jun et al., 2020), as used in (Kingma et al., 2021). We observed that differences in imple-
mentation details led to varying results. Table 11 shows the results. Note that, these methods require
further design on augmentation labeling methods.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 QUALITATIVE RESULTS FOR TRANSFER LEARNING

In this experiment, we trained the pre-trained model on each domain of the AFHQ-v2 dataset. We
obtained the pre-trained checkpoint provided by (Choi et al., 2022)1. See Figure 15, Figure 16,
and Figure 17 for qualitative comparisons. Analogous to quantitative results in Table 3, our TADA
with transfer learning provides superior results to AR, indicating our effectiveness in limited data
settings.

I.2 ABLATION STUDY ON AUGMENTATION POLICY

TADA employed various set of augmentations from (Karras et al., 2020), including geometric trans-
formations (e.g., rotation, translation), color, and filter. In this experiment, we aim to understand the

1https://github.com/jychoi118/P2-weighting
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(a) Quantitative analysis on distribution shift.

(b) Qualitative analysis on distribution shift.

Figure 14: Analysis on distribution shift. For quantitative analysis, we count a number of Shift (%)
in the generated samples. For qualitative analysis, we manually investigate the generated images
and assess the level of distribution shifts manually. ◦ implies the presence of noticeable distribution
shifts, △ indicates the moderate amount of samples presenting distribution shifts, and × means no
distribution shifts.

Table 10: AFHQ-v2 cat (64x64). Results with 10k images and sampling steps = 250.

Methods FID ↓ KID (×103) ↓ Precision Recall

none 12.79 6.89 0.85 0.13
h-flip 9.60 5.18 0.81 0.24
TADA 8.33 3.87 0.77 0.27

impact of each augmentation by applying a single type (from the first to third row) and the combina-
tions of two types (fourth row). Table 12 summarizes their contributions. In contrast to the findings
of AR (Karras et al., 2022), who concluded that color augmentation yields no positive effects, our
observations indicate that color augmentation actually leads to the most significant improvements.
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Table 11: Augmentation regularization comparison. We tested two implementations on a 30k subset
of FFHQ. All models were trained for 50,000 iterations. We report FID and KID using 10,000
images, which were generated using 50 sampling timesteps.

Methods FID ↓ KID (×103) ↓

DistAug 20.15 14.14
AR 18.91 12.66

Table 12: Effects of various augmentation policies. All models are trained on FFHQ 5k dataset
(64 x 64). Values are average FID from 250 sampling timesteps.

h-flip rotation scale translation aniso color filter TADA

14.82 13.89 (−0.29) 13.97 (−0.88) (+0.10) 17.61 (+3.19) (−1.50) (+1.76) 12.92 (−1.10)
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(a) Augmentation regularization (b) TADA

Figure 15: Qualitative comparison. The models are trained on AFHQ-v2 cat from the model pre-
trained on FFHQ. The samples were generated with 50 sampling steps.

(a) Augmentation regularization (b) TADA

Figure 16: Qualitative comparison. The models are trained on AFHQ-v2 dog from the model pre-
trained on FFHQ. The samples were generated with 50 sampling steps.
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(a) Augmentation regularization (b) TADA

Figure 17: Qualitative comparison. The models are trained on AFHQ-v2 wild from the model
pre-trained on FFHQ. The samples were generated with 50 sampling steps.
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