Under review as a conference paper at ICLR 2026

FASTER KERNEL DENSITY ESTIMATION VIA HASHING
BASED TIME-SPACE TRADEOFFS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper we study the Kernel Density Estimation (KDE) problem: Given a
dataset P of n points in Euclidean space and a kernel K (p,q), prepare a low
space data-structure that given a query q can quickly output a 1 + € approximation
to u = (3_,cp K(p,q))/n. Recent advances have used tools from Locality Sen-
sitive Hashing (LSH) and Approximate Nearest Neighbor (ANN) search to build
KDE data-structures with query time sublinear in 1/ and space linear in 1/,
with Charikar et al|(2020) achieving the current best query time of ~ 1/p0-17
for the popular Gaussian kernel. Our main result is a data-structure with signifi-
cantly improved query time ~ 1/u%-%% , at the expense of somewhat higher space
complexity of ~ 1/u*1'5. More generally, our techniques give the first known
query time vs space tradeoffs for KDE: for any § > 0 we can design a KDE
data-structure with space with 1/u'+% dependence and query time with 1/45(%)
dependence, where £(9) is a non-increasing function of d. Importantly for the
linear space regime, i.e 6 = 0, we obtain a query time of 1/u°18%5 improving
the non-adaptive KDE bound from (Charikar et al.|(2020) and nearly matching the
bound of (Charikar et al.| (2020) with a significantly simpler analysis.

1 INTRODUCTION

Kernel Density Estimation (KDE) is a fundamental and widely studied problem in statistical learning
theory and artificial intelligence (Fan, 2018} [Scholkopf & Smola, 2002} Joshi et al.| |2011} |Arias-
Castro et al.| 2016). Formally KDE is defined as follows - Given ¢ > 0 and a dataset P of n
points p1,...,pn € R?, preprocess it into a small space data-structure that allows one to quickly
approximate, given a query q € R<, the quantity

1
pEP

up to multiplicative 1 & ¢ factor with probability 0.9, where the kernel function K (p, q) is a mono-
tone decreasing function of ||p — q||. The Gaussian kernel,

K(p,q) = ef\lpfq\lg/(%Q)’)

is a important example of a kernel widely used and will be the main focus of our paper, although
many others (eg. Laplace, exponential, polynomial) are also used sometimes used (Shawe-Taylor &
Cristianinil, 2004} [Williams & Rasmussen, [2006). Moreover recent works have used fast Gaussian
KDE primitives for speeding up attention computation in modern transformer based LLMs (Zandieh
et al., [2023; [Indyk et al., 2025).

Unfortunately the exact algorithm for this problem does a linear scan over P at query time and thus
runs in time linear in n, making it not scalable for large datasets. Thus most practical algorithms
resort to reporting approximate kernel density evaluation at query time. In the low dimensional
regime tree based algorithms |Greengard & Strain| (1991); |Gray & Moore| (2001)); |Gan & Bailis
(2017) give efficient approximations, however their running times are exponential in d making them
not scalable for high-dimensional datasets. In the rest of the paper, we use the notation p* defined
as u* := K(P,q) to denote the true kernel density for a query g, and x denotes a quantity that
satisfies u* < pu < 4p*, using standard techniques we can assume such a p is known to us (see

Under review as a conference paper at ICLR 2026

Remark 3 (Charikar et al.|(2020)). In the high dimensional regime d = §2(log n) uniformly sampling

O(1/(€?) - 1/u) dataset points P from P and reporting K (P, q) at query time suffices to obtain a
1 £ € estimate of the true kernel density K (P, q). The line of work initiated in the work of|Charikar
& Siminelakis| (2017) improved upon random sampling by creating Gaussian KDE data-structures
with sublinear in 1/ query time and linear in 1/ space. In the subsequent discussion all methods
have polynomial in d and 1/e dependence in the query time and space, so we suppress them for
readability. Furthermore we use O(-) to hide polynomial factors in d and log(n, 1/u). |Charikar
& Siminelakis| (2017) used Locality sensitive hashing (LSH) (Indyk & Motwani, |1998; |Andoni &
Indykl 2008)), a fundamental technique in the approximate nearest neighbor (ANN) literature, to de-
sign Gaussian KDE data-structures with query time with a 1/, /1 dependence. Following this a line
of work had subsequent improvements using LSH culminating in the work of |Charikar et al.|(2020)
which achieved a 1/1%-2% dependence in the query time using a data-independent LSH and 1/-173
using a much more involved data-dependent LSH. These approaches used symmetric LSH construc-
tions, and our main contribution is to use advances in asymmetric LSH constructions (Andoni et al.}
2017;|Razenshteyn, |2017) to improve upon these works.

We first present an overview of our contributions followed by presenting our main ideas and tech-
niques. Finally we end the section by discussing related work.

1.1 OUR CONTRIBUTIONS

Our first result, that obtains data-structures for Gaussian KDE problem (see problem setup in Equa-
tion[5) with significantly improved query time using asymmetric LSH, is as follows,

Theorem 1. (Informal) There exists a data-structure for the Gaussian KDE problem with expected
query time O((1/€%) - 1/1%95Y) and space O((1/€2) - 1/u*'°). There also exists a data-structure
for the Gaussian KDE with expected query time O((1/€2) - 1/u®18%%) and space O((1/€2) - 1/).

The formal version of the above theorem is presented in Theorem Of course we obtain the
improved query time of 1/u%-%51 at the expense of polynomial in 1/ space, however the use of
asymmetric LSH allows us to tradeoff the space and query time of our data-structure. Thus even
for the linear space, i.e. with 1/u dependence in the space, we obtain a query time with 1/40-1865
dependence on 1/ that beats the previous best bound of 1/1°-2° using non-adaptive schemes. It is
slightly worse than the data-dependent scheme of (Charikar et al.[(2020), which achieved a 1 /%173
dependence, however our scheme has the advantage of being much simpler. We also show a more
general result that presents time-space tradeoffs for Gaussian KDE data structures, in the following

Theorem 2. (Informal) For any 0 > 0 there exists a data-structure for the Gaussian KDE problem
with query time O((1/€?) - 1/ué®)) and space O((1/€) - 1/u'*?) where £(8) as a function of § is
presented in right figure in Figure([l)

To the best of our knowledge, ours is the first such tradeoff for KDE, the formal version of the above
theorem is presented in Theorem[T6] We now describe the main techniques used to prove our results.

1.2 TECHNICAL OVERVIEW

Our query time vs space complexity tradeoffs for KDE are obtained by a novel instantiation of the
framework of |Charikar et al.| (2020) that essentially reduces the KDE problem to a version of the
Approximate Near Neighbor (ANN) problem. We thus start with an overview of that framework.

KDE via (density constrained) approximate nearest neighbor search (ANN). |Charikar et al.
(2020) reduce the problem of computing kernel density problem at a query q to logarithmic many
approximate nearest neighbor (ANN) problems with the additional twist provided by density con-
straints. The main idea is to partition points p € P into a logarithmic number of distance scales
according to the value of K (p, q), then estimate the number of points in each distance scale (i.e., at
a certain Euclidean distance from q), using approximate nearest neighbor search techniques such as
Locality-Sensitive Hashing (LSH). Using standard scaling techniques, as in [Charikar et al.| (2020,
Assumption 1 in Section 5), we conveniently re-write the Gaussian kernel for any point p € P as
follows,

K(p,q) = plPalz,

Under review as a conference paper at ICLR 2026

and we denote ﬁ? € P denote the points in P with kernel value K (p, q) ~ 277 for all value of
j € 10,J] for J = log(1/p). We denote the distance scale x; = j/J, which thus conveniently
allows us to write E? € P as all points with,

K(p,q) = p* forz; € [0,1].
See Section [3] for precise definitions. The framework of [Charikar et al.| (2020) randomly samples

points in P at rate

pj= (/)% 1/n, 3)
to create a subsampled dataset, then retrieves all point in ,C? surviving in this subsampled dataset
using the symmetric LSH of |Andoni & Indyk| (2008).

Our work proposes to go beyond symmetric LSH to achieve the improvement, so it is more conve-
nient to reformulate the (Charikar et al.| (2020) framework as applying a more general Approximate
Near neighbor (ANN) data-structure. Recall that a (¢, 7)-ANN data-structure is an efficient data-
structure that, assuming the existence of a point at distance at most r from the query, returns a point
at distance at most cr. When recovering points in ﬁ?, i.e. at distance scale x;, from the sampled
dataset we invoke a (¢,)-ANN data-structure with the near radius r corresponding to KDE contri-
bution ~ ©*7 and the far radius cr corresponding to KDE contribution ~ n. We drop the subscript
J from scale x;, since we will only work with scales.

Remark 3. Note that this classical guarantee that an (¢, r)-ANN data-structure provides does not
suit us, as we need to exactly retrieve all points at distance scale ~ = from the sampled dataset, we
will provide a new analysis of a powerful (¢, 7)-ANN data-structure that takes density constraints
into account and achieves exact recovery efficiently.

Exact recovery with approximate near neighbor search. [Charikar et al.| (2020) use the symmet-
ric LSH of |Andoni & Indyk! (2008)) for this ANN problem, to provably recover points at distance
scale z € [0, 1] in sublinear time. The query time of this procedure is higher than that of the ANN
problem because we need to retrieve point at exactly distance the near distance scale x and during
hashing, points at scale y for x < y < 1 can collide with points at x, adding time needed in scanning
and discarding these intermediate points. However this query time overhead can be controlled using
density constraints - a simple Markov bound allows us to bound number of points at scale y € [0, 1],
n(p)'v < n, 4)
and furthermore it is unlikely that all such points collide with points at z. [Charikar et al.| (2020)
bound the additional query time overhead by upper bounding the expected number of intermediate
colliding points by multiplying density constraint upper bounds and with LSH collision probability
of |Andoni & Indyk] (2008). This gives them the query time for recovering points at scale x in the
subsampled dataset for any fixed x. Summing this over log many possible values of x they obtain a
query time of 1/u°%25 up to log factors. Sectioncontains the precise details of this framework.

Our contribution: query time reduction via asymmetric ANN. Our main idea is to use the asym-
metric LSH construction of |[Andoni et al.| (2017) (see Section instead to recover points at scale
x from the subsampled dataset. For the (¢, r)-ANN problem, this LSH allows us to design data-
structures with space n't7s+°(1) and query time n#e+°() for any p,, p, > 0 under the constraint,

(® +1)\/pg + (¢ — 1)y/ps > 2c. (5)
Choosing p; = p, recovers the symmetric LSH of |Andoni & Indyk! (2008), but choosing it differ-
ently allows one to tradeoff lower query time for higher space for recovering points at scale . This
leads to an improvement over (Charikar et al.| (2020) because the maximum of query time in their
reduction is achieved at a different distance scale 2 € [0, 1] than the one that yields the space bound!
Finding the best p,, p, under constraint for every x € [0, 1] can be expressed as an optimization
problem (see Sectiond) and solved numerically (see Section [5). The exact optimum does not seem
simple to obtain analytically, and we therefore resort to numerics. One interesting phenomenon
emerges: unlike the (¢, 7)-ANN problem, which admits a solution with constant query time, the
KDE tradeoffs that we achieve (see Fig.[I)) do not yield a constant query solution. We next analyti-
cally show that this is not possible with present near neighbor search technology — an exciting open
problem is to either prove a formal lower bound ruling out constant query KDE in polynomial space
or bypass the inherent barrier in our scheme to get a KDE data structure with constant query time.

"More precisely, the set £4 for J = log(1/u) is defined to capture all points with kernel value X (p, q) =
O() — the contribution of these points can be very easily estimated from a small sample.

Under review as a conference paper at ICLR 2026

Why constant query KDE is not possible with known ANN results. For a fixed scale z € [0, 1]
the natural choice of the query exponent p, is to set it to 0 to ensure that at least the expected number
of points colliding from the last scale y = 1, i.e. points at far distance cr with kernel value ~ p,
is at most n°(Y). As otherwise any higher pq Will lead to non-negligible contribution of points at
far distance cr, as the (¢, r)-ANN problem will have a non-negligible query time. Thus p, = 0 is
the natural choice, however again the overall query time will be higher than that for the (¢, r)-ANN
problem because of collisions from points at intermediate scales y for x < y < 1. We now give a
high level overview of this additional overhead. Fix an z € [0, 1] and recall from Equation that
first the dataset P is subsampled at rate (1/)!=% - 1/n, leading to expected dataset size (1/p)*~*.
If we construct an asymmetric LSH for dataset size (1/x)' = and p, = 0, the probability for a point
p at scale y for x < y < 1 to be scanned during query time turns out to be,

)2

< 1) - (%)wu)

I

(6)

From density constraints |4} number points at scale y is at most n - (1) ~%, which after subsampling
gets reduced to (1/p)¥ ™ in expectation. Thus overall the additional overhead due to points at scale
yis (1/p)¥~* times the bound in Equation@ and since there only log many values of y to consider
between [z, 1] the overall overhead in query time is the following up to log factors,

(y—=)?

()) (v-2)- (4725) o)

I

; (7

max
y€(z,1]

In the expression above for y = x and y = 1 the exponent is o(1), however near y = x the first
linear term y — 2 grows faster than the second term behaving roughly quadratically as (y —2)2. Thus
for any fixed « € [0, 1] the maximum happens for some point inside the interval [z, 1]. Furthermore
since we need to recover points at logarithmic many scales € [0, 1], the overall query time of
this KDE data-structure is max of the above over all « € [0, 1], which using numerical methods is
approximately (1/u)%%9. This in general conveys the fact that even using this asymmetric LSH for
query exponent p, = 0 for all z € [0, 1], one cannot obtain arbitrarily small constant query time
exponent at the expense of arbitrarily large polynomial space. However we can obtain a slightly
better constant query time exponent than 0.09 by optimizing setting p, for all € [0, 1]. For any
2 € [0,1] and a general p, > 0, Equation [6]is as follows,

<) > (1-2) (0= 552 (22 ~-Dvr)) o)

"

)

thus for a fixed z € [0, 1] the overall query time by optimizing over valid ranges of p, is as follows,

I

Finally the overall query time of our KDE data-structure is then the max of the above over all
x € [0,1]. Solving this optimization problem leads to a query time roughly (1/u)%°. The precise
details of this parameter setting and the optimization formulation are in Section [4}

min max
valid pg y€[z,1]

()) (v-2)+(1-2) (pr= g2 (52 ==y) o)

Query time for space 1/. Obviously the space of the data-structure described previously is poly-
nomial in 1/u, roughly 1/4*, thus making it incomparable with previous works that had space at
most 1/u. However since the asymmetric LSH allows us to flexibly set either the space or query
exponents for each recovery problems, we can carefully choose the space exponent so that the over-
all space of our data-structure to be at most 1/p. This restricts the choice of the query exponent for
each recovery problem as per Equation [5]leading to a higher query time. Overall this results in a data
independent KDE data-structure with space 1/u and query time 1/u%-186% which improves over the
data independent bound of 1/%-25 of (Charikar et al. (2020). Moreover the query exponent is within
0.02 of the exponent of the data dependent data-structure of the work of |Charikar et al.| (2020),
which achieves a query time 1/1%173, however our analysis is arguably much simpler. In general,
our construction allows one to smoothly tradeoff space and query time for KDE data-structures, and
the details of this are presented in Section [3]

Under review as a conference paper at ICLR 2026

1.3 RELATED WORK

There is a large body of work on sublinear time KDE for low dimensional spaces, which includes
the classical work on Fast Gauss Transform (Greengard & Strain, [1991) and other tree based hier-
archical partitioning methods (Gray & Moore, [2001; 2003} [Yang et al., [2003} |[Lee et al., 2005; Ram
et al., 2009; |Gan & Bailis,2017). For high dimensional spaces (d = §2(logn)), sublinear time algo-
rithms beating random sampling for various kernels such as Gaussian and polynomial were obtained
by a recent sequence of works based on implementing importance sampling via LSH (Charikar &
Siminelakis| 2017; Backurs et al., 2018; |Charikar et al.| [2020). These importance sampling based
procedures had 1/¢* dependence on € in query complexity, and works based on discrepancy theory
and randomized space partitioning (Phillips & Tail 2020; |Charikar et al., 2024) achieve a 1/¢ de-
pendence. Recent works (Siminelakis et al.|[2019; |Backurs et al.,|2019) address scalability issues of
the original approach of |Charikar & Siminelakis| (2017) and obtain practical improvements on real
world datasets.

2 PRELIMINARIES

The goal of this section is to present basic notation and assumptions used throughout the paper, as
well as preliminary concepts and tools regarding KDE and (¢, 7)-ANN data-structures.

Notation. We denote exp,, (b) = a’ and let [n] = {1,...,n} for any natural number 7.

2.1 BASIC SETUP

We now present standard assumptions on parameters as part of problem setup. We first define the
Gaussian Kernel.

. . og(1/u) . . .
Definition 4 (Gaussian Kernel). K(p,q) = e 55 Ip=all® We use this version of the Gaussian

Kernel because an instance with general Gaussian kernel with arbitrary bandwidth parameter as in
Equation[2]can be reduced to this version using standard scaling techniques (Refer to|Charikar et al.
(2020, Assumption 1 in Section 5)).

Definition 5 (Setup). The approximation factor is € = Q(1/polylogn) and p* = n~°1 and
dimension d = O(1) (see Charikar et al.| (2020, Remark 1)). We assume we know a baseline
approximation p satisfying p* < p < 4u* (see|Charikar et al.| (2020, Remark 3)).

Note that * = n~°W) is the interesting regime for this problem because for p* = n~“(1) under
the Orthogonal Vectors Conjecture (Rubinstein, [2018)), the problem cannot be solved faster than
n'=°() using space n?>~°(") (Charikar & Siminelakis, 2019), and for larger values p* = n—°()

random sampling solves the problem in 7.°(!) /¢? time and space.

2.2 (c¢,r)-ANN ON THE SPHERE

We now present the definition of the (¢, 7)-ANN problem.

Definition 6 (The (c,) -ANN problem). Given an n-point dataset P € R, the goal is to preprocess
‘P to answer the following queries. Given a query point q € X such that there exists a data point
within distance 7 from q, return a data point within distance cr from q.

The (¢, 7)-ANN problem on the sphere is defined similarly, with the assumption that the dataset P
contains points that lie on the unit sphere. We now state the asymmetric LSH of /Andoni et al.[(2017)
as described in Razenshteyn! (2017) for the (¢, r)-ANN problem on the sphere.

Theorem 7 ((c,r) -ANN parameters). |Razenshteyn| (2017, Theorem 2.8.1) Let €9 > 0 be a fixed

constant. For every ¢ > 1, logllm < r =o(1), and for every py, ps > 0, such that cr < 2 — €y and

(P +1)\/pg+ (2 —1)/ps > 2c (8)

there exists a data-structure for (c,r) -ANN on a unit sphere S?~! C R where d = n°M for a set
of size n, with space n**P=+°W) query time nP+°1) and success probability 1 — ;.

Under review as a conference paper at ICLR 2026

We make two important remarks about this data-structure. The first, this data-structure is data-
independent (see Razenshteyn|(2017)). Roughly, this feature makes the data-structure more straight-
forward compared to data-independent ones, as they do not make any use of (or assumptions on) the
dataset for preprocessing. This simpler setting allows usually for a cleaner analysis (see for example
the data-dependent/independent settings in|/Andoni et al.| (2017); |Charikar et al.| (2020)).

Secondly, we elaborate briefly on the query procedure Algorithm [of this data-structure. The basic
object underlying this ANN data-structure is a tree, where each inner node contains random Gaussian
vectors, and the leaves contain subsets of the processed input dataset. Importantly, querying the data-
structure follows multiple paths in the tree, which are determined by the correlation of the query with
the Gaussian vectors stored in the inner tree nodes. Every traversed path leaves to a leaf that contains
multiple points from the original dataset. We often say that the union of all points in the reached
leaves collide with the query. We elaborate on the data-structure’s query/preprocessing algorithms
as well as the parameter setting for the theorem above in Appendix [A]

We now state properties of a key reduction to reduce general instances to the unit sphere.

Lemma 8. There exists a reduction from (c,r) -ANN problem over the {5 for n-point dataset in R,
to (c,")-ANN on the sphere problem over the {s distance for n-points on the unit sphere in R+1
where r' = & in which all the points are mapped to a sphere of radius R = r - loglogn and then
scaled by R into the unit sphere. The pairwise distances between points are preserved up to scaling
by R and an additive factor O(1/(r+/loglogn)). This incurs an n°W query time overhead.

Note that the reduction from the lemma above (Lemma allows for recovering the original (c,r)-
ANN problem, hence the points recovered by the (¢, r’)-ANN on the sphere are converted to points
in the original dataset. This standard reduction was previously used in Razenshteyn| (2017)); |/ Andoni
et al.|(2017), and we provide more details about it in Appendix

3 FRAMEWORK FOR NON-ADAPTIVE KDE

In this section, we introduce and generalize the framework of|Charikar et al.| (2020) which “reduces”
KDE to an ANN problem we refer to as the Level-j Recovery. In the following, we present the KDE
data-structure in terms of a data-structure for the Level-j Recovery problem.

Throughout the rest of the section, we assume that we are given an approximation parameter ¢ and
some baseline approximation y as in the setup (Definition [5) and Gaussian kernel (Definition [)).
The first concept is that of geometric level sets.
Definition 9 (Geometric level sets). Let J = [log, i] For any j € [J] and a query q, define the
level set: _

£l:={pieP: K(pi,q) € (277,277}
This induces corresponding distance levels: r; := max {r : f(r) € (279,2791]}. Here f(r) :=
K(p,p') forr = |[p — p||. Also define L3, := P\ U, £5-

Similarly to|Charikar et al.|(2020) we will sub-sample the dataset P at different geometric rates for
each j € [J], with the goal of recovering points from [f; given the query q, and thus we need the
following definition of a subsampled dataset and the Level-7 Recovery problem.

Definition 10. For j € [J + 1], let P; be the dataset achieved by sampling P at rate p,; :=
min (55—, 1) for j < Jand py41 = ;. Letm; := 57 be the expected size of P;.

Definition 11 (Level-j Recovery data-structure). Given the sample P; and a point q, recover all
points in /j;’ from P; with probability at least 1 — n—%o A data-structure for the Level-j Recovery
problem is parameterized by its space denoted space(;) and its query time denoted query(j).
Remark 12. In the paper, we will construct data-structures for the sample P; for j € [J]. We
ignore the last sampled set, P, which contains, in expectation, only a constant number of points
in expectation, and hence requires constant query time and space.

As in |Charikar et al.|(2020), the main technical work is dedicated to constructing efficient data-
structures for the Level-j Recovery D;, which we use in the algorithms below. We use our data-
structure for j’s that are within a range j € [co.J, (1 — ¢1)J] where ¢y, ¢; can be set to any arbitrarily

Under review as a conference paper at ICLR 2026

small constant, our data structure and details of it are in Section E]) Assuming the nice range cg, ¢1
is fixed, for z < cg, x > 1 — c¢; we use the data-structure from [Charikar et al.|(2020) for the Level-j
Recovery problem for these small j’s. We provide the formal statement about the guarantee of this
data-structure in Appendix [B.2]

Data-structure Description. We now describe the preprocessing and query procedures for the
KDE data-structure based on those described in [Charikar et al.| (2020, Algorithms 1,2).

Algorithm 1: KDE PREPROCESS

Input: dataset P, precision parameter ¢, baseline approximation 4 as in Definition 5] small
constants ¢y, c; € (0,1/2)
Clogn

—o(1
1 K+ 2 pom,
2 for K times do
3 for j < 1to J do
4 P; < subsample of P at rate p; from Definition
5 ifj<co-Jorj>(1—c1)J then
6 | Preprocess P; using the data-structure from Lemma
7 else
8 | Preprocess P; using our new data-structure D; from Lemma|[15]
9 | Store asampling of P with probability 1/n.

Algorithm 2: KDE QUERY

Input: Query q (the repetition parameter K is as in Algorithm).
Output: A 1 £ € estimate for p*.
1 for K times do
2 for j «— 1toJ+ 1do
3 Query the Level-j Recovery data-structure on q to recover points from ﬁ?, for the
L relevant repetition. '

4 S < the set of all recovered points for the relevant repetition.

5 Calculate the estimate Z <— EjE[J] ZpESﬁL‘,q K(ppv’q) (where p; is defined in Definition
J J X
| [10) for the relevant repetition.

¢ return the average of the estimations Z across all repetitions.

Query Time and Space Requirement. We now state the theorem from |Charikar et al.| (2020)
which parametrizes the space used by Algorithm[T]and time of Algorithm 2]

Theorem 13. Charikar et al.|(2020, Theorems 15, 22) For Gaussian kernel K (p, q), precision pa-
rameter € and baseline approximation ji as in the setup (Definition [3)), and assuming that for any
J € [J] there exists a data-structure D; for the Level-j Recovery problem with expected query time
query(j) and expected space requirement space(j), then there exists a KDE data-structure that sup-
ports (1 + €)-multiplicative factor approximation to the KDE value with the following parameters:

* KDE preprocessing (Algorithm uses expected space 9] (6’2 - MaX, e[space(j)).
* KDE query (Algorithm@) runs in expected time 0] (6_2 - max;e(j] query(j)).

We cite the relevant claims justifying the above in Appendix Next we derive expressions for
query(j) and space(j) for our data-strucutre D; we use in Algorithms|1|and [2|for Gaussian Kernel.

4 DATA-STRUCTURE FOR THE LEVEL-j RECOVERY PROBLEM

We now present our data-structure D; for Level-j Recovery. Notice that for r € [0,v/2],

2
(/)" /? e [, 1], and so we can focus our attention on 7’s within that range (as for other values

Under review as a conference paper at ICLR 2026

of r, the contribution of points from these distances to the kernel value of any queried point amounts
to o(1/u)). Using the Gaussian Kernel in Deﬁnition@ gives the distance level r; = /23 /J for each
j € [J]. We also use the distance scale z; = j/J, hence r; = |/2z;.

Setting up the (¢, r)-ANN problem on the sphere. We will use a data-structure for (¢, r)-ANN
to solve Level-j Recovery. Our dataset will be the sample P; (see Definition [I0) with expected

size m; = expy,,(1 — x;). The near distance will be 7 = |/2x; and far distance cr = V2, thus

¢ = \/1/z;. We use the data-structure from Theorem for (¢, r)-ANN problem on the sphere, thus
to use this first we transform our points to lie on the unit sphere Lemma [§] (see Appendix [A.T] for
full details). This reduction incurs certain considerations, the most important of which is that in the
following we make the assumption that j lies within the nice range [co.J, (1 — ¢;)J] for some small
constants co, c; € (0,1/2). In this range, j = O(.J) and the size of the dataset is m; = (1/p)°M).
These simplify our calculations, and have little influence since cg, c¢; are chosen arbitrarily small.

The query/space requirements of our data-structure. The data-structure for the (¢, r)-ANN we
use is as per Theoreml [7} Our data-structure D; will build on top of this data-structure as follows. The
preprocessing will remain the same, and so 1s the space requirement. For the query procedure we
apply the query procedure of the data-structure for (¢, 7)-ANN problem on the sphere (Algonthm'
but go over all points in the leaves reached by the ANN-query procedure. We analyze the expected
number of points from level sets £ for i # j that appear in the leaves of the data-structure for a
given query q. We formally analyze it in the our main technical lemma in the appendix, Lemma 3T}
which gives a data-structure for the Level-j Recovery based on the data-structure for (¢, r)-ANN
problem on the sphere from Theorem for any choice of p,, p, that satisfies Equation @])

Restricting the space requirement. Since the data-structure for the (¢, r)-ANN problem on the
sphere from Theorem [/|is parameterized by p,, ps, we need to explain the specific choice of these
parameters for our setting of the Level-j Recovery data-structure. For any § > 0, we choose to set
the parameters so that the space requirement of the Level-j Recovery data-structure is bounded by
expy,,(1+ 0 + o(1)). This choice enforces a constraint on the space exponent p;:

expy,, (1+ ps +0(1)) < expy/, (140 +0(1)) 9)

and as a result, it also enforces a constraint on the query exponent p, by the ANN-tradeoff in Equa-
tion (8). These constrains splits the range of ; € [0, 1] (correspondingly, j € [.J]) into two regimes,
where the threshold between them is 6(4) which is the upper bound on the regimes of x; at which
Equation (9) holds. In the first regime, we call the constant query distance scales, one can set p; > 0
(which implies that the query time for the ANN problem becomes constant), since the smallest space
that supports this does not exceed the query time. For the second regime we call the polynomial
query distance scales, the space is upper bounded to not exceed our restriction, which enforces con-
strains on the allowed values p, (which implies that the query time for the ANN problem becomes
polynomial). For further discussion refer to Appendix |C} this is summarized as follows.

Definition 14 (Thresholds for Query/Space Exponents). For é > 0 and = € [0, 1] we let:
Threshold function: 6(4) = £ ((0+1)(0+9)—(0+ 3))

Space and Query Exponents Bounds (to be used in Lemma T5):

.oy [T <60 . 0 , fe<00)
PO =N sk ifp) 0 PO (zﬁ‘vfi;w)(‘S*”)) if > 6(6)

Putting everything together. Our data-structure for Level-j Recoveryis obtained by instantiating
Lemma |31| with the parameters chosen above. Its properties are in the following lemma, and its
proof is in Appendix [C]

Lemma 15. For ¢ > 0, small constants co,c1 € (0,1/2), j € [cod, (1 — ¢1)J] (where x; = j/J),
pq(0, z) from Definition the data-structure D for the Level-j Recovery problem with preprocess
and query procedures from Algorithms 3 and [6](found in Appendix[C) has (expected) query time at
most: expy ;,, (§(6, ;) + o(1)) and (expected) space at most: expy ;,, (1 + 6 + o(1)) where

£(6,2) = min max](yf:c)Jr(lfx) (py(i E (yx(yl)\/ﬁ>> (10)

p>pq(8,2) ye(z,1 11—z NZ3

Under review as a conference paper at ICLR 2026

5 KDE DATA-STRUCTURE TRADEOFFS

In this section, we use the data-structure D; from Lemma E] to construct a KDE data-structure.
Since our data-structure is parameterized by § such that its space requirement is (1/p)* o+ we

can also plug different value of § and get a space-query tradeoff for our KDE data-structure as we
do in Figure

Theorem 16. For any 6 > 0, precision parameter € and baseline approximation 1 as in the
setup (Definition), there exists a KDE data-structure for the Gaussian Kernel (see Definition
that supports (1 + €)-multiplicative factor approximation to the Kernel value, in expected

query time at most O <6*2 -expy /, (§(0) + 0(1))) time, and expected space at most at most

9] (e_2 expyy, (1+6+ 0(1))) where §(0) = max,¢o,1) £(9, x) for £(9, x) from Equation .

The above theorem follows by plugging the parameters of the relevant data-structures into Theo-
rem [I3](see proof in Appendix [D). We also show two consequences of Theorem [I6]which follow by
numerical evaluations. These highlight the best query time achievable in polynomial space, and the
query time achievable with linear space (see proof in Appendix D).

Theorem 17. For any precision parameter € and baseline approximation (i as in the setup (Defi-
nition), there exists a KDE data-structure for the Gaussian Kernel that allows for approximating
w* := K(P,q) up to (1 & €) multiplicative factor, in the following two regimes of expected query
time and space:

* Query time at most: exp ,, (0.05 + o(1)) and space at most: exp; ;,, (4.1 + o(1))

* Query time at most: exp ;,, (0.1865 + o(1)) and space at most: exp, ;,, (1 + o(1))

The query exponent|Charikar et al.| (2020) get for the data-independent LSH setting is 0.25, EL and in
general they get 0.173, both cases with essentially linear space. Our main result could be interpreted
as significantly improving the query time exponent over their main result, with the caveat that their
space requirement is only 1/u (compared to 1/p415 for us), or from the perspective that even within
the same space constraints, when § = 0, our query exponent gets quite close to their main result
with a much simpler analysis. Finally, we computed numerically the values of the query exponent
£(0,x) and the KDE query exponent £(§), and plot these in Figure|l} This plot demonstrates the
plateau of the KDE query time £(J) at around 0.05, and that for § ~ 3.15 increasing the allowed
space does not yield improved query time. This limitation had been discussed in Section [I.2] We
discuss these plots further in Appendix [D}

0.20 L ‘ 0.20
‘ §=0 | 3 |
:_°_5i1 | |]
0.15 H{==s2% [+ | 0.15 -
[[——od=16]|! ! !
O =2 N D
- | T I I | o |
% 0.10 | i i i i = 0.10
[| |
0.05 — 0.05 -
| : :]
[I |]
0.00 T . T T il 0.00 T T T T \
0 0.2 0.4 0.6 0.8 1 1 2 3 4 5 6
T 146

Figure 1: Left: £(, z) from Equation , d € {0,1,2,4,16,00} (dashed verticals at x = 6(0)).
Right: KDE space exponent (1 + &) vs. KDE query exponent &(0) = max,¢o,1) £(0, z).

>We mention that one could further recover this result using our data-structure by equating the space and
query exponent, i.e., forcing a symmetric setting of parameters.

Under review as a conference paper at ICLR 2026

REFERENCES

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. Commun. ACM, 51(1):117122, January 2008. ISSN 0001-0782. doi:
10.1145/1327452.1327494. URL https://doi.org/10.1145/1327452.1327494,

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-based
time-space trade-offs for approximate near neighbors. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA °17, pp. 4766, USA, 2017. Society
for Industrial and Applied Mathematics.

Ery Arias-Castro, David Mason, and Bruno Pelletier. On the estimation of the gradient lines of
a density and the consistency of the mean-shift algorithm. The Journal of Machine Learning
Research, 17(1):1487-1514, 2016.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615-626. IEEE, 2018.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation in
high dimensions. Advances in neural information processing systems, 32, 2019.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp.
1032-1043. IEEE, 2017.

Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 769-792.
IEEE, 2019.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 172-183. IEEE, 2020.

Moses Charikar, Michael Kapralov, and Erik Waingarten. A quasi-monte carlo data structure for
smooth kernel evaluations. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 5118-5144. SIAM, 2024.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG 04, pp. 253262, New York, NY, USA, 2004. Association for
Computing Machinery. ISBN 1581138857. doi: 10.1145/997817.997857. URL https://
doi.org/10.1145/997817.997857.

Jianqing Fan. Local polynomial modelling and its applications: monographs on statistics and ap-
plied probability 66. Routledge, 2018.

Edward Gan and Peter Bailis. Scalable kernel density classification via threshold-based pruning. In
Proceedings of the 2017 ACM International Conference on Management of Data, pp. 945-959,
2017.

Alexander Gray and Andrew Moore. N-body’problems in statistical learning. Advances in neural
information processing systems, 2001.

Alexander G Gray and Andrew W Moore. Nonparametric density estimation: Toward computational
tractability. In Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 203—
211. SIAM, 2003.

Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and Statis-
tical Computing, 12(1):79-94, 1991.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604-613, 1998.

10

https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857

Under review as a conference paper at ICLR 2026

Piotr Indyk, Michael Kapralov, Kshiteej Sheth, and Tal Wagner. Improved algorithms for kernel
matrix-vector multiplication under sparsity assumptions. In the Thirteenth International Confer-
ence on Learning Representations, ICLR, 2025.

Sarang Joshi, Raj Varma Kommaraji, Jeff M Phillips, and Suresh Venkatasubramanian. Comparing
distributions and shapes using the kernel distance. In Proceedings of the twenty-seventh annual
symposium on Computational geometry, pp. 47-56, 2011.

Dongryeol Lee, Andrew Moore, and Alexander Gray. Dual-tree fast gauss transforms. Advances in
Neural Information Processing Systems, 18, 2005.

Jeff M Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. Discrete &
Computational Geometry, 63(4):867-887, 2020.

Parikshit Ram, Dongryeol Lee, William March, and Alexander Gray. Linear-time algorithms for
pairwise statistical problems. Advances in Neural Information Processing Systems, 22, 2009.

Ilya P. Razenshteyn. High-dimensional similarity search and sketching: Algorithms and hardness.
PhD thesis, Massachusetts Institute of Technology, 2017. URLhttps://dspace.mit .edu/
bitstream/handle/1721.1/113934/1023861862-MIT.pdf?sequence=1.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing, pp. 1260-1268, 2018.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

J Shawe-Taylor and N Cristianini. Kernel methods for pattern analysis, cambridge university press,
2004, 2004.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Rehashing kernel
evaluation in high dimensions. In International Conference on Machine Learning, pp. 5789-5798.
PMLR, 2019.

Gregory Valiant. Finding correlations in subquadratic time, with applications to learning parities and
the closest pair problem. J. ACM, 62(2), May 2015. ISSN 0004-5411. doi: 10.1145/2728167.
URL https://doi.org/10.1145/2728167!

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Yang, Duraiswami, and Gumerov. Improved fast gauss transform and efficient kernel density esti-
mation. In Proceedings ninth IEEE international conference on computer vision, pp. 664—671.
IEEE, 2003.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In International Conference on Machine Learning, ICML, pp.
40605-40623. PMLR, 2023.

A SPHERICAL (¢, 7)-ANN DATA-STRUCTURE FROM RAZENSHTEYN (2017

The data-structure for solving the (¢, r)-ANN problem on the sphere from Razenshteyn| (2017, Sec-
tion 2.4) is central to our work, and we begin by defining the data-structure and stating its guarantees.
The data-structure is parameterized by two parameters 7, 17, governing the space-query time trade-

off (which are related tho p,, ps in Theorem (7] as in Remark . Given a dataset P C S% ! of n

11

https://dspace.mit.edu/bitstream/handle/1721.1/113934/1023861862-MIT.pdf?sequence=1
https://dspace.mit.edu/bitstream/handle/1721.1/113934/1023861862-MIT.pdf?sequence=1
https://doi.org/10.1145/2728167

Under review as a conference paper at ICLR 2026

points on unit sphere in d-dimensions, preprocessing procedure is as follows:

Algorithm 3: ANN (ON THE SPHERE) PREPROCESS

Input: dataset P, parameters T', K, 15, 14
1 Initialize a tree with K + 1 levels (from 0’th level to K ’th) and an upper bound of T’ of the
out degree. There are TX nodes in the K’th level.
2 Let vy denote the root, and £,, the path (excluding vg) to any node v.
3 Store a random Gaussian vector z,, for each node v except the root.
4 Define:

P,={peP:WYW €L, (zy,p) > 1}
Every leaf v at level K stores the subset P, explicitly.
s Recursively build the tree as follows - For a given node v, sample 7' Gaussian vectors

g1, ...,gr ~ N(0,1)% Then for every i such that {p € P, : (g;,p) > 7,} is non-empty,
we create a new child v’ with z,, = g;, and recursively process v'.

After preprocessing the dataset, when we are given a query we use the following procedure to return
an approximate near neighbor.

Algorithm 4: ANN (ON THE SPHERE) QUERY

Input: Tree from Algorithm parameters 7', K, 7,7, query ¢ € S%~1
1 To answer a query q € S9!, we start from the root vy and traverse the tree.
2 Upon traversing node v, consider every child of v for which (z,,q) > 1, where n, > 0, and
proceed recursively.
3 If leaf node reached, return the first point with distance < cr to q. > See Remark

Remark 18. For the ANN problem, it suffices to return the first point encountered at distance < cr
from the queried point. In our use of this algorithm we assume that all points in the leaves reached
by the query algorithm are returned.

To state the space and query time of the above data-structure, we will need the following notation,
which will be useful for describing the properties of the LSH function.
Definition 19. Forany p > Oandz € S9! let F(p) be defined as, F(p) = Pr, nr0,1)e[(z,0) > p]

and for any ¢ > 0 and u € S¢~! such that ||u — z|| = s let G(s, p, o) be defined as, G(s, p,7) =
Prsz(O,l)di<Zau> >p and <Z,V> > Ul'

We now state the success probability, space and query time of the preprocess and query procedures
of Algorithms[3]and] For the stating these claims we assume that there exists p € P for query q
with [|[p — q| < r.

Claim 20 (Success probability). |[Razenshteyn| (2017, Lemma 2.8.4) For any N > 0, if T >

% then the probability that there is at least one leaf in the data structure created by Al-

gorithm |3| where p, q collide during Algorithmis at least 1 — nilﬂ
Claim 21 (Space). |[Razenshteyn| (2017, Lemma 2.8.5) The expected space required for the data-
structure created by Algorithm [3is at most: n'*+°() . K - (T - F(n,))X.

Claim 22 (Query time). [Razenshteyn| (2017, Lemma 2.8.6) If TF(n,) > 3 then the expected run-
time of Algorithmis atmost: n°M - (T (T'- F(n))X +n - (T G(cr,ns,mq))%).

For the above claim, the proof actually shows the following: the expected query time spent going
down the tree in Algorithm without scanning the leaves is n°) - (T - (T - F(n,))*). Moreover,
the expected number of points scanned at the leaves reached is n'+°() . (T'- G(cr, ns, 1)) . The
number of points scanned is always at most one more than the number of far points, i.e., lying a
distance greater than cr from q, that reached the same leaf. Additionally, we present the following
corollary, implicit in Razenshteyn! (2017, Lemma 2.8.6)

Claim 23. For any query q and p € P such that ||p — q|| > ¢ and each leaf ¢ in the tree constructed
in Algorithm the probability that both p and a query q end up in ¢ is at most: (G(t,ns,14))%.

3This is a slight variation of the original claim from [Razenshteyn| (2017) which trivially follows from its
original proof.

12

Under review as a conference paper at ICLR 2026

Remark 24 (Parameter setting for Theorem [7). The result claimed by theorem Theorem [7] is
achieved by instantiating Claims with the following parameter setting, for p, > 0 (see
also Razenshteyn| (2017} Sections 2.8.4, 2.8.5)):

1. K =+Inn
2. /7= a(r)B(er)—a(er)B(r)/Pq N Ber)—B(r)/Pqg

a(r)—a(cr) ’ a(r)—a(cr)

r)B(er)—(1—a(r)a(er q
3. s = Anlen-(-ataten) vy

a(r)—a(er)

4. ny =21, " *n, n,= /27, " n.

77‘5+7'q72a(t)»m
5. G(t,ms,m) X =n B(6)2 . eTOWlogn-loglogn) for ¢ guch that r < ¢ < cr.

6. T — 10logn < eO(«/logn-(log(logn))ﬂ < no(l)
: G(Tﬂ?smq) - - ’

7. F(nq)K =n-G(er, ns,nq)K.

2 .
where for 0 < s < 2 we use a(s) = 1 — 5 to denote the cosine angle between two points on the

unit sphere with distance s between them, and 3(s) = /1 — a(s)? for 0 < s < 2 for the sine of
the same angle.

A.1 ANN TO ANN ON THE SPHERE (PROOF SKETCH FOR LEMMA [§))

In order to apply the data-structure for the ANN on the sphere presented in Appendix |A|to gen-
eral datasets not necessarily on the sphere, we will need a reduction. In particular we will need
a reduction of (c,7)-ANN problem for n-point dataset in R, to (¢, r’)-ANN problem for n-point
dataset on the unit sphere in R? where ' = Tog llog —. This reduction is taken almost verbatim from

Razenshteyn| (2017, Section 2.5) (we assume that all points are normalized so that r» = 1):

1. We reduce the dimension to d = 1og1+°(1) n by using the dimension reduction lemma of

Johnson-Lindenstrauss. This step introduces multiplicative distortion 14 o(1) for pairwise
distances, which is acceptable for us.

2. Next, we reduce the diameter of the dataset to O((loglogn)'/4). This can be done by parti-
tioning the dataset using LSH family from Datar et al|(2004)) and querying the part, where
the query belongs. We need to repeat this procedure n°(!) times to get high probability of
success.

3. Finally, we reduce the problem to the unit sphere case with r = This reduction

can be found in|Valiant (2015).

1
loglogn*

These steps imply that we can, with no asymptotic costs to the other parameters, consider the use of
data-structure for the (¢,)-ANN problem on the sphere (up to n°(!) factor in query time and o(1)
in the other parameters). An implicit property of the reduction is critical for us and is captured by
the following claim:

Claim 25 (Implicit in the proof of Corollary 3.4 from Andoni et al.| (2017)). Let P C R? be a set of
points contained within a ball of radius D centered at the origin, such that for all x € P, ||z||2 < D.
Let R be a real parameter such that R >> D. Define a mapping ¢ : P — R*+! by first lifting a point
2 to the hyperplane at height R via w(z) = (z, R), and then projecting it radially onto the sphere of
radius R:

R R

¢(Z‘) = ||71_(1.)||27T('/E) and 77(33) = /7”58”% T R2 (.’E,

This mapping has the following properties:

R)

1. Mapping to the sphere: Va € P, the image ¢(x) lies on the sphere of radius R in R4+1,

13

Under review as a conference paper at ICLR 2026

2. Single point displacement: the distance between 7(x) and the projected point ¢(z) is
2
bounded by: [|¢(x) — m(x)|s < 122,

3. Pairwise-distance distortion: For any two points x,y € P, the distance between their
. 2
images is no greater than the original distance: [|¢(z) — ¢(y)[2 < £ + [lz — yl|2.

We use the above claim with D = O((loglogn)'/*) (which we get from the second step in the
reduction) and R = r - D?\/loglogn = r - loglogn. The mapping ¢(x) maps points to a sphere
of radius I, with only a small distortion, and in order to reduce the points to the unit sphere we
scale all points by 1/R. Thus we obtain a critical linearity property of the reduction essential for
our analysis, which is Lemmal 8]

B STATEMENTS FROM|CHARIKAR ET AL.|[(2020)

B.1 LEVEL-SETS SIZE BOUNDS

The following claim about the level sets E? (see Deﬁnitionlgl) bounds the size of level sets L? using
a simple Markov bound.

Claim 26. Charikar et al.[(2020, Lemma 20) | L[| < 2/nu* < 2/np for all j € [J].

B.2 PREVIOUS LEVEL-j RECOVERY DATA-STRUCTURE

We recall the parameters of the data-structure for the Level-j Recovery that was considered in that
paper.

Lemma 27. |Charikar et al.|(2020, Theorems 15, 22) For the Gaussian kernel K and every j € [J],
given the sample 'P;, and a query q, there exists a data-structure D; for the Level-j Recovery that
uses the following query and space bounds (where x; =):

* (expected) query time at most: expy ;,, (z; (1 —z;) (1+o(1)))
* (expected) space at most: min (n ~expy, (7 (1 —z5) (1 +0(1))),expy, (1 + 0(1)))

The above implies that for j smaller than some arbitrarily small constant 7, one gets query and space
requirements that are arbitrarily small. For the space bound we remark that in any case, our new
data-structure in Section [4] has space requirement of at least 1/, since we ignore the first term of
the minimization in our discussions.

B.3 ESTIMATOR ACCURACY FOR THEOREM 13|

In this subsection we cite the claim from Charikar et al. (2020) that prove that the KDE data structure
from Algorithmsand supports (1=+¢) approximation for ¢ as in the Setup (Definition Theorem.

The first claim argues that, conditioned upon the success of the ANN data-structure, argues that the
estimator is unbiased.

Claim 28 (Charikar et al|(2020), Claim 24). Let pu* € (0,1), u > p* , e € (u'°,1), g € R
Assume that for any data-set and for any of the K repetition (see the definition of K in Algorithm[T}),
the data structure D; constructed in Algorithm E] is able to solve Level-j Recovery (Definition [11)
with probability at least 1 — n%, the estimator Z for any repetition constructed in Algorith
satisfies the following:

(L—n)m-u* <E[Z)<n-p’

We note that (Charikar et al| (2020, Claim 24), as written in the reference, uses a previous claim
about the recovering probability of the data-structure they construct, but is essentially oblivious to
it’s inner working, and in fact it works for any data-structure with good enough recovery probability.
The next claim from [Charikar et al.| (2020) argues that running Algorithms[T]and 2] with a constant
factor approximation to p* suffices to obtain an accurate estimate of p*.

14

Under review as a conference paper at ICLR 2026

Claim 29. Charikar et al.| (2020, Claim 25) For every u* € (0,1), every e € (u'?, 1), every q € R,
using estimators Z, for every repetition constructed in Algorithm where p/4 < p* < p, one can
output a (1 £ €)-factor approximation to p*.

C DEFERRED PROOFS FROM SECTION [4]

Our main goal in this section is to prove Lemma Before that we need to prove various inter-
mediate helper lemmas. Our first lemma is a general statement about the (¢, 7)-ANN data-structure
from Section [A] It quantifies the probability that points from intermediate bands ¢ € [r, cr] appear
in the set of points in the leaves that is gathered in Algorithm 4]

Lemma 30. Let P be a dataset of size n that contains points on the unit sphere, which is prepro-
cessed into a data-structure for (c,r)-ANN problem on the sphere with a query parameter p,. Let
t € [r,cr]. Given a query q and a point p € P at distance at least t from q, the probability that p, q
collide in at least one leaf is at most:

(et =2 1= 27— 2 -)Fﬁ)

2
(¢ —1)2r2¢2 (1 — %)

expn Pq -

Proof. We are interested in the probability that there is at least one leaf in the data structure con-
structed in Algorithm [3| where p, q collide. By Claim for each point p, at distance ¢, and each
leaf ¢ in the tree, the probability that both p and q end up in £ is at most: (G(t,ns,7,))*. Since
there are T leaves, by union bound, the probability that p appears in the leaves reached for query
q is at most: T5 - (G(t,ns,7m,))%. Then we get:

_ ((atm—a®)plen) —(aler)—a(®) B(r) ypg)?
T (G = P e o)
b)
c(t2—r?)y 1= (2 e2,2)\/1-2Z)’
- - A) oy
. (c2-1)27r242 (171>
The bound in the claim follows by using the parameters and the definitions of «(-), 5(+) in Remark
24 O

Algorithms for the data-structure D; for the Level-j Recovery.Next, we give a formal description
of the data-structure we use for the Level-j Recovery problem, used to preprocess P; (of size mj,
see Definition [I0). We emphasize that the underlying data-structure we use is essentially the data-
structure for the (¢, 7)-ANN problem on the sphere from above (with relevant parameters c, r), with
a small but crucial difference in the query procedure. We also use the sphere reduction from Lemma
which was discussed in Appendix

Algorithm 5: D; PREPROCESS

Input: Dataset P; (of size m;, see Definition , parameters pg, p (and letting x; = j/J)

1 Reduce from (y/1/x;, /2x;)-ANN to (/1/z;, /2z;/R)-ANN on the sphere where
R = /2z; -loglog((1/p)*~*7) (see Lemma.
2 Use the data-structure for ANN on the sphere from Theorem with parameters ps and p,.

Algorithm 6: D; QUERY

Input: A query q, a preprocessed ANN on the sphere data-structure for P; via Algorithm 3]
1 Use the sphere reduction from Lemma|8|to convert q to a valid query q’ on the sphere.
2 Run the query algorithm of the ANN on the sphere Algorithm onq'.
3 Scan all returned points to retrieve all points (on the sphere) from the leaves at distance
rj/R from g’ (see Definition 9)).
4 Return the corresponding points from P; to the points recovered in the previous step.

15

Under review as a conference paper at ICLR 2026

Overview of our analysis. After describing the algorithm, we provide a general statement about
the query time and space requirement of the data-structure. Note that the space is exactly as in the
data-structure for the (¢,)-ANN problem on the sphere, but the query time is quite different, and
we now explain its derivation. Recall that during when querying q, the query algorithm of the (¢, r)-
ANN on the sphere in Algorithm] ends up with multiple points that collided with the query q (see
Appendix [A]for more details).

The query time of the ANN structure accounts for the number of far points, i.e., at distance most
bigger than cr from the query. Since our goal is to recover the points in £ that survives the sampling
for P;, we would need to scan all the points reached by the data-structure for q. However, from the
density bounds of Claim 26(we can bound how many points from £ for i # j both “survived”
the sampling step and also collide with a point in £ in expectation. Using properties of the ANN
scheme on the sphere from Appendix [A] we bound the probability they collide with q in the ANN
structure. These considerations make the query time of our data-structure, up to polylog factors, the
maximum over other level sets ¢ # j of the number of expected points that are in the sample P;
and collide with q during the query (which is potentially bigger than the query time for the ANN
data-structure).

Lemma 31. Ford >0, j € [coJ, (1 — c1)J] (for arbitrary small constants cy, c1), pq, ps > 0 that
satisfy Equation (@), there exists a data-structure D; for the Level-j Recovery problem that uses
preprocess and query procedures from Algorithms [3 and[6|and has the following properties (where

* (expected) query time at most: expy ;,, (V(pq, ;) + o(1))
* (expected) space at most: expy,, (1 + ps +o(1))

where:

T y—x 2
V(p,x) = max (y —z) + (1 —x) (py(l_m)g(7z (yl)\/ﬁ> > (11)

y€Elz,1]

Proof. In the proof we will use the normalize index z; = j/J instead of j € [J] and correspond-
ingly x; = i/J fori € [J] \ {j}. Our goal is to construct a data-structure that will enable us to
recover all points in E;‘ in the sampled set P;, or equivalently, all points at distance at most r; from
the query q. Our overall strategy will be to construct a ANN on the sphere data-structure from The-
orem(See Appendix on the sampled set P;, whose size is size is m; = 1/(27p) = (1/p)' =%
(see Definition[10).

Within the sampled dataset, we focus our attention on points at distances r from q such that r €

[0,/2], as otherwise, their contribution to the kernel value amounts to o(1/4) (see Definition .
Since our points of interest in the dataset have r within that range, we aim to construct a data-

structure for the (c,)-ANN problem on the sphere where ¢ = v/2/r; and 7 = r; (such that the

close points are at distance r; and the far at distance v/2). In the following discussion, the parameters
Pq> Ps we use in for the ANN data-structure are unspecified (since at this point, they can be chosen

arbitrarily). Since r; = ,/2x; for the Gaussian Kernel by the definition of the Gaussian Kernel
(Definition |4{and the level set radii in Definition |§I) we have ¢ = /1/z.

Now we address the number of points from different levels £ for ¢ # j are in subsampled set P;.
By Claim the size of the sampled set £ for each i is at most 2'nu = nu'~%i. Since the set P;
is sampled at rate p; = 1/(2/nu) = p' =% /n, the number of sampled points from levels z; < z; is

at most O(1):
Z e 1 1

’u/riij
T; <T;j x; <Tj

Additionally, in expectation we have at most one point from [,? after subsampling (again by Claim
26)), which we want to recover, and there is expected number of 2(1/u)% =% = O((1/p)%~%)
points from bands L for ¢ > j in the set P; (see Definition @) We denote the exponent of that
quantity by:

CD(xj,aci) =T; — Ty

16

Under review as a conference paper at ICLR 2026

The points from E? are at distance at least r; = /2i/J = /2z; from q, while our data-structure
was constructed for r; = |/2z;.

We now use Lemmato transform the problem from a (\/% , \/E)-ANN problem of points in
R? to the (1/1/x;, \/22;/R)-ANN problem on the sphere where and the points lie on a sphere S,
for R = \/2x; -loglog((1/p)' %) (see also Appendixfor more details). This reduction incurs
a small negligible (1/ u)"(l) factor to the query time. We note that since j is in the nice regime,

x; € [co, 1 — c1], this implies that the size of the dataset is m; = (1/1)°(), the radius for our level
of interest is ; = O(1) (also z; = O(1)) and the scaling R = O(loglog((1/u)°W) = w(1).

By Lemmal(g] the sphere reduction keeps pairwise distances (before scaling by R) the same up to a
factor of O(1/(r;j+/loglogm;)) = o(1), and the scaling changes the pairwise distances by a factor
of 1/R. Hence, we can think of the induced level-sets £ of the dataset (for every j € [J]) after the
reduction as containing the points that would have been contained in the corresponding level-sets
E;“ before the reduction, with the only difference being that the distances r; are scaled to r; /R for
ever j € [J]. Hence, in the following we continue with the assumption that the points are on the
sphere (and hence we can use the data-structure for ANN on the sphere), and keep the notation for
the level sets and the query. We also use the fact that the reduction from Lemma [§|allows to recover
the points from the original dataset, before the sphere reduction.

Recall that our goal is to recover the points in E? from P;. These points will collide with g when
running the query algorithm Algorithm [of the data-structure for ANN on the sphere as per Claim
with 1 — 1/ poly(n) success probability. For our setting, the query Algorithm@ scans all points
reached by the query algorithm for ANN on the sphere, and hence we must account bound the
number of points from all £ for i > j that collide with the query q in the data-structure for the
ANN on the sphere and are therefore returned by the query algorithm (note that for ¢ < 7 we saw that
there’s only a constant amount in P;). Applying Claim [30|for ¢ = 7; /R, = r;/R and ¢ = \/2/r;
(and since the dataset is of size (1/u)'~%) we get that the collision probability between a query q
and points from £ in the sample P;, is at most (1/p)X(P4:%5%:) where:

2 .2 cr? 2 2.2 3 ’
e(r; —rj) 1—ggs —(ri —c rj) 1 — 142/Pq

X(vamja xl) = (1 - .’L’) Pq — 2 + 0(1)
(2 =1)%r3r? (1 - 41§2)
(221 e~ - D1~ geyma)
= (1 - xj) Pq — - (1—=;)%=, + 0(1)

(- o)

= (1-2y) <pq a e (xﬁ ~ (@i - wa)Q +o<1>>

The second equality follows by plugging the values of r;, r; and the last equality follows by putting
aside o(1) terms coming from the fact that R = w(1). Hence, the expected number of points from
L3 that collide with q in the P; is at most:

EE[probability that points from £ collide with q] < (1/4)®(@s-@)+x(pa.z5.20)

Now we bound the expected number of collisions with q in the sample P; from all ¢ > j :

E[number of points in E? NP;, Vi > j colliding with ql < Z(l/u)®(w,y)+x(pq,x7y)
i>j
S J . max (1/u)¢($j,Zi)JrX(Pq,Ij,zi)
i€(5,J]
S 6 (max (1/M)(P(wj7wi)+X(pqyzj7wi))
i€j,J]
< (1/p)maxveis @ (x;,y)+x(pq>x;,y)+o(1)

17

Under review as a conference paper at ICLR 2026

and we define:

v(p,) = max ®(z,y) + x(p, v, y)
y€([0,1]

= max (y — x o . T y—z 2.
=gl ord)<p y(1_3;)2<\/5 (y 1)ﬁ)>

This latter function is the function (p, «) defined in the lemma statement. We note that the final up-
per bound maximization over the continuous range y € [0, 1] to account for all in-between level-set
collision probabilities, as the distances between points and the query lie within a range of distances,
according to the level-set definition in Definition [9] (and hence we do use the analytic behavior of
the collision probability). Finally, we mention that maximizing over y € [0, 1] rather than y € [, 1]
does not decrease the maximum (and more so because since, as seen above, no y such that y < x
would not be maximizer).]

Explanation for Definition We elaborate on the two regimes for j € [J] (correspondingly
xj = j/J) when enforcing the space limit in Equation (9).

* Constant query distance scales (xz; < 6(d)). In this regime, even if one uses maximal

setting of ps = lfi“g‘;y (which matches the lower bound enforces by plugging p, = 0 and
the value of ¢ into Equation (8)) the space requirement of the data-structure does not exceed

expy, (1 + 0+ o(1)). Hence, any setting of p, > 0 could be used.

* Polynomial query distance scales (x > 6(0). in this regimes the exponent p; that satisfies
Equation (9) must be such that p; < ‘lsf—i Plugging the upper bound on the space exponent
(in order to allow as much flexibility for the choice of the query exponent) into the ANN-
relation@ gives a lower bound on p,.

Finally, we conclude with the proof of Lemma [I5]

Proof of LemmalI3] The proof follows by instantiating Lemma [31] with specific value of pg, ps.
Our choice of parameters, is to set ps = ps(J, z;) (where x; = j/J), where p;(d, ;) is defined in
Definition [T4] as the space exponent that guarantees that the space requirement of the data structure
will be at most (1/4)'+9+°(1) (see also the discussion above and in Section [d). The value of p,
is set to be the value of p that minimizes query exponent of a Level-j data-structure based on the
data-structure for the (¢, r)-ANN problem on the sphere, analyzed in Lemma [31]in Appendix [C]
which is min,> . (s.2,) 7(p, z;) (where ~ is defined in Equation). Note that this is exactly the
expression for the query exponent £(J,) defined in Equation (10). Similarly to before, pq (0, z;)
is defined in Definition [14] as the smallest query exponent possible for the ANN data-structure on
the sphere, with the space exponent limitation of 1 + § + o(1) (see also the discussion above and in
Section). O

D DEFERRED PROOFS FROM SECTION[3]
In this section, we provide the proofs for the theorems in Section 5]
Proof of Theorem[16] Recall that the query and space requirement of the KDE data-structure from

Theorem [T3]is set to the max query and space requirement for the Level-j Recovery data-structure.

First we choose ¢y = ¢; = 0.01, which set the nice range to be [0.01,0.99]. Then, we note that
for this choice, and for x < 0.01 and = > 0.99, the query time of the data-structure from Lemma
gives query time of at most exp,,,,(0.01 + o(1)). We also argue that the space requirement

of this data-structure min (n ~expy, (0.01+0(1)),expy, (1 + 0(1))) wouldn’t matter, since for
any 6 > 0, the space requirement of the dataset D; is at least exp, ,, (1 + o(1)).

For x in the nice regime, we plug the parameters of our new new data-structure D; for Level-j
Recovery from Lemma (T3] For the space requirement, we set the parameters of this data-structure
so that our data-structure uses exp /(1 + d + o(1)). For query time, we set it to be maximal over

18

Under review as a conference paper at ICLR 2026

x € [eg,1 — c1] of &(8, x), which is defined in Equation as the exponent of the query time
for the Level-j Recovery data-structure. We can therefore upper bound the query time exponent by
max,e(o,1] §(J, ¥) which is £(0). Note that we can consider = € [0, 1] instead of in the nice range as
we give an upper bound on the expected query time.

Finally, we note that from numerical evaluations, we see that £(6) > 0.04 for any § (see also
Figure 1} where the graph of £(0) plateaus, and discussion below), which means that the query time
in the range x < 0.01 or x > 0.99 doesn’t effect the maximization. O

Proof of Theorem[I7] The proof of this lemma is based on numerical evaluations of the expression
for £(6) = max,e(o,1 £(6,), where £(6,) is defined in Equation (10). Our first result identifies
the value of § at which

<
xrgggg)&(& z) < xrg%f(ciaf) (12)

for 6(5) defined in Definition[I4] At this point, the maximal value of the curve £(4, z) for z < 6(6)
is higher than that for x > 6(0). While the value of £(,) for x > 0(0) decreases with ¢, the value
of £(4, z) for x < 0(0) is in fact independent of §. Hence, from the value of § at which Equation
holds, the value of £(J) = max,¢o,1) (6, z) cannot decrease further. Via numerical evaluations, we
get that Equation occurs at § ~ 3.15 and £(0) =~ 0.05. These values are also demonstrated in
the left figure of Figure|l|(and discussed below). Similarly, for § = 0, one can numerically evaluate
£(9) (noting that py(d,) from Theorem [14]is 0, which simplifies the constraints for evaluations).
Numerically we get that £(0) = 0.1865.

Finally, we provide a script (in Appendix [D.T)) for reproducing the numbers we report. The script
estimates the value of £(d) at 6 = 0 and prints the point ¢ at which the minimum of £(§) is first
achieved. O

On the functions £(0,z) and £(5). We elaborate on Figure [I] which show the following. The left
figure shows the exponent function for the query exponent of our data-structure £(J,) for the level
x (assuming x = j/J, see Lemma [15| and Equation). The right figure shows the query time
exponent of the KDE data-structure £(§) = max,¢[o,1)£(J, z) (see Theorems (13[and . Both
of these functions are plotted in Figure [T} where the inner maximizations and minimizafions are
computed numerically (similarly to the script in Appendix [D.T).

* The left figure in Figure |1| shows the behavior of the function £(d,) for different values
of § (as a function of x € [0, 1]). The vertical lines denote the thresholds for the distance
scales 6(9) from Definition |14 (the threshold where below one can use constant query for
the underlying data-structure for ANN on the sphere. See discussion in Appendix [D). The
threshold and the curve for the same J are colored in the same color.

This figure shows (in pink for § = oo) the underlying curve that every curve with § > 0
“emerges” from after passing the threshold 6(d). This curve is the curve one gets from
using p > 0 in the maximization of £(d, x) for the entire range of « € [0, 1], as if there is
no threshold 6(6) (or rather, the threshold is equal to 1).

One sees that every curve for § diverges from the underlying curve at some point after
6(9). Up to a point, an increase in § (equivalently, increasing the threshold 6(9)), decreases
the global maximum of the function (see for example the differences between using 6 =
0,1,2). One sees from the value of § at which the underlying curve’s maximum is the
global maximum of the function (numerically, around § ~ 3.15), no increase in the value
of § can lead to a smaller query exponent £(d,), which plateaus at the maximum of the
underlying curve (at around 0.05). This is demonstrated by the curves for § > 4.

+ Similarly, we plot the query exponent of the KDE data-structure £(6) (see Theorem and
present it on the right plot of Figure [I} This function takes the maximum over = € [0, 1]
of £(6, x), and as expected and demonstrated by the plot for £(d, =), it initially decreases
when 1 4 § increases but then plateaus. The explanation for this phenomena lies in the
cases induced by the threshold 6(5). As before, as § increases, 6(d) approaches 1, which
means that for most of the x’s p,(x,d) > 0. In that case, we have that £(J) is actually
independent of ¢ (as in that regime p,(z,d) = 0, see Definition [14) which explains why
this plateau is not affected by the change in §.

19

Under review as a conference paper at ICLR 2026

D.1 EVALUATION SCRIPT

This section discusses a python script (which can be found in the supplementary material to this
paper) used to evaluate the query-exponent £(¢) (see Equation and theorem and reproduce
the results of Theorem The maximizations and minimizations are computed via a grid search
(the grid size is configurable and can be increased to improve accuracy).

In terms of notation, the script uses F' instead of £ to denote the exponent function, and:

T y— 2
f(m,y7p>:<y—x>+<1—x><p—y(lx)Q(ﬁ —(y—lw)>

(which is the same as the function £(4) but without the optimization over x,y, p). The value of
F(0) = max,e[p,1) Min,> . (5,.2) MaxXye(o,1] f (2, Y, p) is therefore the same as £(J) (where p, (J, z)
is defined in Definition .

We note that the script was created using ChatGPT 5 (as well as generating the plots in Figure|[T).

20

	Introduction
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Basic Setup
	(c,r)-ANN on the Sphere

	Framework for Non-adaptive KDE
	data-structure for the Level-j Recovery Problem
	KDE data-structure Tradeoffs
	Spherical (c, r)-ANN data-structure from razenshteyn2017thesis
	ANN to ANN on the Sphere (Proof Sketch for Lemma 8)

	Statements from charikar2020kernel
	Level-Sets Size Bounds
	Previous Level-j Recovery data-structure
	Estimator Accuracy for thm: charikar main

	Deferred Proofs from sec:newdatastructure
	Deferred Proofs From sec: KDE Tradeoffs
	Evaluation Script

