
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FASTER KERNEL DENSITY ESTIMATION VIA HASHING
BASED TIME-SPACE TRADEOFFS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper we study the Kernel Density Estimation (KDE) problem: Given a
dataset P of n points in Euclidean space and a kernel K(p, q), prepare a low
space data-structure that given a query q can quickly output a 1± ϵ approximation
to µ = (

∑
p∈P K(p, q))/n. Recent advances have used tools from Locality Sen-

sitive Hashing (LSH) and Approximate Nearest Neighbor (ANN) search to build
KDE data-structures with query time sublinear in 1/µ and space linear in 1/µ,
with Charikar et al. (2020) achieving the current best query time of ≈ 1/µ0.173

for the popular Gaussian kernel. Our main result is a data-structure with signifi-
cantly improved query time ≈ 1/µ0.05 , at the expense of somewhat higher space
complexity of ≈ 1/µ4.15. More generally, our techniques give the first known
query time vs space tradeoffs for KDE: for any δ ≥ 0 we can design a KDE
data-structure with space with 1/µ1+δ dependence and query time with 1/µξ(δ)

dependence, where ξ(δ) is a non-increasing function of δ. Importantly for the
linear space regime, i.e δ = 0, we obtain a query time of 1/µ0.1865, improving
the non-adaptive KDE bound from Charikar et al. (2020) and nearly matching the
bound of Charikar et al. (2020) with a significantly simpler analysis.

1 INTRODUCTION

Kernel Density Estimation (KDE) is a fundamental and widely studied problem in statistical learning
theory and artificial intelligence (Fan, 2018; Schölkopf & Smola, 2002; Joshi et al., 2011; Arias-
Castro et al., 2016). Formally KDE is defined as follows - Given ϵ > 0 and a dataset P of n
points p1, . . . ,pn ∈ Rd, preprocess it into a small space data-structure that allows one to quickly
approximate, given a query q ∈ Rd, the quantity

µ∗ = K(P,q) = 1

|P|
∑
p∈P

K(p,q), (1)

up to multiplicative 1± ϵ factor with probability 0.9, where the kernel function K(p,q) is a mono-
tone decreasing function of ∥p− q∥. The Gaussian kernel,

K(p,q) = e−∥p−q∥2
2/(2σ

2), (2)

is a important example of a kernel widely used and will be the main focus of our paper, although
many others (eg. Laplace, exponential, polynomial) are also used sometimes used (Shawe-Taylor &
Cristianini, 2004; Williams & Rasmussen, 2006). Moreover recent works have used fast Gaussian
KDE primitives for speeding up attention computation in modern transformer based LLMs (Zandieh
et al., 2023; Indyk et al., 2025).

Unfortunately the exact algorithm for this problem does a linear scan over P at query time and thus
runs in time linear in n, making it not scalable for large datasets. Thus most practical algorithms
resort to reporting approximate kernel density evaluation at query time. In the low dimensional
regime tree based algorithms Greengard & Strain (1991); Gray & Moore (2001); Gan & Bailis
(2017) give efficient approximations, however their running times are exponential in d making them
not scalable for high-dimensional datasets. In the rest of the paper, we use the notation µ∗ defined
as µ∗ := K(P,q) to denote the true kernel density for a query q, and µ denotes a quantity that
satisfies µ∗ ≤ µ ≤ 4µ∗, using standard techniques we can assume such a µ is known to us (see

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Remark 3 Charikar et al. (2020)). In the high dimensional regime d = Ω(log n) uniformly sampling
O(1/(ϵ2) · 1/µ) dataset points P̃ from P and reporting K(P̃,q) at query time suffices to obtain a
1± ϵ estimate of the true kernel density K(P,q). The line of work initiated in the work of Charikar
& Siminelakis (2017) improved upon random sampling by creating Gaussian KDE data-structures
with sublinear in 1/µ query time and linear in 1/µ space. In the subsequent discussion all methods
have polynomial in d and 1/ϵ dependence in the query time and space, so we suppress them for
readability. Furthermore we use Õ(·) to hide polynomial factors in d and log(n, 1/µ). Charikar
& Siminelakis (2017) used Locality sensitive hashing (LSH) (Indyk & Motwani, 1998; Andoni &
Indyk, 2008), a fundamental technique in the approximate nearest neighbor (ANN) literature, to de-
sign Gaussian KDE data-structures with query time with a 1/

√
µ dependence. Following this a line

of work had subsequent improvements using LSH culminating in the work of Charikar et al. (2020)
which achieved a 1/µ0.25 dependence in the query time using a data-independent LSH and 1/µ0.173

using a much more involved data-dependent LSH. These approaches used symmetric LSH construc-
tions, and our main contribution is to use advances in asymmetric LSH constructions (Andoni et al.,
2017; Razenshteyn, 2017) to improve upon these works.

We first present an overview of our contributions followed by presenting our main ideas and tech-
niques. Finally we end the section by discussing related work.

1.1 OUR CONTRIBUTIONS

Our first result, that obtains data-structures for Gaussian KDE problem (see problem setup in Equa-
tion 5) with significantly improved query time using asymmetric LSH, is as follows,
Theorem 1. (Informal) There exists a data-structure for the Gaussian KDE problem with expected
query time Õ((1/ϵ2) · 1/µ0.051) and space Õ((1/ϵ2) · 1/µ4.15). There also exists a data-structure
for the Gaussian KDE with expected query time Õ((1/ϵ2) · 1/µ0.1865) and space Õ((1/ϵ2) · 1/µ).

The formal version of the above theorem is presented in Theorem 17. Of course we obtain the
improved query time of 1/µ0.051 at the expense of polynomial in 1/µ space, however the use of
asymmetric LSH allows us to tradeoff the space and query time of our data-structure. Thus even
for the linear space, i.e. with 1/µ dependence in the space, we obtain a query time with 1/µ0.1865

dependence on 1/µ that beats the previous best bound of 1/µ0.25 using non-adaptive schemes. It is
slightly worse than the data-dependent scheme of Charikar et al. (2020), which achieved a 1/µ0.173

dependence, however our scheme has the advantage of being much simpler. We also show a more
general result that presents time-space tradeoffs for Gaussian KDE data structures, in the following
Theorem 2. (Informal) For any δ ≥ 0 there exists a data-structure for the Gaussian KDE problem
with query time Õ((1/ϵ2) · 1/µξ(δ)) and space Õ((1/ϵ2) · 1/µ1+δ) where ξ(δ) as a function of δ is
presented in right figure in Figure 1.

To the best of our knowledge, ours is the first such tradeoff for KDE, the formal version of the above
theorem is presented in Theorem 16. We now describe the main techniques used to prove our results.

1.2 TECHNICAL OVERVIEW

Our query time vs space complexity tradeoffs for KDE are obtained by a novel instantiation of the
framework of Charikar et al. (2020) that essentially reduces the KDE problem to a version of the
Approximate Near Neighbor (ANN) problem. We thus start with an overview of that framework.

KDE via (density constrained) approximate nearest neighbor search (ANN). Charikar et al.
(2020) reduce the problem of computing kernel density problem at a query q to logarithmic many
approximate nearest neighbor (ANN) problems with the additional twist provided by density con-
straints. The main idea is to partition points p ∈ P into a logarithmic number of distance scales
according to the value of K(p,q), then estimate the number of points in each distance scale (i.e., at
a certain Euclidean distance from q), using approximate nearest neighbor search techniques such as
Locality-Sensitive Hashing (LSH). Using standard scaling techniques, as in Charikar et al. (2020,
Assumption 1 in Section 5), we conveniently re-write the Gaussian kernel for any point p ∈ P as
follows,

K(p,q) = µ∥p−q∥2
2 ,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and we denote Lq
j ∈ P denote the points in P with kernel value K(p, q) ≈ 2−j for all values1 of

j ∈ [0, J] for J = log(1/µ). We denote the distance scale xj = j/J , which thus conveniently
allows us to write Lq

j ∈ P as all points with,

K(p, q) ≈ µxj for xj ∈ [0, 1].

See Section 3 for precise definitions. The framework of Charikar et al. (2020) randomly samples
points in P at rate

pj = (1/µ)1−xj · 1/n, (3)
to create a subsampled dataset, then retrieves all point in Lq

j surviving in this subsampled dataset
using the symmetric LSH of Andoni & Indyk (2008).

Our work proposes to go beyond symmetric LSH to achieve the improvement, so it is more conve-
nient to reformulate the Charikar et al. (2020) framework as applying a more general Approximate
Near neighbor (ANN) data-structure. Recall that a (c, r)-ANN data-structure is an efficient data-
structure that, assuming the existence of a point at distance at most r from the query, returns a point
at distance at most cr. When recovering points in Lq

j , i.e. at distance scale xj , from the sampled
dataset we invoke a (c, r)-ANN data-structure with the near radius r corresponding to KDE contri-
bution ≈ µxj and the far radius cr corresponding to KDE contribution ≈ µ. We drop the subscript
j from scale xj , since we will only work with scales.
Remark 3. Note that this classical guarantee that an (c, r)-ANN data-structure provides does not
suit us, as we need to exactly retrieve all points at distance scale ≈ x from the sampled dataset, we
will provide a new analysis of a powerful (c, r)-ANN data-structure that takes density constraints
into account and achieves exact recovery efficiently.

Exact recovery with approximate near neighbor search. Charikar et al. (2020) use the symmet-
ric LSH of Andoni & Indyk (2008) for this ANN problem, to provably recover points at distance
scale x ∈ [0, 1] in sublinear time. The query time of this procedure is higher than that of the ANN
problem because we need to retrieve point at exactly distance the near distance scale x and during
hashing, points at scale y for x < y ≤ 1 can collide with points at x, adding time needed in scanning
and discarding these intermediate points. However this query time overhead can be controlled using
density constraints - a simple Markov bound allows us to bound number of points at scale y ∈ [0, 1],

n(µ)1−y ≪ n, (4)
and furthermore it is unlikely that all such points collide with points at x. Charikar et al. (2020)
bound the additional query time overhead by upper bounding the expected number of intermediate
colliding points by multiplying density constraint upper bounds and with LSH collision probability
of Andoni & Indyk (2008). This gives them the query time for recovering points at scale x in the
subsampled dataset for any fixed x. Summing this over log many possible values of x they obtain a
query time of 1/µ0.25 up to log factors. Section 3 contains the precise details of this framework.

Our contribution: query time reduction via asymmetric ANN. Our main idea is to use the asym-
metric LSH construction of Andoni et al. (2017) (see Section A) instead to recover points at scale
x from the subsampled dataset. For the (c, r)-ANN problem, this LSH allows us to design data-
structures with space n1+ρs+o(1) and query time nρq+o(1) for any ρs, ρq ≥ 0 under the constraint,

(c2 + 1)
√
ρq + (c2 − 1)

√
ρs ≥ 2c. (5)

Choosing ρs = ρq recovers the symmetric LSH of Andoni & Indyk (2008), but choosing it differ-
ently allows one to tradeoff lower query time for higher space for recovering points at scale x. This
leads to an improvement over Charikar et al. (2020) because the maximum of query time in their
reduction is achieved at a different distance scale x ∈ [0, 1] than the one that yields the space bound!
Finding the best ρs, ρq under constraint 5 for every x ∈ [0, 1] can be expressed as an optimization
problem (see Section 4) and solved numerically (see Section 5). The exact optimum does not seem
simple to obtain analytically, and we therefore resort to numerics. One interesting phenomenon
emerges: unlike the (c, r)-ANN problem, which admits a solution with constant query time, the
KDE tradeoffs that we achieve (see Fig. 1) do not yield a constant query solution. We next analyti-
cally show that this is not possible with present near neighbor search technology – an exciting open
problem is to either prove a formal lower bound ruling out constant query KDE in polynomial space
or bypass the inherent barrier in our scheme to get a KDE data structure with constant query time.

1More precisely, the set Lq
J for J = log(1/µ) is defined to capture all points with kernel value K(p,q) =

O(µ) – the contribution of these points can be very easily estimated from a small sample.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Why constant query KDE is not possible with known ANN results. For a fixed scale x ∈ [0, 1]
the natural choice of the query exponent ρq is to set it to 0 to ensure that at least the expected number
of points colliding from the last scale y = 1, i.e. points at far distance cr with kernel value ≈ µ,
is at most no(1). As otherwise any higher ρq will lead to non-negligible contribution of points at
far distance cr, as the (c, r)-ANN problem will have a non-negligible query time. Thus ρq = 0 is
the natural choice, however again the overall query time will be higher than that for the (c, r)-ANN
problem because of collisions from points at intermediate scales y for x < y ≤ 1. We now give a
high level overview of this additional overhead. Fix an x ∈ [0, 1] and recall from Equation 3 that
first the dataset P is subsampled at rate (1/µ)1−x · 1/n, leading to expected dataset size (1/µ)1−x.
If we construct an asymmetric LSH for dataset size (1/µ)1−x and ρq = 0, the probability for a point
p at scale y for x < y ≤ 1 to be scanned during query time turns out to be,

(
1

µ

)−
(

(y−x)2

y(1−x)

)
+o(1)

. (6)

From density constraints 4, number points at scale y is at most n · (µ)1−y , which after subsampling
gets reduced to (1/µ)y−x in expectation. Thus overall the additional overhead due to points at scale
y is (1/µ)y−x times the bound in Equation 6, and since there only log many values of y to consider
between [x, 1] the overall overhead in query time is the following up to log factors,

max
y∈[x,1]

(
1

µ

)(y−x)−
(

(y−x)2

y(1−x)

)
+o(1)

, (7)

In the expression above for y = x and y = 1 the exponent is o(1), however near y = x the first
linear term y−x grows faster than the second term behaving roughly quadratically as (y−x)2. Thus
for any fixed x ∈ [0, 1] the maximum happens for some point inside the interval [x, 1]. Furthermore
since we need to recover points at logarithmic many scales x ∈ [0, 1], the overall query time of
this KDE data-structure is max of the above over all x ∈ [0, 1], which using numerical methods is
approximately (1/µ)0.09. This in general conveys the fact that even using this asymmetric LSH for
query exponent ρq = 0 for all x ∈ [0, 1], one cannot obtain arbitrarily small constant query time
exponent at the expense of arbitrarily large polynomial space. However we can obtain a slightly
better constant query time exponent than 0.09 by optimizing setting ρq for all x ∈ [0, 1]. For any
x ∈ [0, 1] and a general ρq ≥ 0, Equation 6 is as follows,

(
1

µ

)(1−x)

(
ρq− x

y(1−x)2

(
y−x√

x
−(y−1)

√
ρq

)2
)
+o(1)

,

thus for a fixed x ∈ [0, 1] the overall query time by optimizing over valid ranges of ρq is as follows,

min
valid ρq

max
y∈[x,1]

(
1

µ

)(y−x)+(1−x)

(
ρq− x

y(1−x)2

(
y−x√

x
−(y−1)

√
ρq

)2
)
+o(1)

Finally the overall query time of our KDE data-structure is then the max of the above over all
x ∈ [0, 1]. Solving this optimization problem leads to a query time roughly (1/µ)0.05. The precise
details of this parameter setting and the optimization formulation are in Section 4.

Query time for space 1/µ. Obviously the space of the data-structure described previously is poly-
nomial in 1/µ, roughly 1/µ4, thus making it incomparable with previous works that had space at
most 1/µ. However since the asymmetric LSH allows us to flexibly set either the space or query
exponents for each recovery problems, we can carefully choose the space exponent so that the over-
all space of our data-structure to be at most 1/µ. This restricts the choice of the query exponent for
each recovery problem as per Equation 5 leading to a higher query time. Overall this results in a data
independent KDE data-structure with space 1/µ and query time 1/µ0.1865, which improves over the
data independent bound of 1/µ0.25 of Charikar et al. (2020). Moreover the query exponent is within
0.02 of the exponent of the data dependent data-structure of the work of Charikar et al. (2020),
which achieves a query time 1/µ0.173, however our analysis is arguably much simpler. In general,
our construction allows one to smoothly tradeoff space and query time for KDE data-structures, and
the details of this are presented in Section 5.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1.3 RELATED WORK

There is a large body of work on sublinear time KDE for low dimensional spaces, which includes
the classical work on Fast Gauss Transform (Greengard & Strain, 1991) and other tree based hier-
archical partitioning methods (Gray & Moore, 2001; 2003; Yang et al., 2003; Lee et al., 2005; Ram
et al., 2009; Gan & Bailis, 2017). For high dimensional spaces (d = Ω(log n)), sublinear time algo-
rithms beating random sampling for various kernels such as Gaussian and polynomial were obtained
by a recent sequence of works based on implementing importance sampling via LSH (Charikar &
Siminelakis, 2017; Backurs et al., 2018; Charikar et al., 2020). These importance sampling based
procedures had 1/ϵ2 dependence on ϵ in query complexity, and works based on discrepancy theory
and randomized space partitioning (Phillips & Tai, 2020; Charikar et al., 2024) achieve a 1/ϵ de-
pendence. Recent works (Siminelakis et al., 2019; Backurs et al., 2019) address scalability issues of
the original approach of Charikar & Siminelakis (2017) and obtain practical improvements on real
world datasets.

2 PRELIMINARIES

The goal of this section is to present basic notation and assumptions used throughout the paper, as
well as preliminary concepts and tools regarding KDE and (c, r)-ANN data-structures.

Notation. We denote expa(b) = ab and let [n] = {1, . . . , n} for any natural number n.

2.1 BASIC SETUP

We now present standard assumptions on parameters as part of problem setup. We first define the
Gaussian Kernel.

Definition 4 (Gaussian Kernel). K(p,q) = e−
log(1/µ)

2 ∥p−q∥2

. We use this version of the Gaussian
Kernel because an instance with general Gaussian kernel with arbitrary bandwidth parameter as in
Equation 2 can be reduced to this version using standard scaling techniques (Refer to Charikar et al.
(2020, Assumption 1 in Section 5)).

Definition 5 (Setup). The approximation factor is ϵ = Ω(1/ polylog n) and µ∗ = n−Θ(1) and
dimension d = Õ(1) (see Charikar et al. (2020, Remark 1)). We assume we know a baseline
approximation µ satisfying µ∗ ≤ µ ≤ 4µ∗ (see Charikar et al. (2020, Remark 3)).

Note that µ∗ = n−Θ(1) is the interesting regime for this problem because for µ∗ = n−ω(1) under
the Orthogonal Vectors Conjecture (Rubinstein, 2018), the problem cannot be solved faster than
n1−o(1) using space n2−o(1) (Charikar & Siminelakis, 2019), and for larger values µ∗ = n−o(1)

random sampling solves the problem in no(1)/ϵ2 time and space.

2.2 (c, r)-ANN ON THE SPHERE

We now present the definition of the (c, r)-ANN problem.

Definition 6 (The (c, r) -ANN problem). Given an n-point dataset P ∈ Rd, the goal is to preprocess
P to answer the following queries. Given a query point q ∈ X such that there exists a data point
within distance r from q, return a data point within distance cr from q.

The (c, r)-ANN problem on the sphere is defined similarly, with the assumption that the dataset P
contains points that lie on the unit sphere. We now state the asymmetric LSH of Andoni et al. (2017)
as described in Razenshteyn (2017) for the (c, r)-ANN problem on the sphere.

Theorem 7 ((c, r) -ANN parameters). Razenshteyn (2017, Theorem 2.8.1) Let ϵ0 > 0 be a fixed
constant. For every c > 1, 1

log logn ≤ r = o(1), and for every ρq, ρs ≥ 0, such that cr ≤ 2− ϵ0 and

(c2 + 1) · √ρq + (c2 − 1) · √ρs ≥ 2c (8)

there exists a data-structure for (c, r) -ANN on a unit sphere Sd−1 ⊂ Rd where d = no(1) for a set
of size n, with space n1+ρs+o(1), query time nρq+o(1) and success probability 1− 1

n10 .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We make two important remarks about this data-structure. The first, this data-structure is data-
independent (see Razenshteyn (2017)). Roughly, this feature makes the data-structure more straight-
forward compared to data-independent ones, as they do not make any use of (or assumptions on) the
dataset for preprocessing. This simpler setting allows usually for a cleaner analysis (see for example
the data-dependent/independent settings in Andoni et al. (2017); Charikar et al. (2020)).

Secondly, we elaborate briefly on the query procedure Algorithm 4 of this data-structure. The basic
object underlying this ANN data-structure is a tree, where each inner node contains random Gaussian
vectors, and the leaves contain subsets of the processed input dataset. Importantly, querying the data-
structure follows multiple paths in the tree, which are determined by the correlation of the query with
the Gaussian vectors stored in the inner tree nodes. Every traversed path leaves to a leaf that contains
multiple points from the original dataset. We often say that the union of all points in the reached
leaves collide with the query. We elaborate on the data-structure’s query/preprocessing algorithms
as well as the parameter setting for the theorem above in Appendix A.

We now state properties of a key reduction to reduce general instances to the unit sphere.
Lemma 8. There exists a reduction from (c, r) -ANN problem over the ℓ2 for n-point dataset in Rd,
to (c, r′)-ANN on the sphere problem over the ℓ2 distance for n-points on the unit sphere in Rd+1

where r′ = r
R in which all the points are mapped to a sphere of radius R = r · log log n and then

scaled by R into the unit sphere. The pairwise distances between points are preserved up to scaling
by R and an additive factor O(1/(r

√
log log n)). This incurs an no(1) query time overhead.

Note that the reduction from the lemma above (Lemma 8) allows for recovering the original (c, r)-
ANN problem, hence the points recovered by the (c, r′)-ANN on the sphere are converted to points
in the original dataset. This standard reduction was previously used in Razenshteyn (2017); Andoni
et al. (2017), and we provide more details about it in Appendix A.1.

3 FRAMEWORK FOR NON-ADAPTIVE KDE

In this section, we introduce and generalize the framework of Charikar et al. (2020) which “reduces”
KDE to an ANN problem we refer to as the Level-j Recovery. In the following, we present the KDE
data-structure in terms of a data-structure for the Level-j Recovery problem.

Throughout the rest of the section, we assume that we are given an approximation parameter ϵ and
some baseline approximation µ as in the setup (Definition 5) and Gaussian kernel (Definition 4).
The first concept is that of geometric level sets.
Definition 9 (Geometric level sets). Let J = ⌈log2 1

µ⌉. For any j ∈ [J] and a query q, define the
level set:

Lq
j :=

{
pi ∈ P : K(pi,q) ∈ (2−j , 2−J+1]

}
.

This induces corresponding distance levels: rj := max
{
r : f(r) ∈ (2−j , 2−j+1]

}
. Here f(r) :=

K(p,p′) for r = ∥p− p′∥. Also define Lq
J+1 := P \

⋃
j∈[J] L

q
j .

Similarly to Charikar et al. (2020) we will sub-sample the dataset P at different geometric rates for
each j ∈ [J], with the goal of recovering points from Lq

j given the query q, and thus we need the
following definition of a subsampled dataset and the Level-j Recovery problem.
Definition 10. For j ∈ [J + 1], let Pj be the dataset achieved by sampling P at rate pj :=
min(1

2jnµ , 1) for j ≤ J and pJ+1 = 1
n . Let mj :=

1
2jµ be the expected size of Pj .

Definition 11 (Level-j Recovery data-structure). Given the sample Pj and a point q, recover all
points in Lq

j from Pj with probability at least 1 − 1
n10 . A data-structure for the Level-j Recovery

problem is parameterized by its space denoted space(j) and its query time denoted query(j).
Remark 12. In the paper, we will construct data-structures for the sample Pj for j ∈ [J]. We
ignore the last sampled set, PJ+1, which contains, in expectation, only a constant number of points
in expectation, and hence requires constant query time and space.

As in Charikar et al. (2020), the main technical work is dedicated to constructing efficient data-
structures for the Level-j Recovery Dj , which we use in the algorithms below. We use our data-
structure for j’s that are within a range j ∈ [c0J, (1− c1)J] where c0, c1 can be set to any arbitrarily

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

small constant, our data structure and details of it are in Section 4). Assuming the nice range c0, c1
is fixed, for x < c0, x > 1− c1 we use the data-structure from Charikar et al. (2020) for the Level-j
Recovery problem for these small j’s. We provide the formal statement about the guarantee of this
data-structure in Appendix B.2.

Data-structure Description. We now describe the preprocessing and query procedures for the
KDE data-structure based on those described in Charikar et al. (2020, Algorithms 1,2).

Algorithm 1: KDE PREPROCESS

Input: dataset P , precision parameter ϵ, baseline approximation µ as in Definition 5, small
constants c0, c1 ∈ (0, 1/2)

1 K ← C log n

ϵ2
· µ−o(1).

2 for K times do
3 for j ← 1 to J do
4 Pj ← subsample of P at rate pj from Definition 10.
5 if j < c0 · J or j > (1− c1)J then
6 Preprocess Pj using the data-structure from Lemma 27.
7 else
8 Preprocess Pj using our new data-structure Dj from Lemma 15.

9 Store a sampling of P with probability 1/n.

Algorithm 2: KDE QUERY

Input: Query q (the repetition parameter K is as in Algorithm 1).
Output: A 1± ϵ estimate for µ∗.

1 for K times do
2 for j ← 1 to J + 1 do
3 Query the Level-j Recovery data-structure on q to recover points from Lq

j , for the
relevant repetition.

4 S ← the set of all recovered points for the relevant repetition.
5 Calculate the estimate Z ←

∑
j∈[J]

∑
p∈S∩Lq

j

K(p,q)
pj

(where pj is defined in Definition
10) for the relevant repetition.

6 return the average of the estimations Z across all repetitions.

Query Time and Space Requirement. We now state the theorem from Charikar et al. (2020)
which parametrizes the space used by Algorithm 1 and time of Algorithm 2.

Theorem 13. Charikar et al. (2020, Theorems 15, 22) For Gaussian kernel K(p,q), precision pa-
rameter ϵ and baseline approximation µ as in the setup (Definition 5), and assuming that for any
j ∈ [J] there exists a data-structure Dj for the Level-j Recovery problem with expected query time
query(j) and expected space requirement space(j), then there exists a KDE data-structure that sup-
ports (1± ϵ)-multiplicative factor approximation to the KDE value with the following parameters:

• KDE preprocessing (Algorithm 1) uses expected space Õ
(
ϵ−2 ·maxj∈[J] space(j)

)
.

• KDE query (Algorithm 2) runs in expected time Õ
(
ϵ−2 ·maxj∈[J] query(j)

)
.

We cite the relevant claims justifying the above in Appendix B.3. Next we derive expressions for
query(j) and space(j) for our data-strucutre Dj we use in Algorithms 1 and 2 for Gaussian Kernel.

4 DATA-STRUCTURE FOR THE LEVEL-j RECOVERY PROBLEM

We now present our data-structure Dj for Level-j Recovery. Notice that for r ∈ [0,
√
2],

(1/µ)
−r2/2 ∈ [µ, 1], and so we can focus our attention on r’s within that range (as for other values

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

of r, the contribution of points from these distances to the kernel value of any queried point amounts
to o(1/µ)). Using the Gaussian Kernel in Definition 9 gives the distance level rj =

√
2j/J for each

j ∈ [J]. We also use the distance scale xj = j/J , hence rj =
√

2xj .

Setting up the (c, r)-ANN problem on the sphere. We will use a data-structure for (c, r)-ANN
to solve Level-j Recovery. Our dataset will be the sample Pj (see Definition 10) with expected
size mj = exp1/µ(1 − xj). The near distance will be r =

√
2xj and far distance cr =

√
2, thus

c =
√
1/xj . We use the data-structure from Theorem 7 for (c, r)-ANN problem on the sphere, thus

to use this first we transform our points to lie on the unit sphere Lemma 8 (see Appendix A.1 for
full details). This reduction incurs certain considerations, the most important of which is that in the
following we make the assumption that j lies within the nice range [c0J, (1− c1)J] for some small
constants c0, c1 ∈ (0, 1/2). In this range, j = O(J) and the size of the dataset is mj = (1/µ)O(1).
These simplify our calculations, and have little influence since c0, c1 are chosen arbitrarily small.

The query/space requirements of our data-structure. The data-structure for the (c, r)-ANN we
use is as per Theorem 7. Our data-structureDj will build on top of this data-structure as follows. The
preprocessing will remain the same, and so is the space requirement. For the query procedure we
apply the query procedure of the data-structure for (c, r)-ANN problem on the sphere (Algorithm 4)
but go over all points in the leaves reached by the ANN-query procedure. We analyze the expected
number of points from level sets Lq

i for i ̸= j that appear in the leaves of the data-structure for a
given query q. We formally analyze it in the our main technical lemma in the appendix, Lemma 31,
which gives a data-structure for the Level-j Recovery based on the data-structure for (c, r)-ANN
problem on the sphere from Theorem 7 for any choice of ρq, ρs that satisfies Equation (8).

Restricting the space requirement. Since the data-structure for the (c, r)-ANN problem on the
sphere from Theorem 7 is parameterized by ρq, ρs, we need to explain the specific choice of these
parameters for our setting of the Level-j Recovery data-structure. For any δ ≥ 0, we choose to set
the parameters so that the space requirement of the Level-j Recovery data-structure is bounded by
exp1/µ(1 + δ + o(1)). This choice enforces a constraint on the space exponent ρs:

expmj
(1 + ρs + o(1)) ≤ exp1/µ(1 + δ + o(1)) (9)

and as a result, it also enforces a constraint on the query exponent ρq by the ANN-tradeoff in Equa-
tion (8). These constrains splits the range of xj ∈ [0, 1] (correspondingly, j ∈ [J]) into two regimes,
where the threshold between them is θ(δ) which is the upper bound on the regimes of xj at which
Equation (9) holds. In the first regime, we call the constant query distance scales, one can set ρq ≥ 0
(which implies that the query time for the ANN problem becomes constant), since the smallest space
that supports this does not exceed the query time. For the second regime we call the polynomial
query distance scales, the space is upper bounded to not exceed our restriction, which enforces con-
strains on the allowed values ρq (which implies that the query time for the ANN problem becomes
polynomial). For further discussion refer to Appendix C, this is summarized as follows.
Definition 14 (Thresholds for Query/Space Exponents). For δ ≥ 0 and x ∈ [0, 1] we let:

Threshold function: θ(δ) = 1
2

(√
(δ + 1)(δ + 9)− (δ + 3)

)
Space and Query Exponents Bounds (to be used in Lemma 15):

ρs(δ, x) =

{
4x

(1−x)2
if x ≤ θ(δ)

δ+x
1−x if x > θ(δ)

, ρq(δ, x) =


0 if x ≤ θ(δ)(

2
√
x−
√

(1−x)(δ+x)

1+x

)2

if x > θ(δ)

Putting everything together. Our data-structure for Level-j Recoveryis obtained by instantiating
Lemma 31 with the parameters chosen above. Its properties are in the following lemma, and its
proof is in Appendix C.
Lemma 15. For δ ≥ 0, small constants c0, c1 ∈ (0, 1/2), j ∈ [c0J, (1 − c1)J] (where xj = j/J),
ρq(δ, x) from Definition 14, the data-structureDj for the Level-j Recovery problem with preprocess
and query procedures from Algorithms 5 and 6 (found in Appendix C) has (expected) query time at
most: exp1/µ (ξ(δ, xj) + o(1)) and (expected) space at most: exp1/µ (1 + δ + o(1)) where

ξ(δ, x) = min
ρ≥ρq(δ,x)

max
y∈[x,1]

(y − x) + (1− x)

(
ρ− x

y(1− x)2

(
y − x√

x
− (y − 1)

√
ρ

)2
)

(10)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 KDE DATA-STRUCTURE TRADEOFFS

In this section, we use the data-structure Dj from Lemma 15 to construct a KDE data-structure.
Since our data-structure is parameterized by δ such that its space requirement is (1/µ)1+δ+o(1), we
can also plug different value of δ and get a space-query tradeoff for our KDE data-structure as we
do in Figure 1.

Theorem 16. For any δ ≥ 0, precision parameter ϵ and baseline approximation µ as in the
setup (Definition 5), there exists a KDE data-structure for the Gaussian Kernel (see Definition
4) that supports (1 ± ϵ)-multiplicative factor approximation to the Kernel value, in expected

query time at most Õ
(
ϵ−2 · exp1/µ (ξ(δ) + o(1))

)
time, and expected space at most at most

Õ
(
ϵ−2 · exp1/µ (1 + δ + o(1))

)
where ξ(δ) = maxx∈[0,1] ξ(δ, x) for ξ(δ, x) from Equation (10).

The above theorem follows by plugging the parameters of the relevant data-structures into Theo-
rem 13 (see proof in Appendix D). We also show two consequences of Theorem 16 which follow by
numerical evaluations. These highlight the best query time achievable in polynomial space, and the
query time achievable with linear space (see proof in Appendix D).

Theorem 17. For any precision parameter ϵ and baseline approximation µ as in the setup (Defi-
nition 5), there exists a KDE data-structure for the Gaussian Kernel that allows for approximating
µ∗ := K(P,q) up to (1 ± ϵ) multiplicative factor, in the following two regimes of expected query
time and space:

• Query time at most: exp1/µ (0.05 + o(1)) and space at most: exp1/µ (4.1 + o(1))

• Query time at most: exp1/µ (0.1865 + o(1)) and space at most: exp1/µ (1 + o(1))

The query exponent Charikar et al. (2020) get for the data-independent LSH setting is 0.25, 2, and in
general they get 0.173, both cases with essentially linear space. Our main result could be interpreted
as significantly improving the query time exponent over their main result, with the caveat that their
space requirement is only 1/µ (compared to 1/µ4.15 for us), or from the perspective that even within
the same space constraints, when δ = 0, our query exponent gets quite close to their main result
with a much simpler analysis. Finally, we computed numerically the values of the query exponent
ξ(δ, x) and the KDE query exponent ξ(δ), and plot these in Figure 1. This plot demonstrates the
plateau of the KDE query time ξ(δ) at around 0.05, and that for δ ≈ 3.15 increasing the allowed
space does not yield improved query time. This limitation had been discussed in Section 1.2. We
discuss these plots further in Appendix D.

0 0.2 0.4 0.6 0.8 1
0.00

0.05

0.10

0.15

0.20

x

ξ(
δ,
x
)

δ = 0
δ = 1
δ = 2
δ = 4
δ = 16
δ = ∞

1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

1 + δ

ξ(
δ)

Figure 1: Left: ξ(δ, x) from Equation (10), δ ∈ {0, 1, 2, 4, 16,∞} (dashed verticals at x = θ(δ)).
Right: KDE space exponent (1 + δ) vs. KDE query exponent ξ(δ) = maxx∈[0,1] ξ(δ, x).

2We mention that one could further recover this result using our data-structure by equating the space and
query exponent, i.e., forcing a symmetric setting of parameters.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. Commun. ACM, 51(1):117122, January 2008. ISSN 0001-0782. doi:
10.1145/1327452.1327494. URL https://doi.org/10.1145/1327452.1327494.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-based
time-space trade-offs for approximate near neighbors. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pp. 4766, USA, 2017. Society
for Industrial and Applied Mathematics.

Ery Arias-Castro, David Mason, and Bruno Pelletier. On the estimation of the gradient lines of
a density and the consistency of the mean-shift algorithm. The Journal of Machine Learning
Research, 17(1):1487–1514, 2016.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615–626. IEEE, 2018.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation in
high dimensions. Advances in neural information processing systems, 32, 2019.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp.
1032–1043. IEEE, 2017.

Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations. In
2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 769–792.
IEEE, 2019.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pp. 172–183. IEEE, 2020.

Moses Charikar, Michael Kapralov, and Erik Waingarten. A quasi-monte carlo data structure for
smooth kernel evaluations. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 5118–5144. SIAM, 2024.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG ’04, pp. 253262, New York, NY, USA, 2004. Association for
Computing Machinery. ISBN 1581138857. doi: 10.1145/997817.997857. URL https://
doi.org/10.1145/997817.997857.

Jianqing Fan. Local polynomial modelling and its applications: monographs on statistics and ap-
plied probability 66. Routledge, 2018.

Edward Gan and Peter Bailis. Scalable kernel density classification via threshold-based pruning. In
Proceedings of the 2017 ACM International Conference on Management of Data, pp. 945–959,
2017.

Alexander Gray and Andrew Moore. N-body’problems in statistical learning. Advances in neural
information processing systems, 2001.

Alexander G Gray and Andrew W Moore. Nonparametric density estimation: Toward computational
tractability. In Proceedings of the 2003 SIAM International Conference on Data Mining, pp. 203–
211. SIAM, 2003.

Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and Statis-
tical Computing, 12(1):79–94, 1991.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

10

https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Piotr Indyk, Michael Kapralov, Kshiteej Sheth, and Tal Wagner. Improved algorithms for kernel
matrix-vector multiplication under sparsity assumptions. In the Thirteenth International Confer-
ence on Learning Representations, ICLR, 2025.

Sarang Joshi, Raj Varma Kommaraji, Jeff M Phillips, and Suresh Venkatasubramanian. Comparing
distributions and shapes using the kernel distance. In Proceedings of the twenty-seventh annual
symposium on Computational geometry, pp. 47–56, 2011.

Dongryeol Lee, Andrew Moore, and Alexander Gray. Dual-tree fast gauss transforms. Advances in
Neural Information Processing Systems, 18, 2005.

Jeff M Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. Discrete &
Computational Geometry, 63(4):867–887, 2020.

Parikshit Ram, Dongryeol Lee, William March, and Alexander Gray. Linear-time algorithms for
pairwise statistical problems. Advances in Neural Information Processing Systems, 22, 2009.

Ilya P. Razenshteyn. High-dimensional similarity search and sketching: Algorithms and hardness.
PhD thesis, Massachusetts Institute of Technology, 2017. URL https://dspace.mit.edu/
bitstream/handle/1721.1/113934/1023861862-MIT.pdf?sequence=1.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing, pp. 1260–1268, 2018.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

J Shawe-Taylor and N Cristianini. Kernel methods for pattern analysis, cambridge university press,
2004, 2004.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses Charikar, and Philip Levis. Rehashing kernel
evaluation in high dimensions. In International Conference on Machine Learning, pp. 5789–5798.
PMLR, 2019.

Gregory Valiant. Finding correlations in subquadratic time, with applications to learning parities and
the closest pair problem. J. ACM, 62(2), May 2015. ISSN 0004-5411. doi: 10.1145/2728167.
URL https://doi.org/10.1145/2728167.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Yang, Duraiswami, and Gumerov. Improved fast gauss transform and efficient kernel density esti-
mation. In Proceedings ninth IEEE international conference on computer vision, pp. 664–671.
IEEE, 2003.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In International Conference on Machine Learning, ICML, pp.
40605–40623. PMLR, 2023.

A SPHERICAL (c, r)-ANN DATA-STRUCTURE FROM RAZENSHTEYN (2017)

The data-structure for solving the (c, r)-ANN problem on the sphere from Razenshteyn (2017, Sec-
tion 2.4) is central to our work, and we begin by defining the data-structure and stating its guarantees.
The data-structure is parameterized by two parameters ηs, ηq governing the space-query time trade-
off (which are related tho ρq, ρs in Theorem 7, as in Remark 24). Given a dataset P ⊂ Sd−1 of n

11

https://dspace.mit.edu/bitstream/handle/1721.1/113934/1023861862-MIT.pdf?sequence=1
https://dspace.mit.edu/bitstream/handle/1721.1/113934/1023861862-MIT.pdf?sequence=1
https://doi.org/10.1145/2728167

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

points on unit sphere in d-dimensions, preprocessing procedure is as follows:

Algorithm 3: ANN (ON THE SPHERE) PREPROCESS

Input: dataset P , parameters T,K, ηs, ηq
1 Initialize a tree with K + 1 levels (from 0’th level to K’th) and an upper bound of T of the

out degree. There are TK nodes in the K’th level.
2 Let v0 denote the root, and Lv the path (excluding v0) to any node v.
3 Store a random Gaussian vector zv for each node v except the root.
4 Define:

Pv = {p ∈ P : ∀v′ ∈ Lv, ⟨zv′ ,p⟩ ≥ η}
Every leaf v at level K stores the subset Pv explicitly.

5 Recursively build the tree as follows - For a given node v, sample T Gaussian vectors
g1, ...,gT ∼ N (0, 1)d. Then for every i such that {p ∈ Pv : ⟨gi,p⟩ ≥ ηs} is non-empty,
we create a new child v′ with zv′ = gi, and recursively process v′.

After preprocessing the dataset, when we are given a query we use the following procedure to return
an approximate near neighbor.

Algorithm 4: ANN (ON THE SPHERE) QUERY

Input: Tree from Algorithm 3, parameters T,K, ηs, ηq , query q ∈ Sd−1

1 To answer a query q ∈ Sd−1, we start from the root v0 and traverse the tree.
2 Upon traversing node v, consider every child of v for which ⟨zv,q⟩ ≥ ηq where ηq > 0, and

proceed recursively.
3 If leaf node reached, return the first point with distance ≤ cr to q. ▷ See Remark 18

Remark 18. For the ANN problem, it suffices to return the first point encountered at distance < cr
from the queried point. In our use of this algorithm we assume that all points in the leaves reached
by the query algorithm are returned.

To state the space and query time of the above data-structure, we will need the following notation,
which will be useful for describing the properties of the LSH function.
Definition 19. For any ρ ≥ 0 and z ∈ Sd−1 let F (ρ) be defined as, F (ρ) = Prz∼N (0,1)d [⟨z,u⟩ ≥ ρ]

and for any σ ≥ 0 and u ∈ Sd−1 such that ∥u− z∥2 = s let G(s, ρ, σ) be defined as, G(s, ρ, σ) =
Prz∼N (0,1)d [⟨z,u⟩ ≥ ρ and ⟨z,v⟩ ≥ σ].

We now state the success probability, space and query time of the preprocess and query procedures
of Algorithms 3 and 4. For the stating these claims we assume that there exists p ∈ P for query q
with ∥p− q∥ ≤ r.
Claim 20 (Success probability). Razenshteyn (2017, Lemma 2.8.4) For any N ≥ 0, if T ≥
10 logn

G(r,ηs,ηq)
then the probability that there is at least one leaf in the data structure created by Al-

gorithm 3 where p,q collide during Algorithm 4 is at least 1− 1
n10

3.
Claim 21 (Space). Razenshteyn (2017, Lemma 2.8.5) The expected space required for the data-
structure created by Algorithm 3 is at most: n1+o(1) ·K · (T · F (ηs))

K .
Claim 22 (Query time). Razenshteyn (2017, Lemma 2.8.6) If TF (ηq) ≥ 3 then the expected run-
time of Algorithm 4 is at most: no(1) ·

(
T · (T · F (ηq))

K + n · (T ·G(cr, ηs, ηq))
K
)
.

For the above claim, the proof actually shows the following: the expected query time spent going
down the tree in Algorithm 4, without scanning the leaves is no(1) ·

(
T · (T · F (ηq))

K
)
. Moreover,

the expected number of points scanned at the leaves reached is n1+o(1) · (T · G(cr, ηs, ηq))
K . The

number of points scanned is always at most one more than the number of far points, i.e., lying a
distance greater than cr from q, that reached the same leaf. Additionally, we present the following
corollary, implicit in Razenshteyn (2017, Lemma 2.8.6)
Claim 23. For any query q and p ∈ P such that ∥p−q∥ ≥ t and each leaf ℓ in the tree constructed
in Algorithm 3, the probability that both p and a query q end up in ℓ is at most: (G(t, ηs, ηq))

K .
3This is a slight variation of the original claim from Razenshteyn (2017) which trivially follows from its

original proof.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Remark 24 (Parameter setting for Theorem 7). The result claimed by theorem Theorem 7 is
achieved by instantiating Claims 20, 21, 22 with the following parameter setting, for ρq ≥ 0 (see
also Razenshteyn (2017, Sections 2.8.4, 2.8.5)):

1. K =
√
lnn

2.
√
τs =

α(r)β(cr)−α(cr)β(r)
√
ρq

α(r)−α(cr) ,
√
τq =

β(cr)−β(r)
√
ρq

α(r)−α(cr)

3.
√
ρs =

β(r)β(cr)−(1−α(r)α(cr))
√
ρq

α(r)−α(cr)

4. ηs =
√
2τs ln1/4 n, ηq =

√
2τq ln1/4 n.

5. G(t, ηs, ηq)
K = n

− τs+τq−2α(t)·√τsτq

β(t)2 · e±O(
√
logn·log logn) for t such that r ≤ t ≤ cr.

6. T = 10 logn
G(r,ηs,ηq)

≤ eO(
√
logn·(log(logn))4) ≤ no(1).

7. F (ηq)
K = n ·G(cr, ηs, ηq)

K .

where for 0 ≤ s ≤ 2 we use α(s) = 1 − s2

2 to denote the cosine angle between two points on the
unit sphere with distance s between them, and β(s) =

√
1− α(s)2 for 0 ≤ s ≤ 2 for the sine of

the same angle.

A.1 ANN TO ANN ON THE SPHERE (PROOF SKETCH FOR LEMMA 8)

In order to apply the data-structure for the ANN on the sphere presented in Appendix A to gen-
eral datasets not necessarily on the sphere, we will need a reduction. In particular we will need
a reduction of (c, r)-ANN problem for n-point dataset in Rd, to (c, r′)-ANN problem for n-point
dataset on the unit sphere in Rd where r′ = 1

log logn . This reduction is taken almost verbatim from
Razenshteyn (2017, Section 2.5) (we assume that all points are normalized so that r = 1):

1. We reduce the dimension to d = log1+o(1) n by using the dimension reduction lemma of
Johnson-Lindenstrauss. This step introduces multiplicative distortion 1± o(1) for pairwise
distances, which is acceptable for us.

2. Next, we reduce the diameter of the dataset to O((log log n)1/4). This can be done by parti-
tioning the dataset using LSH family from Datar et al. (2004) and querying the part, where
the query belongs. We need to repeat this procedure no(1) times to get high probability of
success.

3. Finally, we reduce the problem to the unit sphere case with r = 1
log logn . This reduction

can be found in Valiant (2015).

These steps imply that we can, with no asymptotic costs to the other parameters, consider the use of
data-structure for the (c, r)-ANN problem on the sphere (up to no(1) factor in query time and o(1)
in the other parameters). An implicit property of the reduction is critical for us and is captured by
the following claim:

Claim 25 (Implicit in the proof of Corollary 3.4 from Andoni et al. (2017)). Let P ⊂ Rd be a set of
points contained within a ball of radius D centered at the origin, such that for all x ∈ P , ∥x∥2 ≤ D.
Let R be a real parameter such that R≫ D. Define a mapping ϕ : P → Rd+1 by first lifting a point
x to the hyperplane at height R via π(x) = (x,R), and then projecting it radially onto the sphere of
radius R:

ϕ(x) =
R

∥π(x)∥2
π(x) and π(x) =

R√
∥x∥22 +R2

(x,R)

This mapping has the following properties:

1. Mapping to the sphere: ∀x ∈ P , the image ϕ(x) lies on the sphere of radius R in Rd+1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

2. Single point displacement: the distance between π(x) and the projected point ϕ(x) is
bounded by: ∥ϕ(x)− π(x)∥2 ≤ ∥x∥2

2

2R .

3. Pairwise-distance distortion: For any two points x, y ∈ P , the distance between their
images is no greater than the original distance: ∥ϕ(x)− ϕ(y)∥2 ≤ D2

R + ∥x− y∥2.

We use the above claim with D = O((log log n)1/4) (which we get from the second step in the
reduction) and R = r · D2

√
log log n = r · log log n. The mapping ϕ(x) maps points to a sphere

of radius R, with only a small distortion, and in order to reduce the points to the unit sphere we
scale all points by 1/R. Thus we obtain a critical linearity property of the reduction essential for
our analysis, which is Lemma 8.

B STATEMENTS FROM CHARIKAR ET AL. (2020)

B.1 LEVEL-SETS SIZE BOUNDS

The following claim about the level sets Lq
j (see Definition 9) bounds the size of level sets Lq

j using
a simple Markov bound.

Claim 26. Charikar et al. (2020, Lemma 20) |Lq
j | ≤ 2jnµ∗ ≤ 2jnµ for all j ∈ [J].

B.2 PREVIOUS LEVEL-j RECOVERY DATA-STRUCTURE

We recall the parameters of the data-structure for the Level-j Recovery that was considered in that
paper.

Lemma 27. Charikar et al. (2020, Theorems 15, 22) For the Gaussian kernel K and every j ∈ [J],
given the sample Pj , and a query q, there exists a data-structure Dj for the Level-j Recovery that
uses the following query and space bounds (where xj =

j
J):

• (expected) query time at most: exp1/µ (xj (1− xj) (1 + o(1)))

• (expected) space at most: min
(
n · exp1/µ (xj (1− xj) (1 + o(1))) , exp1/µ (1 + o(1))

)
The above implies that for j smaller than some arbitrarily small constant τ , one gets query and space
requirements that are arbitrarily small. For the space bound we remark that in any case, our new
data-structure in Section 4 has space requirement of at least 1/µ, since we ignore the first term of
the minimization in our discussions.

B.3 ESTIMATOR ACCURACY FOR THEOREM 13

In this subsection we cite the claim from Charikar et al. (2020) that prove that the KDE data structure
from Algorithms 1 and 2 supports (1±ϵ) approximation for ϵ as in the Setup (Definition Theorem 5).

The first claim argues that, conditioned upon the success of the ANN data-structure, argues that the
estimator is unbiased.

Claim 28 (Charikar et al. (2020), Claim 24). Let µ∗ ∈ (0, 1), µ ≥ µ∗ , ϵ ∈ (µ10, 1), q ∈ Rd.
Assume that for any data-set and for any of the K repetition (see the definition of K in Algorithm 1),
the data structure Dj constructed in Algorithm 1 is able to solve Level-j Recovery (Definition 11)
with probability at least 1 − 1

n10 , the estimator Z for any repetition constructed in Algorithm 2
satisfies the following:

(1− n−9)n · µ∗ ≤ E[Z] ≤ n · µ∗

We note that Charikar et al. (2020, Claim 24), as written in the reference, uses a previous claim
about the recovering probability of the data-structure they construct, but is essentially oblivious to
it’s inner working, and in fact it works for any data-structure with good enough recovery probability.
The next claim from Charikar et al. (2020) argues that running Algorithms 1 and 2 with a constant
factor approximation to µ∗ suffices to obtain an accurate estimate of µ∗.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Claim 29. Charikar et al. (2020, Claim 25) For every µ∗ ∈ (0, 1), every ϵ ∈ (µ10, 1), every q ∈ Rd,
using estimators Z, for every repetition constructed in Algorithm 1 where µ/4 ≤ µ∗ ≤ µ, one can
output a (1± ϵ)-factor approximation to µ∗.

C DEFERRED PROOFS FROM SECTION 4

Our main goal in this section is to prove Lemma 15. Before that we need to prove various inter-
mediate helper lemmas. Our first lemma is a general statement about the (c, r)-ANN data-structure
from Section A. It quantifies the probability that points from intermediate bands t ∈ [r, cr] appear
in the set of points in the leaves that is gathered in Algorithm 4.
Lemma 30. Let P be a dataset of size n that contains points on the unit sphere, which is prepro-
cessed into a data-structure for (c, r)-ANN problem on the sphere with a query parameter ρq . Let
t ∈ [r, cr]. Given a query q and a point p ∈ P at distance at least t from q, the probability that p,q
collide in at least one leaf is at most:

expn

ρq −

(
c(t2 − r2)

√
1− c2r2

4 − (t2 − c2r2)
√

1− r2

4

√
ρq

)2

(c2 − 1)2r2t2
(
1− t2

4

)


Proof. We are interested in the probability that there is at least one leaf in the data structure con-
structed in Algorithm 3 where p,q collide. By Claim 23, for each point p, at distance t, and each
leaf ℓ in the tree, the probability that both p and q end up in ℓ is at most: (G(t, ηs, ηq))

K . Since
there are TK leaves, by union bound, the probability that p appears in the leaves reached for query
q is at most: TK · (G(t, ηs, ηq))

K . Then we get:

TK · (G(t, ηs, ηq))
K = n

(
ρq−

((α(r)−α(t))β(cr)−(α(cr)−α(t))β(r)
√

ρq)2

β2(t)(α(r)−α(cr))2

)
+o(1)

= n

ρq−

(
c(t2−r2)

√
1− c2r2

4
−(t2−c2r2)

√
1− r2

4
√

ρq

)2

(c2−1)2r2t2

1−
t2

4



+o(1)

The bound in the claim follows by using the parameters and the definitions of α(·), β(·) in Remark
24.

Algorithms for the data-structureDj for the Level-j Recovery.Next, we give a formal description
of the data-structure we use for the Level-j Recovery problem, used to preprocess Pj (of size mj ,
see Definition 10). We emphasize that the underlying data-structure we use is essentially the data-
structure for the (c, r)-ANN problem on the sphere from above (with relevant parameters c, r), with
a small but crucial difference in the query procedure. We also use the sphere reduction from Lemma
8 which was discussed in Appendix A.1.

Algorithm 5: Dj PREPROCESS

Input: Dataset Pj (of size mj , see Definition 10), parameters ρq, ρs (and letting xj = j/J)
1 Reduce from (

√
1/xj ,

√
2xj)-ANN to (

√
1/xj ,

√
2xj/R)-ANN on the sphere where

R =
√

2xj · log log((1/µ)1−xj) (see Lemma 8).
2 Use the data-structure for ANN on the sphere from Theorem 7 with parameters ρs and ρq .

Algorithm 6: Dj QUERY

Input: A query q, a preprocessed ANN on the sphere data-structure for Pj via Algorithm 5.
1 Use the sphere reduction from Lemma 8 to convert q to a valid query q′ on the sphere.
2 Run the query algorithm of the ANN on the sphere Algorithm 4 on q′.
3 Scan all returned points to retrieve all points (on the sphere) from the leaves at distance

rj/R from q′ (see Definition 9).
4 Return the corresponding points from Pj to the points recovered in the previous step.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Overview of our analysis. After describing the algorithm, we provide a general statement about
the query time and space requirement of the data-structure. Note that the space is exactly as in the
data-structure for the (c, r)-ANN problem on the sphere, but the query time is quite different, and
we now explain its derivation. Recall that during when querying q, the query algorithm of the (c, r)-
ANN on the sphere in Algorithm 4, ends up with multiple points that collided with the query q (see
Appendix A for more details).

The query time of the ANN structure accounts for the number of far points, i.e., at distance most
bigger than cr from the query. Since our goal is to recover the points inLq

j that survives the sampling
for Pj , we would need to scan all the points reached by the data-structure for q. However, from the
density bounds of Claim 26 we can bound how many points from Lq

i for i ̸= j both ”survived”
the sampling step and also collide with a point in Lq

j in expectation. Using properties of the ANN
scheme on the sphere from Appendix A, we bound the probability they collide with q in the ANN
structure. These considerations make the query time of our data-structure, up to polylog factors, the
maximum over other level sets i ̸= j of the number of expected points that are in the sample Pj

and collide with q during the query (which is potentially bigger than the query time for the ANN
data-structure).
Lemma 31. For δ ≥ 0, j ∈ [c0J, (1 − c1)J] (for arbitrary small constants c0, c1), ρq, ρs ≥ 0 that
satisfy Equation (8), there exists a data-structure Dj for the Level-j Recovery problem that uses
preprocess and query procedures from Algorithms 5 and 6 and has the following properties (where
xj = j/J):

• (expected) query time at most: exp1/µ (γ(ρq, xj) + o(1))

• (expected) space at most: exp1/µ (1 + ρs + o(1))

where:

γ(ρ, x) = max
y∈[x,1]

(y − x) + (1− x)

(
ρ− x

y(1− x)2

(
y − x√

x
− (y − 1)

√
ρ

)2
)

(11)

Proof. In the proof we will use the normalize index xj = j/J instead of j ∈ [J] and correspond-
ingly xi = i/J for i ∈ [J] \ {j}. Our goal is to construct a data-structure that will enable us to
recover all points in Lq

j in the sampled set Pj , or equivalently, all points at distance at most rj from
the query q. Our overall strategy will be to construct a ANN on the sphere data-structure from The-
orem 7 (See Appendix A) on the sampled set Pj , whose size is size is mj = 1/(2jµ) = (1/µ)1−xj

(see Definition 10).

Within the sampled dataset, we focus our attention on points at distances r from q such that r ∈
[0,
√
2], as otherwise, their contribution to the kernel value amounts to o(1/µ) (see Definition 4).

Since our points of interest in the dataset have r within that range, we aim to construct a data-
structure for the (c, r)-ANN problem on the sphere where c =

√
2/rj and r = rj (such that the

close points are at distance rj and the far at distance
√
2). In the following discussion, the parameters

ρq, ρs we use in for the ANN data-structure are unspecified (since at this point, they can be chosen
arbitrarily). Since rj =

√
2xj for the Gaussian Kernel by the definition of the Gaussian Kernel

(Definition 4 and the level set radii in Definition 9), we have c =
√

1/x.

Now we address the number of points from different levels Lq
i for i ̸= j are in subsampled set Pj .

By Claim 26, the size of the sampled set Lq
i for each i is at most 2inµ = nµ1−xi . Since the set Pj

is sampled at rate pj = 1/(2jnµ) = µ1−xj/n, the number of sampled points from levels xi < xj is
at most O(1): ∑

xi<xj

nµ1−xi · 1

nµ1−xj
=
∑

xi<xj

1

µxi−xj
= O(1)

Additionally, in expectation we have at most one point from Lq
j after subsampling (again by Claim

26), which we want to recover, and there is expected number of 2(1/µ)xi−xj = O((1/µ)xi−xj)
points from bands Lq

i for i > j in the set Pj (see Definition 9). We denote the exponent of that
quantity by:

Φ(xj , xi) = xi − xj

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The points from Lq
i are at distance at least ri =

√
2i/J =

√
2xi from q, while our data-structure

was constructed for rj =
√
2xj .

We now use Lemma 8 to transform the problem from a (
√

1/xj ,
√

2xj)-ANN problem of points in
Rd to the (

√
1/xj ,

√
2xj/R)-ANN problem on the sphere where and the points lie on a sphere Sd,

for R =
√
2xj · log log((1/µ)1−xj) (see also Appendix A.1 for more details). This reduction incurs

a small negligible (1/µ)o(1) factor to the query time. We note that since j is in the nice regime,
xj ∈ [c0, 1− c1], this implies that the size of the dataset is mj = (1/µ)O(1), the radius for our level
of interest is rj = O(1) (also xj = O(1)) and the scaling R = O(log log((1/µ)O(1)) = ω(1).

By Lemma 8, the sphere reduction keeps pairwise distances (before scaling by R) the same up to a
factor of O(1/(rj

√
log logmj)) = o(1), and the scaling changes the pairwise distances by a factor

of 1/R. Hence, we can think of the induced level-sets Lq
j of the dataset (for every j ∈ [J]) after the

reduction as containing the points that would have been contained in the corresponding level-sets
Lq
j before the reduction, with the only difference being that the distances rj are scaled to rj/R for

ever j ∈ [J]. Hence, in the following we continue with the assumption that the points are on the
sphere (and hence we can use the data-structure for ANN on the sphere), and keep the notation for
the level sets and the query. We also use the fact that the reduction from Lemma 8 allows to recover
the points from the original dataset, before the sphere reduction.

Recall that our goal is to recover the points in Lq
j from Pj . These points will collide with q when

running the query algorithm Algorithm 4 of the data-structure for ANN on the sphere as per Claim
20 with 1− 1/poly(n) success probability. For our setting, the query Algorithm 6 scans all points
reached by the query algorithm for ANN on the sphere, and hence we must account bound the
number of points from all Lq

i for i > j that collide with the query q in the data-structure for the
ANN on the sphere and are therefore returned by the query algorithm (note that for i < j we saw that
there’s only a constant amount in Pj). Applying Claim 30 for t = ri/R, r = rj/R and c =

√
2/rj

(and since the dataset is of size (1/µ)1−x) we get that the collision probability between a query q
and points from Lq

i in the sample Pj , is at most (1/µ)χ(ρq,xj ,xi) where:

χ(ρq, xj , xi) = (1− x)

ρq −

(
c(r2i − r2j)

√
1− c2r2j

4R2 − (r2i − c2r2j)

√
1− r2j

4R2

√
ρq

)2

(c2 − 1)2r2j r
2
i

(
1− r2i

4R2

) + o(1)


= (1− xj)

ρq −

(
xi−xj√

xj

√
1− 1

2R4 − (xi − 1)
√
1− xj

2R4

√
ρq

)2
(1−xj)2xi

x

(
1− xi

2R4

) + o(1)


= (1− xj)

(
ρq −

xj

xi(1− xj)2

(
xi − xj√

xj
− (xi − 1)

√
ρq

)2

+ o(1)

)
The second equality follows by plugging the values of ri, rj and the last equality follows by putting
aside o(1) terms coming from the fact that R = ω(1). Hence, the expected number of points from
Lq
i that collide with q in the Pj is at most:

E[probability that points from Lq
i collide with q] ≤ (1/µ)Φ(xj ,xi)+χ(ρq,xj ,xi)

Now we bound the expected number of collisions with q in the sample Pj from all i > j :

E[number of points in Lq
i ∩ Pj , ∀i > j colliding with q] ≤

∑
i>j

(1/µ)Φ(x,y)+χ(ρq,x,y)

≤ J · max
i∈[j,J]

(1/µ)Φ(xj ,xi)+χ(ρq,xj ,xi)

≤ Õ

(
max
i∈[j,J]

(1/µ)Φ(xj ,xi)+χ(ρq,xj ,xi)

)
≤ (1/µ)maxy∈[x,1] Φ(xj ,y)+χ(ρq,xj ,y)+o(1)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and we define:

γ(ρ, x) = max
y∈[0,1]

Φ(x, y) + χ(ρ, x, y)

= max
y∈[0,1]

(y − x) + (1− x)

(
ρ− x

y(1− x)2

(
y − x√

x
− (y − 1)

√
ρ

)2
)
.

This latter function is the function γ(ρ, x) defined in the lemma statement. We note that the final up-
per bound maximization over the continuous range y ∈ [0, 1] to account for all in-between level-set
collision probabilities, as the distances between points and the query lie within a range of distances,
according to the level-set definition in Definition 9 (and hence we do use the analytic behavior of
the collision probability). Finally, we mention that maximizing over y ∈ [0, 1] rather than y ∈ [x, 1]
does not decrease the maximum (and more so because since, as seen above, no y such that y < x
would not be maximizer).

Explanation for Definition 14 We elaborate on the two regimes for j ∈ [J] (correspondingly
xj = j/J) when enforcing the space limit in Equation (9).

• Constant query distance scales (xj ≤ θ(δ)). In this regime, even if one uses maximal
setting of ρs = 4x

(1−x)2 (which matches the lower bound enforces by plugging ρq = 0 and
the value of c into Equation (8)) the space requirement of the data-structure does not exceed
exp1µ(1 + δ + o(1)). Hence, any setting of ρq ≥ 0 could be used.

• Polynomial query distance scales (x > θ(δ). in this regimes the exponent ρs that satisfies
Equation (9) must be such that ρs ≤ δ+x

1−x . Plugging the upper bound on the space exponent
(in order to allow as much flexibility for the choice of the query exponent) into the ANN-
relation 8, gives a lower bound on ρq .

Finally, we conclude with the proof of Lemma 15

Proof of Lemma 15. The proof follows by instantiating Lemma 31 with specific value of ρq, ρs.
Our choice of parameters, is to set ρs = ρs(δ, xj) (where xj = j/J), where ρs(δ, xj) is defined in
Definition 14 as the space exponent that guarantees that the space requirement of the data structure
will be at most (1/µ)1+δ+o(1) (see also the discussion above and in Section 4). The value of ρq
is set to be the value of ρ that minimizes query exponent of a Level-j data-structure based on the
data-structure for the (c, r)-ANN problem on the sphere, analyzed in Lemma 31 in Appendix C,
which is minρ≥ρq(δ,xj) γ(ρ, xj) (where γ is defined in Equation (11)). Note that this is exactly the
expression for the query exponent ξ(δ, x) defined in Equation (10). Similarly to before, ρq(δ, xj)
is defined in Definition 14 as the smallest query exponent possible for the ANN data-structure on
the sphere, with the space exponent limitation of 1 + δ + o(1) (see also the discussion above and in
Section 4).

D DEFERRED PROOFS FROM SECTION 5

In this section, we provide the proofs for the theorems in Section 5.

Proof of Theorem 16. Recall that the query and space requirement of the KDE data-structure from
Theorem 13 is set to the max query and space requirement for the Level-j Recovery data-structure.

First we choose c0 = c1 = 0.01, which set the nice range to be [0.01, 0.99]. Then, we note that
for this choice, and for x < 0.01 and x > 0.99, the query time of the data-structure from Lemma
27, gives query time of at most exp1/µ(0.01 + o(1)). We also argue that the space requirement

of this data-structure min
(
n · exp1/µ (0.01 + o(1)) , exp1/µ (1 + o(1))

)
wouldn’t matter, since for

any δ ≥ 0, the space requirement of the dataset Dj is at least exp1/µ (1 + o(1)).

For x in the nice regime, we plug the parameters of our new new data-structure Dj for Level-j
Recovery from Lemma 15. For the space requirement, we set the parameters of this data-structure
so that our data-structure uses exp1/µ(1 + δ + o(1)). For query time, we set it to be maximal over

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

x ∈ [c0, 1 − c1] of ξ(δ, x), which is defined in Equation (10) as the exponent of the query time
for the Level-j Recovery data-structure. We can therefore upper bound the query time exponent by
maxx∈[0,1] ξ(δ, x) which is ξ(δ). Note that we can consider x ∈ [0, 1] instead of in the nice range as
we give an upper bound on the expected query time.

Finally, we note that from numerical evaluations, we see that ξ(δ) ≥ 0.04 for any δ (see also
Figure 1, where the graph of ξ(δ) plateaus, and discussion below), which means that the query time
in the range x < 0.01 or x > 0.99 doesn’t effect the maximization.

Proof of Theorem 17. The proof of this lemma is based on numerical evaluations of the expression
for ξ(δ) = maxx∈[0,1] ξ(δ, x), where ξ(δ, x) is defined in Equation (10). Our first result identifies
the value of δ at which

max
x>θ(δ)

ξ(δ, x) ≤ max
x≤θ(δ)

ξ(δ, x) (12)

for θ(δ) defined in Definition 14. At this point, the maximal value of the curve ξ(δ, x) for x ≤ θ(δ)
is higher than that for x > θ(δ). While the value of ξ(δ, x) for x > θ(δ) decreases with δ, the value
of ξ(δ, x) for x ≤ θ(δ) is in fact independent of δ. Hence, from the value of δ at which Equation (12)
holds, the value of ξ(δ) = maxx∈[0,1] ξ(δ, x) cannot decrease further. Via numerical evaluations, we
get that Equation (12) occurs at δ ≈ 3.15 and ξ(δ) ≈ 0.05. These values are also demonstrated in
the left figure of Figure 1 (and discussed below). Similarly, for δ = 0, one can numerically evaluate
ξ(δ) (noting that ρq(δ, x) from Theorem 14 is 0, which simplifies the constraints for evaluations).
Numerically we get that ξ(0) = 0.1865.

Finally, we provide a script (in Appendix D.1) for reproducing the numbers we report. The script
estimates the value of ξ(δ) at δ = 0 and prints the point δ at which the minimum of ξ(δ) is first
achieved.

On the functions ξ(δ, x) and ξ(δ). We elaborate on Figure 1 which show the following. The left
figure shows the exponent function for the query exponent of our data-structure ξ(δ, x) for the level
x (assuming x = j/J , see Lemma 15 and Equation (10)). The right figure shows the query time
exponent of the KDE data-structure ξ(δ) = maxx∈[0,1] ξ(δ, x) (see Theorems 13 and 16). Both
of these functions are plotted in Figure 1, where the inner maximizations and minimizations are
computed numerically (similarly to the script in Appendix D.1).

• The left figure in Figure 1 shows the behavior of the function ξ(δ, x) for different values
of δ (as a function of x ∈ [0, 1]). The vertical lines denote the thresholds for the distance
scales θ(δ) from Definition 14 (the threshold where below one can use constant query for
the underlying data-structure for ANN on the sphere. See discussion in Appendix D). The
threshold and the curve for the same δ are colored in the same color.
This figure shows (in pink for δ = ∞) the underlying curve that every curve with δ > 0
”emerges” from after passing the threshold θ(δ). This curve is the curve one gets from
using ρ ≥ 0 in the maximization of ξ(δ, x) for the entire range of x ∈ [0, 1], as if there is
no threshold θ(δ) (or rather, the threshold is equal to 1).
One sees that every curve for δ diverges from the underlying curve at some point after
θ(δ). Up to a point, an increase in δ (equivalently, increasing the threshold θ(δ)), decreases
the global maximum of the function (see for example the differences between using δ =
0, 1, 2). One sees from the value of δ at which the underlying curve’s maximum is the
global maximum of the function (numerically, around δ ≈ 3.15), no increase in the value
of δ can lead to a smaller query exponent ξ(δ, x), which plateaus at the maximum of the
underlying curve (at around 0.05). This is demonstrated by the curves for δ > 4.

• Similarly, we plot the query exponent of the KDE data-structure ξ(δ) (see Theorem 16) and
present it on the right plot of Figure 1. This function takes the maximum over x ∈ [0, 1]
of ξ(δ, x), and as expected and demonstrated by the plot for ξ(δ, x), it initially decreases
when 1 + δ increases but then plateaus. The explanation for this phenomena lies in the
cases induced by the threshold θ(δ). As before, as δ increases, θ(δ) approaches 1, which
means that for most of the x’s ρq(x, δ) ≥ 0. In that case, we have that ξ(δ) is actually
independent of δ (as in that regime ρq(x, δ) = 0, see Definition 14) which explains why
this plateau is not affected by the change in δ.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.1 EVALUATION SCRIPT

This section discusses a python script (which can be found in the supplementary material to this
paper) used to evaluate the query-exponent ξ(δ) (see Equation (10) and theorem 16) and reproduce
the results of Theorem 17. The maximizations and minimizations are computed via a grid search
(the grid size is configurable and can be increased to improve accuracy).

In terms of notation, the script uses F instead of ξ to denote the exponent function, and:

f(x, y, ρ) = (y − x) + (1− x)

(
ρ− x

y(1− x)2

(
y − x√

x
− (y − 1)

√
ρ

)2
)

(which is the same as the function ξ(δ) but without the optimization over x, y, ρ). The value of
F (δ) = maxx∈[0,1] minρ≥ρq(δ,x) maxy∈[0,1] f(x, y, ρ) is therefore the same as ξ(δ) (where ρq(δ, x)
is defined in Definition 14).

We note that the script was created using ChatGPT 5 (as well as generating the plots in Figure 1).

20

	Introduction
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Basic Setup
	(c,r)-ANN on the Sphere

	Framework for Non-adaptive KDE
	data-structure for the Level-j Recovery Problem
	KDE data-structure Tradeoffs
	Spherical (c, r)-ANN data-structure from razenshteyn2017thesis
	ANN to ANN on the Sphere (Proof Sketch for Lemma 8)

	Statements from charikar2020kernel
	Level-Sets Size Bounds
	Previous Level-j Recovery data-structure
	Estimator Accuracy for thm: charikar main

	Deferred Proofs from sec:newdatastructure
	Deferred Proofs From sec: KDE Tradeoffs
	Evaluation Script

