
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE SPECTRAL DIFFERENCES BETWEEN NTK AND
CNTK AND THEIR IMPLICATIONS FOR POINT CLOUD
RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

The Convolutional Neural Tangent Kernel (CNTK) offers a principled framework
for understanding convolutional architectures in the infinite-width regime. However,
a comprehensive spectral comparison between CNTK and the classical Neural
Tangent Kernel (NTK) remains underexplored. In this work, we present a detailed
analysis of the spectral properties of CNTK and NTK, revealing that point cloud
data exhibits a stronger alignment with the spectral bias of CNTK than images.
This finding suggests that convolutional structures are inherently more suited to
such geometric and irregular data formats. Based on this insight, we implement
CNTK-based kernel regression for point cloud recognition tasks and demonstrate
that it significantly outperforms NTK and other kernel baselines, especially in
low-data settings. Furthermore, we derive a closed-form expression that connects
CNTK with NTK in hybrid architectures. In addition, we introduce a closed-form
of CNTK followed by NTK, while not the main focus, achieves strong empirical
performance when applied to point-cloud tasks. Our study not only provides new
theoretical understanding of spectral behaviors in neural tangent kernels but also
shows that these insights can guide the practical design of CNTK-based regression
for structured data such as point clouds.

1 INTRODUCTION

Neural Tangent Kernel (NTK) Jacot et al. (2018) emerged as a critical theoretical framework for
understanding the training dynamics and generalization behaviors of deep neural networks Golikov
et al. (2022). Among its variants, the Convolutional Neural Tangent Kernel (CNTK) Arora et al.
(2019a) provides a kernel-based perspective on convolutional neural networks (CNNs), enabling
precise analysis of their inductive biases and convergence properties. Building on this foundation,
existing studies Geifman et al. (2022)Cagnetta et al. (2023)Barzilai et al. (2022)Bietti & Mairal
(2019) have explored the properties of CNTK as a kernel and extended CNTK in various directions
Li et al. (2019). However, there has been a lack of discussion on the differences between CNTK
and NTK when applied to the same dataset. This paper aims to address this theoretical issue by
investigating the following question:

Under a given data assumption, what are the spectral differences between NTK and CNTK?

To address this issue, it is first necessary to consider an appropriate data distribution. Existing studies
often assume that data is uniformly distributed on a high-dimensional sphere, without taking into
account the inherent tensor structure of the data. In this paper, we assume that the d+ 1-dimensional
data is distributed with any distribution over the d-dimensional tensor space (with a generally non-
diagonal covariance matrix), and is insignificant across the channel dimension (though not necessarily
independent). Under this assumption, we identify two major differences between NTK and CNTK
when evaluated on datasets drawn from the same distribution:

(I) For any L > 0, the mean of the eigenvalues mK under L-layer NTK is greater than that under
L-layer CNTK, indicating that NTK tends to have larger eigenvalues on average.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(II) For any L,L′ > 0, the spread βK of the eigenvalue distribution under any L-layer NTK is smaller
than that under any L′-layer CNTK, suggesting that NTK exhibits a more concentrated spectrum
compared to CNTK.

Observation (II) explains why convolutional networks generally achieve better generalization than
fully connected networks since the generalization risk can be bounded by the varianceBartlett et al.
(2020), while (I) provides a theoretical justification for the empirical design choice of adding a few
MLP layers after pooling in deep convolutional networks.

Based on this finding, this paper addresses a practical application problem:

How do MLPs (NTK) and convolutional networks (CNTK) differ in their influence on data with
different levels of relevance?

To address this issue, we marked the metric βK aligned with the suitability of the convolutional
structure for data analysis. By fitting a dataset to our assumed distribution, βK quantifies the degree to
which NTK exhibits a more concentrated spectrum compared to CNTK, as described in observation
(II). This value serves as an indicator of how differently MLPs and convolutional networks are
expected to perform on the given data.

In addition, most existing studies on CNTK are limited to the commonly used two-dimensional
case, with little discussion on more general dimensional settings. Therefore, this paper extends the
analysis to convolutional kernels of arbitrary dimension. Furthermore, we analyzed the propagation
of CNTK-NTK kernel computations in convolutional networks followed by nonlinear fully connected
layers, which is an empirical setup. In this work, such a setup can be interpreted as leveraging the
broad spectrum of CNTK eigenvalues (II) and the bias of NTK towards larger shifts (I).

Specifically, as a case study, we find that point cloud tasks rely more heavily on convolutional
structures compared to image tasks. Motivated by this, we further investigate kernel regression based
on one-dimensional convolutions in the context of point cloud tasks.

1.1 CONTRIBUTION

We considered the notation and framework of CNTK under general dimensions that can be connected
to NTK. Within this framework, we revealed the spectral differences between NTK and CNTK that
are distribution-free. Furthermore, based on the theoretical findings, we proposed the concept of
’Convolutional Suitability’ for data analysis, which measures how suitable a given dataset is for
convolutional networks. Finally, we applied CNTK to point cloud tasks for the first time, including
kernel regression experiments based on CNTK and the application of our theoretical conclusions to
point cloud datasets.

1.2 NOTATION

We assume that each point xi comes from a d-order tensor space RΠd
i=1hi , where hi denotes the

length along the i-th dimension. Each sample has n0 channels of such point, forming a data point
x = {x1, x2, . . . , xn0}. For such tensor data, we do not use boldface notation. In this paper, only
data constructed from RΠd

i=1hi ×RΠd
i=1hi are written in bold to distinguish them. Define the index set

p, q ∈ [[hi]d], where [hi] = {1, 2, . . . , hi}, and [[hi]d] = [h1]× [h2]×· · ·× [hd], with × denoting the
Cartesian product. The length of the convolutional kernel is defined as s (For simplicity, we assume
that the convolutional kernel is square.) N(p) is denoted as convolution kernel indices centered at p,
that is, N(p) = {[p1 − ⌊ s

2⌋, p1 + ⌊ s
2⌋], ..., [pd − ⌊ s

2⌋, pd + ⌊ s
2⌋]}.

For an activation function ϕ(x), we denote its derivative as ϕ̇(x), and its dual function with respect
to a distribution D as ϕ̃(D)x,x′∼D = E[ϕ(x)ϕ(x′)]. We define ⊙ as the Schur (element-wise)
product, ⊗ as the Kronecker (tensor) product, and · as scalar multiplication or standard matrix–matrix
multiplication.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 CONVOLUTIONAL NEURAL TANGENT KERNEL

In this section, we provide a brief introduction to the Convolutional Neural Tangent Kernel (CNTK).
For the purpose of subsequent generalization, the definition is given in the context of inputs with
arbitrary dimensions , not restricted to the two-dimensional case. Following the recursion in Jacot
et al. (2018) Arora et al. (2019a), CNTK for unified CNNs is defined as follows.

Definition 1. Given two samples x, x′ ∈ RΠd
i=1hi×n0 , let p, q be a position in [[hi]d] with neighbor-

hood N(p). Define the covariance matrix, 0-order expectation and 1-order expectation of f (l)
p (x)

and f
(l)
q (x′) as follows:

Λ(l)
p,q(x, x

′) =

(
E(l−1)
p,q (x, x) E(l−1)

p,q (x, x′)

E(l−1)
p,q (x′, x) E(l−1)

p,q (x′, x′)

)
,

Σ(l)
p,q(x, x

′) = E
(u,v)∼N

(
0,Λ

(l)
p,q(x,x′)

) [ϕ(u)ϕ(v)] ,
Σ̇(l)

p,q(x, x
′) = E

(u,v)∼N
(
0,Λ

(l)
p,q(x,x′)

) [ϕ̇(u)ϕ̇(v)] ,
(1)

with recursion for E(l)
p,q(x, x′) is:

E(l)
p,q(x, x

′) = tr
(
Σ

(l)
N(p),N(q)(x, x

′)
)
. (2)

Define the trace of a tensor T ∈ RΠd
i=1hi×Πd

i=1hi as tr(T) =
∑

p∈[[hi]d]
Tp,p. Recursive foundation

is:
Σ∗(0)

p,q (x, x′) = x⊗ x′. (3)

When the convolution dimension is d, there will also be interactions between the elements within
the tensors at l-layer’s neurons. For any two samples x, x′, this relationship is described by the three
tensors Λ(l)(x, x′) ∈ RΠd

i=1hi×Πd
i=1hi×2×2, Σ(l)(x, x′), Σ̇(l)(x, x′) ∈ RΠd

i=1hi×Πd
i=1hi in the NTK

field, as mentioned above. Consequently, we can derive the specific recursive formula for CNTK.

Lemma 1. Given two samples x, x′ ∈ RΠd
i=1hi×n0 , and position p with its neighbourhood, N(p).

The CNTK without pooling is computed as:

Kwop(x, x
′) = tr

(
K(L)(x, x′),

)
(4)

the CNTK with the global average pooling Pav is computed as:

Kwp(x, x
′) = Pav

(
K(L)(x, x′)

)
, (5)

in which K(l)(x, x′) is l-layer tensor kernel with recursion for 1 ≤ l ≤ L− 1 and p-entry as:

K(l)
p,q (x, x

′) = tr
(
K

(l−1)
N(p),N(q) ⊙ Σ̇

(l−1)
N(p),N(q)(x, x

′)
)
+ E(l−1)

p,q (x, x′). (6)

The derivation details are provided in the original researchArora et al. (2019a). Nevertheless, we also
provide a derivation in the general-dimensional case in Appendix B. Note that when we consider
the case d = 0, corresponding to the structure of MLPs, we have p = q fixed and N(p) = p, which
recovers the standard NTK formulation. By default, we consider the CNTK with pooling layers
included in the following.

3 CNTK FOLLOWED BY NTK

While the Convolutional Neural Tangent Kernel (CNTK) captures the infinite-width behavior of
vanilla convolutional networks, it does not account for architectures commonly used in practice,
where a shallow MLP is typically appended after the convolutional backbone. In this section, we
derive a closed-form expression of the CNTK for a more general architecture: a d1-dimensional

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

convolutional network followed by a d2-dimensional convolutional (or fully connected when d2 = 0)
network.

Generally, let the network topology be determined by two sets: {L1, L2} and {d1, d2}, where
d1 > d2. This represents a network consisting of L1 layers of d1-dimensional convolutional layers
and L2 layers of d2-dimensional convolutional layers, connected by an average pooling layer. We
can then propose the combined dimension CNTK formally as follows:

Proposition 1. Suppose d1-dimension sub convolutional neural network f1 : RΠ
d1
i=1h

1
i×n1

0 →
RΠd

i=1h
1
i×n1

L1 and d2-dimension sub convolutional neural network f2 : RΠ
d2
i=1h

2
i×n2

0 → RΠd
i=1h

2
i×n2

L2

with d1 > d2, n1
L1

= n2
0 and h1

i = h2
i for i ∈ [d2], generalizing convolutional neural network

fG : RΠ
d1
i=1h

1
i×n1

0 → RΠd
i=1h

1
i×n1

L2 is defined as:

fG(x) = f2

(
Pd1→d2
av (f1(x))

)
, (7)

in which Pd1→d2
av : RΠd

i=1h
1
i×n1

L1 → RΠd
i=1h

2
i×n2

L2 is local average pooling ,when fc is standard
initialization and in which, n1

1, n
1
2, ..., n

1
L1−1, n

2
1, ..., n

2
L2−1 → ∞, its corresponding kernel is:

Kc(x, x
′) = Pav

(
K(L1+L2)(x, x′)

)
, (8)

at the point of connection, for any samples x, x′:

Σ(L1+1)(x, x′) = Pd1→d2
av

(
Σ(L1)(x, x′)

)
. (9)

In fact, such a structure can be applied more than once. In practical scenarios, convolutional networks
are typically connected to only a few MLP layers, and therefore we usually have d2 = 0, which is
named CNTK-NTK in the following.

4 SPECTRAL COMPARISON

In this section, we formally present our results about the spectral properties of CNTK and NTK.
For a d-dimensional tensor space, we consider data sampled from RΠd

i=1hi×n0 and following a H-
dimensional distribution (can be any distribution) with covariance matrix σH in which H = Πd

i=1hi.
We consider convolutional networks with kernel size 1 and average pooling layers.

4.1 THEORETICAL RESULTS

Let K(L)
CNTK denote the CNTK of an L-layer convolutional neural network, and K

(L)
NTK denote

the NTK of an L-layer MLP. We define the statistics about eigenvalues of kernel matrix K as:

m
(L)
K = 1

N tr(K(L)), sK = 1
N2 tr(K

(L)K(L)⊤) and β
(L)
K =

s
(L)
K

(m
(L)
K)2

. These three quantities reflect

certain statistical characteristics of the eigenvalues of the kernel matrix: mK denotes the mean of the
eigenvalues, sK represents the mean of the squared eigenvalues, and βK indicates the dispersion of
the eigenvalues. Formally, based on results from matrix analysis literature Cai et al. (2024)Horn &
Johnson (2012), we have:
Lemma 2. Given a N × N positive definite matrix K, let its set of eigenvalues be denoted as
λ1 ≤ λ2 ≤ ... ≤ λN , then:

mK =
1

N

N∑
i=1

λi, sK =
1

N2

N∑
i=1

λ2
i ,

λmax

λmin
≥ NβK . (10)

Furthermore, 1/βK is essentially the same as the quantity effective rank defined in Bartlett et al.
(2020), which was shown to upper-bound the generalization error of kernel regression. In our analysis,
we use βK as a comparative metric to assess how NTK and CNTK differ in their generalization ability
on data drawn from arbitrary distributions, thereby shedding light on what kinds of data benefit more
from convolutional structures. In addition, mK , as an offset term of the kernel matrix, reflects the
convergence capacity of the network. Therefore, we also include a discussion on this aspect.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Experiments on synthetic data, t denotes the correlation of the multidimensional Gaussian
distribution g, and N refers to the Gaussian distribution N . L represents the number of network
layers, where L = 1 corresponds to the neural tangent kernel K(0) without passing through any
network. In the right figure: in the upper part, t is always set to 0.5; in the lower part, L is fixed to 5.
’CNTK-NTK’ refers to the CNTK of depth L followed by an additional two-layer MLP.

Theorem 2. Suppose that the activation function is Relu. When N → ∞, the following holds:

m
(L)
NTK ≥ m

(L)
CNTK . (11)

Remark 1. For this conclusion, we do not require the data to come from any specific distribution,
nor do we assume that N tends to infinity. In addition, the activation function doesn’t need to be
ReLU; it is sufficient that the dual of the activation function is non-convex with respect to the diagonal
entries. Therefore, the conclusion is general. In fact, a relatively strong statement is used in the proof
process—namely, for any x ∈ RΠd

i=1hi×n0 , we have K
(L)
NTK(x, x) ≥ K

(L)
CNTK(x, x).

Theorem 3. For any L-layer CNTK and L′-layer CNTK, under any distribution of x and any
activation function. When N → ∞, the following holds:

β
(L)
NTK ≤ β

(L′)
CNTK = 1. (12)

Remark 2. In fact, we can prove that for CNTK, β(L′)
CNTK = 1 holds for any layer L′, while for NTK,

β
(L′)
NTK < 1 for every layer. This follows purely from the positive semi-definiteness of the covariance

matrix under random initialization, and thus holds universally without any assumption on the data
distribution.

In the analysis of NTK, the magnitude of eigenvalues affects the convergence speed of neural networks
Du et al. (2018). The value of mK can reflect the convergence speed of the network. Meanwhile, βK

indicates the spread of the eigenvalues of the kernel function; a small eigenvalue range suggests that
the matrix is overly diagonalized, and Bartlett et al. (2020) has shown that overly diagonalized kernel
matrices often indicate poor generalization ability. The above theorem explains why convolutional
networks tend to generalize better than MLPs, and why appending fully connected layers after deep
convolutional networks can accelerate training while maintaining generalization performance.
Proposition 4. Suppose that covariance matrix of x is σH , when N → ∞:

m
(0)
NTK = mean(diag(σH)), m

(0)
CNTK = mean(σH) (13)

s
(0)
NTK = mean(σH ⊙ σH), s

(0)
CNTK = mean(σH ⊗ σH) (14)

β
(0)
NTK =

mean(σH ⊙ σH)

mean(diag(σH)⊗ diag(σH))
, β

(0)
CNTK = 1. (15)

It is obvious that m(0)
NTK ≥ m

(0)
CNTK , s(0)NTK ≥ s

(0)
CNTK and β

(0)
NTK ≤ β

(0)
CNTK . The equality of all

the formulas holds if and only if σH is a constant matrix.

This proposition suggests that the shift and distribution of CNTK and NTK eigenvalues can be
described by the covariance matrix defined over the tensor input. Although the proposition formally

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Histograms of Eigenvalues on:(a). Point cloud datasets ModelNet103, ModelNet106 and
ModelNet40; (b) Image datasets CIFAR10 and MNIST.

Table 1: Kernel regression experiments conducted on both the point cloud and image datasets,
1dCNTK is applied to the point cloud dataset, while 2dCNTK is utilized on the image dataset. For
all experiments, we set the number of layers to L = 7.

Datasets ModelNet103 ModelNet106 ModelNet40 MNIST CIFAR10

NTK 17.58 16.19 11.10 94.00 59.19
1dCNTK(2dCNTK) 76.65 91.96 60.62 96.00 76.79

Improvement 59.07 75.77 49.52 2.00 17.60
βK 1.25e-3 1.12e-3 1.53e-3 3.38e-2 1.37e-1

addresses only the initial layer, our simulation experiments indicate that for CNTK and NTK with
the same depth (see Figure 1), their spectral characteristics can still be effectively captured by the
covariance structure of the data.

Based on this proposition, for data sampled from the same distribution, the spectral distribution of the
NTK eigenvalues is associated with its covariance matrix. We define β(0)

NTK as a measure of the MLP
fitness of the data, quantifying how well the data aligns with an MLP architecture. In the context of
the tensor data considered in this paper, β(L)

CNTK − β
(0)
NTK = 1− β

(0)
NTK can also be interpreted as an

indicator of how suitable the data is for convolutional networks.

In our simulation, we use data sampled from a Gaussian distribution to analyze the spectral properties
of the NTK and CNTK matrices, illustrated in Figure 1. The parameter t controls the global correlation
of variables, with the covariance matrix given by σ = tsC + (1− t)sI with a unit diagonal matrix I
and unit constant matrix C of scale s = 0.1. The observed results align precisely with our theoretical
predictions.

4.2 IN REAL SCENARIOS

As an application of the invariance of βK under CNTK and its relevance to NTK, we use β
(0)
K as

an indicator to analyze a given dataset. Assuming the data is drawn from a Gaussian distribution,
we conduct kernel regression fitting for both point cloud recognition (with 1D convolutions) and
image classification (with 2D convolutions). As shown in Figure 2 and Table 1, the spectral gap
between CNTK and NTK is more pronounced in point cloud tasks than in image datasets. The table
further indicates that point cloud tasks intrinsically benefit more from convolutional models—both
theoretically, as suggested by smaller values of βK , and empirically, as confirmed by kernel regression
experiments. The inherent unorderedness of point clouds results in weak inter-sample correlations
within the tensor space, which in turn yields a near-diagonal covariance structure and thus a lower βK .
Conversely, image data typically exhibits stronger structural correlations, leading to higher values of
βK . This observation implies that convolutional architectures are particularly crucial for effectively
modeling point cloud data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: In the visualizations, ‘pnet’ denotes PointNet, ‘pnetm’ represents PointNetm, and ‘pntk’
corresponds to PointNTK. Supervised training results are represented with dashed lines. For each
dataset, five independent experiments were conducted, and the mean results are reported. The shaded
regions indicate the range of outcomes from these five experiments. Each dataset’s plot features
a subfigure in the lower-left corner, showing results for training with a small sample size, and a
subfigure in the lower-right corner, illustrating results for training with a large sample size.

5 KERNEL REGRESSION FOR POINT CLOUD RECOGNITION

This section begins our discussion of point cloud tasks. Point cloud tasks were initially introduced by
PointNet Qi et al. (2017a), which empirically explored point cloud-based tasks. Given the stronger
necessity of convolutional architectures for point cloud data, it is noteworthy that current kernel
regression methods rarely focus on this domain. We posit that CNTK-based kernel regression offers
significant promise for point cloud applications. In the following, we provide an in-depth analysis and
empirical evaluation of both CNTK and the combined CNTK-NTK kernels on point cloud regression
tasks.

5.1 EXPERIMENTAL SETUP

It was found that encoders based on shared-MLP outperform typical MLPs. The shared-MLP in
PointNet essentially corresponds to a one-dimensional convolution with a convolutional kernel size
of 1 in our framework. In practice, shared-MLP typically follows a structure in which a few layers of
MLP are added only after the pooling layers. Many practical convolutional networks connect MLP
layers after pooling, which is precisely the purpose of introducing CNTK-NTK. For point cloud
recognition, we fully adopt the PointNet architecture to propose the PointNTK, an instantiation of
CNTK-NTK, as set up in which L1 = 4, L2 = 3 and d1 = 1, d2 = 0.

We applied the discussed kernel in the previous section to actual point cloud classification datasets. In
the following experiments, we utilized three datasets from ModelNet10 and ModelNet40. The input
of ModelNet10 includes both point cloud positional information and three-dimensional orientation
information. We refer to the experiment using only the point coordinate information from ModelNet10
as ModelNet103, while the experiment using the complete original data of ModelNet10 is referred to
as ModelNet106. Details of the experimental setup are provided in the final subsection of this section.

5.2 POINTNTK VERSUS POINTNET

In this section, we compare PointNTK with PointNet, where PointNet maintains all its original
settings, including max pooling. Both PointNTK and PointNet are seven-layer neural networks. The
first four layers are one-dimensional convolution layers with a kernel size of 1, followed by three
MLP layers.

Additionally, we introduce the following comparisons:

• PointNetm: A variant of PointNet with two differences: I. The training loss is replaced with
the least-squares loss; II. The pooling layer is replaced with average pooling. Both networks
retain their original batch normalization (BN) layers.

• 7-layer 1dCNTK and 7-layer NTK: These models serve as additional baselines for evaluation,
which represents single-CNTK compared with CNTK-NTK. We set their depth to 7 in order

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance on ModelNet103, ModelNet106 and ModelNet40 of various structure. The
superscript ’f’ indicates that only 100 samples from the dataset were used as the training set. The
superscript ’M’ and ’L’ indicate ‘medium’ and large with depth 9 and 15 layers respectively for 1d
convolution layers.

Datasets ModelNet103 ModelNet10f3 ModelNet106 ModelNet10f
6

ModelNet40 ModelNet40f

PointNet 91.12 ± 1.54 68.92 ± 1.05 92.08 ± 1.75 70.22 ± 0.58 88.71 ± 0.54 38.32 ± 0.97
PointNet m 89.98 ± 2.38 28.22 ± 1.56 90.43 ± 2.01 27.97 ± 1.85 83.93 ± 1.67 5.17 ± 1.22

NTK 17.58 11.12 16.19 11.78 11.10 3.69
1dCNTK 76.65 71.03 91.96 81.16 60.62 45.22
PointNTK 86.56 73.68 91.19 78.52 80.47 45.71
PointNetM 91.98 ± 0.98 69.58 ± 0.62 92.42 ± 0.85 67.33 ± 2.65 86.93 ± 1.16 30.28 ± 1.42
PointNetMm 90.25 ± 1.87 13.07 ± 2.05 −− −− −− −−

PointNTKM 87.56 74.23 92.40 80.04 81.93 47.77
PointNetL 91.51 ± 0.87 56.52 ± 0.37 91.53 ± 1.89 57.39 ± 3.42 85.32 ± 1.20 23.62 ± 0.52
PointNetLm 88.54 ± 2.56 7.43 ± 2.39 −− −− −− −−
PointNTKL 87.67 74.01 92.62 82.38 82.50 47.77

Figure 4: The ablation experiments on kernel regression based on NTK families across three datasets:
the upper part shows the results for different network depths, while the lower part shows the results
for different convolution kernel lengths.

to match the depth of PointNTK, which consists of 4 layers of 1D convolutional layers and
3 fully connected layers.

We conducted experiments on three datasets, where the superscript f indicates that only 100 fixed
samples from the dataset (covering all categories) were used for training, while the entire test set
was used for evaluation. The results are summarized in Table 2, with the observations: I.PointNTK
outperforms the single-layer 1dCNTK with the same number of layers; II.PointNTK performs slightly
worse than PointNet and PointNetm on ModelNet106, significantly underperforms on ModelNet40
and ModelNet103, but outperforms the PointNet and PointNetm with small-training set in all datasets.

To further analyze this, we conducted experiments showing how the accuracy of kernel regression-
based methods and training-based methods varies with the size of the training set, as illustrated in
Figure 3.

5.3 ABLATION STUDY FOR KERNEL SIZE AND DEPTH

In PointNet, the defined shared-MLP is essentially a one-dimensional convolution with a kernel size
of 1. This concept was also adopted in the kernel regression methods in our earlier experiments. In
this section, we perform ablation experiments on the kernel size and network depth within NTK-based

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

kernel regression methods. We conducted experiments on three datasets, using only a fixed 500
samples from each dataset for training while testing on the entire test set.

1)Depth ablation. We conducted several experiments as follows.

• 1dCNTK: Uses only one-dimensional convolutions for the kernel with a depth of “L+ 3”.
We add 3 to keep it consistent with the number of layers in PointNTK, which holds 3-layer
MLPs.

• PNTK0 and PNTK1: PNTK0 fixes the first three one-dimensional convolutional layers and
varies the depth of the subsequent fully connected layers; PNTK1 fixes the last three fully
connected layers and varies the depth of the preceding one-dimensional convolutional layers.

• PNTK01: Simultaneously increases the depth of both parts.

From results in the upper part of Figure 4, we observe the following: I. The design of PointNTK is
highly effective. For structures using only one-dimensional convolutions, increasing depth does not
yield significant improvements and may even degrade performance; II. Adding fully connected layers
at the end of the one-dimensional convolutional structure improves performance across all datasets
when the convolutional depth is increased; III. Fixing the depth of the one-dimensional convolutional
layers while increasing the depth of the fully connected layers reduces regression performance;
IV. Simultaneous depth increases in both parts are less effective than increasing the depth of the
one-dimensional convolutions alone. Since increasing the depth of the 1D convolutional layers in
PointNTK improves accuracy, we naturally hypothesize that the same might be true for PointNet.
Finally, we further compared the results of deeper kernel regression with supervised training, as
shown in Table 2.

2) Kernel size ablation. For kernel size as shown in the lower part of Figure 3, all datasets consistently
indicate that a kernel size of 1 is optimal. This is intuitive because point clouds are unordered, and
when the kernel size exceeds 1, the points associated with the kernel may not be meaningfully related.

5.4 EXPERIMENTAL DETAIL

All the experiments have been implemented using Python 3.7 and Pytorch 1.8 on one NVIDIA
RTX 3090 super 24GB. In addition, neither data augmentation nor post-processing (besides global
normalization) was applied, which was followed by each experiment. For kernel regression, com-
putations were implemented using CUDA code. For supervised training methods, we adopted the
parameter settings from PointNet. In small-sample experiments, we fix a subset of training set for all
experiments, and all tests were conducted. We note that when the input data remains unchanged, the
results of kernel regression are deterministic and unique.

6 CONCLUSION

In this work, we investigate the spectral differences between NTK and CNTK eigenvalues on data
drawn from an arbitrary distribution. We show that CNTK consistently exhibits a broader eigenvalue
distribution and, on average, smaller eigenvalues compared to NTK. This provides theoretical
evidence for the superior generalization ability of CNTK over NTK. Building on this insight, we
define a data-dependent suitability measure based on the spectral range of the first-layer CNTK and
NTK, which depends solely on the covariance matrix of the data. Our experiments reveal that point
cloud tasks benefit more significantly from convolutional structures. Motivated by this, we conduct
extensive kernel regression experiments on point cloud datasets and demonstrate that our proposed
strategy, which combines CNTK and NTK, is particularly effective in this setting, filling an existing
gap in CNTK performance on point cloud tasks.

There are still some limitations in our work. While our main theoretical results are derived without
assuming any specific data distribution, computing βK for an arbitrary L-layer NTK does require
distributional assumptions. As a result, in practical applications, we rely on the first layer to evaluate
data suitability. However, the computation of spectral properties of L-layer NTK and L-layer CNTK
is hard. Future investigations into its upper and lower bounds may yield more precise spectral
characteristics of the data at layer L.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019a.

Sanjeev Arora, Simon S Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu. Har-
nessing the power of infinitely wide deep nets on small-data tasks. arXiv preprint arXiv:1910.01663,
2019b.

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.

Daniel Barzilai, Amnon Geifman, Meirav Galun, and Ronen Basri. A kernel perspective of skip
connections in convolutional networks. arXiv preprint arXiv:2211.14810, 2022.

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Francesco Cagnetta, Alessandro Favero, and Matthieu Wyart. What can be learnt with wide con-
volutional neural networks? In International Conference on Machine Learning, pp. 3347–3379.
PMLR, 2023.

Zhicheng Cai, Hao Zhu, Qiu Shen, Xinran Wang, and Xun Cao. Batch normalization alleviates the
spectral bias in coordinate networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 25160–25171, 2024.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021a.

Yilan Chen, Wei Huang, Lam Nguyen, and Tsui-Wei Weng. On the equivalence between neural
network and support vector machine. Advances in Neural Information Processing Systems, 34:
23478–23490, 2021b.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–1685.
PMLR, 2019a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems, 32, 2019b.

Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. arXiv preprint
arXiv:1909.11304, 2019.

Andrew Engel, Zhichao Wang, Anand D Sarwate, Sutanay Choudhury, and Tony Chiang. Torch-
ntk: A library for calculation of neural tangent kernels of pytorch models. arXiv preprint
arXiv:2205.12372, 2022.

Jean-Yves Franceschi, Emmanuel De Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lamprier, and
Patrick Gallinari. A neural tangent kernel perspective of gans. In International Conference on
Machine Learning, pp. 6660–6704. PMLR, 2022.

Amnon Geifman, Meirav Galun, David Jacobs, and Basri Ronen. On the spectral bias of convolutional
neural tangent and gaussian process kernels. Advances in Neural Information Processing Systems,
35:11253–11265, 2022.

Eugene Golikov, Eduard Pokonechnyy, and Vladimir Korviakov. Neural tangent kernel: A survey.
arXiv preprint arXiv:2208.13614, 2022.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7:187–199, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural
tangent kernel. Advances in neural information processing systems, 33:1010–1022, 2020.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk
for deep attention networks. In International Conference on Machine Learning, pp. 4376–4386.
PMLR, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in
Neural Information Processing Systems, 33:15156–15172, 2020.

Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev
Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019.

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Evolution of neural tangent kernels
under benign and adversarial training. Advances in Neural Information Processing Systems, 35:
11642–11657, 2022.

Mohamad Amin Mohamadi, Wonho Bae, and Danica J Sutherland. Making look-ahead active learning
strategies feasible with neural tangent kernels. Advances in Neural Information Processing Systems,
35:12542–12553, 2022.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
without training? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11861–11870, 2022.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30,
2017b.

Maxim Samarin, Volker Roth, and David Belius. On the empirical neural tangent kernel of standard
finite-width convolutional neural network architectures. arXiv preprint arXiv:2006.13645, 2020.

Mariia Seleznova, Dana Weitzner, Raja Giryes, Gitta Kutyniok, and Hung-Hsu Chou. Neural (tangent
kernel) collapse. Advances in Neural Information Processing Systems, 36, 2024.

Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence on
training. arXiv preprint arXiv:2105.14301, 2021.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 6411–6420, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. Knas: green
neural architecture search. In International Conference on Machine Learning, pp. 11613–11625.
PMLR, 2021.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. Advances in
neural information processing systems, 30, 2017.

A USE OF LLMS

We only use the large model to modify grammatical errors and polish the articles; the large model has
not been involved in any theorem proofs or the discovery of ideas.

B RELATED WORK

B.1 NEURAL TANGENT KERNEL

The Neural Tangent Kernel (NTK), a widely used gradient kernel, is first introduced by Jacot et
al. Jacot et al. (2018). It is formulated as a Gram matrix constructed from gradients and has been
shown to be equivalent to training a fully-connected neural network under specific parameterization,
resembling a kernel method, as demonstrated in Lee et al. (2020) Chen et al. (2021b). Over time, the
applicability of NTK has been extended to various neural network architectures, including convolu-
tional networks Samarin et al. (2020) Arora et al. (2019a) Li et al. (2019), residual networks Yang
& Schoenholz (2017), attention-based networks Hron et al. (2020), GAN architectures Franceschi
et al. (2022), and even graph neural networks Du et al. (2019b). Given its ability to capture critical
properties of network architectures and datasets, NTK has also been integrated into Neural Archi-
tecture Search (NAS) Chen et al. (2021a), helping to reduce time overhead in NAS processes Xu
et al. (2021) Mok et al. (2022). Moreover, NTK has proven useful as a theoretical tool for analyzing
input encoding in Coordinate-MLP Tancik et al. (2020) and convergence properties of PINN Wang
et al. (2022), and for explaining the effectiveness of adversarial training strategies Loo et al. (2022),
active learning strategies Mohamadi et al. (2022), and ensemble learning He et al. (2020). NTK has
also been used to demonstrate zero training loss in polynomial time for over-parameterized residual
networks Du et al. (2019a), further underscoring its significance.

To address the computational complexity of the NTK, study Arora et al. (2019a) simplified this
computation. Additionally, during real-world network training, the network width is finite. In
finite-width networks, the kernel can change, and some studies Shan & Bordelon (2021) Seleznova
et al. (2024) have qualitatively pointed out the pattern of this variation. The computation of the
Neural Tangent Kernel in finite-width networks is more complex, and this is also discussed Dyer &
Gur-Ari (2019), with implementation details available in Engel et al. (2022). These kernels play a
crucial role in convergence analysis, particularly in evaluating convergence rates, depending on the
minimum eigenvalue of the NTK Chen et al. (2021a). The range of NTK applications has expanded
considerably since its inception. Its constant kernel property allows it to be used to estimate the
performance of specific architectures by assessing convergence behavior. Notably, NTK, as a kernel,
integrates seamlessly with most kernel methods Arora et al. (2019b).

B.2 POINT CLOUD CLASSIFICATION

Extensive research has been conducted on point cloud analysis, with a primary focus on learning
data-driven representations in an end-to-end fashion. The inherent flexibility of the point cloud
format has led to the emergence of innovative approaches aimed at representing 3D structures both
effectively and informatively. The seminal work PointNet Qi et al. (2017a) used shared-MLP on
point cloud data demonstrating that neural networks can directly process global coordinates to extract
geometric information. PointNet has since become a cornerstone for numerous point cloud-based
tasks. Building on this foundation, PointNet++ Qi et al. (2017b) introduced local aggregation
mechanisms, significantly enhancing the ability to capture fine-grained geometric features. To further
improve the extraction of local structures, methods such as KPConv Thomas et al. (2019) introduced
convolutional operations to 3D data, achieving notable performance gains across diverse benchmarks.
More recently, inspired by the Transformer architecture Vaswani et al. (2017), models like PCT Guo

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

et al. (2021) effectively incorporate self-attention to better capture point cloud features, achieving
state-of-the-art results in various tasks.

C PROOF OF MAIN RESULTS

C.1 UNIFIED CONVOLUTIONAL NEURAL NETWORK

The general d-dimension forward propagation CNNs are defined as follows.

Definition 2. For d-dim convolutional neural network, given lengths of tensor {hi}i∈[d], lengths
of convolutional kernel {si}i∈[d] and widths of neural network {n0, n1, ..., nL} with L-layer. The
d-dim convolutional neural network (without head) is defined as f : RΠd

i=1hi×n0 → RΠd
i=1hi×nL−1

with forward propagation:

f̃ (l)(x) := ϕ(f (l)(x)), x0(x) := x.

f (l)(x) := W (l) ∗ f̃ (l−1)(x) + b(l), 1 ≤ l ≤ L− 1

f(x) := f̃L−1(x).

(B-1)

Input x is a d-tensor from RΠd
i=1hi , RΠd

i=1hi denotes space Rh1×h2×...×hd . The activation func-
tion ϕ(x) is Relu in this paper, The so-called “standard initialization” denotes that the defined
convolution kernel W(l)

ij ∈ RΠd
i=1si and bias b(l) ∈ R×d

i=1hi . All entries of any W(l)
ij are from

N
(
0,

σ2
w

nl−1×Πd
i=1si

)
independently, and all entries of any b

(l)
j are from N

(
0, σ2

b

)
independently.

W (l) is still called ‘matrix’ that is defined in
(
RΠd

i=1si
)nl−1×nl

; b(l) is still called ‘vector’ defined

in
(
R×d

i=1hi

)nl

. Convolution operator ∗ : RΠd
i=1hi × RΠd

i=1si → RΠd
i=1hi is defined as:

[w ∗ f][i1, i2, ..., id] =
∑

ji∈[1,si]

w[j1, j2, ..., jd]

× f [j1 + i1 − s1/2, j2 + i2 − s2/2, ..., jd + id − sd/2].

(B-2)

The operator ∗ for matrix still satisfies matrix multiplication. And we suppose that:

∃k s.t. ik ≤ 0 ⇒ f [i1, i2, ..., id] = 0, (B-3)

which is zero-padding.

In neural network applications, the corresponding head is typically added based on the specific task.
This paper discusses classification network. We define two types of heads, one of which refers to the
pooling layer and the other is naive.

Definition 3. Define pooling function P : R×d
i=1hi×n → Rn. d-dim convolutional neural network

for classification task, without pooling in the last layer fwop, is defined as:

fwop(x) = Pav

(
W (L) ∗ f(x) + b(L)

)
,

W (L) ∈
(
R×d

i=1si
)nL−1×nL

, b(L) ∈
(
R×d

i=1hi

)nL

,
(B-4)

with pooling fwp is defined as:

fwp(x) = W (L) ∗ P (f(x)) + b(L),

W (L) ∈ RnL−1×nL , b(L) ∈ RnL .
(B-5)

C.2 LEMMA 1: CNTK FORMULA

We first consider function f : R×d
i=1hi×n0 → R×d

i=1hi×nL−1 without head, as in practice, we
suppose that si = s for any i. For entries f

(l)
p (1 ≤ l ≤ L − 1, and note this symbol omits a

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

subscript j that denotes the f
(l)
p = f

(l)
j,p. As can be seen in the paper, this notation can actually

be omitted. in which p = {p1, p2, ..., pd}. Furthermore, we define neighborhood of p as N(p) =
{∩d

i=1(pi − s/2, pi + s/2) ∩ Z|1 ≤ i ≤ d}. Kernel of samples x, x′ as entry is induced by:

K(l)
p,q (x, x

′) = ∇T
θ f

(l)
p (x)∇θf

(l)
q (x′)

= ∇T
θ

nl∑
i=1

(
W(l)

ij ∗ ϕNp(f
(l−1)
i (x)) + b

(l)
j,N(p)

)
∇θ

nl∑
i=1

(
W(l+1)

ij ∗ ϕNq(f
(l−1)
i (x′)) + b

(l)
j,N(q)

)
= ∇T

θ

nl∑
i=1

∑
p′∈N(p)

W(l)
ij,p′−p × ϕp′(f

(l−1)
i (x))∇θ

nl∑
i=1

∑
q′∈N(q)

W(l)
ij,q′−q × ϕq′(f

(l−1)
i (x′)) + σ2

b

=
1

nl

nl∑
i=1

(w
(l+1)
ij)2

∑
p′∈N(p)

∑
q′∈N(q)

∇T
θ f

(l−1)
i,p′ (x)∇θf

(l−1)
i,q′ (x′)ϕ̇p′(f

(l−1)
i (x))ϕ̇q′(f

(l−1)
i (x′))

+
1

nl

nl∑
i=1

∑
p′∈N(p)

∑
q′∈N(q)

ϕp′(f
(l−1)
i (x))ϕq′(f

(l−1)
i (x′)) + σ2

b

(B-6)

In the calculation process of the tangent kernel, the presence of the bias term introduces a shift in
each recursion step. Therefore, in many tangent kernel computations, the bias term is excluded. This
article follows the same approach that σb = 0. For convenience, we need some symbols to record
intermediate quantities.For l = 0:

Σ(0)(x, x′) =

n0∑
i=0

xi ⊗ x′
i

Σ(0)
p,q(x, x

′) = tr
(
Σ

(0)
N(p),N(q)(x, x

′)
)
.

(B-7)

in which ⊗ denotes tensor product. For 1 ≤ l ≤ L− 1, define the covariance matrix, the 0th-order
gradient term, and the 1st-order gradient term in sequence according to the definition order in NTK.

covariance matrix : Λ(l)
p,q(x, x

′) =

(
Σ

(l−1)
p,q (x, x) Σ

(l−1)
p,q (x, x′)

Σ
(l−1)
p,q (x′, x) Σ

(l−1)
p,q (x′, x′)

)
∈ R2×2.

0th− order term : Σ∗(l)
p,q (x, x

′) = E
(u,v)∼N

(
0,Λ

(l)
p,q(x,x′)

) [ϕ(u)ϕ(v)] .
1th− order term : Σ̇∗(l)

p,q (x, x
′) = E

(u,v)∼N
(
0,Λ

(l)
p,q(x,x′)

) [ϕ̇(u)ϕ̇(v)] .
(B-8)

And the induction:

E(l)
p,q(x, x

′) = tr
(
Σ

∗(l)
Np),N(q)(x, x

′)
)
. (B-9)

Now we can present the recursive formula for the kernel as follows:

K(l)
p,q (x, x

′) =
1

nl

nl∑
i=1

(w
(l+1)
ij)2

∑
p′∈N(p)

∑
q′∈N(q)

∇T
θ f

(l−1)
i,p′ (x)∇θf

(l−1)
i,q′ (x′)ϕ̇p′(f

(l−1)
i (x))ϕ̇q′(f

(l−1)
i (x′))

+
1

nl

nl∑
i=1

∑
p′∈N(p)

∑
q′∈N(q)

ϕp′(f
(l−1)
i (x))ϕq′(f

(l−1)
i (x′)) + σ2

b

= K
(l−1)
N(p),N(q) ∗ Σ̇

(l)
N(p),N(q)(x, x

′) + E(l)
p,q(x, x

′).

(B-10)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now, we consider a neural network fwop, fwp with a head (Assume that the final layer has only one
output; the case with multiple outputs is analogous) as follows:

Kwop(x, x
′) = ∇T

θ fwop(x)∇θfwop(x
′)

= ∇T
θ Pav

(
nL−1∑
i=1

W(L)
i ∗ f(x)

)
∇θPav

(
nL−1∑
i=1

W(L)
i ∗ f(x′)

)

=
1

(Πd
i=1hi)2

∑
p∈[h1,h2,...,hd]

K(L)
p,p (x, x

′)

= tr
(
K(L)(x, x′)

)
(B-11)

Kwp(x, x
′) = ∇T

θ fwp(x)∇θfwp(x
′)

= ∇T
θ

nL−1∑
i=1

W(L)
i × Pav (f(x))∇θ

nL−1∑
i=1

W(L)
i × Pav (f(x

′))

=
1

nL−1

nL−1∑
i=1

Pav (f(x))× Pav (f(x
′))+

1

nL−1

nL−1∑
i=1

(w
(L)
i)2

 1

Πd
i=1hi

∑
p∈[h1,h2,...,hd]

∑
q∈[h1,h2,...,hd]

∇T
θ fi,p(x)∇θfi,q(x

′)


= Pav

(
K(L)(x, x′)

)
+ Pav

(
Σ(L)

p,q (x, x
′)
)

(B-12)

If we fix the last layer, the upper eqaution can be redued to our proposition:

Kwp(x, x
′) = Pav

(
K(L)(x, x′)

)
(B-13)

C.3 PROPOSITION 1: NTK FOLLOWED BY CNTK

The calculation of the composite-NTK only requires knowledge of the propagation of NTK at the pool-
ing layer, Kwp, and the propagation of covariance, which necessitates computing Cov(f(x), f(x′)):

Cov
(
P d1→d2
av (f(x)) , P d1→d2

av (f(x))
)

=
1

Πd1

i=d2+1h
1
i

∑
id2+1,id2+2,...,id1

Cov
(
f...,id2+1,id2+2,...,id1

(x),f...,id2+1,id2+2,...,id1
(x′)

)
= Pd1→d2

av (Σ(x, x′))

(B-14)

When d2 = 0, it corresponds to the common average pooling layer, and the covariance tensor is:

Σ(L+1)(x, x′) = Pav

(
Σ(L)(x, x′)

)
(B-15)

D SPECTRAL COMPARISON

Definition 4. Suppose tensor x ∈ R×d
i=1hi×n0 , we mark x(j)

{i,p} as the {i, p} − entries of the j − th

samples x(j) in which i ∈ [n0] and p ∈ [[hi]d]. We further define scalar H = Πd
i=1hi. For any

matrix K, let mK = 1
N tr(K) and sK = 1

N2 tr(KK⊤)

Assumption 1. We assume that tasks with random tensor xk,. ∈ R×d
i=1hi , in which all-entries of

xk,. are sampled from a distribution with covariance matrix σ(k) ∈ RH×H , the scalar σ(k)
p,q denotes

covariance of random variable xk,p and xk,q. And for any k ̸= k′, any entries of x{k,.} and x{k′,.}
are independent. Furthermore, we assume any sample x(i) of datasets {x(i)}i∈[N] is sampled from
the above distribution independently.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma 3. Given a N × N positive definite matrix K, let its set of eigenvalues be denoted as
λ1 ≤ λ2 ≤ ... ≤ λN , then:

mK =
1

N

N∑
i=1

λi, sK =
1

N2

N∑
i=1

λ2
i , (B-16)

Proof. For a N ×N positive definite matrix K, by researchHorn & Johnson (2012) Cai et al. (2024):

µ =
1

N

N∑
i=1

λi =
1

N
tr(K) = mK (B-17)

σ2 =
1

n

N∑
i=1

(λi − µ)2 =
1

N
tr(KK⊤)− µ2 = NsK −m2

K (B-18)

let λmin = λ1, λmax = λN , then:

λmax ≥
∑N

i=1 λ
2
i∑N

i=1 λi

=
NsK
mK

, λmin ≤ 1

N

N∑
i=1

λi = mK (B-19)

therefore:
λmax

λmin
≥ NβK . (B-20)

D.1 PROOF OF THEOREMS IN CONTENT

Lemma 4. For a set of tensors(datasets) {x(i)}. For the L− layer NTK and CNTK. The following
satisfies:

Σ(l)(x, x) ≥ 1

H2

∑
p,q∈[[hi]d]

Σ(l)
p,q(x, x), Σ̇(l)(x, x) ≥ Σ̇(l)

p,q(x, x). (B-21)

Proof. I. when l = 0, as:

Σ(0)(x, x)− 1

H2
Σ(0)

p,q(x, x) =
1

n0

n0∑
i=1

 1

H

∑
p∈[[hi]d]

x2
i,p −

1

H2

∑
p,q∈[[hi]d]

xi,pxi,q

 ≥ 0 (B-22)

II. suppose that Σ(l−1)(x, x) ≥ 1
H2

∑
p,q∈[[hi]d]

Σ
(l−1)
p,q (x, x) satisfies for l ≥ 1, then:

Σ(l)(x, x) = κ(1,Σ(l−1)(x, x)) ≥ κ(1,
1

H2

∑
p,q∈[[hi]d]

Σ(l)
p,q(x, x))

≥ 1

H2

∑
p,q∈[[hi]d]

κ(1,Σ(l)
p,q(x, x))

≥ 1

H2

∑
p,q∈[[hi]d]

κ(
Σ

(l−1)
p,q (x, x)√

Σ
(l−1)
p,p (x, x)Σ

(l−1)
q,q (x, x)

,Σ(l)
p,q(x, x))

=
1

H2

∑
p,q∈[[hi]d]

Σ(l−1)
p,q (x, x)

(B-23)

Σ̇(l)(x, x) ≥ Σ̇
(l)
p,q(x, x) is similar as:

Σ̇(l)(x, x) = κ̇(1) ≥ Σ̇(l)
p,q(x, x) (B-24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Assumption 2. When σ
(i)
{p,p} = σ

(j)
{q,q}, we define the dual-activation function and one-order dual-

activation function as κ(λ, c) which is concave about c and increasing about both λ, c, that is for any
λ, c1, c2, a ∈ [0, 1]:

κ(λ, ac1 + (1− a)c2) ≥ aκ(λ, c1) + (1− a)κ(λ, c2). (B-25)

κ̇(λ) is increasing about λ and independent to c1c2.

Notice that for the Relu function it satisfies, as it is linear w.r.t. item c.

Theorem 5. For a set of tensors(datasets) {x(i)}. Let m(L)
CNTK ,m

(L)
NTK be denoted as themK of

L-layer CNTK and NTK. The following satisfies:

m
(L)
CNTK ≤ m

(L)
NTK . (B-26)

Proof. It satisfies in L = 0, suppose it satisfies in L− 1, by Lemma 4, the following holds:

m
(L)
CNTK = K

(L)
CNTK(x, x) = Pav

(
Σ̇(L)(x, x)⊙K

(L−1)
CNTK(x, x) +Σ(L)(x, x)

)
≤ Σ̇(L)(x, x)Pav

(
K

(L−1)
CNTK(x, x)

)
+ Pav

(
Σ(L)(x, x)

)
≤ Σ̇(L)(x, x)K

(L−1)
NTK (x, x) + Σ(L)(x, x) = m

(L)
NTK .

(B-27)

Proposition 6. For a set of tensors (datasets) {x(i)}i∈[N]. Let N → ∞. When K = K
(0)
NTK , then:

mK =
1

n0

n0∑
j=1

mean(diag(σ(j)))

sK =
1

n2
0

n0∑
j,j′∈[n0]

mean(σ(j) ⊙ σ(j′)),

(B-28)

when K = K
(0)
CNTK , then:

mK =
1

n0

n0∑
j=1

mean(σ(j))

sK =
1

n2
0

∑
j,j′∈[n0]

mean(σ(j) ⊗ σ(j′)),

(B-29)

in which ⊙ denotes Schur product (element-wise product), ⊗ denotes Kronecker product (tensor
prodcut).

Proof. When K = K
(0)
NTK :

mK =
1

N
tr(K) =

1

N

N∑
i=1

K(x(i), x(i))

=
1

n0NH

N∑
i=1

n0∑
j=1

∑
p∈[[hk]d]

(x
(i)
{j,p})

2

N→∞
=⇒ 1

n0H

n0∑
j=1

∑
p∈[[hk]d]

σ
(j)
{p,p}

=
1

n0

n0∑
j=1

mean(diag(σ(j)))

(B-30)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

sK =
1

N2
tr(KK⊤) =

1

N2

∑
i,j∈[N]

K2(x(i), x(j))

=
1

n2
0N

2H2

∑
i,i′∈[N]

(

n0∑
j=1

∑
p∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j,p})

2

=
1

n2
0N

2H2

∑
i=i′∈[N]

n0∑
j,j′∈[n0]

∑
p,q∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j′,p}x

(i)
{j,q}x

(i′)
{j′,q}

+
1

n2
0N

2H2

∑
i̸=i′∈[N]

n0∑
j,j′∈[n0]

∑
p,q∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j′,p}x

(i)
{j,q}x

(i′)
{j′,q}

N→∞
=⇒ O(

1

N
) +

1

n2
0H

2
E

 n0∑
j,j′∈[n0]

∑
p,q∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j′,p}x

(i)
{j,q}x

(i′)
{j′,q}


=

1

n2
0H

2

n0∑
j,j′∈[n0]

∑
p,q∈[[hk]d]

σ
(j)
{p,q}σ

(j′)
{p,q}

=
1

n2
0

n0∑
j,j′∈[n0]

mean(σ(j) ⊙ σ(j′))

(B-31)

when K = K
(0)
CNTK :

mK =
1

N
tr(K) =

1

N

N∑
i=1

K(x(i), x(i))

=
1

n0NH2

N∑
i=1

n0∑
j=1

∑
p,q∈[[hk]d]

x
(i)
{j,p}x

(i)
{j,q}

N→∞
=⇒ 1

n0H2

n0∑
j=1

∑
p,q∈[[hk]d]

σ
(j)
{p,q},

=
1

n0

n0∑
j=1

mean(σ(j))

(B-32)

sK =
1

N2
tr(KK⊤) =

1

N2

∑
i,j∈[N]

K2(x(i), x(j))

=
1

n2
0N

2H4

∑
i,i′∈[N]

(

n0∑
j=1

∑
p,q∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j,q})

2

=
1

n2
0N

2H4

∑
i=i′∈[N]

∑
j,j′∈[n0]

∑
p,q,p′,q′∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j′,q}x

(i)
{j,p′}x

(i′)
{j′,q′}

+
1

n2
0N

2H4

∑
i̸=i′∈[N]

∑
j,j′∈[n0]

∑
p,q,p′,q′∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j′,q}x

(i)
{j,p′}x

(i′)
{j′,q′}

N→∞
=⇒ O(

1

N
) +

1

n2
0H

4
E

 ∑
j,j′∈[n0]

∑
p,q∈[[hk]d]

x
(i)
{j,p}x

(i′)
{j′,q}x

(i)
{j,p′}x

(i′)
{j′,q′}


=

1

n2
0H

4

∑
j,j′∈[n0]

∑
p,q,p′,q′∈[[hk]d]

σ
(j)
{p,q}σ

(j′)
{p′,q′}

=
1

n2
0

∑
j,j′∈[n0]

mean(σ(j) ⊗ σ(j′))

(B-33)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 5. For a set of tensors (datasets) {x(i)}i∈[N]. Let N → ∞, define the standard spectral
bandwidth βK = sK

m2
K

, by research Cai et al. (2024):

βK =

∑N
i=1 λ

2
i(∑N

i=1 λi

)2
For the foundation:

βCNTK(0) = 1

βNTK(0) =

∑
j,j′∈[n0]

mean(σ(j) ⊙ σ(j′))∑
j,j′∈[n0]

mean(diag(σ(j))⊗ diag(σ(j′)))
≤ 1

(B-34)

When we further assume that the covariance matrix is the same across all channels, the conclusion
stated in the main text follows.

Theorem 7. For a set of tensors(datasets) {x(i)}. Let N → ∞, define the standard spectral
bandwidth βK = sK

m2
K

, for the L-layer NTK and L′-layer CNTK. The following satisfies;

1 = β
(L′)
CNTK ≥ β

(L)
NTK (B-35)

Proof. For this theorem, we obtain a rather strong result; in fact, it suffices to prove statements
β
(L′)
CNTK = 1 and β

(L)
NTK ≤ 1 separately. Recall the proof in Proposition 7. It suffices to replace x

with the random variable appearing before the final linear layer in CNTK (or NTK) to complete the
proof, since the above argument relies neither on the specific data distribution nor on a particular
instance of the covariance matrix.

D.2 UPPER BOUND OF Σ IN NTK AND CNTK WITH RELU

Lemma 6. Suppose that the activation function ϕ is
√
2Relu. Then in NTK:

Σ(l)(x, x) = K(0)(x, x), ˙Σ(l)(x, x) = 1. (B-36)

Proof. For the step l, Σ(l)(x, x) follows a recursion:

Σ(l)(x, x) =
λ(π − arccos(λ)) +

√
1− λ2

π
· c1c2, Σ̇(l)(x, x) =

π − arccos(λ)

π
. (B-37)

In which DΛD =

(
Σ(l−1)(x, x) Σ(l−1)(x, x)
Σ(l−1)(x, x) Σ(l−1)(x, x)

)
, thus c1c2 = Σ(l−1)(x, x) and λ = 1. There-

fore:
Σ(l)(x, x) = Σ(l−1)(x, x), Σ̇(l)(x, x) = 1. (B-38)

In the case of CNTK for the step l, Σ(l)
p,q(x, x)

Σ(l)
p,q(x, x) =

λ(π − arccos(λ)) +
√
1− λ2

π
· c1c2, Σ̇(l)

p,q(x, x) =
π − arccos(λ)

π
. (B-39)

In which DΛD =

(
Σ

(l−1)
p,p (x, x) Σ

(l−1)
p,q (x, x)

Σ
(l−1)
q,p (x, x) Σ

(l−1)
q,q (x, x)

)
, thus c1c2 =

√
Σ

(l−1)
p,p (x, x)Σ

(l−1)
q,q (x, x) and

λ =
Σ(l−1)

p,q (x,x)

c1c2
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

similar conclusion can be obtained to the case in the CNTK, in which E (λ) →
E(Σ(l−1)

p,q (x,x′))√
E
(
Σ

(l−1)
p,p (x,x)

)
E
(
Σ

(l−1)
q,q (x,x)

) and D(λ) → 0 along with nl → ∞. While there exists a specific case

in the step l = 1 due to n0 is a constant that is differ from nk(0 < k < L). When l ≥ 1, in the NTK:

E
(
Σ(l)(x, x′)

)
= E

(
λ(π − arccos(λ)) +

√
1− λ2

π
· c1c2

)

≤ E
(
λπ + 1

π
· c1c2

)
= E

(
Σ(l−1)(x, x′)

)
+

1

π
E
(√

Σ(l−1)(x, x)Σ(l−1)(x′, x′)

)
≤ E

(
Σ(l−1)(x, x′)

)
+

1

π
E
(
Σ(l−1)(x, x)

)
(B-40)

in which the last step can be splited to two steps as follows by Jensen inequality (since the function
g(x) =

√
x is concave):

E
(√

Σ(l−1)(x, x)Σ(l−1)(x′, x′)

)
= E

(
Σ(l−1)(x, x)

)
, x = x′

E
(√

Σ(l−1)(x, x)Σ(l−1)(x′, x′)

)
= E

(√
Σ(l−1)(x, x)

)
E
(√

Σ(l−1)(x′, x′)

)
≤
√
E
(
Σ(l−1)(x, x)

)√
E
(
Σ(l−1)(x′, x′)

)
= E

(
Σ(l−1)(x, x)

)
, x ̸= x′

(B-41)

similar to the CNTK:

E
(
Σ(l)

p,q(x, x
′)
)
= E

(
λ(π − arccos(λ)) +

√
1− λ2

π
· c1c2

)

≤ E
(
Σ

(l−1)
{p,q}(x, x

′)
)
+

1

π
E
(√

Σ
(l)
p,p(x, x)Σ

(l)
q,q(x′, x′)

)

≤


E
(
Σ

(l−1)
{p,q}(x, x

′)
)
+ 1

π

√
E
(
Σ

(l−1)
p,p (x, x)

)
E
(
Σ

(l−1)
q,q (x′, x′)

)
, x ̸= x′

2+π
π E

(
Σ

(l−1)
p,q (x, x)

)
+ 1

π

√
E
(
Σ

(l−1)
p,p (x, x)

)
E
(
Σ

(l−1)
q,q (x, x)

)
, x = x′

.

(B-42)

E
(
Σ̇(l)

p,q(x, x
′)
)
= E

(
π − arccos(λ)

π

)
≤ 1, E

(
Σ(l)(x, x′)

)
= E

(
π − arccos(λ)

π

)
≤ 1

(B-43)

Now we induce the twice:

E
(
Σ2(l)(x, x′)

)
= E

(λ(π − arccos(λ)) +
√
1− λ2

π

)2

· c21c22


≤ E

((
π2 − 1

π2
λ2 +

2

π
λ
√
1− λ2 +

1

π2

)
· c21c22

)
=

π2 − 1

π2
E
(
(Σ(l−1))2(x, x′)

)
+

2πλ
√
1− λ2 + 1

π2
E
(
Σ(l−1)(x, x)Σ(l−1)(x′, x′)

)
≤ π2 − 1

π2
E
(
(Σ(l−1))2(x, x′)

)
+

π + 1

π2
E
(
Σ(l−1)(x, x)Σ(l−1)(x′, x′)

)
=

{
π2−1
π2 E

(
(Σ(l−1))2(x, x′)

)
+ π+1

π2 E
(
Σ(l−1)(x, x)

)
E
(
Σ(l−1)(x′, x′)

)
, x ̸= x′

π+1
π E

(
(Σ(l−1))2(x, x′)

)
, x = x′ .

(B-44)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 3: Performance on ModelNet103 of Kernel Regression (KR) and Supervised Learning (SL).
All supervised networks are of the vanilla structure. GAP indicates global average pooling is added
to the final layer. The exponential parameter of the Gaussian kernel is 1.

Model D = 5 D = 10

SL 1dCNN 42.18 21.70
1dCNN GAP 39.54 21.26

KR

1dCNTK 44.38 43.39
1dCNTK GAP 76.87 76.54

NTK 19.98 14.54
Gaussian Kernel 21.15 –

similar to the CNTK:

E
(
Σ2(l)

p,q (x, x
′)
)
= E

(λ(π − arccos(λ)) +
√
1− λ2

π

)2

· c21c22


≤ π2 − 1

π2
E
(
(Σ(l−1)

p,q)2(x, x′)
)
+

π + 1

π2
E
(
Σ(l−1)

p,p (x, x)Σ(l−1)
q,q (x′, x′)

)
≤


π2−1
π2 E

(
(Σ

(l−1)
p,q)2(x, x′)

)
+ π+1

π2 E
(
Σ

(l−1)
p,p (x, x)

)
E
(
Σ

(l−1)
q,q (x′, x′)

)
, x ̸= x′

(π+1)2

π2 E
(
(Σ

(l−1)
p,q)2(x, x′)

)
+ π+1

π2 E
(
Σ

(l−1)
p,p (x, x)

)
E
(
Σ

(l−1)
q,q (x, x)

)
, x = x′

.

(B-45)

E EXTRA EXPERIMENTS

E.1 VANILLA METHODS FOR POINTCLOUD

Based on the kernel regression, we tested NTK, 1dCNTK, and 1dCNTK with a global average pooling
layer 1dCNTKGAP on ModelNet103. Additionally, we conducted experiments using a traditional
Gaussian kernel for comparison. Furthermore, we trained the corresponding vanilla neural network
structures based on these kernels.

The results, shown in Table 1, indicate the following:

• Vanilla networks without empirical adjustments perform poorly on point cloud data, with
performance degrading as network depth increases.

• The NTK corresponding to MLPs fails to perform effective kernel regression on point cloud
data, performing even worse than the Gaussian kernel.

• 1dCNTK is effective kernel regression for point cloud data, and 1dCNTK with a global
average pooling significantly outperforms 1dCNTK without a pooling.

• All kernels show no substantial improvement with increasing depth.

21

	Introduction
	Contribution
	Notation

	Convolutional Neural Tangent Kernel
	CNTK Followed by NTK
	Spectral Comparison
	Theoretical Results
	In Real Scenarios

	Kernel Regression for Point Cloud Recognition
	Experimental Setup
	PointNTK versus PointNet
	Ablation Study for Kernel Size and Depth
	Experimental Detail

	Conclusion
	Use of LLMs
	Related Work
	Neural Tangent Kernel
	Point Cloud Classification

	Proof of Main Results
	Unified Convolutional Neural Network
	Lemma 1: CNTK Formula
	Proposition 1: NTK followed by CNTK

	Spectral Comparison
	Proof of Theorems in Content
	Upper bound of in NTK and CNTK with ReLU

	Extra Experiments
	Vanilla Methods for Pointcloud

