
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAN: FOURIER ANALYSIS NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the remarkable success achieved by neural networks, particularly those
represented by MLP and Transformer, we reveal that they exhibit potential flaws
in the modeling and reasoning of periodicity, i.e., they exhibit satisfactory perfor-
mance within the domain of training period, but struggle to generalize to out of
the domain (OOD). The inherent cause lies in the way that they tend to memo-
rize the periodic data rather than genuinely understand the underlying principles
of periodicity. In fact, periodicity is essential to various forms of reasoning and
generalization, underpinning predictability across natural and engineered systems
through recurring patterns in observations. In this paper, we propose FAN, a novel
network architecture based on Fourier Analysis, which empowers the ability to
efficiently model and reason about periodic phenomena, meanwhile maintaining
general-purpose ability. By introducing Fourier Series, periodicity is naturally
integrated into the structure and computational processes of FAN. On this basis,
FAN is defined following two core principles: 1) its periodicity modeling capabil-
ity scales with network depth and 2) the periodicity modeling available throughout
the network, thus achieving more effective expression and prediction of periodic
patterns. FAN can seamlessly replace MLP in various model architectures with
fewer parameters and FLOPs, becoming a promising substitute to traditional MLP.
Through extensive experiments, we demonstrate the superiority of FAN in peri-
odicity modeling tasks, and the effectiveness and generalizability of FAN across a
range of real-world tasks, including symbolic formula representation, time series
forecasting, language modeling, and image recognition.

1 INTRODUCTION

The flourishing of modern machine learning and artificial intelligence is inextricably linked to the
revolutionary advancements in the foundational architecture of neural networks. For instance, multi-
layer perceptron (MLP) (Rosenblatt, 1958; Haykin, 1998) plays a pivotal role in laying the ground-
work for current deep learning models, with its expressive power guaranteed by the universal ap-
proximation theorem (Hornik et al., 1989). Recent claims about the impressive performance of large
models on various tasks are typically supported by Transformer architecture (Vaswani et al., 2017;
Touvron et al., 2023; OpenAI, 2023). In this context, the community’s enthusiasm for research on
neural networks has never diminished. Some emerged neural networks demonstrate notable capa-
bilities in specific fields (Gu & Dao, 2023; Liu et al., 2024), sparking widespread discussion within
the community.

Beneath the surface of apparent prosperity, we uncover a critical issue that remains in existing neu-
ral networks: they struggle to model the periodicity from data, especially in OOD scenarios. We
showcase this issue through an empirical study as illustrated in Figure 1. The results indicate that
existing neural networks, including MLP (Rosenblatt, 1958), KAN (Liu et al., 2024), and Trans-
former (Vaswani et al., 2017), face difficulties in fitting periodic functions, even on a simple sine
function. Although they demonstrate proficiency in interpolation within the domain of training data,
they tend to falter when faced with extrapolation challenges of test data, especially in OOD scenar-
ios. Therefore, their generalization capacity is primarily dictated by the scale and diversity of the
training data, rather than by the learned principles of periodicity to perform reasoning. We argue
that periodicity is an essential characteristic in various forms of reasoning and generalization, as it
provides a basis for predictability in many natural and engineered systems by leveraging recurring
patterns in observations. In fact, real-world tasks inherently contain many periodic and non-periodic

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

KAN TransformerMLP FAN (Ours)

𝑦 = 	sin(𝑥)

Figure 1: The performance of different neural networks within and outside the domain of their
training data for the sine function, where x is a scalar variable.

features, although some of them are hidden. The limitations of existing neural networks in capturing
periodicity may impact their generalization performance, especially in OOD scenarios.

In this paper, we investigate a key research problem: How to enable neural networks to model peri-
odicity? One core reason existing neural networks fail to model periodicity is that they heavily rely
on data-driven optimization without explicit mechanisms to understand the underlying principles in
the data. To this end, we propose a Fourier Analysis Network (FAN), a novel neural network frame-
work based on Fourier Analysis. By leveraging the power of Fourier Series, we enable the neural
network to capture and encode periodic patterns, offering a way to model the general principles from
the data. Moreover, FAN is built upon two core principles: the first ensures that its periodic mod-
eling capacity scales with network depth, while the second guarantees periodic modeling available
throughout the network. FAN not only exhibits exceptional capabilities in periodicity modeling but
also demonstrates competitive or superior effects on general tasks, which holds great potential as a
substitute to traditional MLP.

To verify the effectiveness of FAN, we conduct extensive experiments from two main aspects: pe-
riodicity modeling and application of real-world tasks. 1) For periodicity modeling, FAN achieves
significant improvements in fitting both basic and complex periodic functions, compared to exist-
ing neural networks (including MLP, KAN, and Transformer), particularly in OOD scenarios. 2)
FAN demonstrates superior performance in real-world tasks, including symbolic formula represen-
tation, time series forecasting, language modeling, and image recognition. The experimental re-
sults indicate that FAN outperform baselines (including MLP, KAN, and Transformer) for symbolic
formula representation task, and Transformer with FAN surpasses the competing models (includ-
ing Transformer, LSTM, and Mamba), for time series forecasting and language modeling tasks.
Moreover, FAN also shows effectiveness on standard CNN, especially in OOD scenarios, for image
recognition tasks. As a promising substitute to MLP, FAN improves the model’s generalization per-
formance meanwhile reducing the number of parameters and floating point of operations (FLOPs)
employed. We believe FAN is promising to be an important part of the fundamental model backbone.

2 PRELIMINARY KNOWLEDGE

Fourier Analysis (Stein & Weiss, 1971; Duoandikoetxea, 2024) is a mathematical framework that
decomposes functions into their constituent frequencies, revealing the underlying periodic structures
within complex functions. At the heart of this analysis lies Fourier Series (Tolstov, 2012), which
expresses a periodic function as an infinite sum of sine and cosine terms. Mathematically, for a
function f(x), its Fourier Series expansion can be represented as:

f(x) = a0 +

∞∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
, (1)

where T is the period of the function, and the coefficients an and bn are determined by integrating
the function over one period:

an =
1

T

∫ T

0

f(x) cos

(
2πnx

T

)
dx, bn =

1

T

∫ T

0

f(x) sin

(
2πnx

T

)
dx. (2)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The power of Fourier Series lies in its ability to represent a wide variety of functions, including non-
periodic functions through periodic extensions, enabling the extraction of frequency components.
Building on this mathematical foundation, FAN aims to embed the periodic characteristics directly
into network architecture, enhancing generalization capabilities and performance on various tasks,
particularly in scenarios requiring the identification of patterns and regularities.

(a) MLP Layer (b) FAN Layer

Activation Function Activation FunctionCosine Sine

𝑾 𝑾

Learnable Weights

𝜙 𝑥 = 	 [	cos(𝑊!𝑥)	||	sin(𝑊!𝑥)	||	𝜎(𝐵!̅ +𝑊!̅𝑥)]	Φ 𝑥 = 	𝜎(𝐵# +𝑊#𝑥)	

Figure 2: Illustrations of MLP layer Φ(x) vs. FAN layer ϕ(x).

3 FOURIER ANALYSIS NETWORK (FAN)

In this section, we first construct a simple neural network modeled by the formula of Fourier Series,
and then on this basis, we design FAN and provide its details. Finally, we discuss the difference
between the FAN layer and the MLP layer.

Consider a task involving input-output pairs {xi, yi}, with the objective of identifying a function
f(x) : Rdx → Rdy that approximates the relationship such that yi ≈ f(xi) for all xi, where dx
and dy denote the dimensions of x and y, respectively. To build a simple neural network fS(x) that
represents Fourier Series expansion of the function, specifically F{f(x)}, as described in Eq. (1),
we can express fS(x) as follows:

fS(x) ≜ a0 +

N∑
n=1

(
an cos

(
2πnx

T

)
+ bn sin

(
2πnx

T

))
,

(I)
= a0 +

N∑
n=1

(
wc

n cos
(
win

nx
)
+ ws

n sin
(
win

nx
))

,

(II)
= B + [wc

1, w
c
2, · · · , wc

n] cos([w
in
1 ||win

2 || · · · ||win
n ]x)

+ [ws
1, w

s
2, · · · , ws

n] sin([w
in
1 ||win

2 || · · · ||win
n ]x)

= B +Wc cos(Winx) +Ws sin(Winx),

(III)
= B +Wout[cos(Winx)|| sin(Winx)],

(3)

where B ∈ Rdy ,Win ∈ RN×dx , and Wout ∈ Rdy×2N are learnable parameters, (I) follows that
the computation of an and bn computed via Eq. (2) is definite integral, (II) and (III) follows the
equivalence of the matrix operations, [·||·] and [·, ·] denotes the concatenation along the first and
second dimension, respectively.

To fully leverage the advantages of deep learning, we can stack the aforementioned network fS(x)
to form a deep network fD(x), where the i-th layer, denoted as li(x), retains the same structural
design as fS(x). Therefore, fD(x) can be formulated as:

fD(x) = lL ◦ lL−1 ◦ · · · ◦ l1 ◦ x, (4)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where l1 ◦x denotes the application of the left function l1 to the right input x, that is l1(x). However,
we discover that the direct stacking of fS(x) results in the primary parameters of the model fD(x)
focusing on learning the angular frequency (ωn = 2πn

T ), thereby neglecting the learning of the
Fourier coefficients (an and bn), as follows:

fD(x) = lL(lL−1 ◦ lL−2 ◦ · · · ◦ l1 ◦ x)
= BL +WL

out[cos(W
L
in (l1:L−1 ◦ x)|| sin(WL

in (l1:L−1 ◦ x))] (5)

where l1:L−1 ◦ x is defined as lL−1 ◦ lL−2 ◦ · · · ◦ l1 ◦ x, WL
in (l1:L−1 ◦ x) is used to approximate

the angular frequencies, and WL
out is used to approximate the Fourier coefficients. Therefore, the

capacity of fD(x) to fit the Fourier coefficients is independent of the depth of fD(x), which is an
undesirable outcome.

To this end, we design FAN based on the following principles: 1) the capacity of FAN to represent
the Fourier coefficients should be positively correlated to its depth; 2) the output of any hidden
layer can be employed to model periodicity using Fourier Series through the subsequent layers. The
first one enhances the expressive power of FAN for periodicity modeling by leveraging its depth,
while the second one ensures that the features of FAN’s intermediate layers are available to perform
periodicity modeling.

Suppose we decouple fS(x) as follows:

fS(x) = fout ◦ fin ◦ x, (6)

where

fin(x) = [cos(Winx)|| sin(Winx)], (7)
fout(x) = B +Woutx. (8)

To satisfy both principles, the inputs of the intermediate layers in FAN necessitate to employ fin
and fout simultaneously, rather than applying them sequentially.

Finally, FAN is designed on this basis, with the FAN layer ϕ(x) defined as below:

ϕ(x) ≜ [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)], (9)

where Wp ∈ Rdx×dp ,Wp̄ ∈ Rdx×dp̄ , and Bp̄ ∈ Rdp̄ are learnable parameters (with the hyper-
parameters dp and dp̄ indicating the first dimension of Wp and Wp̄, respectively), the layer output
ϕ(x) ∈ R2dp+dp̄ , and σ denotes the activation function, which can further enhance its expressive
power for periodicity modeling.

The entire FAN is defined as the stacking of the FAN layer ϕ(x):

FAN(x) = ϕL ◦ ϕL−1 ◦ · · · ◦ ϕ1 ◦ x, (10)

where

ϕl(x) =

{
[cos(W l

px)|| sin(W l
px)||σ(Bl

p̄ +W l
p̄x)], if l < L,

BL +WLx, if l = L,
(11)

Table 1: Comparison of MLP layer and FAN layer, where dp is a hyperparameter of FAN layer
and defaults to 1

4doutput in this paper, dinput and doutput denote the input and output dimensions of the
neural network layer, respectively. In our evaluation, the FLOPs for any arithmetic operations are
considered as 1, and for Boolean operations as 0.

MLP Layer FAN layer

Formula Φ(x) = σ(Bm +Wmx) ϕ(x) = [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)]

Num of Params (dinput × doutput) + doutput (1− dp

doutput
)× ((dinput × doutput) + doutput)

FLOPs 2× (dinput × doutput)
+FLOPsnon-linear × doutput

(1− dp

doutput
)× 2× (dinput × doutput)

+FLOPsnon-linear × doutput

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The illustrations of the MLP layer Φ(x) vs. the FAN layer ϕ(x) are shown in Figure 2. Note that
the FAN layer ϕ(x) computed via Eq. (9) can seamlessly replace the MLP layer Φ(x) computed via
Eq. (12) in various models with fewer parameters and FLOPs, achieved by sharing the parameters
and computation of Sin and Cos parts. The number of parameters and FLOPs of the FAN layer
compared to the MLP layer are presented in Table 1.

KAN TransformerMLP FAN

𝑦 = 𝑥	𝑚𝑜𝑑	5

KAN

Transformer

MLP

FAN

𝑦 = (1	 +	sin(𝑥)) sin(2𝑥)

KAN

Transformer

MLP

FAN

𝑦 =
𝑒!"# $

1 + cos%(2𝑥)

Figure 3: The performance of FAN in periodicity modeling compared to MLP, KAN, and Trans-
former, where the green line represents the test data within the domain of the training data, while
the blue line represents the test data outside the domain of the training data.

4 EXPERIMENTS

In this section, we first introduce the baselines and implementation details of our experiments. Sec-
ond, we verify the superiority of FAN in periodicity modeling tasks (Section 4.1). Third, we demon-
strate the effectiveness and generalizability of FAN across a range of real-world tasks, including
symbolic formula representation (Section 4.2), time series forecasting (Section 4.3), language mod-
eling (Section 4.4), and image recognition (Section 4.5). Finally, we conduct further analysis on
FAN’s running time and hyperparameter impact. (Section 4.6).

Baselines. In our experiments, we mainly compare FAN with the following baselines: 1) MLP
(Rosenblatt, 1958), 2) Transformer (Vaswani et al., 2017), 3) KAN (Liu et al., 2024), 4) LSTM
(Hochreiter & Schmidhuber, 1997), 5) Mamba (Gu & Dao, 2023), 6) CNN (LeCun et al., 1998).
Details of the baselines are given in Appendix F. Moreover, we also include the following variants of
FAN into our comparisons: I) FAN (Gated): a variant of FAN that adds gates to control the tendency
of the layer, with the formula defined as ϕg(x) = [g·cos(Wpx)||g·sin(Wpx)||(1−g)·σ(Bp̄+Wp̄x)],
where g is a learnable parameter. II) Transformer with FAN and Transformer with FAN (Gated):
we replace each MLP layer in Transformer with the FAN layer computed via Eq. (9) and the layer

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Comparison of training and test losses for different models on the tasks of learning com-
plex periodic functions.

of FAN (Gated), respectively. III) CNN with FAN: similarly, we replace each MLP layer in CNN
with the FAN layer.

Implementation Details. We conduct our experiments on a single GPU of Tesla A100-PCIe-40G.
Unless otherwise specified, we use the following hyperparameters in the experiments. The model
architecture consists of 3-12 layers, the activation function σ is set to GELU (Hendrycks & Gimpel,
2016), and the dimension of the projection matrix Wp is set to dp = 1

4dh, where dh denotes the
dimension of the hidden layers. We employ the AdamW optimizer (Loshchilov & Hutter, 2019) for
the model’s training process. More experimental details and comprehensive setups of each task can
be found in Appendix C.

4.1 PERIODICITY MODELING

Setup. In periodic modeling tasks, we select periodic functions with practical significance and
compare the models’ performance in learning the underlying principles of periodicity. Specifically,
we generate data from periodic functions over a large domain, using a portion of this domain as
training data and the entire domain as test data, i.e., a part of test data would be out of the domain
of training data. In this task, we compare FAN and its variant, FAN (Gated), with MLP, KAN, and
Transformer. The input of each task is a scalar.

Results. Figure 3 illustrates the performance of FAN and other baselines in periodicity modeling.
The results indicate that existing neural networks, including MLP, KAN, and Transformers, exhibit
notable deficiencies in their ability to model periodicity. Although they attempt to fit these periodic
functions, their ability limits their performance in modeling a large domain of periodicity, including
the test data within and outside the domain of the training data. In contrast, FAN significantly
outperforms the baselines in all these tasks of periodicity modeling. Moreover, FAN performs
exceptionally well on the test data both within and outside the domain, indicating that it is genuinely
modeling periodicity rather than merely memorizing the training data.

We also analyze the training process of different models on the tasks of learning complex periodic
functions, as illustrated in Figure 4, which leads to the following findings. 1) FAN far exceeds the
other baselines in both convergence speed and final effects. 2) In comparison to FAN, FAN (Gated)
often achieves faster convergence, but the final performance remains comparable. 3) Although the
baselines show stabilization or gradual reductions in training loss as the number of epochs increases,
their modeling may have diverged considerably from the distribution of the test data, resulting in a

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Comparisons of FAN with the baselines, including MLP, KAN, and Transformer, across
varying numbers of parameters on symbolic formula representation tasks.

sharp increase in test loss. This phenomenon further demonstrates the shortcomings of these models
in capturing periodicity.

4.2 SYMBOLIC FORMULA REPRESENTATION

Setup. Symbolic formula representation is a common task in both mathematics and physics. We
follow the experiments conducted in KAN’s paper (Liu et al., 2024), adhering to the same tasks, data,
hyperparameters, and baselines. In addition to the original baselines, we also include Transformer
for comparison in this task.

Results. Figure 5 demonstrates the performance of different models applied to four common func-
tions in mathematics and physics. From Figure 5, we can observe that while KAN remains com-
petitive with FAN when the number of parameters is small, its performance declines clearly as the
number of parameters increases, which exhibits a U-shaped trend (Liu et al., 2024). In contrast, as
the number of parameters becomes large, FAN consistently outperforms the other baselines, includ-
ing MLP, KAN, and Transformer, in fitting these functions, despite many of these functions being
only partially periodic or entirely non-periodic. This may be attributed to FAN’s ability to capture
and model both periodic and non-periodic features and the advantages of fewer parameters. These
results indicate that although FAN enhances its ability to model periodicity, it does not compromise
its capacity to fit non-periodic functions.

Table 2: Performance of different sequence models on time series forecasting tasks, where Input
Length = 96, the bold values indicate the lowest value on each row, and the improve means the
relative improvements of using FAN and FAN (Gated) based on Transformer.

Dataset Output
Length

LSTM
(12.51 M)

Mamba
(12.69 M)

Transformer
(12.12 M)

Transformer with FAN (11.06 M)

Gated Default

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Weather

96 1.069 0.742 0.552 0.519 0.413 0.438 0.292 0.380 0.313 0.431
192 1.090 0.778 0.700 0.595 0.582 0.540 0.535 0.550 0.472 0.525
336 0.992 0.727 0.841 0.667 0.751 0.626 0.637 0.602 0.719 0.581
720 1.391 0.892 1.171 0.803 0.967 0.715 0.845 0.706 0.732 0.670

Exchange

96 0.938 0.794 0.908 0.748 0.777 0.681 0.685 0.644 0.657 0.623
192 1.241 0.899 1.328 0.925 1.099 0.800 0.998 0.757 0.968 0.741
336 1.645 1.048 1.512 0.992 1.614 1.029 1.511 0.961 1.266 0.905
720 1.949 1.170 2.350 1.271 2.163 1.204 1.658 1.104 2.063 1.205

Traffic

96 0.659 0.359 0.666 0.377 0.656 0.357 0.647 0.355 0.643 0.347
192 0.668 0.360 0.671 0.381 0.672 0.363 0.649 0.353 0.657 0.354
336 0.644 0.342 0.665 0.374 0.673 0.360 0.665 0.358 0.656 0.353
720 0.654 0.351 0.662 0.364 0.701 0.380 0.682 0.369 0.673 0.363

ETTh

96 0.999 0.738 0.860 0.697 1.139 0.853 0.842 0.736 0.873 0.707
192 1.059 0.759 0.849 0.700 1.373 0.932 0.885 0.748 0.914 0.741
336 1.147 0.820 1.005 0.745 1.261 0.924 0.980 0.770 0.999 0.793
720 1.206 0.847 0.994 0.758 1.056 0.819 1.002 0.798 1.031 0.818

Average
(Improve) – 1.083 0.726 1.002 0.668 0.994 0.689 0.845

↓ 15.0%
0.637
↓ 7.6%

0.852
↓ 14.3%

0.635
↓ 7.9%

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 TIME SERIES FORECASTING

Setup. Time series forecasting plays a critical role in various real-world applications. In our ex-
periments, we employ four public datasets of this task to assess the model performance on time
series forecasting, including Weather (Wu et al., 2021a), Exchange (Lai et al., 2018), Traffic (Wu
et al., 2021a), and ETTh (Zhou et al., 2021) datasets. For each dataset, we input 96 previous time
steps and forecast the subsequent time steps of {96, 192, 336, 720}. In this task, we choose the
sequence models as baselines, including LSTM, Mamba, Transformer, Transformer with FAN , and
Transformer with FAN (Gated).

Results. As presented in Table 2, we compare the performance of Transformer with FAN and
other sequence models for time series forecasting tasks on four public datasets. In most cases,
Transformer with FAN and its gated version achieves the best performance on these tasks, compared
to LSTM, Mamba, and the standard Transformer. The improvements of Transformer with FAN and
FAN (Gated) over the standard Transformer are notable, with the average relative improvements
ranging from 14.3% to 15.0% for MSE and from 7.6% to 7.9% for MAE. These results suggest
that incorporating explicit periodic pattern encoding within neural networks improves time series
forecasting performance in real-world applications.

4.4 LANGUAGE MODELING

Setup. Language modeling is a fundamental task in natural language processing. In this exper-
iment, we conduct language modeling using the SST-2 (Socher et al., 2013) dataset and evaluate
the model’s performance on its test set, as well as on the related datasets such as IMDB (Maas
et al., 2011), Sentiment140 (Sahni et al., 2017), and Amazon Reviews (Linden et al., 2003). These
four classic datasets all belong to the field of sentiment analysis. In this task, the comparisons are
between Transformer with FAN and FAN (Gated), along with other sequence models, including
LSTM, Mamba, and Transformer.

Table 3: Performance of different sequence models on language modeling tasks, where the models
are trained on the training set of SST-2 and evaluated on the other datasets, the bold value indicates
the best performance on each column, the bold italic indicates the best performance other than
Transformer with FAN and FAN (Gated), and the improvements represent our relative improvements
of using FAN based on Transformer.

Model Num of
Params

SST-2 (test) IMDB Sentiment140 Amazon Reviews

Loss ↓ Acc ↑ Loss ↓ Acc ↑ Loss ↓ Acc ↑ Loss ↓ Acc ↑
LSTM 120.14M 0.4760 0.8060 0.6449 0.6438 0.8026 0.5979 0.5791 0.7152
Mamba 129.73M 0.4335 0.7959 0.6863 0.6203 0.7871 0.5874 0.6163 0.6719
Transformer 109.48M 0.4297 0.8119 0.5649 0.6994 0.8891 0.5779 0.5563 0.7155
w/ FAN (Gated) 95.33M 0.4250 0.8039 0.5817 0.7012 0.7941 0.6194 0.4835 0.7689
w/ FAN 95.32M 0.4094 0.8154 0.5225 0.7398 0.8257 0.6093 0.4748 0.7763
Improvements ↓ 14.16M ↓ 4.72% ↑ 0.43% ↓ 7.51% ↑ 5.78% ↓ 7.13% ↑ 5.43% ↓ 14.65% ↑ 8.50%

Results. We report the performance comparison between different sequence models across four
public sentiment analysis datasets, as shown in Table 3. The results indicate that Transformer with
FAN achieves clear improvements compared to the standard Transformer and other baselines, such
as LSTM and Mamba, especially for zero-shot OOD performance on IMDB, Sentiment140, and
Amazon Reviewers datasets. Using FAN achieves the relative improvements up to 14.65% and
8.50% in terms of Loss and Accuracy respectively, while reducing the number of parameters by
about 14.16M. The result indicates the potential of periodicity modeling to enhance both effective-
ness and generalization on cross-domain language modeling and sentiment analysis tasks.

4.5 IMAGE RECOGNITION

Setup. Image recognition is a key computer vision task where image content is identified and
categorized. Our evaluation contains four public benchmarks of image recognition: MNIST (LeCun

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

et al., 2010), MNIST-M (Ganin et al., 2016), Fashion-MNIST (Xiao et al., 2017), and Fashion-
MNIST-C (Weiss & Tonella, 2022), where MNIST is used for digit recognition, Fashion-MNIST
assesses clothing classification, MNIST-M and Fashion-MNIST-C are their variant for robustness.

Results. We also apply FAN to image recognition tasks on four classic benchmarks, as shown in
Table 4. Experimental results show that using FAN outperforms the standard CNN in most cases for
the optimal Accuracy, Accuracy, and OOD Accuracy, as well as achieves clear improvements in the
optimal OOD Accuracy. We believe that there are some latent periodic features in image recognition
tasks, and FAN’s ability to model these periodic features can help CNN achieve competitive or
superior performance, especially in OOD scenarios.

Table 4: Results on image recognition tasks. Accuracy* means best Accuracy, Accuracy means
Accuracy at the last epoch, and OOD Accuracy means Accuracy on other paired datasets. Bold
values indicate the highest value between CNN and CNN w/ FAN under the same setting.

Dataset Accuracy* ↑ OOD Accuracy* ↑ Accuracy ↑ OOD Accuracy ↑
CNN w/ FAN CNN w/ FAN CNN w/ FAN CNN w/ FAN

MNIST 99.63 99.67 28.85 30.3 99.55 99.64 22.12 21.64
MNIST-M 94.52 94.23 82.85 83.55 94.29 94.22 80.07 81.44

Fashion-MNIST 94.15 94.47 49.82 51.88 94.05 94.21 48.08 50.3
Fashion-MNIST-C 88.61 88.82 91.45 91.59 88.6 88.59 91.41 91.47

4.6 FURTHER ANALYSIS OF FAN

Table 5: Comparison of actual runtime between FAN and MLP.
1024×1024 2048×2048 4096×4096 8192×8192

MLP 0.064 ms 0.114 ms 0.212 ms 0.938 ms
FAN 0.128 ms 0.133 ms 0.211 ms 0.704 ms

Runtime of FAN. We analyze
the actual running time of the
FAN Layer compared to the
MLP Layer with different input
and output dimensions, as shown
in Table 5. The experimental re-
sults show that MLPs exhibit smaller runtimes when the input and output sizes are small, due to
PyTorch’s optimization of MLP. However, as the input and output sizes continue to increase, matrix
computations become the main contributor to runtime. At this point, FAN’s fewer parameters and
reduced FLOPs begin to show significant advantages. Note that FAN can be further optimized from
the underlying implementation, we leave this to future research.

The impact of hyperparameter dp. In our experiments, we fix the hyperparameter dp = 1
4dh

intuitively for FAN, where dh denotes the dimension of the hidden layers. As shown in Figure 7
of Appendix, we investigate the impact of varying dp empirically on task performance by changing
itself. The results indicate that performance initially improves as dp increases, but then decreases
beyond a certain point. This trend may be attributed to the number of potential periodic features
specific to each task. Furthermore, there remains room for further improvements with the better
hyperparameter setup of dp.

5 RELATED WORK

In this section, we outline the two most relevant directions and associated papers of this work.

Learning Periodicity with Neural Networks. Periodic functions are one of the most basic func-
tions of importance to human society and natural science (Newton, 1687; Osborn & Sensier, 2002;
Kwasnicki, 2008; De Groot & Franses, 2012; Zhang et al., 2017). However, commonly used neural
networks, such as MLPs and transformers, struggle with modeling periodicity. This limitation is
attributed to the lack of inherent “periodicity” in their inductive biases. Some previous works (Sil-
vescu, 1999; Liu, 2013; Parascandolo et al., 2016; Uteuliyeva et al., 2020) proposed merely using
standard periodic functions themselves or their linear combinations as activation functions, which

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

only work well on some shallow and simple models. On this basis, work (Liu et al., 2020) intro-
duced the Snake function, i.e., x+ sin2(x), as the activation function. However, we observed that it
can fit periodic functions to a certain extent, but its effect is limited especially for OOD scenarios,
as demonstrated in Appendix D. Therefore, although some previous studies have attempted to inte-
grate periodic information into neural networks, their actual performance and range of applications
remain heavily constrained.

Fourier-based Neural Network. Previous studies have explored Fourier-based neural networks
to enhance the computational tasks (Zuo & Cai, 2005; Tan, 2006; Zuo et al., 2008; Li et al., 2021b;
Chen et al., 2022). Fourier Neural Networks (Silvescu, 1999; Ngom & Marin, 2021) are shallow
feedforward networks that employ cosine activation functions to map inputs to their Fourier decom-
positions. Work (Lee et al., 2021) directly utilized the Fourier Series constructed by a shallow neural
network for generating periodic signals. In addition, work (Jiang et al., 2022) introduces Fourier Se-
ries at the end of models to embed periodic components within the network. These approaches
generally possess a similar principle as Eq. (3), using a neural network to simulate the formula of
Fourier Series. However, this leads to the same problem as in Eq. (5), i.e., they are hard to serve as
building blocks for deep neural networks, which limits these approaches’ capabilities.

In this paper, we design FAN to address these challenges, which performs exceptionally well on
periodicity modeling and a range of real-world tasks.

6 DISCUSSION

In this section, we mainly discuss the expressive power and application scope of FAN as follows.

First, FAN theoretically possesses the same expressive power as MLP as it also adheres to the uni-
versal approximation theorem, which ensures its capacity for functional approximation (refer to
Appendix E for the detailed explanation). Moreover, FAN introduces an important enhancement
by explicitly incorporating periodicity, a feature absent in traditional MLPs. Through this design,
FAN not only retains the capabilities of MLP but also enhances its ability to capture periodic char-
acteristics in data. For periodic tasks and some non-periodic tasks that are partially periodic, FAN
leverages its effective periodicity modeling ability to yield better results. Therefore, FAN can be
seen as a promising alternative to MLP.

Second, beyond tasks that explicitly require periodicity modeling, FAN also has utility in a broader
range of applications, which has been evidenced by our extensive experiments on real-world tasks,
such as symbolic formula representation, time series forecasting, language modeling, and image
recognition, where FAN achieve competitive or superior performance than MLP and other baselines.
In fact, many machine learning tasks may harbor hidden forms of periodicity, even without explicitly
including periodicity, such as mathematical operations and logic reasoning. If the neural network
lacks the ability to model periodic components, it could impair its learning efficiency. From a deeper
perspective, periodicity is not just a data feature but reflects a form of structural knowledge—one
that allows for the transfer and reuse of abstract rules and principles across different contexts.

7 CONCLUSION

In this paper, we have proposed Fourier Analysis Network (FAN), a novel neural network archi-
tecture for tackling the problem of periodicity modeling, which utilizes Fourier Series to facilitate
capturing the underlying principles within data and reasoning. Experimental results demonstrate
that FAN can successfully fit a variety of both basic and complex periodic functions, whereas other
approaches failed. Moreover, FAN and its combination with Transformer also exhibit superior per-
formance in multiple real-world tasks, including symbolic formula representation, time series fore-
casting, language modeling, and image recognition tasks, outperforming existing neural networks
such as MLP, KAN, Transformer, CNN, LSTM, and Mamba. These promising results, especially
the stronger performance and the fewer parameters and FLOPs compared to MLP, suggest its po-
tential to become a key component of foundational models. In the future, we aim to further increase
the scale of FAN and expand its scope of application, reinforcing its role as a versatile and powerful
building block in the machine learning landscape.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hanlong Chen, Luzhe Huang, Tairan Liu, and Aydogan Ozcan. Fourier imager network (FIN): A
deep neural network for hologram reconstruction with superior external generalization. Light:
Science & Applications, 2022.

Bert De Groot and Philip Hans Franses. Common socio-economic cycle periods. Technological
Forecasting and Social Change, 79(1):59–68, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Javier Duoandikoetxea. Fourier analysis, volume 29. American Mathematical Society, 2024.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial training of neural
networks. J. Mach. Learn. Res., 17:59:1–59:35, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. CoRR,
abs/2312.00752, 2023.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1998.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, 1997.

Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989.

Song Jiang, Tahin Syed, Xuan Zhu, Joshua Levy, Boris Aronchik, and Yizhou Sun. Bridging self-
attention and time series decomposition for periodic forecasting. In CIKM, pp. 3202–3211. ACM,
2022.

Witold Kwasnicki. Kitchin, juglar and kuznetz business cycles revisited. Wroclaw: Institute of
Economic Sciences, 2008.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In SIGIR, pp. 95–104. ACM, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Jiyoung Lee, Wonjae Kim, Daehoon Gwak, and Edward Choi. Conditional generation of periodic
signals with fourier-based decoder. CoRR, abs/2110.12365, 2021.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric
partial differential equations. In ICLR. OpenReview.net, 2021a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric
partial differential equations. In ICLR. OpenReview.net, 2021b.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-item collab-
orative filtering. IEEE Internet Comput., 7(1):76–80, 2003.

Shuang Liu. Fourier neural network for machine learning. In ICMLC, pp. 285–290. IEEE, 2013.

11

http://arxiv.org/abs/1810.04805


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: kolmogorov-arnold networks. CoRR, abs/2404.19756,
2024.

Ziyin Liu, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions
and how to fix it. In NeurIPS, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR (Poster). Open-
Review.net, 2019.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In ACL, pp. 142–150. The Association for
Computer Linguistics, 2011.

Isaac Newton. Philosophiae naturalis principia mathematica. William Dawson & Sons Ltd., Lon-
don, 1687.

Marieme Ngom and Oana Marin. Fourier neural networks as function approximators and differential
equation solvers. Stat. Anal. Data Min., 14(6):647–661, 2021.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Denise R. Osborn and Marianne Sensier. The prediction of business cycle phases: Finan-
cial variables and international linkages. National Institute Economic Review, 182(1):96–
105, 2002. doi: 10.1177/002795010218200110. URL https://doi.org/10.1177/
002795010218200110.

Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Taming the waves: sine as
activation function in deep neural networks. 2016.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

Tapan Sahni, Chinmay Chandak, Naveen Reddy Chedeti, and Manish Singh. Efficient twitter sen-
timent classification using subjective distant supervision. In COMSNETS, pp. 548–553. IEEE,
2017.

Adrian Silvescu. Fourier neural networks. In IJCNN, pp. 488–491. IEEE, 1999.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, pp. 1631–1642. ACL, 2013.

Elias M Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces, volume 1.
Princeton university press, 1971.

HS Tan. Fourier neural networks and generalized single hidden layer networks in aircraft engine
fault diagnostics. 2006.

Georgi P Tolstov. Fourier series. Courier Corporation, 2012.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023.

12

https://doi.org/10.1177/002795010218200110
https://doi.org/10.1177/002795010218200110


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. CoRR, abs/1607.08022, 2016.

Malika Uteuliyeva, Abylay Zhumekenov, Rustem Takhanov, Zhenisbek Assylbekov, Alejandro J.
Castro, and Olzhas Kabdolov. Fourier neural networks: A comparative study. Intell. Data Anal.,
24(5):1107–1120, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Michael Weiss and Paolo Tonella. Simple techniques work surprisingly well for neural network
test prioritization and active learning. In Proceedings of the 31th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021a.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in neural information
processing systems, 34:22419–22430, 2021b.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/
abs/1708.07747.

Liheng Zhang, Charu Aggarwal, and Guo-Jun Qi. Stock price prediction via discovering multi-
frequency trading patterns. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’17, pp. 2141–2149, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450348874. doi: 10.1145/3097983.
3098117. URL https://doi.org/10.1145/3097983.3098117.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, pp.
11106–11115. AAAI Press, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, volume 162 of
Proceedings of Machine Learning Research, pp. 27268–27286. PMLR, 2022.

Wei Zuo and Lilong Cai. Tracking control of nonlinear systems using fourier neural network. In
Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.,
pp. 670–675. IEEE, 2005.

Wei Zuo and Lilong Cai. Adaptive-fourier-neural-network-based control for a class of uncertain
nonlinear systems. IEEE transactions on neural networks, 19(10):1689–1701, 2008.

Wei Zuo, Yang Zhu, and Lilong Cai. Fourier-neural-network-based learning control for a class
of nonlinear systems with flexible components. IEEE transactions on neural networks, 20(1):
139–151, 2008.

13

http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1145/3097983.3098117


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MLP

The MLP layer Φ(x) is defined as:

Φ(x) = σ(Bm +Wmx), (12)

where Bm ∈ Rdm and Wp̄ ∈ Rdx×dm are learnable parameters with the hyperparameter dm indi-
cating the first dimension of Wm, σ denotes the activation function, and MLP can be defined as the
stacking of the MLP layer Φ(x):

MLP(x) = ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1 ◦ x, (13)

where

Φl(x) =

{
σ(Bl

m +W l
mx), if l < L,

BL +WLx, if l = L.
(14)

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL EXPERIMENTS ON PERIODICITY MODELING TASKS.

More experimental results on periodicity modeling tasks are shown in Figure 6.

KAN

Transformer

MLP

FAN

𝑦 = sin	(𝑥	 + 	sin	(2𝑥))

KAN

Transformer

MLP

FAN

𝑦 = sin 𝑡 cos!(2𝑡) + cos 𝑡 sin!(3𝑡)

Figure 6: Additional Experiments on Periodicity Modeling Tasks.

B.2 FAN FOR SOLVING SCIML PROBLEMS

We conduct experiments on the SciML problem that includes the Fourier function class following
the work (Li et al., 2021a). The Burgers’ equation, a non-linear partial differential equation, is fre-
quently used in scientific computing to model shock waves and traffic flow, among other phenomena.
The detailed error rate on Burgers’ equation is listed in the Table 6. We can find that replacing the
MLP Layer with FAN Layer in Fourier Neural Operator (FNO) (Li et al., 2021a) can achieve clear
improvements on each setting of resolution s of this task.

B.3 COMPARISON WITH FREQUENCY-BASED MODELS IN TIME SERIES FORECASTING
TASKS

To compare with frequency-based models in Time Series Forecasting tasks such as FEDformer
(Zhou et al., 2022), we replace MLP with FAN in frequency-based models. We present the experi-

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: The error rate on Burgers’ equation. The values in the table represent the Average Relative
Error for Burgers’ equation with lower values indicating better performance.

Model s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192

FNO 5.93% 6.14% 6.03% 6.75% 7.36% 9.93%
FNO with FAN 5.26% 5.17% 5.18% 6.73% 6.35% 7.06%

mental results in Table 7, where the results of FEDformer are cited from its paper directly. From the
results, we can find that FEDformer with FAN can outperform FEDformer in almost all cases.

Table 7: Results of comparison with frequency-based models in time series forecasting tasks.
Dataset Len FEDformer with FAN

MSE MAE MSE MAE

Traffic

96 0.587 0.366 0.577 0.357
192 0.604 0.373 0.601 0.366
336 0.621 0.383 0.620 0.378
720 0.626 0.382 0.619 0.370

Exchange

96 0.148 0.278 0.138 0.267
192 0.271 0.380 0.261 0.371
336 0.460 0.500 0.461 0.503
720 1.195 0.841 1.159 0.827

Electricity

96 0.193 0.308 0.184 0.298
192 0.201 0.315 0.199 0.313
336 0.214 0.329 0.212 0.325
720 0.246 0.355 0.239 0.347

B.4 COMPARISON WITH DIRECTLY LEARNING THE COEFFICIENTS

We compare FAN with a baseline of directly learning the coefficients, which inputs sin(x) and
cos(x) and then uses the MLP Layer instead of the FAN Layer to model the Fourier coefficients. In
this setting, frequencies are fixed and only the coefficients are learned, which may limit the model’s
ability to capture patterns not aligned with these frequencies. Taking simple f(x) = x mod 5 as an
example, this setting may not even converge at all, because the frequency of x mod 5 is inconsistent
with sin(x) and cos(x). The experimental results of their loss are shown in Table 8.

Table 8: Comparison of FAN and directly learning the coefficients on fitting f(x) = x mod 5.
Epoch 50 100 150 200

Directly learning the coefficients 2.10 2.09 2.09 2.08
FAN 0.28 0.23 0.18 0.17

B.5 EXPERIMENTS ON TIME SERIES FORECASTING WITH INSTANCE NORMALIZATION

We conduct experiments on time series forecasting tasks with instance normalization (Ulyanov et al.,
2016), and the results are shown in Table 9. We find that applying instance normalization before the
architecture can effectively improve the performance.

B.6 THE INFLUENCE OF HYPERPARAMETERS dP

We evaluate the influence of hyperparameters dp as shown in Figure 7.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: Results on time series forecasting tasks with instance normalization, where Input Length
= 96, the bold values indicate the lowest value on each row, and the improve means the relative
improvements of using FAN and FAN (Gated) based on Transformer.

Dataset Output
Length

Transformer
(12.12 M)

Transformer with FAN (11.06 M)

Gated Default

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Weather

96 0.1772 0.2301 0.1864 0.2352 0.1756 0.2247
192 0.2438 0.2844 0.2445 0.2834 0.2327 0.2760
336 0.3077 0.3267 0.3156 0.3320 0.3118 0.3291
720 0.4253 0.3982 0.3909 0.3782 0.4113 0.3906

Exchange

96 0.1433 0.2653 0.1157 0.2452 0.1436 0.2666
192 0.2563 0.3552 0.2539 0.3611 0.2651 0.3757
336 0.5273 0.5218 0.4329 0.4891 0.5092 0.5326
720 1.7401 0.9273 1.5783 0.9303 1.0599 0.7657

Traffic

96 0.6160 0.3449 0.6030 0.3334 0.6109 0.3319
192 0.6329 0.3479 0.6239 0.3404 0.6258 0.3370
336 0.6369 0.3485 0.6416 0.3487 0.6200 0.3380
720 0.6555 0.3577 0.6645 0.3574 0.6412 0.3525

ETTh1

96 0.5339 0.4910 0.5503 0.5216 0.5378 0.4983
192 0.5633 0.5209 0.5906 0.5346 0.5968 0.5265
336 0.7576 0.5813 0.6640 0.5636 0.7525 0.5933
720 0.7411 0.6177 0.7411 0.6066 0.7328 0.6142

ETTh2

96 0.3881 0.4097 0.4082 0.4292 0.3833 0.4149
192 0.5766 0.4999 0.4695 0.4514 0.5039 0.4640
336 0.5782 0.5100 0.5556 0.5012 0.5417 0.4940
720 0.5841 0.5230 0.5070 0.4943 0.5272 0.4951

Average
(Improve) – 0.554 0.444 0.526

↓ 5.1%
0.436
↓ 1.9%

0.509
↓ 8.2%

0.430
↓ 3.2%

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.42

0.44

0.46

0.48

0.50

0.52

Va
lu

e

SST-2 (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Va
lu

e

IMDB (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.80

0.85

0.90

0.95

Va
lu

e

Sentiment140 (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

Va
lu

e

Amazon Reviews (Loss)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.804

0.806

0.808

0.810

0.812

0.814

Va
lu

e

SST-2 (Accuracy)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.7325

0.7350

0.7375

0.7400

0.7425

0.7450

0.7475

0.7500

Va
lu

e

IMDB  Test Set (Accuracy)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.610

0.612

0.614

0.616

0.618

0.620

0.622

0.624

Va
lu

e

Sentiment140 (Accuracy)

Transformer with FAN
Transformer

0.05 0.10 0.15 0.20 0.25 0.30
dp / doutput

0.775

0.780

0.785

0.790

Va
lu

e

Amazon Reviews (Accuracy)

Transformer with FAN
Transformer

Figure 7: The influence of hyper-parameters dp on language modeling tasks. We use the red dashed
line to represent the performance of the standard Transformer.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.7 THE EFFECTIVENESS OF THE FAN LAYER FOR DEEP NEURAL NETWORKS

We evaluate the effect of varying the number of FAN layers from 3 to 20 on periodicity modeling
tasks, employing residual connections to mitigate overfitting. The experimental results show that
both the best training loss and test loss still decrease slowly as the number of layers increases.

Furthermore, on Language Modeling tasks, we replaced 24 MLP Layers of Transformer with 24
FAN Layers, i.e. Transformer with FAN, and it also achieved clear improvements on each task, es-
pecially for OOD zero-shot evaluation scenarios. These findings indicate that FAN Layer is effective
for deep neural networks.

3 6 12 18
Layer Num

0.6

0.8

1.0

1.2

1.4

Lo
ss

 (L
og

 S
ca

le
)

Training Loss

FAN
MLP (3 Layer)

3 6 12 18
Layer Num

0.8

1.0

1.2

1.4

1.6

Lo
ss

 (L
og

 S
ca

le
)

Test Loss

FAN
MLP (3 Layer)

Figure 8: Performance of Deeper FAN on fitting y = esin
2(πx)+cos(x)+(x mod 3) − 1.

C EXPERIMENTAL DETAILS

C.1 SETUP OF PERIODICITY MODELING

In periodicity modeling tasks, FAN, MLP, and KAN each consist of three layers with comparable
FLOPs, while the Transformer model comprises twelve layers. For consistency, we set the hidden
layer dimension (dh) to 2048 for FAN, MLP, and Transformer. In the case of KAN, we follow its
original paper (Liu et al., 2024), where the spline order (K) and the number of spline intervals (G)
are set to 3 and 50, respectively. We apply a learning rate of 1 × 10−5 for training all models.
We ensured that the data density of each period in tasks was consistent, meaning that each cycle
contained a fixed quantity of 10,000 training data points.

C.2 SETUP OF SYMBOLIC FORMULA REPRESENTATION

In symbolic formula representation tasks, we used the create dataset function from the official
KAN repository to generate the datasets. Each dataset contains 3000 training samples and 1000
test samples, with all input variables randomly sampled from the range [-1, 1]. We followed
the training settings from the original KAN paper, training all methods using LBFGS for 1800
steps. For KAN, we increased the number of grid points to scale up the parameter size, covering
G = {3, 5, 10, 20, 50, 100, 200, 500, 1000}. For other methods, we scaled up the parameter size by
increasing the number of layers and the dimensions of hidden layers.

C.3 SETUP OF TIME SERIES FORECASTING

In time series forecasting task, we implement our model based on the codebase by (Wu et al.,
2021b). Each model comprises 2 encoder layers and 1 decoder layer. We fix the hidden size for
both the Transformer and our model at 512, with the feedforward dimension set to 2048 (four times
the hidden size). The parameter sizes detailed in the main text correspond to the Exchange dataset;

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

variations in the number of variables across different datasets influence the linear layers in the model.
We adjust the hidden sizes of the other models to align with the Transformer parameters for fairness.

C.4 SETUP OF LANGUAGE MODELING

In language modeling task, we employ the BERT tokenizer (Devlin et al., 2018) and an embedding
layer with a dimensionality of 768, except for Mamba, which adheres to its default settings as
specified in the original paper (Gu & Dao, 2023). The architecture features 4, 24, and 12 layers with
hidden sizes of 1800, 768, and 768 for LSTM, Mamba, and Transformers, respectively. To mitigate
training stagnation in deeper LSTM models, we reduce the number of layers while increasing the
hidden size to balance the parameters. Importantly, Mamba’s layer count is twice that of a similarly
sized Transformer, as each layer consists of two Mamba blocks (Multihead attention block + MLP
block).

C.5 SETUP OF IMAGE RECOGNITION

In image recognition tasks, we employ a simple CNN generated by ChatGPT as the baseline model,
which consists of four Convolutional Layers and two MLP Layers. We replace MLP with FAN in
CNN, i.e. CNN with FAN, as the counterpart, ensuring that they have similar parameters. For each
task, we use stochastic gradient descent with momentum (SGDM) as the optimizer, the learning rate
is set to 0.01, and the training process runs for 100 epochs.

D COMPARISON OF FAN AND SNAKE ACTIVATION FUNCTION

We compare FAN with Snake, a previous approach used for improving the fitting of periodic func-
tions with neural networks. The results are shown in Figure D.

Snake FAN (Ours)

𝑦 = 	sin(𝑥)

Figure 9: Comparisons of FAN with MLP (Snake) (Liu et al., 2020) in fitting periodic functions.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E HOW FAN COMPLY WITH UNIVERSAL APPROXIMATION THEOREM

The Universal Approximation Theorem states that a feed-forward network with a single hidden layer
containing a finite number of neurons can approximate continuous functions on compact subsets of
Rn, under mild assumptions on the activation function, which needs to be a non-constant, no-linear,
and continuous function. FAN Layer is defined as ϕ(x) = [cos(Wpx)|| sin(Wpx)||σ(Bp̄ +Wp̄x)],
where || denotes concatenation and σ denotes the standard activation function, such as ReLU and
GELU. Since sin and cos functions also satisfy the required conditions of being non-constant, con-
tinuous, and non-linear activation functions, the FAN layer adheres to the Universal Approximation
Theorem.

F MORE DETAILS OF BASELINES

In our experiments, we mainly compare FAN with the following baselines. 1) MLP (Rosenblatt,
1958): the most classic model, which is widely used in the backbone of various models. 2) Trans-
former (Vaswani et al., 2017): a prevalent model known for its self-attention mechanism, which
achieves outstanding performance on various tasks. 3) KAN (Liu et al., 2024): an emerged model
specialized for symbolic formula representation, which uses the b-spline functions instead of fixed
activation functions. 4) LSTM (Hochreiter & Schmidhuber, 1997): a well-known recurrent neu-
ral network (RNN) that can capture long-term dependencies on sequential data. 5) Mamba (Gu &
Dao, 2023): an emerged selective state space model (SSM) that achieves competitive performance
on some tasks with sequential inputs. 6) CNN (LeCun et al., 1998): convolutional neural network
contains the convolutional layers, which are effective in processing image data.

19


	Introduction
	Preliminary Knowledge
	Fourier Analysis Network (FAN)
	Experiments
	Periodicity Modeling
	Symbolic Formula Representation
	Time Series Forecasting
	Language Modeling
	blackImage Recognition
	blackFurther Analysis of FAN

	Related Work
	Discussion
	Conclusion
	MLP
	Additional Experiments
	Additional Experiments on Periodicity Modeling Tasks.
	FAN for Solving SciML Problems
	Comparison with Frequency-based Models in Time Series Forecasting Tasks
	Comparison with Directly Learning the Coefficients
	Experiments on Time Series Forecasting with Instance Normalization
	The influence of hyperparameters dp
	The effectiveness of the FAN Layer for deep neural networks

	Experimental Details
	Setup of Periodicity Modeling
	Setup of Symbolic Formula Representation
	Setup of Time Series Forecasting
	Setup of Language Modeling
	Setup of Image Recognition

	Comparison of FAN and Snake Activation Function
	How FAN Comply with Universal Approximation Theorem
	More Details of Baselines

