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Abstract

Many approaches for optimizing decision making models rely on gradient based methods
requiring informative feedback from the environment. However, in the case where such
feedback is sparse or uninformative, such approaches may result in poor performance.
Derivative-free approaches such as Bayesian Optimization mitigate the dependency on the
quality of gradient feedback, but are known to scale poorly in the high-dimension setting
of complex decision making models. This problem is exacerbated if the model requires
interactions between several agents cooperating to accomplish a shared goal. To address
the dimensionality challenge, we propose a compact multi-layered architecture modeling
the dynamics of agent interactions through the concept of role. We introduce Dependency
Structure Search Bayesian Optimization to efficiently optimize the multi-layered architecture
parameterized by a large number of parameters, and show an improved regret bound. Our
approach shows strong empirical results under malformed or sparse reward.

1 Introduction

Decision Making Models choose sequences of actions to accomplish a goal. Multi-Agent Decision Making
Models choose actions for multiple agents working together towards a shared goal. Multi-Agent Reinforcement
Learning (marl) has emerged as a competitive approach for optimizing Decision Making Models in the
multi-agent setting.1 marl optimizes a policy under the partially observable Markov Decision Process
(pomdp) framework, where decision making happens in an environment determined by a set of possible
states and actions, and the reward for an action is conditioned upon the partially observable state of the
environment. A policy forms a set of decision-making rules capturing the most rewarding actions in a given
state. marl utilizes gradient-based methods requiring informative gradients to make progress. This approach
benefits from dense reward, which allows reinforcement learning methods to infer a causal relationship between
individual actions and their corresponding reward. This feedback may not be present in the scenario of sparse

1We include an overview of approaches in Decision Making Models in Section 3.
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reward(Pathak et al., 2017; Qian & Yu, 2021). In addition, gradient-based methods are susceptible to falling
into local maxima.

In contrast to optimization by marl, Bayesian Optimization (bo) offers an alternative approach to policy
optimization. Since bo is a gradient-free optimizer capable of searching globally, applying bo to multi-agent
policy search (maps) both ensures global searching of the policy, and overcomes poor gradient behavior in
the reward function (Qian & Yu, 2021). The chief challenge in bo for maps is the high dimensionality of
complex multi-agent interactions.

A significant degree of high-dimensional multi-agent interactions exist in maps. For example, considering
an autonomous drone delivery system, several agents (i.e., drones) must work together to maximize the
throughput of deliveries. In doing so, these agents may separate themselves into different roles, for example,
long-distance or short-distance deliveries. The optimal policy for each role may be significantly different due
to distances to recharging base stations (e.g., drones must conserve battery). In forming the optimal policy,
the interaction between agents must be considered to both optimally divide the task between the drones, as
well as coordinate actions between drones (e.g., collision avoidance). These interactions may change over
time. For example, a drone must avoid collision with nearby drones, which changes as it moves through the
environment. With many agents, these interactions become more complex.

However, we propose the usage of bo for maps on memory-constrained devices which necessitates very
compact policies which enables the possibility of overcoming the above limitation. In the context of memory-
constrained devices such as Internet of Things (IoT) devices (Merenda et al., 2020), small policies must
be used. Secondly, in environments with sparse reward feedback, training these networks with rl presents
significant challenges due to unhelpful policy gradients. Finally, the possibility of globally optimizing a
compact policy for memory-constrained systems is appealing due to its strong performance guarantees.

To allow for the construction of compact policies, we utilize specific multi-agent abstractions of role and
role interaction. In role-based multi-agent interactions, an agent’s policy depends on its current role and
sparse interactions with other agents. By simplifying the policy space with these abstractions, we increase its
tractability for global optimization by bo and inherit the strong empirical performance demonstrated by
these approaches. We realize this simplification of the policy space by expressing the role abstraction and role
interaction abstractions as immutable portions of the policy space, which are not searched over during policy
optimization. To achieve this, we use a higher-order model (hom) which generates a policy model. The hom
is divided into immutable instructions (i.e., algorithms) corresponding to the abstractions of the role and role
interaction and mutable parameters that are used to generate (gen) a policy model during evaluation.

To optimize our proposed hom, we specialize bo by exploiting task-specific structures. A promising
avenue of High-dimensional Bayesian Optimization (hdbo) is through additive decomposition. Additive
decomposition separates a high-dimensional optimization problem into several independent low-dimensional
sub-problems (Duvenaud et al., 2011; Kandasamy et al., 2015). These sub-problems are independently solved
thus reducing the complexity of high dimensional optimization. However, a significant challenge in additive
decomposition is learning the independence structure which is unknown a-priori. Learning the additive
decomposition is accomplished using stochastic sampling such as Gibbs sampling (Kandasamy et al., 2015;
Rolland et al., 2018; Han et al., 2020) which is known to have poor performance in high dimensions (Johnson
et al., 2013; Barbos et al., 2017).

In our work, we overcome this shortcoming by observing the gen process of the hom. In particular, we can
measure a surrogate Hessian during the gen process which significantly simplifies the task of learning the
additive structure. This surrogate Hessian informs the dependency structure of the optimization problem due
to the equivalence between a zero Hessian value, and independence between dimensions due to the linearity
of addition. We term this approach Dependency Structure Search GP-UCB (dss-gp-ucb) and visualize our
approach in Fig. 2. Our proposed bo approach is also applicable to policy-search in the single-agent setting,
showing its general-purpose applicability in Decision Making Models. In this work, we make the following
contributions:

• We propose a parameter-efficient hom for maps which is both expressive and compact. Our approach is
made feasible by using specific abstractions of roles and role interactions.
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• We propose dss-gp-ucb, a variant of bo that simplifies the learning of dependency structure and provides
strong regret guarantees which scale with O(log(D)) under reasonable assumptions.

• We validate our approach on several multi-agent benchmarks and show our approach outperforms related
works for compact models fit for memory-constrained scenarios. Our dss-gp-ucb also overcomes sparse
reward behavior in the reward function in multiple settings showing its effectiveness in Decision Making
Models both in the single-agent and multi-agent settings.

2 Background

Bayesian Optimization: Bayesian optimization (bo) involves sequentially maximizing an unknown
objective function v : Θ → R. In each iteration t = 1, . . . , T , an input query θt is evaluated to yield a noisy
observation yt ≜ v(θt) + ϵ with i. i. d. Gaussian noise ϵ ∼ N (0, σ2). bo selects input queries to approach the
global maximizer θ∗ ≜ arg maxθ∈Θ v(θ) as rapidly as possible. This is achieved by minimizing cumulative
regret RT ≜

∑T
t=1 r(θt), where r(θt) ≜ v(θ∗) − v(θt). Cumulative regret is a key performance metric of bo

methods.

The probability distribution of v is modeled by a Gaussian process (GP), denoted GP (µ(θ), k(θ, θ′)), that is,
every finite subset of {v(θ)}θ∈Θ follows a multivariate Gaussian distribution (Rasmussen & Williams, 2006).
A GP is fully specified by its prior mean µ(θ) and covariance k(θ, θ′) for all θ, θ′ ∈ Θ, which are, respectively,
assumed w.l.o.g. to be µ(θ) = 0 and k(θ, θ′) ≤ 1. Given a vector yT ≜ [yt]⊤t=1,...,T of noisy observations from
evaluating v at input queries θ1, . . . , θT ∈ Θ after T iterations, the GP posterior probability distribution of v
at some input θ ∈ Θ is a Gaussian with the following posterior mean µk

T (θ) and variance [σk
T ]2(θ):

µk
T (θ) ≜ kk

T (θ)⊤(Kk
T + σ2I)−1yT ,

[
σk

T

]2 (θ) ≜ k(θ, θ) − kk
T (θ)⊤(Kk

T + σ2I)−1kk
T (θ) (1)

where Kk
T ≜ [k(θt, θt′)]t,t′=1,...,T and kk

T (θ) ≜ [k(θt, θ)]⊤t=1,...,T . In each iteration t of bo, an input query
θt ∈ Θ is selected to maximize the GP-UCB acquisition function, θt ≜ arg maxθ∈Θ µt−1(θ) +

√
βtσt−1(θ)

(Srinivas et al., 2010) where βt follows a well defined pattern.

3 Related work
Decision Making Models: Decision Making Models (Rizk et al., 2018; Roijers et al., 2013) determine
actions taken by an agent or agents in order to achieve a goal. We focus on the pomdp setting and optimizing a
policy to accumulate maximum reward while interacting with a partially observable environment (Shani et al.,
2013). Many approaches exist which can be broadly categorized into direct policy search and reinforcement
learning methods. Direct policy search (Heidrich-Meisner & Igel, 2008; Lizotte et al., 2007; Martinez-Cantin,
2017; Papavasileiou et al., 2021; Wierstra et al., 2008) searches the policy space in some efficient manner.
Reinforcement learning (Arulkumaran et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018; Lillicrap
et al., 2015; Lowe et al., 2017; Mnih et al., 2015; Schulman et al., 2017) starts with a randomly initialized
policy and reinforces rewarding behavior patterns to improve the policy.
Bayesian Optimization for Decision Making Models: bo has been utilized for direct policy search in
the low dimensional setting (Lizotte et al., 2007; Wilson et al., 2014; Marco et al., 2016; Martinez-Cantin, 2017;
von Rohr et al., 2018). However, these approaches have not scaled to the high dimensional setting. In more
recent works, bo has been utilized to aid in local search methods similar to reinforcement learning (Akrour
et al., 2017; Eriksson et al., 2019a; Wang et al., 2020a; Fröhlich et al., 2021; Müller et al., 2021). However,
these approaches require evaluation of an inordinate number of policies typical of local search methods and
do not provide regret guarantees. Recently, combinations of local and global search methods have been
proposed (McLeod et al., 2018; Shekhar & Javidi, 2021). However, these approaches rely on informative and
useful gradient information and have not been shown to scale to the high dimensional setting.
MARL for multi-agent decision making: A well-known approach for cooperative marl is a combination
of centralized training and decentralized execution (CTDE) (Oliehoek et al., 2008). The multi-agent
interactions of CTDE methods can be implicitly captured by learning approximate models of other agents
(Lowe et al., 2017; Foerster et al., 2018) or decomposing global rewards (Sunehag et al., 2017; Rashid et al.,
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2018; Son et al., 2019). However, these methods do not focus on how interactions are performed between
agents. In marl, the concept of role is often leveraged to enhance the flexibility of behavioral representation
while controlling the complexity of the design of agents (Lhaksmana et al., 2018; Wang et al., 2020b; 2021b;
Li et al., 2021). Our approach is related to the study of (Le et al., 2017) where the interactions are also
captured by role assignment. However, the approach operates on an imitation learning scenario, and the role
assignment depends on the heuristic from domain knowledge. Another related field is Comm-marl (Zhu
et al., 2022; Shao et al., 2022; Liu et al., 2020; Peng et al., 2017; Das et al., 2019; Singh et al., 2019), where
agents are allowed to communicate during policy execution to jointly decide on an action. In contrast, our
approach utilizes both abstractions of role and role interaction in a hom for a decision making model.

4 Design

We consider the problem of learning the joint policy of a set of n agents working cooperatively to solve a
common task. During each interaction with the environment, each agent i is associated with a state si ∈ Si

with the global state represented as s ≜ [si]i=1,...,n. Each agent i cooperatively chooses an action ai ∈ Ai

with the global action represented by a ≜ [ai]i=1,...,n. Each state, action pair is associated with a reward
function: ρ(s, a). In order to achieve the common task, a policy parameterized by θ: πθ ≜ S → A governs
the action taken by the agents, after observing state s ∈ S. The goal of rl is to learn the optimal policy
parameters that maximizes the accumulation of rewards during a predefined number of interactions with
the environment,2 v(θ). In contrast to rl, which receives feedback on the reward of an action with every
interaction, we treat v(θ) as an opaque function measuring the value of a policy. We utilize bo to optimize θ
using solely the accumulated reward, v(θ), as feedback from the environment.

4.1 Architectural design

To achieve a compact and tractable policy space, we consider policies under the useful abstractions of role
and role interaction. These abstractions have consistently shown strong performance in multi-agent tasks.
Therefore, we can simplify the policy space by limiting it to only policies using these abstractions, but still
have powerful and expressive policies suitable for multi-agent systems.

As role and role interaction are immutable abstractions within our policy space, we express them as static
algorithms which are not searched over during policy optimization. These algorithms take as input parameters
which are mutable and searched over during policy optimization. This combination of immutable instructions,
and mutable parameters reduces the size of the search space,3 yet is still able to express policies which
conform to the role and role interaction abstractions.

We term this approach a higher-order model (hom) which generates (gen) the model using instructions
and parameters into a policy model during evaluation. This hom is separated into role assignment, and
role interaction stages. We visualize an overview of this approach in Fig. 1, left. The hom parameters are
interpreted in context of the current state by the instructions (Alg. 1, Alg. 2, Alg. 3) of the hom to form the
policy model which dictates the resultant action. In our work, each hom component of role assignment and
role interaction is implemented as a neural network.

4.2 Role assignment

Following the success of role based collaboration in multi-agent systems, we assume the interaction and
decision making of each agent is governed by its assigned role. For example, in drone delivery, roles could be
short-distance deliveries, and long-distance deliveries. In filling these roles, the state of each of the agents are
considered. E.g., a drone with low battery may be limited to only performing short-distance deliveries. A
straightforward approach to implement role based interaction is to permute agents into an equivalent number
of roles.4 We assume that an optimal policy can be decomposed as follows:

2Further rl overview can be found in Arulkumaran et al. (2017).
3This approach to efficiency is similar in spirit to the work of Lee et al. (1986).
4This is a common assumption in multi-agent systems, see, e.g., Le et al. (2017).
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π(a1, . . . , an | s1, . . . , sn) ≜ πr(aα(1), . . . , aα(n) | sα(1), . . . sα(n)) (2)

where α is a permutation function dependent on the state, s1, . . . , sn. Our approach to role assignment is
simple and general purpose, which is also well studied and theoretically principled.

To capture this behavior, we utilize a per role affinity function: Λθr,i(·) which is the affinity to take on role i
and is parameterized by θr,i. This function evaluates the affinity of agent ℓ taking on role i using the state of
agent: sℓ. The optimal permutation maximizes the total affinity of an assignment:

∑n
i=1 Λθr,i(sα(i)) where

α represents a permutation. This problem can be efficiently solved using the Hungarian algorithm (Kuhn,
1955). We integrate the Hungarian algorithm in our hom approach during the gen process. We formalize
this in Algorithm 1 which forms the instructions in the role assignment hom.

Given Algorithm 1, during gen process, the agents’ state, s1, . . . , sn is contextually interpreted to yield
a permutation model: α. Going forward, we consider the problem of determining the joint policy
πr(aα(1), . . . , aα(n) | sα(1), . . . sα(n)) which enables collaborative interactions.

4.3 Role interaction

Capturing multiple roles working together is an important part of an effective multi-agent policy. For example
in drone delivery, drones must both divide the available task among themselves, as well as use collision
avoidance while executing deliveries. Modeling role interactions must accomplish two goals. Firstly, agent
interactions may change over time. For example collision avoidance strategies involve the closest drones which
change as the drone moves within the environment. Secondly, efficient parameterization is needed as the
number of interactions can scale exponentially due to considering interactions between many agents.

s1, ..., sn θr

Role Assignment

sα(1), ..., sα(n)

Role Interaction θg,v

Graph N θg,η , θg,e

MPNN π

GEN
sα

aα

n

MRF n

Figure 1: Left: hom architecture. gen uses θr and θg

during evaluation to yield a model which represents the
policy. θr and θg are optimized by bo. Right: Inferring
aα given sα.

To overcome these challenges, we propose a hom
which generates (gen) a graphical model. The us-
age of a graphical model decomposes the exponen-
tially scaling interaction problem into a pairwise
interaction model, along with a message passing ap-
proach to facilitate complex interactions between
many agents.5 The gen process is conditioned on
the agents’ state, thus enabling dynamic role in-
teractions; in addition the gen process allows for a
more compact policy space with far fewer parameters.
The resultant generated graphical model captures
the state-dependent interaction between roles and
yields the resultant actions for each role. After gen,
the interaction between roles are captured by the
resultant conditional random field. This is presented
in Fig. 1, right. The MRF (Markov Random Field)
represents arbitrary undirected connectivity between nodes aα(1), . . . , aα(n), which is denoted by G. This
connectivity allows different roles to collaborate together to determine the joint action. To generate graphical
models of the above form, our hom uses edge affinity functions, Λθg,v (·), which enables dynamic arbitrary
connectivity between roles. For all pairs of roles with state, sα(i), sα(ℓ) an edge is generated if the affinity
between these two states is sufficiently high (i.e., > 0). This dynamic edge generation approach overcomes
the quadratic parameter scaling if all pairs of agents were separately modelled. The graphical model gen
process is presented in Algorithm 2 which yields a graphical model.

To cooperatively determine a set of actions for roles given the graphical model, we perform inference over the
graphical model presented in Fig. 1 using Message Passing Neural Networks (Gilmer et al., 2017) (MPNN).
We present iterative message passing rules to map from sα to aα:

5We refer readers to Wang et al. (2013) for additional overview on graphical models.
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m
α(i)
t+1 ≜

∑
α(ℓ)∈Nα(i)

Mθg,η

(
h

α(i)
t , h

α(ℓ)
t , i, ℓ

)
; h

α(i)
t+1 ≜ Uθg,e

(
sα(i), h

α(i)
t , m

α(i)
t+1

)
; aα ≜

[
hα(i)

τ

]
i=1,...,n (3)

where M is the message function parameterized by θg,η which enables interaction between connected nodes, U
is the action update function parameterized by θg,e which updates the node’s internal hidden state conditioned
on the messages received, and Nα(i) denotes the neighbors of α(i). The message passing procedure allows for
cooperative determination of all roles’ actions using pairwise message passing. Roles which are not immediate
neighbors of each other influence each other’s behavior through intermediary connecting nodes. The message
passing procedure concludes after τ iterations of message passing with the policy actions indicated by the
hidden states,

[
h

α(i)
τ

]
i=1,...,n

.

Finally, Algorithm 3 drives the gen process. The gen process consists of permuting agents into roles,
creating the graphical model to enable interactions between agents taking on their respective roles, and finally
performing inference over the graphical model using a MPNN.

4.4 Additive decomposition

Although our hom policy representation is compact, it is still of significant dimensionality which makes
optimization with bo difficult. hdbo is challenging due to the curse of dimensionality with common kernels
such as Matern or RBF.6 This curse of dimensionality stems directly from the difficulty of finding the global
optima of a high-dimensional function (e.g., a value function v(θ) determining the value of a policy in some
unknown environment). A common technique to overcome this is through assuming additive structural
decomposition on v: v(θ) ≜

∑M
i=1 v(i)(θ(i)) where v(i) are independent functions, and θ(i) ∈ Θ(i) (Duvenaud

et al., 2011). The additive decomposition simplifies a high-dimensional optimization problem since the optima
of a function constructed through addition of subfunctions can be found by independently optimizing each
subfunction as visualized in Fig. 2. In the context of bo, additive decomposition significantly simplifies the
optimization problem due to the properties of Multivariate Gaussian variables.

Figure 2: Left, above, plot of f(x, y) = xy; below, plot
of f(x, y) = x + y. The curvature of additively con-
structed functions is zero; non-zero curvature indicates
dependency among input variables. Right, examining
the Hessian learns the dependency structure which
decomposes complex problems into simpler problems
solved by GP-UCB.

In additive decomposition we denote the domain
of the optimization problem, Θ ≜ Θ1 × . . . × ΘD

for some dimensionality D, that is the domain is
constructed through the Cartesian product of each
of its dimensions. Each subfunction to optimize,
v(i), corresponds to a subdomain restricted to some
subset of these dimensions, Θ(i) ⊆ {Θ1, . . . , ΘD}.
Typically, it is assumed that each Θ(i) is of low
dimensionality (i.e., v(i) is defined on only a few di-
mensions for each i). This structural assumption
is combined with the assumption that each v(i) is
sampled from a GP. Due to the properties of Mul-
tivariate Gaussians, if v(i) ∼ GP

(
0, kΘ(i)(θ(i), θ(i)

′

)
)

then v ∼ GP
(
0,
∑

i kΘ(i)(θ(i), θ(i)
′

)
)

(Rasmussen &
Williams, 2006), which follows from the addition of
two Gaussian random variables is also a Gaussian
random variable. This assumption decomposes a
high dimensional GP surrogate model of v into a
set of many low dimensional GPs, which is easier to
jointly learn and optimize.

To contextualize an additive decomposition, we represent the decomposition by a dependency graph between
the dimensions: Gd ≜ (Vd, Ed) where Vd ≜ {Θ1, . . . , ΘD} and Ed ≜ {(Θa, Θb) | a, b ∈ Θ(i) for some i}. A
simple decomposition of an additive function and its associated dependency graph is visualized in Fig. 2.

6A parallel area in hdbo is of computational efficiency of acquisition which is outside the scope of this work. We refer readers
to the works of Mutny & Krause (2018), Wilson et al. (2020), and Ament & Gomes (2022).
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Algorithm 1 RoleAssignment

Require: s1, . . . , sn

1: return arg maxα

∑n

i=1 Λθr,i (sα(i))

Algorithm 4 dss-gp-ucb
Require: v, H, k
1: for t← 1, . . . , T0 do ▷ Sample Hessian T0 × C1 times for dependencies.
2: θt,h ∼ U(Θ) ▷ Randomly sample over the domain.
3: for ℓ← 1, . . . , C1 do ht,ℓ ← H(θt,h)
4: Ẽd ←

∣∣∑h
∣∣ > ch; G̃d ← ({Θ1, . . . , ΘD}, Ẽd) ▷ Discriminate dependencies

5: [Θ(i)]i=1,...,M ← Max-Cliques(G̃d); k ←
∑M

i=1 kΘ(i)
▷ Compute Max-Cliques

6: for t← T0, . . . , T do ▷ Run GP-UCB with dependency structure
7: θt ← arg maxθ µk

t−1(θ) +
√

βtσk
t−1(θ) ▷ Max-Cliques additive kernel

8: Query θt to observe yt = v(θt) +N (0, ϵ2)
9: Update posterior, µ, σ, with θt, yt

Algorithm 2 RoleInteraction

Require: sα(1), . . . , sα(n)

1: for i← 1, . . . , n do
2: for ℓ← 1, . . . , n do ▷ Edge affinities.
3: if Λθg,v (sα(i), sα(ℓ)) > 0 then
4: Nα(i).append(α(ℓ))
5: return Nα(1), . . . , Nα(n)

Algorithm 3 gen-Policy

Require: s1, . . . , sn

1: α← RoleAssignment(s1, . . . , sn)
2: N ← RoleInteraction(sα(1), . . . , sα(n))
3: a← MPNN(sα, N) ▷ See Eq. 3
4: return [aα−1(i)]i=1,...,n

We highlight that this graph is between the dimensions of the policy parameters, Θ, and is unrelated to the
graphical model of role interactions presented in earlier sections. It is possible to accurately model v by a
kernel k ≜

∑
i kΘ(i) where each Θ(i) corresponds to a maximal clique of the dependency graph (Rolland et al.,

2018). Knowing the dependency graph greatly simplifies the complexity of optimizing v.

However, learning the dependency graph in additive decomposition remains challenging as there are O(D2)
possible edges each of which may be present or absent yielding 2O(D2) possible dependency structures. This
difficult problem is often approached using inefficient stochastic sampling methods such as Gibbs sampling.

4.5 Dependency Structure Search Bayesian Optimization

We propose learning the dependency structure during the gen process. Our proposed approach is based on
the following observation, which is illustrated in Fig. 2.
Proposition 1. Let Gd = (Vd, Ed) represent an additive dependency structure with respect to v(θ), then the
following holds true: ∀a, b ∂2v

∂θa∂θb ̸= 0 =⇒ (Θa, Θb) ∈ Ed which is a consequence of v formed through addition
of independent sub-functions v(i), at least one of which must contain θa, θb as parameters for ∂2v

∂θa∂θb ≠ 0
which implies their connectivity within Ed.

In practice, observing the Hessian of the value function, Hv, is not possible due to v being an opaque function.
However, during the gen process we can observe the Hessian of the policy, Hπ. This surrogate Hessian is
closely related to the Hv as v(θ) is determined through interaction of the policy with an unknown environment.
Because the value of a policy is a function of the policy; it follows by the chain rule that Hπ is an important
sub-component of Hv. We utilize the surrogate Hessian in our work and demonstrate its strong empirical
performance in validation. Following this reasoning, we consider algorithms with noisy query access to the
Hessian, Hv. Note that we assume that the surrogate Hessian, Hπ, can well serve as a noisy surrogate for
the true Hessian, Hv.7

Assumption 1. Let Gd = (Vd, Ed) be sampled from an Erdős-Rényi model with probability pg < 1: Gd ∼
G(D, pg). That is, each edge (Θa, Θb) is i.i.d. sampled from a binomial distribution with probability, pg.
With [Θ(i)]i=1,...,M representing the maximal cliques of Gd, we assume that v ∼ GP

(
0,
∑

i kΘ(i)(θ(i), θ(i)
′

)
)

for some kernel k taking an arbitrary number of arguments (e.g., RBF). Noisy queries can be made to the
Hessian of v, Hv. We define H(θ) ≜ [ ∂2v

∂θa∂θb + ϵ
(a,b)
h ]a,b=1,...,D where ϵ

(a,b)
h ∼ N (0, σ2

n) i.i.d. Each query to H
has corresponding regret of r(θ).

Under this assumption, we show that it’s possible to learn the underlying dependency structure of Gd = (Vd, Ed)
with a polynomial number of queries to the noisy Hessian. We present dss-gp-ucb in Algorithm 4 and prove
theoretical results regarding its performance. In the first stage of dss-gp-ucb, we perform C1 queries to the

7We revisit the validity of this assumption in Appendix H.
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Hessian if t ≤ T0. These Hessian queries are then averaged and compared to a cutoff constant ch to determine
the dependency structure Ẽd. We show that after C1T0 queries to the Hessian, with high probability we have
Ẽd = Ed, where Ed is the unknown ground truth dependency structure for v. This argument is formalized in
the following theorem.
Theorem 1. Suppose8 there exists σ2

h, ph s.t. ∀i, j Pθ∼U(Θ)
[
k∂i∂j(θ, θ) ≥ σ2

h

]
≥ ph and ∀i, j, θ, θ′

k∂i∂j(θ, θ′) ≥ 0. Then for any δ1, δ2 ∈ (0, 1) after t ≥ T0 steps of dss-gp-ucb we have:
⋂

i,j P (Ẽi,j
d =

Ei,j
d ) ≥ 1 − δ1 − δ2 when T0 = C1 > 16D2

phδ2
1

log 2D2

δ1

σ2
n

σ2
h

+ D2

2δ2
, ch ≜ T0σn

√
2 log 2D2

δ1
.

Our Theorem 1 relies on repeatedly sampling the Hessian to determine whether an edge exists between Θa,
and Θb in the sampled additive decomposition. The key challenge is determining this connectivity under a
very noisy setting, and for extremely low values of σ2

h ≪ σ2
n where the Hessian is zero with high probability.

We are able to overcome this challenge using a Bienaymé’s identity, a key tool in our analysis. We defer all
proofs to the Appendix.

In the second stage of dss-gp-ucb, we extract the maximal cliques depending on Ẽd and construct the GP
kernel, k =

∑
i kΘ(i) , the sum of the aforementioned kernels and inference and acquisition proceeds same as

GP-UCB (lines 6-9).

To bound the cumulative regret, Rt ≜
∑T0

t=1 C1r(θt,h) +
∑T

t=T0
r(θt), we follow the following process. First,

we bound the number and size of cliques of graphs sampled from the Erdős-Rényi model with high probability.
Second, we bound the mutual information of an additive decomposition given the mutual information of
its constituent kernels using Weyl’s inequality. Third, we use similar analysis as Srinivas et al. (2010) to
complete the regret bound.
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1. Let γk

T (d) : N → R be a monotonically
increasing upper bound function on the mutual information of kernel k taking d arguments. The cumulative
regret of dss-gp-ucb is bounded with high probability as follows:

RT = Õ
(√

TβT Dlog D+5γk
T (4 log D + cγ)

)
(4)

where cγ is an appropriately picked constant and the base of the logarithm is 1
pg

.

Whereas for typical kernels such as Matern and RBF, cumulative regret of GP-UCB scales exponentially
with D, our regret bounds scale with exponent O(log D). This improved regret bound shows our approach is
a theoretically grounded approach to hdbo.

5 Validation
We compare our work against recent algorithms in marl on several multi-agent coordination tasks and rl
algorithms for policy search in novel settings. We also perform ablation and investigation of our proposed
hom at learning roles and multi-agent interactions. We defer experimental details to Appendix A.

All presented figures are average of 5 runs with shading representing ± Standard Error, the y-axis represents
cumulative reward, the x-axis displayed above represents interactions with the environment in rl, x-axis
displayed below represents iterations of bo. Commensurate with our focus on memory-constrained devices, all
policy models consist of < 500 parameters.

5.1 Ablation

We investigate the impact of Role Assignment (RA) and Role Interaction (RI) as well as model capacity
on training progress. We conduct ablation experiments on Multiagent Ant with 6 agents, PredPrey with 3
agents, and Heterogenous PredPrey with 3 agents (Peng et al., 2021). Multiagent Ant is a MuJoCo (Todorov
et al., 2012) locomotion task where each agent controls an individual appendage. PredPrey is a task where

8RBF kernel satisfies these assumptions when Θ = [0, 1]D.
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Figure 3: Ablation study. Training curves of our hom and its ablated variants on different multi-agent
environments.
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Figure 4: Left two plots: Sparse reward drone delivery task. Rightmost: Comparison with hdbo approaches.
The left two plots validate the same approaches on different environments.

predators must work together to catch faster, more agile prey. Het. PredPrey is similar, except the predators
have different capabilities of speed and acceleration. In ablation experiments, our default configuration is Med
- RA - RI which employs components of RA and RI parameterized by neural networks with three layers and
four neurons on each layer (medium sized neural network). The Sm, small, model is instead parameterized
with neural networks of 1 layer with 2 neurons each. When RA is ablated, the agents interact directly without
taking on any role based specialization. When RI is ablated, the agents’ action is determined without any
coordination between agents. We present our ablation in Fig. 3.
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Table 1: dss-gp-ucb typically outperforms rl with higher sparsity (e.g., Sparse-100, or Sparse-200).

Ant-v3 Hopper-v3 Swimmer-v3 Walker2d-v3
DDPG PPO SAC TD3 Intrinsic DDPG PPO SAC TD3 Intrinsic DDPG PPO SAC TD3 Intrinsic DDPG PPO SAC TD3 Intrinsic

Baseline −90.77 1105.69 2045.24 2606.17 2144.00 604.20 1760.65 2775.66 1895.76 1734.00 44.45 121.38 58.73 48.78 1950.00 2203.80 892.81 4297.03 1664.46 2210.00
Sparse 2 −32.88 1007.80 2563.97 1407.40 1964.00 877.93 1567.14 3380.60 1570.84 2074.00 35.59 99.50 46.75 47.23 1758.80 1470.62 1471.33 1673.46 2297.43 1952.00
Sparse 5 −2687.97 961.31 711.56 762.61 1916.00 814.59 1616.79 3239.20 2290.67 1972.00 26.66 68.69 43.84 40.12 1856.00 961.30 697.93 1697.25 2932.27 1924.00

Sparse 20 −2809.89 624.07 694.30 379.12 1838.00 783.95 1629.28 2535.17 1436.33 1537.20 19.12 54.63 37.78 37.03 2108.00 663.04 365.39 1010.63 276.56 1810.00
Sparse 50 −3067.37 −67.43 663.28 253.66 1091.20 816.25 1010.73 1238.03 551.43 642.00 23.73 51.52 38.78 30.01 812.00 572.12 428.29 349.47 298.28 834.75

Sparse 100 −3323.43 −4021.56 679.30 −115.43 450.40 988.36 324.51 260.52 342.48 406.80 9.64 21.09 27.98 30.10 376.60 523.89 205.93 200.16 147.22 480.60
Sparse 200 −3098.37 −8167.98 −107.14 −147.86 258.60 765.05 222.76 300.36 281.68 350.80 −9.97 21.69 33.35 30.48 342.80 182.84 193.43 187.16 148.06 353.20

dss-gp-ucb 1147.21 1009.3 175.73 1008.90

For a simpler coordination task such as Multiagent Ant, we observe limited improvement through RA or
RI. In contrast, RI shows strong improvement in PredPrey and Het. PredPrey. It is because, in PredPrey,
predators must work together to catch the faster prey. Since the agents in PredPrey are homogeneous, ablating
RA makes the optimization simpler and more compact without losing expressiveness. Thus, ablating RA
leads to a performance increase. In Het. PredPrey, the predator agents have heterogeneous capabilities
in speed and acceleration. Thus, RA plays a critical role in delivering strong performance. We also show
that overly shrinking the model size (Sm - RA - RI ) can hurt performance as the policy model is no longer
sufficiently expressive. This is evidenced in the Multiagent Ant task. We observed that using neural networks
of three layers with four neurons each to be sufficiently balanced across a wide variety of tasks.

In Fig. 3, we present the detected Hessian structure by dss-gp-ucb in the respective tasks. The de-
tected Hessian structures generally show strong block-diagonal associativity in the hom parameters, i.e.,
[θr,i, θg,v, θg,η, θg,e]. This shows that our approach can detect the interdependence within the sub-parameters,
but relative independence between the sub-parameters. We observe more off-diagonal connectivity in the
complex coordination tasks of PredPrey and Het. PredPrey. The visualization of Hessian structure on
PredPrey shows that our approach can detect the importance of jointly optimizing role assignment and
interaction to deliver a strong policy in this complex coordination task. We investigate the learning behavior
of the hom further in Appendix B.

5.2 Comparison with MARL

We compare our method with competing marl algorithms on several multi-agent tasks where the number of
agents is increased. We validate both the hom with dss-gp-ucb (dss-gp-ucb (MM)) and neural network
policies trained in the CTDE paradigm (dss-gp-ucb (CTDE)). In the CTDE paradigm, both RI and RA are
ablated reducing the policy model to a neural network which is identical across all agents. We observe that
on complex coordination tasks such as PredPrey and Het. PredPrey our approach delivers more performant
policies when coordination is required between a large number of agents. This is presented9 in Fig. 5.
Although SOG (Shao et al., 2022), a Comm-marl approach shows compelling performance with a small
number of agents, with 15 agents, both dss-gp-ucb (CTDE) and dss-gp-ucb (MM) outperform this strategy.
We highlight that dss-gp-ucb (CTDE) outperforms Comm-marl approaches without communication during
execution. We also note that dss-gp-ucb (MM) outperforms dss-gp-ucb (CTDE) showing the value of
our hom approach in complex coordination tasks. We defer further experimental results in this setting to
Appendix B.

5.3 Policy optimization under malformed reward

We compare against several competing rl and marl algorithms under malformed reward scenarios. We train
neural network policies with dss-gp-ucb and competing algorithms. We consider a sparse reward scenario
where reward feedback is given every S environment interactions for varying S. Table 1 shows that the
performance of competing algorithms is severely degraded with sparse reward and dss-gp-ucb outperforms
competing approaches on most tasks with moderate or higher sparsity. Although intrinsic motivation (Singh
et al., 2004; Zheng et al., 2018) has shown evidence in overcoming this limitation, we find that our approach
outperforms competing approaches supported by intrinsic motivations at higher sparsity. This improvement

9We plot with respect to total environment interactions for l, and total policy evaluations for bo. See Appendix J, Appendix
K, and Appendix L for alternate presentations of data more favorable to rl and marl under which our conclusions still hold.
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Figure 5: Scaling analysis. Training curves of dss-gp-ucb and competitors with increasing number of agents.
The left column shows PredPrey with 6, 9, and 15 agents. The right column shows Het, PredPrey with 6, 9,
and 15 agents.

is important as sparse and malformed reward structure scenarios can occur in real-world tasks (Aubret et al.,
2019). We repeat this validation in Appendix B with marl algorithms in multi-agent settings and consider a
delayed feedback setting with similar results.

5.4 Higher-order model Investigation

We examined policy for Multiagent Ant with 6 agents for the role based policy specialization. The policy
modulation plots were generated by examining the PredPrey and Het. PredPrey environments respectively.
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Figure 6: Left: Action distributions of different roles showing diversity in the Multiagent Ant environment
with 6 agents. Right above: Policy modulation with role interaction in PredPrey and Het. PredPrey
environment with 3 agents. Arrows represent change after message passing. These plots are visualizations of
the two principal components after Principal Component Analysis. Right below: Mean connectivity ratio
between agents and standard deviation in role interaction in Multiagent Ant with 6 agents, PredPrey with 3
agents, and Het. PredPrey with 3 agents.

In Fig. 6 we investigate the learned hom policies. Our investigation shows that role is used to specialize
agent policies while maintaining a common theme. Role interaction modulates the policy through graphical
model inferences. Finally, role interactions are sparse, however noticeably higher for complex coordination
tasks such as PredPrey.

5.5 Comparison with HDBO algorithms

We compare with several related work in hdbo. This is presented in Fig. 4, rightmost plots. We compare
against these algorithms at optimizing our hom policy. For more complex tasks that require role based
interaction and coordination, our approach outperforms related work. TreeBO (Han et al., 2021) is also
an additive decomposition approach to hdbo, but uses Gibbs sampling to learn the dependency structure.
However, our approach of learning the structure through Hessian-Awareness outperforms this approach.
Additional experimental results are deferred to Appendix B.

5.6 Drone delivery task

We design a drone delivery task that is well aligned with our motivation of considering policy search in
memory-constrained devices on tasks with unhelpful or noisy gradient information. In this task, drones must
maximize the throughput of deliveries while avoiding collisions and conserving fuel. This task is challenging as
a positive reward through completing deliveries is rarely encountered (i.e., sparse rewards). However, agents
often receive negative rewards due to collisions or running out of fuel. Thus, gradient-based approaches can
easily fall into local minima and fail to find policies that complete deliveries.10 We compare dss-gp-ucb
against competing approaches in Fig. 4, leftmost two plots. We observe that marl based approaches fail
to find a meaningfully rewarding policy in this setting, whereas our approach shows strong and compelling

10Further details on this task can be found in Appendix I.
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performance. Furthermore, dss-gp-ucb (MM) outperforms dss-gp-ucb (CTDE) through leveraging roles
and role interactions.

6 Conclusion
We have proposed a hom policy along with an effective optimization algorithm, dss-gp-ucb. Our hom and
dss-gp-ucb are designed to offer strong performance in high coordination multi-agent tasks under sparse or
malformed reward on memory-constrained devices. dss-gp-ucb is a theoretically grounded approach to bo
offering good regret bounds under reasonable assumptions. Our validation shows dss-gp-ucb outperforms
rl and marl at optimizing neural network policies in malformed reward scenarios. Our hom optimized
with dss-gp-ucb outperforms marl approaches in high coordination multi-agent scenarios by leveraging the
concepts of role and role interaction. Furthermore, we show through our drone delivery task, our approach
outperforms marl approaches in multi-agent coordination tasks with sparse reward. We make significant
progress on high coordination multi-agent policy search by overcoming challenges posed by malformed reward
and memory-constrained settings.
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A Experimental Details

We used Trieste (Berkeley et al., 2022), Tensorflow (Abadi et al., 2015), and GPFLow (Matthews et al., 2017)
to build our work and perform comparisons using MushroomRL (D’Eramo et al., 2021), MultiagentMuJoCo
(de Witt et al., 2020), OpenAI Gym (Brockman et al., 2016), and Multi-agent Particle environment (Lowe
et al., 2017). When comparing with related work, we used neural network policies of equivalent size. All
of our tested policies are < 500 parameters, however the XL models are constructed using 3 layers of 400
neurons each.

To estimate the Hessian, we used the Hessian-Vector product approximation. We relaxed the discrete portions
of our hom policy into differentiable continuous approximation for this phase using the Sinkhorn-Knopp
algorithm for the Role Assignment phase. For role interaction network connectivity, we used a sigmoid to
create differentiable “soft” edges between each role. We pragmatically kept all detected edges in the Hessian
while maintaining computational feasibility. We observed that our approach could support up to 1500 edges
in the dependency graph prior to experiencing computational intractability. We used the Matern- 5

2 as the
base kernel in all our models.

A.1 Ablation and Investigation

In the ablation, we perform experiments on MultiagentMuJoCo with environments Multiagent Ant with
6 segments, Multiagent Swimmer with 6 segments, Predator Prey with 3 predators, and Heterogeneous
Predator Prey with 3 predators. In the Predator Prey environment, multiple predators must work together to
capture faster and more agile prey. In Heterogeneous Predator Prey, each Predator has differing capabilities
of speed and acceleration. This modification is challenging as a policy must not only coordinate between
the Predators, but roles based specialization must be considered given the heterogeneous nature of each
predator’s capabilities.

To generate Fig. 6, we examined policy for Multiagent Ant with 6 agents for the role based policy specialization.
The policy modulation plots were generated by examining the PredPrey and Het. PredPrey environments
respectively.

A.2 Comparison with MARL

For the marl setting, we compare against MADDPG (Lowe et al., 2017), FACMAC (Peng et al., 2021),
COMIX (Peng et al., 2021), RODE (Wang et al., 2021b) and CDS (Li et al., 2021) using QPLEX (Wang
et al., 2021a) as a base algorithm. We also compare against Comm-marl approaches SOG (Shao et al., 2022),
and G2ANet (Liu et al., 2020). RODE and QPLEX are limited to discrete environments, thus we are unable
to provide comparisons on continuous action space tasks such as Multiagent Ant or Multiagent Swimmer.
All marl environments were trained for 2, 000, 000 timesteps. The neural network policies were 3-layers
each with 15 neurons per layer, and were greater than or equal to the size of the compared hom policy. For
Actor-Critic approaches, we did not reduce the size or expressivity of the critic. All used hyperparameters
and Algorithmic configurations were as advised by the authors of the work.

In the marl setting we use Multiagent Ant, Multiagent Swimmer, Predator-Prey, Heterogeneous Predator-
Prey. Multiagent Ant, and Multiagent Swimmer are MuJoCo locomotion tasks where each agent controls
a segment of an Ant or Swimmer. Predator-Prey (PredPrey N) environment is a cooperative environment
where N of agents work together to chase and capture prey agents. In Heterogeneous Predator Prey, each
Predator has differing capabilities of speed and acceleration. This modification is challenging as a policy
must not only coordinate between the Predators, but roles based specialization must be considered given the
heterogeneous nature of each predator’s capabilities. We also validated related work on the drone delivery
task under which a drone swarm of N agents (Drone Delivery-N) must complete deliveries of varying distances
while avoiding collisions and conserving fuel. The code of which is available in supplementary materials and
will be open sourced.

We used batching (Picheny et al., 2022) in our comparisons with marl to allow for a large number of iterations
of bo. We used a batch size of 15 in our comparison experiments. In this setting, all MuJoCo environments
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use the default epoch (total number of interactions with the environment for computing reward) length of
1000, for Predator-Prey environments, epoch length was 25, for Drone Delivery environment, epoch length
was 150.

A.3 RL and MARL under Malformed Reward

For single agent rl we compared against SAC (Haarnoja et al., 2018), PPO (Schulman et al., 2017),
TD3 (Fujimoto et al., 2018), and DDPG (Lillicrap et al., 2015) as well as an algorithm using intrinsic
motivation (Zheng et al., 2018). In single agent setting, we trained related work for 200, 000 timesteps. In
the marl setting, we trained for 2, 000, 000 timesteps. In both single-agent setting and multi-agent setting
all policy networks for both dss-gp-ucb and related work was 3 layers of 10 neurons each. The tested
environments were standard OpenAI Gym benchmarks of Ant, Hopper, Swimmer, and Walker2D.

In the marl setting we compared against COVDN (Peng et al., 2021), COMIX, FACMAC, and MAD-
DPG. Comparisons were not possible against other approaches as these do not support continuous action
environments and are restricted to discrete action spaces.

For all environments and algorithms, we used the recommended hyperparameter settings as defined by the
authors.

A.4 Comparison with HDBO Algorithms

For this comparison, we compared with several related works in hdbo. We compared with TurBO (Eriksson
et al., 2019b), Alebo (Letham et al., 2020), TreeBO (Han et al., 2021), LineBO (Kirschner et al., 2019), and
a recent variant of bo for policy search, GIBO (Müller et al., 2021).

For computational efficiency, the epoch length for MuJoCo environments was reduced to 500.

A.5 Drone Delivery Task

The experimental details follow that of comparisons with marl.

A.6 Compute

All experiments were performed on commodity CPU and GPUs. Each experimental setting took no more
than 2 days to complete on a single GPU.
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A.7 Policy Sizes

We list the policy sizes of our models in Table 2 and 3.

Of note is in each environment, the compared against policy of rl or marl is greater than or equal to in size
vs. the policy optimized by dss-gp-ucb.

A.8 Hyperparameter for Higher-Order Model

For our hom we utilized simple grid search in order to pick the hyperparameter settings. Overly large neural
networks suffered from difficulty of optimization by bo, whereas, overly small neural networks suffered from
performance difficulty on several environments. We found that neural networks of 3 layers, and 4 neurons
each performed well across a wide number of tested environments.
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Figure 7: Ablation study. Training curves of dss-gp-ucb and its ablated variants on different multi-agent
environments.

B Additional Experiments

B.1 Ablation

We present an expanded version of Fig. 3 in Fig. 7 including the ablation for Multiagent Swimmer. Multiagent
Swimmer shows similar behavior as the simpler task Multiagent Ant, with stronger block-diagonal Hessian
structure.

B.2 Comparison with MARL

We present an expanded version of Fig. 5 in Fig. 8 including the results for Multiagent-Ant and Multiagent-
Swimmer. We observe that in this relatively uncomplicated task not well-suited for our approach with
dense reward, our hom approach shows comparable performance to marl approaches and far outperforms
dss-gp-ucb (CTDE). This shows the overall value of our hom approach.

B.3 RL and MARL under Malformed Reward

We present additional experiments under malformed reward for both rl and marl. We formally define
the Sparse reward scenario. Let v(θ) ≜

∑Γ̂
Γ=1 rΓ where the value of the policy is determined through Γ̂

interactions with some unknown environment and each interaction is associated with the reward, rΓ. Typically,
rl algorithms observe the reward, rΓ after every interaction with the environment. We consider a sparse
reward scenario where reward feedback is given every S steps: r̃S

Γ ≜
∑Γ

Γ−S rΓ if Γ ≡ 0 mod S and 0 o.w. In
addition to the sparse reward setting described earlier, we also consider the setting of delayed reward. The
delayed reward scenario is defined: r̃D

Γ ≜ rΓ−D if Γ > D and 0 o.w. Thus in the delayed reward scenario,
feedback on an action taken is delayed. This scenario is important as it arises in long term planning tasks
where the value of an action is not immediately clear, but rather is ascertained after significant delays. We
present the complete table comparing related works in rl with dss-gp-ucb in Table 4. As can be seen,
similar to the Sparse reward scenarios, significant degradation can be observed across all tested rl algorithms
with dss-gp-ucb outperforming rl algorithms with moderate to severe amount of sparsity or delay. This
degradation cannot be overcome by increasing the size of the policy, as we verify with the “XL” models which
are orders of magnitude larger with 3 layers of 400 neurons.
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We repeat these experimental scenarios in the marl setting with similar results in Table 5 where marl
approaches are compared against dss-gp-ucb in the CTDE setting. Thus our validation shows that in both
rl and marl strong performance requires dense, informative feedback which may not be present outside of
simulator settings. In these settings, our approach of optimizing small compact policies using dss-gp-ucb
outperforms related work in both rl and marl.
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Figure 9: Comparison with bo algorithms. dss-gp-ucb outperforms on complex multi-agent coordination
tasks.

B.4 Comparison with HDBO Algorithms

We compare with several related work in High-dimensional bo including TurBO (Eriksson et al., 2019b),
AleBO (Letham et al., 2020), LineBO (Kirschner et al., 2019), TreeBO (Han et al., 2021), and GIBO (Müller
et al., 2021). This is presented in Fig. 9. We experienced out-of-memory issues with AleBO after approximately
100 iterations, hence the AleBO plots are truncated. We compare against these algorithms at optimizing
our hom policy for solving various multi-agent policy search tasks. We validated on Multiagent Ant with 6
agents, PredPrey with 3 agents, Het. PredPrey with 3 agents, Drone Delivery with 3 agents, and also Het.
PredPrey with 6 agents. We observe that these competing works offer competitive performance for simpler
tasks such as Multiagent Ant and PredPrey with 3 agents. However for more complex tasks that require
role based interaction and coordination, our approach outperforms related work. This is evidenced in Het.
PredPrey 3, Het. PredPrey 6 as well as the Drone Delivery task with 3 agents.

Thus our validation shows that for simpler task, competing related works are able to optimize for simple
policies of low underlying dimensionality. However, for more complex tasks which require sophisticated
interaction using both Role and Role Interaction, related work is less capable of optimizing for strong policies
due to the complexity of the high-dimensional bo task. In contrast, our work offers the capability of finding
stronger policies for these complex tasks and scenarios.
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Table 6: Summary of key notations.

Notation Description

v The objective function being optimized by Bayesian optimization
Θ The domain for the objective function v

θt A point in the domain Θ that is picked at time t

µk
T

The posterior mean (inferred after observations up to time T − 1) at time T using the kernel k

[σk
T

]2 The posterior variance at time T using the kernel k

r(θt) The difference between the maxima of the function v in domain Θ, v(θ∗), and v(θt)

RT The cumulative regret,
∑T

t=1
r(θt)

Θa Dimension a of the domain D

Gd A graph showing the dependencies between dimensions where edges exist between two dimensions if they are dependent
Vd In the graph indicated by Gd the set of dimensions corresponding to Θ
Ed In the graph indicated by Gd the set of edges corresponding to the dependencies between Θ

Θ(i) Collection of dimensions indicated by (i) corresponding to a maximal clique in the graph Gd

kΘ(i)
A Gaussian process kernel correspond to the maximal clique (i)

k The Gaussian process kernel for inference corresponding to the sum of kΘ(i)
: k ≜

∑
i

kΘ(i)

v(i) Under the additive assumption, it is assumed that v =
∑

i
v(i) where each v(i) is sampled from kΘ(i)

U(Θ) A uniform random distribution over the domain Θ
H(θt,h) A query to the Hessian at θt,h

G̃d The graph corresponding to the detected dependency structure by querying the Hessian

Max-Cliques(G̃d) A function computing the maximal cliques in the graph G̃d

s The set of states of the cooperative multi-agent system where s ≜ [si]i=1,...,n and i denotes the index of the agent
a The set of actions taken by each agent where a ≜ [ai]i=1,...,n and i denotes the index of the agent

sα(i) The state for agent a taking on the role α(i)
aα(i) The action taken by agent a taking on the role α(i)

Λθr,i An affinity function for taking on role i where r denotes it belonging to the part of the hom for role assignment
Λθg,v An affinity function determining whether an edge exists during the interaction of roles in the hom policy
M

θg,η The message passing function parameterized by θg,η for the role interaction message passing neural network
U

θg,e The action update function parameterized by θg,e for the role interaction message passing neural network

C Table of Notations

Table 6 provides a summary of notations that are used frequently in paper.
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D On the Applicability of Our Assumptions to RBF and Matern Kernel

We show that our assumption is satisfied by the RBF Kernel when Θ = [0, 1]D, and is quasi-satisfied by the
Matern− 5

2 kernel. We also show that in the setting where Θ = [0, r]D for some bounded r, our assumptions are
quasi-satisfied as although these kernels may take on small negative values, these values decay exponentially
with respect to the distance. These Lemmas show that our assumptions are reasonable.

Lemma 1. Let k (θ, θ′) ≜ exp( −d2

2 ) be the RBF kernel with d ≜ ||θ − θ′||, then

k∂i∂j(θ, θ′) = k (θ, θ′)
(

1 − (θi − θ′i)2
)(

1 − (θj − θ′j)2
)

.

Proof. As shown in (Rasmussen & Williams, 2006) Section 9.4, the derivative of a Gaussian Process is also a
Gaussian Process. Let GP (0, k (θ, θ′)) be the GP from which f is sampled. This implies:

∂f

∂θa
∼ GP

(
0,

∂2k (θ, θ′)
∂θa∂θ′a

)
.

Applying this rule once more for the Hessian, we have:

∂2f

∂θbθa
∼ GP

(
0,

∂4k (θ, θ′)
∂θb∂θ′b∂θa∂θ′a

)
.

Given the above identities, we compute the partial derivatives for the RBF kernel:

∂2k (θ, θ′)
∂θa∂θ′a = exp

(
−||θ − θ′||2

2

)(
1 − (θa − θ′a)2) .

Deriving once more we have:

∂4k (θ, θ′)
∂θb∂θ′b∂θa∂θ′a

= exp
(

−||θ − θ′||2

2

)(
1 − (θa − θ′a)2) (1 − (θb − θ′b)2

)
.

This completes the proof noting that k (θ, θ′) ≜ exp( −d2

2 ) with d ≜ ||θ − θ′||.

Corollary 1. Let k (θ, θ′) ≜ exp( −d2

2 ), and θ, θ′ ∈ [0, 1]D, then k∂i∂j(θ, θ′) ≥ 0.

Proof. The above is straightforward to see as exp (·) ≥ 0 and with θ, θ′ ∈ [0, 1]D we have
(
1 − (θa − θ′a)2) ≥ 0(

1 − (θb − θ′b)2
)

≥ 0.

Corollary 2. Let k (θ, θ′) ≜ exp( −d2

2 ), and θ, θ′ ∈ [0, r]d, then k∂i∂j(θ, θ′) ≥ c exp(−d2) for some constant c
dependent on r.

Proof. The above is straightforward given the above Lemma. We note that although the RBF kernel may
take on negative values in the domain Θ = [0, r]d, this values experience strong tail decay showing the
quasi-satisfaction of our assumptions.

The above Lemma and Corollary shows that our assumptions are satisfied by the RBF Kernel when Θ = [0, 1]D,
and quasi satisfied when Θ = [0, r]D after choosing a suitable ph and σ2

h. We show how these assumptions
are quasi-satisfied by the Matern- 5

2 kernel.
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Lemma 2. Let k (θ, θ′) ≜ (1 +
√

5d + 5
3 d2) exp(−

√
5d) be the Matern- 5

2 kernel with d ≜ ||θ − θ′||, then with
di ≜ θi − θ′i we have

k∂i∂j(θ, θ′) = exp(−
√

5d)
(

5
√

5
3 − 25

3d
d2

i − 25
3d

d2
j + 25

√
5

3d2 d2
i d2

j + 25
3d3 d3

i d3
j

)
.

Proof. Following the proof of Lemma 1, we state the partial derivatives of the Matern- 5
2 kernel:

∂2k (θ, θ′)
∂θa∂θ′a = exp

(
−

√
5||θ − θ′||

)(5
3 + 5

√
5

3 ||θ − θ′|| − 25
3 (θa − θ′a)2

)
.

Differentiating one more we have

∂4k (θ, θ′)
∂θb∂θ′b∂θa∂θ′a

= exp
(

−
√

5||θ − θ′||
)

(
5
√

5
3 − 25

3d
(θa − θ′a)2 − 25

3d
(θb−θ′b)2 + 25

√
5

3d2 (θa − θ′a)2(θb − θ′b)2

+ 25
3d3 (θa − θ′a)3(θb − θ′b)3

)
.

This completes the proof noting that di ≜ θi − θ′i and d ≜ ||θ − θ′||.

Corollary 3. Let k (θ, θ′) ≜ (1 +
√

5d + 5
3 d2) exp(−

√
5d) and θ, θ′ ∈ [0, 1]D. Then k∂i∂j(θ, θ′) ≥

exp(−
√

5d)
(

5
√

5
3 − 25

3d − 25
3d − 25

3d3

)
.

Proof. The above is an immediate consequence of Lemma 2 and noting that ||di|| ≤ 1.

Corollary 4. Let k (θ, θ′) ≜ (1 +
√

5d + 5
3 d2) exp(−

√
5d) and θ, θ′ ∈ [0, r]d. Then k∂i∂j(θ, θ′) ≥ c exp(−d)

for some c dependent on r.

Proof. The above is an immediate consequence of Lemma 2 and noting that ||di|| ≤ r.

Although the above corollary shows that the Matern- 5
2 kernel may take on negative values, we note that these

values experience strong tail decay due to the presence of the exp
(
−

√
5d
)

term. Thus, the negative values
are likely to be extremely small, thus quasi-satisfying our assumptions. In our experiments, we observed no
shortcoming in using the Matern- 5

2 kernel in dss-gp-ucb.
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E Proof of Proposition 1

We restate Proposition 1 for clarity.
Proposition 1. Let Gd = (Vd, Ed) represent an additive dependency structure with respect to v(θ), then the
following holds true: ∀a, b ∂2v

∂θa∂θb ̸= 0 =⇒ (Θa, Θb) ∈ Ed which is a consequence of v formed through addition
of independent sub-functions v(i), at least one of which must contain θa, θb as parameters for ∂2v

∂θa∂θb ≠ 0
which implies their connectivity within Ed.

Proof. The above follows from the linearity of addition, which naturally implies a lack of curvature. In the
multivariate case, this corresponds to zero or non-zero entries in the Hessian.

To be precise, we prove the contrapositive:

(Θa, Θb) /∈ Ed =⇒ ∂2v

∂θa∂θb
= 0.

Let a, b be arbitrary dimensions with (Θa, Θb) /∈ Ed. As a consequence of the definition of the dependency
graph, ∄Θ(i) s.t. {Θa, Θb} ⊆ Θ(i). That is, no subfunction v(i) takes both θa and θb as arguments.

By the linearity of the partial derivative, we see that:

∂2

∂θa∂θb
v(θ) = ∂2

∂θa∂θb

M∑
i=1

v(i)(θ(i)) =
M∑

i=1

∂2

∂θa∂θb
v(i)(θ(i)) = 0

where the last equality follows from no subfunction v(i) taking both θa and θb as arguments.
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F Proof of Theorem 1

Our proof of Theorem 1 relies in being able to determine whether an edge does or does not exist in the
dependency graph. To be able to do this, we examine the Hessian. As we have shown in Proposition 1,
examining the Hessian answers this question. The challenge of Theorem 1 is detecting this dependency under
noisy observations of the Hessian, as well as in domains where the variance of the second partial derivative is
often zero, i.e., k∂i∂j(θ, θ′) = 0 with high probability. To overcome this challenge, we sample the Hessian
multiple times to both find portions of the domain where k∂i∂j(θ, θ′) ≥ σ2

h, and also reduce the effect of the
noise on learning the dependency structure. To proceed with the analysis, we first prove a helper lemma
showing that if we can construct two Normal variables of sufficiently different variances, then it’s possible to
accurately determine which Normal variable has low, and high variance by taking a singular sample from
each. This helper lemma will be used later to help determine edges in the dependency graph. As we shall
soon show, If an edge exists, we are able to construct a Normal variable with high variance. Correspondingly,
if an edge does not exist, we are able to construct a Normal variable with low variance.
Lemma 3. Let Xl ∼ N (0, σ2

l ) and Xh ∼ N (0, σ2
h) be two random univariate gaussian variables. For

any δ ∈ (0, 1), ∃ ch s.t. |Xl| ≤ ch ≤ |Xh| with probability 1 − δ when σ2
h

σ2
l

> 8
δ2 log 2

δ and precisely when
σhδ

2 > ch > σl

√
2 log 2

δ .

Proof. First we note that |Xl| and |Xh| are Half-Normal random variables, with cumulative distribution
function of Fl(x) = erf x

σl

√
2 and Fh(x) = erf x

σh

√
2 respectively. Thus to show that |Xl| ≤ σl

√
2 log 2

δ and
|Xh| ≥ σhδ

2 with high probability, we utilize well known bounds on the erf and erfc function. The proofs of
the below can be found in several places, e.g., Chu (1955) and Ermolova & Häggman (2004) respectively.

erf x ≤
√

1 − exp −2x2 ; erfc x ≤ exp −x2.

Given the above, we show that p(ch ≤ |Xl|) ≤ δ
2 and p(ch ≥ |Xh|) ≤ δ

2 and utilizing the union bound
completes the proof.

ch > σl

√
2 log 2

δ
=⇒ c2

h > 2σ2
l log 2

δ
=⇒ c2

h

2σ2
l

> − log δ

2 =⇒ − c2
h

2σ2
l

< log δ

2

=⇒ exp − c2
h

2σ2
l

≤ δ

2 =⇒ erfc ch√
2σl

<
δ

2 =⇒ 1 − erf ch√
2σl

≥ 1 − δ

2 =⇒ Fl(ch) ≥ 1 − δ

2

=⇒ p (ch ≤ |Xl|) <
δ

2 .

Following a similar line of reasoning we have:

ch <
σhδ

2 =⇒ c2
h

σ2
h

<
δ2

4 =⇒ −c2
h

σ2
h

> −δ2

4 =⇒ −c2
h

σ2
h

> log 1 − ϵ2

4 =⇒ exp − c2
h

σ2
h

> 1 − δ2

4

=⇒ 1 − exp − c2
h

σ2
h

<
δ2

4 =⇒

√
1 − exp −

c2
h

σ2
h

<
δ

2 =⇒ erf ch

σh

√
2

<
δ

2 =⇒ Fh(ch) <
δ

2

=⇒ p(ch ≥ |Xh|) <
δ

2 .

Finally, to complete the proof, we show that the interval (σl

√
2 log 2

δ , σhδ
2 ) is not the empty set when

σ2
h

σ2
l

> 8
δ2 log 2

δ .
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σ2
h

σ2
l

>
8
δ2 log 2

δ
=⇒ σh

σl
>

2
√

2
δ

√
log 2

δ
=⇒ σhδ

2 > σl

√
2 log 2

δ
.

We are now ready to prove Theorem 1.
Theorem 1. Suppose11 there exists σ2

h, ph s.t. ∀i, j Pθ∼U(Θ)
[
k∂i∂j(θ, θ) ≥ σ2

h

]
≥ ph and ∀i, j, θ, θ′

k∂i∂j(θ, θ′) ≥ 0. Then for any δ1, δ2 ∈ (0, 1) after t ≥ T0 steps of dss-gp-ucb we have:
⋂

i,j P (Ẽi,j
d =

Ei,j
d ) ≥ 1 − δ1 − δ2 when T0 = C1 > 16D2

phδ2
1

log 2D2

δ1

σ2
n

σ2
h

+ D2

2δ2
, ch ≜ T0σn

√
2 log 2D2

δ1
.

Proof. We prove the above for a single pair of variables, i.e., k∂i∂j and utilize the union bound to complete
the proof. The first challenge to overcome is to sufficiently sample enough points in the domain such that
we are able to find enough points θ ∈ Θ where k∂i∂j(θ, θ) ≥ σ2

h. To achieve this we sample T0 different θ
in the domain. After sampling T0 points if there exists an edge between Θa, and Θb, then with probability
1 − δ2

D2 we have sampled T0ph

2 − D2

2δ2
points where k∂i∂j(θ, θ) ≥ σ2

h. To show the above we use bounds on
the cumulative distribution of the Binomial distribution. A bound is given T0 trials, with ph probability of
success, the probability of having fewer than s successes is upper bounded as follows:

1
T0ph − 2s

.

The above bound derives from the following well known tail bound Feller (1991):

P (Sn ≤ s) ≤ (T0 − s)ph

(T0ph − s)2 if s ≤ T0ph

where Sn denotes the number of successes. The above bound can be loosened by the following process:

(T0 − s)ph

(T0ph − s)2 ≤ T0ph

(T0ph − s)2 = T0ph

T 2
0 p2

h + s2 − 2T0phs
≤ T0ph

T 2
0 p2

h − 2T0phs
=

T0ph

T0ph(T0ph − 2s) = 1
T0ph − 2s

which yields the bound that we utilize. We note the above bound requires s ≤ T0ph

2 − 1
2 , however if it is the

case that s ≥ T0ph

2 − 1
2 then the worst case tail analysis is unnecessary since T0ph

2 − 1
2 ≥ T0ph

2 − D2

2δ2
and our

results still hold.

Given the above, we use δ2 and derive:

1
T0ph − 2( T0ph

2 − D2

2δ2
)

≤ δ2

D2 .

Given the above, with at least T0ph

2 − D2

2δ2
points where k∂i∂j(·, ·) ≥ σ2

h, as well as our assumption k∂i∂j(θ, θ) ≥ 0,
we apply Bienaymé’s identity which we restate for convenience:

Var
[

C1∑
ℓ=1

ht,ℓ

]
=

C1∑
ℓ=1

C1∑
ℓ′=1

Cov (ht,ℓ, ht,ℓ′) .

11RBF kernel satisfies these assumptions when Θ = [0, 1]D.
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Noting each of the T0ph

2 − D2

2δ2
successes is sampled C1 = T0 times with Cov (ht,ℓ, ht,ℓ′) ≥ σ2

h for each of the
successes and Cov (ht,ℓ, ht,ℓ′) ≥ 0 for all samples by our assumption. Applying Bienaymé’s identity and the sum
of (correlated) Normal variables is also a normal variable, we have Var

[∑C1
t=1
∑C1

ℓ=1 ht,ℓ

]
≥ ( T0ph

2 − D2

2δ2
)T 2

0 σ2
h.

Compare this quantity with the variance if no edge exists between Θa, and Θb, where the variance results from
i.i.d. noise: Var

[∑T0
t=1
∑T0

ℓ=1 ht,ℓ

]
= T 2

0 σ2
n. Comparing these two quantities, with an appropriately picked ch

determines the edge between Θa and Θb using Lemma 3. By Lemma 3, letting ch ≜ T0σn

√
2 log 2D2

δ1
ensures

that p(hi,j < ch) < δ1
D2 if edge Ei,j

d exists, and p(hi,j > ch) < δ1
D2 if edge Ei,j

d does not exist. Applying the
union bound over D2 pairs of variables completes the proof with

⋂
i,j P (Ẽi,j

d = Ei,j
d ) ≥ 1 − δ1 − δ2.
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G Proof of Theorem 2

Our proof of Theorem 2 is presented under the same setting and assumptions as the work of Srinivas et al.
(2010).

To prove Theorem 2, we rely on several helper lemmas. The high-level sketch of the proof is to use the
properties of Erdős-Rényi graph to bound both the size of the maximal clique as well as the number of
maximal cliques with high probability. Once these two quantities are bounded, we are able to analyze the
mutual information of the kernel constructed by summing the kernels corresponding to the maximal cliques
of the sampled Erdős-Rényi graph as indicated in Assumption 1. Finally, once this mutual information is
bounded, we use similar analysis as Srinivas et al. (2010) to complete the regret bound.

We begin by bounding the size of the maximal cliques.
Lemma 4. Let Gd = (Vd, Ed) be sampled from a Erdős-Rényi model with probability pg: Gd ∼ G(D, pg), then
∀δ ∈ (0, 1) the largest clique of Gd is bounded above by

|Max-Clique(Gd)| ≤ 2 log 1
pg

|Vd| + 2
√

log 1
pg

|Vd|
δ

+ 1

with probability at least 1 − δ.

Proof. The above relies on well known upper bounds on the maximal clique size on a graph sampled from
an Erdős-Rényi model. As shown in (Bollobás & Erdös, 1976) and (Matula, 1976) the expected number of
Cliques of size k, E [Ck] is given by:

E [Ck] =
(

|Vd|
k

)
1
pg

−(k
2)

≤ |Vd|k 1
pg

− k(k−1)
2

= 1
pg

k
2

(
2 log 1

pg

|Vd|−k+1
)

.

In the sequel, we omit the base of the log: 1
pg

for clarity. To bound the size of the maximal clique, we find a
suitable k such that E [Ck] ≤ δ

n and utilize the union bound over [Ci]i=k,...,n where we have |[Ci]i=k,...,n| ≤ n.
Finally, we utilize Markov’s inequality to complete the proof.

Let k = 2 log |Vd| + 2
√

log |Vd|
δ

+ 1.

We utilize the above bound on E [Ck].

=⇒ k

2

(
2 log 1

pg
|Vd| − k + 1

)
=(

log|Vd| +
√

log n

δ

)(
2 log|Vd| − 2 log|Vd| − 2

√
log n

δ
+ 1 + 1

)

≤ − log|Vd| − log n

δ
+ 1 ≤ log δ

n

=⇒ E [Ck] ≤ 1
pg

log δ
n

= δ

n
.

The proof is complete by noting that by Markov inequality, p(Ck ≥ 1) ≤ E [Ck] and taking the union bound
over at most n members of [Ci]i=k,...,n.
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Next, we bound the total number of maximal cliques:
Lemma 5. Let Gd = (Vd, Ed) be sampled from a Erdős-Rényi model with probability p: Gd ∼ G(D, pg), then
∀δ ∈ (0, 1) the number of total maximal cliques in Gd is bounded above by

1
δ

√
|Vd|

log 1
pg

|Vd|+5

with probability at least 1 − δ.

Proof. We prove the above by bounding maxk Ck with high probability and noting that the number of
maximal cliques is bounded by

∑
k Ck ≤ n maxk Ck with high probability. To bound max Ck, we first consider

maxk E [Ck].

max
k

E [Ck] = max
k

1
pg

k
2

(
2 log 1

pg

|Vd|−k+1
)

= 1
pg

maxk
k
2

(
2 log 1

pg

|Vd|−k+1
)

.

Taking the partial derivative of k
2

(
2 log 1

pg
|Vd| − k + 1

)
with respect to k we determine the maximum:

arg maxk

k

2

(
2 log 1

pg
|Vd| − k + 1

)
= log 1

pg
|Vd| + 1.

Thus we are able to bound:

log 1
pg

|Vd| + 1

2

(
2 log 1

pg
|Vd| − log 1

pg
|Vd| − 1 + 1

)
=

log 1
pg

|Vd| + 1

2

(
log 1

pg
|Vd|

)
= 1

2log2
1

pg

|Vd| + 1
2log 1

pg
|Vd|

Which yields the bound:

E [Ck] ≤ 1
pg

1
2 log2

1
pg

|Vd|+ 1
2 log 1

pg

|Vd|
=

√
|Vd|

log 1
pg

|Vd|+1
.

To complete the proof, we utilize Markov’s inequality with p

(
Ck ≥ |Vd|

δ

√
|Vd|

log 1
pg

|Vd|+1
)

≤ δ
|Vd| and utilize

the union bound over n choices of k:

∑
k

Ck ≤
∑

k

|Vd|
δ

√
|Vd|

log 1
pg

|Vd|+1
= 1

δ

√
|Vd|

log 1
pg

|Vd|+5

with probability 1 − δ.

Now that we have bounded both the number of cliques, as well as the sizes of the maximal cliques with
high probability, we now consider the mutual information of the kernel constructed by summing the kernels
corresponding to the maximal cliques of the dependency graph.
Lemma 6. Define I(yA; v) ≜ H(yA) − H(yA | v) as the mutual information between yA and v
with H(N (µ, Σ)) ≜ 1

2 log|2πeΣ| as the entropy function. Define γk
T ≥ maxA⊂Θ:|A|=T I(yA; v) when

v ∼ GP (0, k (θ, θ′)). Let [ki]i=1,...,M be arbitrary kernels defined on the domain Θ with upper bounds
on mutual information [γki

T ]i=1,...,M , then the following holds true:

35



Published in Transactions on Machine Learning Research (10/2024)

γ

∑
i

ki

T ≤ M2 max [γki

T ]i=1,...,M .

To prove the above, we first state Weyl’s inequality for convenience:
Lemma 7. Let H, P ∈ Rn×n be two Hermitian matrices and consider the matrix M = H + P . Let
µi, νi, ρi, i = 1, . . . , n be the eigenvalues of M, H, and P respectively in decreasing order. Then, for all
i ≥ r + s − 1 we have

µi ≤ νr + ρs.

The above has an immediate Corollary as noted by Rolland et al. (2018):

Corollary 5. Let Ki ∈ Rn×n be Hermitian matrices for i = 1, . . . , M with K ≜
∑M

i Ki. Let [λKi

ℓ ]ℓ=1,...,n

denote the eigenvalues of Ki in decreasing order. Then for all ℓ ∈ N0 such that ℓM + 1 ≤ n we have

λK
ℓM+1 ≤

M∑
i=1

λKi

ℓ+1.

We are now ready to prove Lemma 6 using Weyl’s inequality and its corollary as a key tool.

Proof. Given the definition of I(yA; v) ≜ 1
2 log|I + σ−2Kk

A| (Srinivas et al., 2010) we bound the eigenvalues
of MI + σ−2∑M

i Kki

A using the eigenvalues of [I + σ−2Kki

A ]i=1,...,M where k ≜
∑M

i=1 ki. Using the above
Corollary we see that:

λMI+σ−2K
ℓ ≤

M∑
i=1

λI+σ−2Ki

⌈ ℓ
M ⌉ .

Given the above, we see that M2 max[γki

T ]i=1,...,M ≥ 1
2 log|I + σ−2Kk

A| as
∑M

i Mγki

T ≥ 1
2 log|MI +

σ−2∑M
i Kki

A |.

Finally, we require an additional helper lemma to bound the supremum and infimum of a function sampled
from a GP. This helper lemma helps bound the regret during the first phase of dss-gp-ucb where we
randomly sample the Hessian over the domain.
Lemma 8. Let k (θ, θ′) be four times differentiable on the continuous domain Θ ≜ [0, r]D for some bounded
r (i.e., compact and convex) with f ∼ GP (0, k (θ, θ′)) then for all δ ∈ (0, 1) the following holds true:

sup
θ∈[0,r]D

f ≤ cb

√
D log δ−1 = O

(√
D log δ−1

)
.

inf
θ∈[0,r]D

f ≥ −cb

√
D log δ−1 = Ω

(
−
√

D log δ−1
)

.

for some constant cb dependent on δ and r, with probability 1 − δ.

Proof. The proof of the above is contained in Srinivas et al. (2010) Lemma 5.8. We restate the key parts of
the proof herein. In the setting of Srinivas et al. (2010) there exist constants a, bi, such that

P

[
sup
θ∈Θ

∣∣∣∣ ∂v

∂θi

∣∣∣∣ > L

]
≤ ae−biL2

.
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Letting L = [log(Da2/δ)/ mini bi]1/2, we have that ae−biL2 ≤ δ/(2D) for all i = 1, . . . , D, so that for
K1 = D1/2L by the mean value theorem, we have

P [|v(θ) − v(θ′)| ≤ K1||θ − θ′|| ∀ θ, θ′ ∈ Θ] ≥ 1 − δ/2.

The proof is complete by noting that K1 = O((log δ−1)1/2) and picking an appropriate cb dependent on δ
and r.

We are now ready to prove Theorem 2.
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1. Let γk

T (d) : N → R be a monotonically
increasing upper bound function on the mutual information of kernel k taking d arguments. The cumulative
regret of dss-gp-ucb is bounded with high probability as follows:

RT = Õ
(√

TβT Dlog D+5γk
T (4 log D + cγ)

)
(4)

where cγ is an appropriately picked constant and the base of the logarithm is 1
pg

.
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We restate the above theorem with more precision:
Theorem 2. Let k be the kernel as in Assumption 1, and Theorem 1 and for some constants a, b,

P

[
sup
θ∈Θ

∣∣∣∣ ∂v

∂θi

∣∣∣∣ > L

]
≤ ae−(L/b)2

, i = 1, . . . , D.

Let γk
T (d) : N → R be a monotonically increasing upper bound function on the mutual information of kernel k

taking d arguments. Let k (θ, θ′) be four times differentiable on the continuous domain Θ ≜ [0, r]d for some
bounded r (i.e., compact and convex). For any δ1, δ2, δ3, δ4, δ5, δ6 ∈ (0, 1). Let, t̃ ≜ t − T0C1 and let

βt = 2 log(t̃22π2/3δ2
6) + 2D log(t̃2Dbr

√
log(4Da/δ6))

The cumulative regret of dss-gp-ucb is bounded:

P

[
RT ≤ 2C2

1 cb

√
D log δ−1

5 +
√

C2TβT γT + 2 ∀T ≥ 1
]

≥ 1 − δ1 − δ2 − δ3 − δ4 − δ5 − δ6

when C1 = 16D2

phδ2
1

log 2D2

δ1

σ2
n

σ2
h

+ D2

2δ2
+ 1, C2 = 8/ log(1 + σ−2), and

γT = 1
δ2

4
Dlog1/pg

D+5γk
T

(
2 log1/pg

D + 2
√

log1/pg
D/δ3 + 1

)
where cb is some constant dependent on δ5.

Proof. The proof is a consequence of the helper lemmas and theorems we have proved. First we consider
Phase 1 of dss-gp-ucb where t ≤ T0. By Theorem 1, at most T0C1 = C2

1 queries will be made during Phase
1, and Lemma 8 indicates the maximum regret for any query. Consulting the respective Theorem and Lemma,
we are able to bound the cumulative regret during Phase 1 by:

2C2
1 cb

√
D log δ−1

5 = O(D4.5 log2 D).

Considering Phase 2, we utilize Lemma 4, Lemma 5, Lemma 6 to bound the mutual information of the
sampled kernel with high probability. The number of cliques is given by:

1
δ4

√
Dlog1/pg

D+5.

The size of the largest clique is given by:

2 log1/pg
D + 2

√
log1/pg

D/δ3 + 1 ≤ 2(log1/pg
D + log1/pg

D/δ3 + 1) ≤ 4 log1/pg
D/δ3 + 2

Following Lemma 6, we see that

γ

∑
i

ki

T ≤ M2 max [γki

T ]i=1,...,M ≤ 1
δ2

4
Dlog1/pg

D+5γk
T (4 log1/pg

D/δ3 + 2).

Let cγ = 4 log 1
pg

1/δ3 + 2 which yields the following information on the mutual information:

γ

∑
i

ki

T ≤ Dlog1/pg
D+5γk

T (4 log1/pg
D + cγ).

The proof is complete by leveraging the connection between mutual information and cumulative regret as
shown by Srinivas et al. (2010) where Õ is the same as O with the log factors suppressed.
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H On the Surrogate Hessian, Hπ

In Section 4.5 we remarked that although we cannot observe Hv, we can observe a surrogate Hessian, Hπ

which is related to Hv by the chain rule. We justify our choice here with showing how Hπ is an important
sub-component of Hv (Skorski, 2019). Although the reasoning we give is in one dimension, an analogous
argument can be made in arbitrary dimensions using the chain rule for vector-valued functions yielding the
Hessian tensor (Magalhães, 2020). We have v : Θ → R is a function of the policy π and can be expressed as a
composition of functions:

v : Θ → R = v̂ (π (θ)) . (5)

In the above we use π (θ) as shorthand for π (sα, aα; θ) with v̂ representing some unknown function. Using
the definition of the Hessian we have:

Hv ≜

[
∂2v

∂θa∂θb

]
a,b=1,...,D

=
[

∂2

∂θa∂θb
v̂ (π (θ))

]
a,b=1,...,D

Where the above identity follows from the definition of v in Eq. 5. We can now apply chain rule to express:

∂2

∂θa∂θb
v̂ (π (θ)) =

[
Hv̂(π(θ)) ∂π

∂θa
(θ)
]

· ∂π

∂θb
(θ)︸ ︷︷ ︸

r(θ)

+ ∂2π

∂θa∂θb
(θ)︸ ︷︷ ︸

Hπ(θ)

· ∇v̂(π(θ))︸ ︷︷ ︸
g(θ)

(6)

As we see in the above as a consequence of the chain rule, ∂2π
∂θa∂θb forms an important sub-component ∂2v

∂θa∂θb .
Given the above, we can simplify the above in the following manner:

Hv = r + Hπ ◦ g

where r, g, and Hπ arise from the corresponding highlighted terms in Eq. 6 with r representing some unknown
remainder term and ◦ representing the Hadamard product. Given the above, it is straightforward to see
how Hπ serves as a surrogate Hessian for Hv. Indeed if r ̸= −Hπ ◦ g and g has no zero entries then
Hπ ̸= 0 =⇒ Hv ̸= 0. In our use case, we are most concerned with non-zero entries in the Hessian, Hv, and
the surrogate Hessian, Hπ is well served for determining Hv ̸= 0 due to the above.

Since π (θ) is shorthand for π (sα, aα; θ), to approximate Hπ we average Hπ(sα,aα;θ) over state action pairs,
(sα, aα) formed through interaction of the policy with the unknown task environment.

A possible avenue of overcoming this limitation is considering Hessian estimation through zero’th order
queries. Several works along this direction have recently appeared using Finite Differences (Cheng et al.,
2021), as well as Gaussian Processes (Müller et al., 2021). We consider removing this dependency on the
surrogate Hessian for future work.
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I Drone Delivery Task

Our drone delivery task was inspired by recent research work in studying unique problems in drone delivery
vehicle routing problems (Dorling et al., 2017).

Drones fly from delivery point to delivery point where completing a delivery gives a large amount of reward,
but running out of fuel and collisions give a small amount of negative reward. After completing a delivery,
the delivery point is randomly removed within the environment. A collision gives a small amount of negative
reward and momentarily stops the drone. Completing a delivery refills the drone fuel and allows it to continue
to make more deliveries. The amount of reward given increases quadratically with the distance of the delivery
to highly reward long distance deliveries which require long term planning. To compound this requirement
for long term planning, fuel consumption also dramatically increases at high velocities to encourage long-term
fuel efficiency planning. In this complex scenario requiring long term planning, rl approaches can easily fall
into local minima of completing short distance, low reward deliveries and fail to sufficiently explore (under
sparse reward) policies which complete long distance deliveries with careful planning.

Implementation code of this task can be found in supplementary materials.
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Figure 10: Comparison with marl approaches with varying number of agents.

J Replot With Timesteps

We replot the relevant figures in Fig. 12 and Fig. 13 while maintaining total environment interactions as the
singular independent variable. We note that there is no significant change to our conclusions as a consequence
of this replotting. We also highlight that although total environment interactions is considered the important
independent variable in rl and marl, in bo typically the total evaluated policies is considered the more
important independent variable as each evaluation is assumed to be costly.
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Figure 11: Comparison with marl approaches on the drone delivery task.

K Replot With “best found policy so far” in RL

We replot the relevant figures in Fig. 12 and Fig. 13 where both bo and marl approaches show the value of
the “best found policy so far." We note that there is no significant change to our conclusions as a consequence
of this replotting.
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Figure 12: Comparison with marl approaches with varying number of agents.
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Figure 13: Comparison with marl approaches on the drone delivery task.
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L Tables With “best found policy so far” in RL

We generate new tables investigating rl and marl under sparse or malformed reward. In Table 7 and 8 we
show the value of the best found policy during the training process for rl and marl. Our observations and
conclusions remain the same where rl and marl performance severely degrades under sparse and malformed
reward and is often outperformed by our dss-gp-ucb approach.
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