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Abstract

We study the problem of computing an optimal policy of an infinite-horizon dis-
counted constrained Markov decision process (constrained MDP). Despite the
popularity of Lagrangian-based policy search methods used in practice, the oscil-
lation of policy iterates in these methods has not been fully understood, bringing
out issues such as violation of constraints and sensitivity to hyper-parameters. To
fill this gap, we employ the Lagrangian method to cast a constrained MDP into
a constrained saddle-point problem in which max/min players correspond to pri-
mal/dual variables, respectively, and develop two single-time-scale policy-based
primal-dual algorithms with non-asymptotic convergence of their policy iterates to
an optimal constrained policy. Specifically, we first propose a regularized policy
gradient primal-dual (RPG-PD) method that updates the policy using an entropy-
regularized policy gradient, and the dual variable via a quadratic-regularized gra-
dient ascent, simultaneously. We prove that the policy primal-dual iterates of
RPG-PD converge to a regularized saddle point with a sublinear rate, while the
policy iterates converge sublinearly to an optimal constrained policy. We further
instantiate RPG-PD in large state or action spaces by including function approx-
imation in policy parametrization, and establish similar sublinear last-iterate pol-
icy convergence. Second, we propose an optimistic policy gradient primal-dual
(OPG-PD) method that employs the optimistic gradient method to update pri-
mal/dual variables, simultaneously. We prove that the policy primal-dual iterates
of OPG-PD converge to a saddle point that contains an optimal constrained policy,
with a linear rate. To the best of our knowledge, this work appears to be the first
non-asymptotic policy last-iterate convergence result for single-time-scale algo-
rithms in constrained MDPs. We further validate the merits and the effectiveness
of our methods in computational experiments.

1 Introduction

Constrained Markov decision process (Constrained MDP) is the classical model for constrained
dynamic systems in the early stochastic control literature (e.g., [1, 2, 3, 4, 5]) and the recent con-
strained reinforcement learning (RL) literature (e.g., [6, 7, 8, 9, 10, 11]). It is applicable to many
constrained control problems by integrating other system specifications in constraints, and admits
a natural extension of constrained optimization and Lagrangian in policy space. Lagrangian-based
policy search methods, especially policy-based primal-dual methods that work simultaneously with
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primal/dual variables, lie at the heart of recent successes of constrained MDPs, e.g., navigation [12],
autonomous driving [13, 14], robotics [15], and finance [16]; see [17, 18, 19, 20] for more examples.

Despite the popularity of policy-based primal-dual algorithms, classical asymptotic convergence as-
sumes that primal-dual updates are in two-time-scale1type [21, 6, 22, 16, 9] (and/or work in two
nested loops2), and considerable global non-asymptotic convergence guarantee is measured via an
average of past objective/constraint functions [23, 24, 25, 26] or a mixture of past policies [27, 28].
These results are unfavorable in constrained dynamic systems, especially safety-critical ones, due
to three reasons: (i) Average and mixture performance of non-asymptotic convergence conceals os-
cillating (or even overshooting) objective/constraint functions of immediate policy iterates [29, 30],
and oscillation-incurred constraint violation impedes a policy iterate being optimal; (ii) Asymptotic
convergence is not instructive, because arbitrarily slow convergence, and oscillation and overshoot
in any finite time can happen; (iii) Two-time-scale algorithms including algorithms with nested loops
are sensitive to hyper-parameters and are therefore typically difficult to tune [16, 9]. Thus, we ask
the following question in constrained MDPs:

Can the policy iterates of a single-time-scale policy-based primal-dual algorithm
converge to an optimal constrained policy with non-asymptotic rate?

By “single-time-scale”, we refer to the classical methods [31, 32, 33] that iterate primal/dual vari-
ables concurrently (with the same constant stepsize). Only partial answers to this question are pro-
vided in recent studies [34, 35, 36] since they either do not work in the single-time-scale scheme
or they do not have non-asymptotic convergence guarantees. In this work, we provide an affirma-
tive answer in two methodologies. First, we initiate the design and analysis of single-time-scale
policy-based primal-dual algorithms via regularization, while previous works [24, 28, 34] rely on
two-time-scale schemes. Second, inspired by convex minimax optimization [37, 38, 39], we pro-
pose a new optimistic policy gradient for a single-time-scale policy-based primal-dual algorithm that
solves a class of non-convex minimax problem. While preparing our work, we noticed a contempo-
raneous work [40], which has empirically validated the effectiveness of other optimistic methods in
constrained MDPs, has further inspired the pursuit of our contributions, as outlined in detail below.

Contributions. To compute an optimal policy of an infinite-horizon discounted constrained MDP,
we employ the Lagrangian method to cast it into a constrained saddle-point problem in which
max/min players correspond to primal/dual variables, propose two single-time-scale policy-based
primal-dual algorithms, and prove global non-asymptotic convergence of their policy iterates.

• Nearly dimension-free sublinear last-iterate policy convergence. We propose a regularized pol-
icy gradient primal-dual (RPG-PD) method that updates the policy using an entropy-regularized
policy gradient, and the dual using a quadratic-regularized gradient ascent, simultaneously. We
prove that the policy primal-dual iterates of RPG-PD converge to a regularized saddle point with
a sublinear rate, and the policy iterates converge to an optimal constrained policy sublinearly.

• Sublinear last-iterate policy convergence with function approximation. We generalize RPG-PD
for constrained MDPs with large state/action spaces by including function approximation in pol-
icy parametrization. We prove that the policy primal-dual iterates of an inexact RPG-PD converge
to a regularized saddle point with a sublinear rate, but up to a function approximation error, and
the policy iterates converge sublinearly to an optimal constrained policy when the error is small.

• Problem-dependent linear last-iterate policy convergence. We propose an optimistic policy gra-
dient primal-dual (OPG-PD) method that employs the optimistic gradient method to update the
primal/dual, simultaneously. We prove that the policy primal-dual iterates of OPG-PD converge
to a saddle point that contains an optimal constrained policy with a problem-dependent linear
rate.

While last-iterate convergence is of importance in its own right, by adding proper conservatism in
the constraint, both methods can ensure no constraint violation for the last policy iterate, which
perhaps is best for safety-critical tasks [10, 20]. As far as we know, this work shows the first non-
asymptotic and policy last-iterate convergence for single-time-scale algorithms in the constrained
MDP literature. We further exhibit the merits and the effectiveness of our methods in experiments.

1One update has relatively very large/small (fast/slow) stepsize than the other.
2We view an algorithm with two nested gradient-based loops as a two-time-scale algorithm.
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Technical comparisons with prior art. Although global asymptotic last-iterate convergence has
been established for single-time-scale algorithms very recently [36, 40], and value-average or policy-
mixture non-asymptotic convergence have been established for other algorithms [23, 24, 25, 27, 28,
41, 42, 26], these studies did not investigate global non-asymptotic and last-iterate convergence for
single-time-scale algorithms. Our results not only strengthen these prior guarantees, but also set up
a new framework for analyzing policy-based primal-dual algorithms via the distance of primal-dual
iterates to a saddle point that contains an optimal constrained policy. Our RPG-PD and OPG-PD
keep the simplicity of single-time-scale primal-dual methods and output a nearly-optimal policy in
the last iterate, which is more convenient than the history-average policies [28, 24] or the policies
from subroutines [34, 35]. Compared with the policy-based methods [40], our OPG-PD is a pro-
jected policy gradient method that enjoys policy last-iterate convergence with linear rate. Compared
with the constrained saddle-point problems [38, 39], our minimax optimization that results from
constrained MDP is non-convex. Hence, our OPG-PD extends the last-iterate convergence guaran-
tee from convex minimax optimization to a class of non-convex ones, while preserving a linear rate.
Compared with the analysis in the two-player zero-sum Markov game [43, 44], there is no reduction
from constrained MDPs to per-state bilinear games. Please see more details in Appendix A.

2 Preliminaries

We consider an infinite-horizon discounted constrained Markov decision process [3, 5, 8] –
CMDP (S,A, P, r, u, b, γ, ρ ) – where S and A are state/action spaces, P is a transition kernel that
specifies the transition probability P (s′ | s, a) from state s to next state s′ under action a ∈ A, r, u
: S × A → [0, 1] are reward/utility functions, b is a constraint threshold, γ ∈ [0, 1) is a discount
factor, and ρ is an initial state distribution. A stationary stochastic policy π : S → ∆(A) determines
a probability distribution over the action space A based on current state, i.e., at ∼ π(· | st) at time
t, where ∆(A) is a probability simplex over A. Let Π be the set of all possible stochastic policies.
A policy π ∈ Π, together with the initial state distribution ρ, induces a distribution over trajecto-
ries τ = {(st, at, rt, ut)}∞t= 0, where s0 ∼ ρ, at ∼ π(· | st), rt = r(st, at), ut = u(st, at) and
st+1 ∼ P (· | st, at) for all t ≥ 0.

Given a policy π, the value functions V πr , V πu : S → R associated with the reward function r or the
utility function u are given by the expected sums of discounted rewards or utilities under policy π:

V πr (s) := E

[ ∞∑
t= 0

γtr(st, at) | s0 = s

]
and V πu (s) := E

[ ∞∑
t= 0

γtu(st, at) | s0 = s

]
where the expectation E is over the randomness of the trajectory τ induced by π. Their expected
values under ρ are V πr (ρ) := Es∼ ρ[V πr (s) ] and V πu (ρ) := Es∼ ρ[V πu (s) ]. It is useful to introduce
the discounted state visitation distribution, dπs0(s) = (1− γ)

∑∞
t= 0 γ

tPr(st = s |π, s0) which adds
up discounted probabilities of visiting s in the execution of π starting from s0. Denote dπρ (s) :=
Es0∼ ρ[ dπs0(s) ] and thus dπρ (s) ≥ (1−γ)ρ(s) for any ρ and s. Furthermore, for the reward function
r, we introduce the state-action value function Qπr : S ×A→ R when the agent begins with a state-
action pair (s, a) and follows a policy π, and the associated advantage function Aπr : S ×A→ R,

Qπr (s, a) := E

[ ∞∑
t= 0

γtr(st, at) | s0 = s, a0 = a

]
and Aπr (s, a) := Qπr (s, a)− V πr (s).

Similarly, we define Qπu : S ×A→ R and Aπu : S ×A→ R for the utility function u.

In this work, we aim to find a policy solution π? of a constrained policy optimization problem,

maximize
π ∈Π

V πr (ρ) subject to V πu (ρ) ≥ b (1)

where the objective is the reward value function V πr (ρ) and the constraint requires that the utility
value function V πu (ρ) is above a given threshold b. For notational simplicity we assume a single
constraint, but our algorithms are readily generalizable to the problems with multiple constraints, as
well as our subsequent last-iterate convergence theory. Since V πr (ρ) and V πu (ρ) ∈ [ 0, 1/(1 − γ) ],
we assume b ∈ ( 0, 1/(1− γ) ] to avoid trivial cases. Let g: S ×A→ [−1, 1] be g := u− (1− γ)b.
We, equivalently, translate the constraint V πu (ρ) ≥ b into V πg (ρ) ≥ 0 that is our focal constraint.
The optimal constrained policy π? depends on the initial state distribution ρ; see Appendix B.1.
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By the method of Lagrange multipliers [45], we dualize the constraint in (1) and present a standard
Lagrangian L(π, λ) := V πr (ρ) + λV πg (ρ), where π ∈ Π is the primal variable and λ ∈ [0,∞] is
the dual variable or the Lagrangian multiplier. Introduction of the Lagrangian L(π, λ) interprets
Problem (1) as a max-min problem: maximizeπ ∈Π minimizeλ∈ [0,∞] L(π, λ), and thus we can
view the Lagrangian L(π, λ) as a value function with a composite function r + λg,

maximize
π ∈Π

minimize
λ∈ [0,∞]

V πr+λg(ρ). (2)

However, it’s defective to view Problem (2) as a standard MDP problem by fixing a dual variable
λ, even the optimal one; also see [9, 46, 47, 30]. This is often referred to as the scalarization
fallacy [46]; see Appendix B.2 for the detail. From the perspective of game theory, we instead view
V πr+λg(ρ): Π × [ 0,∞ ] → R as a payoff function for a two-player zero-sum game in which max-
player is the policy π ∈ Π and min-player is the dual variable λ ∈ [ 0,∞ ], and study its saddle
points. To proceed, we assume feasibility for Problem (1) throughout our analysis.
Assumption 1 (Feasibility). There exists a policy π̄ ∈ Π and ξ > 0 such that V π̄g (ρ) ≥ ξ.

Feasibility mirrors the Slater condition in the duality analysis of constrained optimization [45]. It
can be verified by solving an unconstrained MDP problem with respect to V πg (ρ).

A saddle point (π′, λ′) satisfies V πr+λ′g(ρ) ≤ V π
′

r+λ′g(ρ) ≤ V π
′

r+λg(ρ) for all π ∈ Π, λ ∈ [0,∞],
or equivalently, π′ is the max-min point, i.e., π′ ∈ argmaxπ∈Π V

π
r+λ′g(ρ) and λ′ is the min-max

point, i.e., λ′ ∈ argminλ∈ [0,∞] V
π′

r+λg(ρ). To view Problem (2) as a saddle-point problem, we
denote V πP (ρ) := infλ∈ [0,∞] V

π
r+λg(ρ) as the primal function which takes V πr (ρ) when V πg (ρ) ≥ 0

and −∞ otherwise, and V λD(ρ) := maxπ ∈Π V
π
r+λg(ρ) as the dual function. Let an optimal dual

variable be λ? ∈ argminλ∈ [0,∞] V
λ
D(ρ). For Problem (1) under Assumption 1, strong duality holds

in policy space [12, Theorem 3] and optimal dual variables are bounded [48, Lemma 3].
Lemma 1 (Strong duality/Saddle point existence and boundedness). Let Assumption 1 hold. Then,
(i) strong duality holds for Problem (1), i.e., V π

?

P (ρ) = V λ
?

D (ρ); (ii) optimal dual variables are
bounded, i.e., λ? ∈ [ 0, (V π

?

r − V π̄r )/ξ ].

Let the set of max-min points be Π? := argmaxπ ∈Π minλ∈ [0,∞] V
π
r+λg(ρ) and the set of min-

max points be Λ? := argminλ∈ [0,∞] maxπ∈Π V
π
r+λg(ρ). From Lemma 1 (ii), Λ? is contained in

a bounded interval Λ := [ 0, 1/((1 − γ)ξ) ]. Lemma 1 (i) shows that any pair (π?, λ?) ∈ Π? × Λ?

solves the following constrained saddle-point problem,

maximize
π ∈Π

minimize
λ∈Λ

V πr+λg(ρ) = minimize
λ∈Λ

maximize
π ∈Π

V πr+λg(ρ). (3)

Any saddle points associated with the set Λ? are captured by Problem (3) due to the invariance of
saddle points, and searching for any pair (π?, λ?) ∈ Π? × Λ? is sufficient by the interchangeability
of saddle points; see Lemmas 8-9 in Appendix B.3 for the properties of saddle points. Thus, we
view the policy (primal) as max-player and the dual as min-player in a zero-sum game.

Three structural properties from constrained MDPs distinguish Problem (3) from recent last-iterate
convergence for learning in zero-sum games (e.g., [37, 38, 43, 39, 44]): (i) Two players are asymmet-
ric. One plays a stochastic policy that affects the transition dynamics and the other selects an action
in a continuous interval that only changes the payoff; (ii) Problem (3) is a non-convex game, because
of the non-concavity of the payoff V πr+λg(ρ) in policy π (e.g., [49, Lemma 1]); (iii) A saddle-point
policy for Problem (3) cannot be uniformly max-min optimal, i.e., being optimal across all states,
since an optimal policy often depends on the initial state distribution ρ in a constrained MDP; see
Appendix B.1. Hence, known last-iterate results in zero-sum convex games or symmetric Markov
games that admit uniformly optimal policies can’t be applied and new techniques are required to
address this non-standard saddle-point problem, which warrants our contributions in this work.

Warm-up: Indirect policy search in occupancy-measure space. Finding a saddle point of a non-
convex game is hard in general [50]. Nevertheless, Problem (1) can be rewritten as a linear program
regarding the occupancy measure [5], which permits indirectly searching for a saddle point of a bilin-
ear Lagrangian [51, 42, 36]. These asymptotic or average-iterate convergence results can be easily
strengthened by applying last-iterate convergence results for bilinear games (e.g., [38, 39]) to be
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non-asymptotic and last-iterate. By doing so, we state an optimistic primal-dual (OPD) method (18)
in Appendix B.4. Compared with a contemporaneous work [40], OPD is free of projection to an
occupancy measure set, and enjoys strengthened linear convergence.

OPD is an indirect policy search method that iterates using occupancy measure-based gradients, not
policy-based gradients. It is crucial to develop direct policy search methods that are widely-used in
RL, which is our focus. We propose two such methods in Section 3 and Section 4, respectively.

3 Policy Last-Iterate Convergence: Regularized Method

Towards achieving policy last-iterate convergence, a practical strategy is using regularization [52] to
“convexify” Problem (3). We present a regularized method – Regularized Policy Gradient Primal-
Dual (RPG-PD) – that converges to a saddle point that yields an optimal constrained policy.

3.1 Regularized policy gradient primal-dual method

We introduce a regularized Lagrangian Lτ (π, λ) := V πr+λg(ρ) + τ(H(π) + 1
2λ

2) by adding a reg-
ularization term H(π) + 1

2λ
2 onto the original Lagrangian V πr+λg(ρ), where τ is a regularization

parameter, and H(π) := E[
∑∞
t= 0−γt log π(at | st) ] is an entropy-like regularization term [52].

We now introduce a regularized constrained saddle-point problem,
maximize

π ∈Π
minimize
λ∈Λ

Lτ (π, λ) = minimize
λ∈Λ

maximize
π ∈Π

Lτ (π, λ). (4)

Problem (4) is well-defined, since there exists a saddle point forLτ (π, λ) over Π×Λ and it is unique;
see Appendix C.1 for proof. A saddle point (π?τ , λ

?
τ ), i.e., π?τ = argmaxπ ∈Π minλ∈Λ Lτ (π, λ) and

λ?τ = argminλ∈Λ maxπ∈Π Lτ (π, λ), satisfies a sandwich-like property,

V πr+λ?τg(ρ)− τH(π?τ ) ≤ V
π?τ
r+λ?τg

(ρ) ≤ V
π?τ
r+λg(ρ) +

τ

2
λ2 for all (π, λ) ∈ Π× Λ (5)

that states that (π?τ , λ
?
τ ) is a saddle point of the original Lagrangian V πr+λg(ρ), up to two τ -terms. We

thus propose a regularized policy gradient primal-dual (RPG-PD) method by maintaining a sequence
for policy and dual variables each: {πt}t≥ 0 for the policy-player, and {λt}t≥ 0 for the dual-player,

πt+1(· | s) = argmax
π(· | s)∈ ∆̂(A)

{∑
a

π(a | s)Qπtr+λtg+τψt(s, a) − 1

η
KL(π(· | s), πt(· | s))

}
(6a)

λt+1 = argmin
λ∈Λ

{
λ
(
V πtg (ρ) + τλt

)
+

1

2η
(λ− λt)2

}
, (6b)

where the gradient direction Qπtr+λtg+τψt(s, a) is the state-action value function under a composite
function r+λtg+ τψt in which ψt(s, a) := − log πt(a | s), KL(p, p′) :=

∑
a pa log pa

p′a
is the Kull-

back–Leibler (KL) divergence, ∆̂(A) := {π(· | s) ∈ ∆(A) |π(a | s) ≥ ε0
|A| , a ∈ A} is a restricted

probability simplex set with parameter ε0 ∈ (0, 1), η is the stepsize, and (π0(· | s), λ0) ∈ ∆̂(A)×Λ

is an initial point. Projecting the policy iterate to the simplex set ∆̂(A) ensures the boundedness
of the gradient. Primal update (6a) works as the classical mirror descent with KL divergence [53]
with a projection onto the set ∆̂(A). Dual update (6b) performs typical projected gradient descent.
Hence, RPG-PD is a single-time-scale method. RPG-PD simplifies the two-time-scale method [34]
to be single-time-scale and generalize the single-time-scale methods [23, 54] with regularization.

3.2 Policy last-iterate convergence

In Theorem 2, we show that the primal-dual iterates of RPG-PD converge in the last iterate; see
Appendix C.2 for proof. We characterize the convergence via a distance metric Φt = KLt(ρ) +
1
2 (λ?τ−λt)2, where KLt(ρ) := (1/(1−γ))

∑
s d

π?τ
ρ (s)KLt(s) and KLt(s) := KL(π?τ (· | s), πt(· | s)).

Theorem 2 (Linear convergence of RPG-PD). Let Assumption 1 hold. If we set the stepsize η ≤
1/Cτ,ξ,ε0 , then the primal-dual iterates of RPG-PD (6) satisfy

Φt+1 ≤ e−ητt Φ1 +
η

τ
max

(
(Cτ,ξ,ε0)2, (C ′τ,ξ)

2
)

whereCτ,ξ,ε0 := (1+1/((1− γ)ξ)+τ log |A|)/(1−γ)−τ log(ε0/|A|), C ′τ,ξ := (1+τ/ξ)/(1−γ).
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Theorem 2 states that the primal-dual iterates of RPG-PD converge to a neighborhood of (π?τ , λ
?
τ ) in

a linear rate. The size of neighborhood scales with η/τ+ητ(1+log2 ε0) and the convergence rate is
ητ . Even if ε0 is very small, the log ε0-term is almost a constant. If we take η = min(ετ, 1/Cτ,ξ,ε0)
and ε0 = ε, then after O(1/ε) iterations the RPG-PD’s primal-dual iterate (πt, λt) is ε-close to
(π?τ , λ

?
τ ), i.e., Φt = O(ε) for any t ≥ (1/(ετ2)) log(1/ε). For small τ , we can translate the policy

convergence for the value functions in Corollary 3; see Appendix C.3 for proof.

Corollary 3 (Nearly-optimal constrained policy). Let Assumption 1 hold. For small ε > 0, if we
take η = Θ(ε4), τ = Θ(ε2), and ε0 = ε, then the policy iterates of RPG-PD (6) satisfy

V π
?

r (ρ)− V πtr (ρ) ≤ ε and − V πtg (ρ) ≤ ε for any t = Ω

(
1

ε6
log2 1

ε

)
where Ω(·) only has some problem-dependent constant.

Corollary 3 states that the last policy iterate of RPG-PD is an ε-optimal policy for Problem (1) after
Ω(1/ε6) iterations. Compared with the single-time-scale methods [23, 54], RPG-PD improves the
convergence from average-value (or regret-type) to last policy iterate. Not just being theoretically
stronger, the last-iterate convergence is more appealing since it captures the stability of trajectories
of an algorithm [29, 40]. Compared with the two-time-scale methods [28, 24, 34, 35], RPG-PD is
free of nested loops, and uniform ergodicity and exploratory initial state distribution. We notice that
the dual methods [28, 24] yield history-average policies and the dual methods [34, 35] return policies
from a subroutine. In contrast, RPG-PD outputs a nearly-optimal policy in the last iterate, the first-
of-its-kind in the constrained MDP literature, albeit the rate is worse than the average ones [23, 54].

To get zero constraint violation, i.e., V πtg (ρ) ≥ 0 at some t, it is straightforward to employ a conser-
vative constraint V πg′ (ρ) ≥ 0 with g′ := g− (1−γ)δ for some δ > 0. When ε is small enough, there
always exists some δ such that the policy iterates of RPG-PD (6) satisfy V π

?

r (ρ)− V πtr (ρ) ≤ ε and
V πtg (ρ) ≥ 0 for large t; see Appendix C.4 for proof. Our zero constraint violation ensures the last
policy iterate of RPG-PD to satisfy the constraint, which is not the zero average constraint violation
in the episodic setting [55, 56]. Compared with the zero constraint violation of a policy induced by
an average of past occupancy measures [42], RPG-PD’s zero constraint violation directly settles the
policy iterates down, which appears to be the first policy-based zero constraint violation.

Last but not least, the iteration complexity of RPG-PD is nearly-free of the MDP dimension, except
for an log |A|-term, which inherits the dimension-free property of the NPG methods [49, 57, 23].
Hence, it is ready to view RPG-PD as a variant of NPG methods and generalize RPG-PD to con-
strained MDPs with large state spaces in the function approximation setting.

3.3 Linear function approximation case

To deal with large state spaces, we use a parametrized policy πθ with θ ∈ Rd for RPG-PD (6) without
restricting ∆(A), where d is much smaller than the size of state/action spaces. To introduce function
approximation, we begin with a tabular softmax policy πθ(a | s) =

exp(θs,a)∑
a′ exp(θs,a′ )

for all (s, a) ∈
S × A and θ ∈ R|S||A|. Connecting NPG to mirror descent [49, 58], we express RPG-PD (6) as a
NPG method with the following update; see Appendix C.5 for proof,

θt+1 = θt + η (1− γ)Fρ(θt)
† · ∇θLτ (πθt , λt) (7a)

λt+1 = PΛ

(
(1− ητ)λt − ηV

πθt
g (ρ)

)
(7b)

where Fρ(θt)
† · ∇θLτ (πθt , λt) is a NPG direction, and Fρ(θ) is the Fisher information ma-

trix for a policy πθ, i.e., Fρ(θ) := Es∼ dπθρ Ea∼πθ(· | s)[∇θ log πθ(a | s)(∇θ log πθ(a | s))> ]. A
useful property of (7a) is that NPG can be related to a linear regression. For any policy πθ
and a state-action value function Qπθ , the associated compatible function approximation error is
EQ(w, θ, ν) := E(s,a)∼ ν [ (w>∇ log πθ(a | s) − Qπθ (s, a))2 ], where ν(s, a) = dπθρ (s)πθ(a | s)
is a state-action distribution. It is known that (7a) is equivalent to θt+1 = θt + ηw?t , where
w?t ∈ argminw∈Rd EQ(w, θt, νt) in which Qπθt (s, a) = Q

πθt
r+λtg+τψt

(s, a) and νt(s, a) =

d
πθt
ρ (s)πθt(a | s) (e.g., [59, Lemma 1]). In practice, only an approximate minimizer w?t is avail-

able if a sample-based algorithm is used, e.g., wt ≈ argmin‖w‖≤W EQ(w, θt, νt), where W > 0.
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A useful generalization of the softmax policy to large state spaces is the log-linear policy based on
linear function approximation. Let φs,a ∈ Rd be a feature map with ‖φs,a‖ ≤ 1 for each state-action
pair (s, a). A log-linear policy πθ: S → ∆(A) is parametrized by a parameter θ ∈ Rd,

πθ(a | s) =
exp(φ>s,a θ )∑
a′ exp(φ>s,a′ θ )

for all (s, a) ∈ S ×A

which takes the tabular softmax policy as a special case, i.e., φs,a is an indicator function. We notice
that ∇θ log πθ(a | s) = φs,a − Ea′∼πθ(· | s) [φs,a′ ]. Since the log-linear policy is invariant to any
action-independent term, it is convenient to replace∇θ log πθ(a | s) by φs,a and we introduce a sim-
plified compatible function approximation error, EQ(w, θ, ν) := E(s,a)∼ ν [ (φ>s,aw −Qπθ (s, a))2 ].

Thus, we can take w?t ∈ argminw∈Rd EQ(w, θt, νt) in which Qπθt (s, a) = Q
πθt
r+λtg+τψt

(s, a) and
νt(s, a) = d

πθt
ρ (s)πθt(a | s) to update θt+1 = θt + ηw?t . Using the log-linear policy class, we

replace the primal gradient direction of RPG-PD (6) by its linear function approximation φ>s,aw
?
t ,

πθt+1
(· | s) = argmax

π(· | s)∈ ∆̂(A)

{∑
a

π(a | s)φ>s,aw?t −
1

η
KL(π(· | s), πθt(· | s))

}
(8)

which, together with Dual update (6b), leads to a general version of RPG-PD. The set ∆̂(A) en-
sures bounded true gradient direction Qπθtr+λtg+τψt

(s, a). When there is no function approximation
error, (8) reduces to Primal update (6a). In practice, we can only compute w?t approximately via

wt ≈ argmin
‖w‖≤W

EQ(w, θt, dt,ν)

which leads to an inexact RPG-PD: Primal update (8) in which w?t is replaced by wt and Dual
update (6b), where dt,ν := (1 − γ)E(s0,a0)∼ ν

∑∞
t= 0 γ

tPr(st = s, at = a |πθt , s0, a0) is a
state-action distribution starting from any distribution ν. Noticeably, dt,ν is more general than
νt. To control the function approximation error, we divide EQ(wt, θt, dt,ν) into a statistical error
EQ(wt, θt, dt,ν) − EQ(w?t , θt, dt,ν) that is similar to the excess risk in supervised learning, and an
approximation error EQ(w?t , θt, dt,ν) that captures how well a linear function (w?t )>φs,a approx-
imates the true value function under dt,ν . If the on-policy distribution dt,ν in EQ(w?t , θt, dt,ν) is
replaced by ν?(s, a) = d

π?τ
ρ (s) UnifA(a), we define a transfer error EQ(w?t , θt, ν

?). Let the covari-
ance matrix of φs,a in any state-action distribution ν be Σν := E(s,a)∼ ν [φs,aφ

>
s,a ], and the relative

condition number between Σν and Σν? be κν := maxw∈Rd
w>Σν?w
w>Σνw

.

We make an assumption on the statistical error, the transfer error, and the relative condition number.
Assumption 2. (i) There exist εstat, εbias > 0 such that E[ EQ(wt, θt, dt,ν)−EQ(w?t , θt, dt,ν) ] ≤ εstat
and E[ EQ(w?t , θt, ν

?) ] ≤ εbias; (ii) The relative condition number is finite, i.e., κν <∞.

We assess the convergence of inexact RPG-PD via the distance metric E [ Φt ] := E [ KLt(ρ) ] +
1
2E
[

(λ?τ − λt)2
]
, where the expectation E is over the randomness of computing wt via a sample-

based algorithm. We state the convergence in Theorem 4 and delay its proof to Appendix C.6.
Theorem 4 (Linear convergence of inexact RPG-PD). Let Assumptions 1–2 hold. If we take the
stepsize η ≤ 1/CW , then the primal-dual iterates of inexact RPG-PD satisfy

E[ Φt+1 ] ≤ e−ητtE[ Φ1 ] +
η

τ
max

(
(CW )2, (C ′τ,ξ)

2
)

+
2

τ

(√
|A|εbias +

√
|A|κνεstat

)
where CW := 2W/(1− γ) and C ′τ,ξ := (1 + τ/ξ)/(1− γ).

Theorem 4 states that the primal-dual iterates of inexact RPG-PD converge to a neighborhood of
(π?τ , λ

?
τ ) in a linear rate. The convergence rate is ητ and the size of neighborhood scales with a

sum of an η/τ -term and an 1/τ -term that amplifies the effect of function approximation (εstat, εbias).
We note that, Theorem 4 does not require the strong duality in the parametrized policy class, and
the function approximation error includes the duality gap caused by the inexpensiveness of function
class and the policy representation error caused by the restricted policy set ∆̂(A). When there is no
function approximation error, Theorem 4 has a similar result as Theorem 2. It is important to control
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(εstat, εbias) to be small: (i) Application of stochastic gradient methods to the linear regression leads
to εstat = O(1/

√
K) or O(1/K), where K is the number of gradient steps, and thus, it is easy to

control εstat; (ii) When ε0 is very small, the parametrized policy iterate can be contained in ∆̂(A),
and thus εbias becomes zero in some cases, e.g., tabular softmax case [49] or low-rank MDPs [60, 61]
with d ≥ |A|; it can be made very small if the function class is rich, e.g., wide neural networks [62].
When the errors are small, it is ready to establish Corollary 5; see Appendix C.7 for proof.
Corollary 5 (Nearly-optimal constrained policy). Let Assumptions 1–2 hold and εstat, εbias = O(ε8)
for small ε, ε0 > 0. If we take the stepsize η = Θ(ε4) and τ = Θ(ε2), then the policy iterates of
inexact RPG-PD satisfy

E
[
V π

?

r (ρ)− V πθtr (ρ)
]
≤ ε and E

[
−V πθtg (ρ)

]
≤ ε for any t = Ω

(
1

ε6
log2 1

ε

)
where Ω(·) only has some problem-dependent constant.

Corollary 5 states that the iteration complexity in Corollary 3 holds in the function approximation
case. When ε is small enough, we can design a conservative constraint such that the policy iterates of
inexact RPG-PD satisfy V π

?

r (ρ)− V πθtr (ρ) ≤ ε and V πθtg (ρ) ≥ 0 for large t; see Appendix C.8 for
proof. Compared with the zero average constraint violation [63], this appears to be the first policy-
based zero constraint violation result in the function approximation setting. Moreover, we extend
inexact RPG-PD to be a sample-based algorithm and provide its sample complexity in Appendix C.9.

4 Policy Last-Iterate Convergence: Optimistic Method

Having established sublinear policy last-iterate convergence via regularization, we turn to the opti-
mistic gradient method [37] for a faster rate. We propose an optimistic method – Optimistic Policy
Gradient Primal-Dual (OPG-PD) – that converges an optimal constrained policy at a linear rate.

4.1 Optimistic policy gradient primal-dual method

We propose an optimistic policy gradient primal-dual (OPG-PD) method by maintaining two se-
quences for policy and dual variables each: {πt}t≥ 1 and {π̂t}t≥ 1 for the policy-player, and
{λt}t≥ 1 and {λ̂t}t≥ 1 for the dual-player,

πt(· | s) = argmax
π(· | s)∈∆(A)

{∑
a

π(a | s)Qπt−1

r+λt−1g
(s, a) − 1

2η
‖π(· | s)− π̂t(· | s)‖2

}

π̂t+1(· | s) = argmax
π(· | s)∈∆(A)

{∑
a

π(a | s)Qπtr+λtg(s, a) − 1

2η
‖π(· | s)− π̂t(· | s)‖2

} (9a)

λt = argmin
λ∈Λ

{
λV πt−1

g (ρ) +
1

2η
(λ− λ̂t)2

}
λ̂t+1 = argmin

λ∈Λ

{
λV πtg (ρ) +

1

2η
(λ− λ̂t)2

} (9b)

where η is the stepsize and (π̂0, λ̂0) = (π0, λ0) ∈ Π× Λ is the initial point. OPG-PD concurrently
works with two primal iterates and two dual iterates, and each two are updated consecutively to stabi-
lize the algorithm dynamics. The “optimistic” in optimization, e.g., [64] views (π̂t+1, λ̂t+1)-update
as a real policy gradient step and (πt, λt)-update as a prediction step that generates an intermediate
iterate (πt, λt). Not policy gradient at (π̂t, λ̂t), the real step uses a policy gradient at (πt, λt) from
prediction, exhibiting the optimism towards the prediction. Specifically, Primal update (9a) works
as the projected Q-ascent [58, 65], an application of the classical mirror descent with Euclidean
distance [53], where the projection onto a probability simplex can be solved efficiently [66]. Dual
update (9b) performs standard projected gradient descent. We note that OPG-PD is different from
the one-step multiplicative weights update in the policy-based ReLOAD [40].

When there is no MDP transition dynamics, i.e., constrained bandit [40], last-iterate convergence
of OPG-PD to a saddle point is known in the minimax optimization [67, 68, 38, 39], because Prob-
lem (3) reduces to a bilinear zero-sum game in this case. However, it is prohibitive to apply such
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bilinear game results to the Lagrangian V πr+λg(s) in every state s, as has been done for zero-sum
Markov games [43, 44]. The main reason for this is that there may not exist an optimal constrained
policy that is uniformly optimal across all states; see Appendix B.2.

4.2 Policy last-iterate convergence

We define the distribution mismatch coefficient over ρ as κρ := supπ ∈Π

∥∥dπρ/ρ∥∥∞, which is the
maximum distribution mismatch of policy π relative to ρ, where dπρ/ρ is divided per state. Hence,∥∥dπρ/dπ?ρ ∥∥∞ ≤ κρ/(1− γ) for any policy π ∈ Π and κρ ≤ 1/ρmin where ρmin := mins ρ(s). The
projection operator PX on a closed convex set X defines PX(x) := argminx′ ∈X ‖x′ − x‖.
We state the policy last-iterate convergence of OPG-PD (9) in Theorem 6.
Theorem 6 (Linear convergence of OPG-PD). Let Assumption 1 hold. Assume the optimal state
visitation distribution be unique, i.e., dπρ = dπ

?

ρ for any π ∈ Π?, and ρmin > 0. If we set the stepsize
η ≤ min

(
1/(4
√
ι), (1− γ)3/(4|A|), (1− γ)3/(2κρ)

)
, where ι > 0 is defined in Appendix D.1,

then the primal-dual iterates of OPG-PD (9) satisfy

1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖PΠ?(π̂t(· | s))− π̂t(· | s)‖2 +
1

2
(PΛ?(λ̂t)− λ̂t)2 ≤

(
1

1 + C

)t
where C := min(7(1− γ)/8, 7η2(1− γ)2(Cρ,ξ)

2ρmin/(6κρ,γ)2) in which Cρ,ξ and κρ,γ are given
by Cρ,ξ := cρmin/(2

√
|S||A|)/(1 + 1/((1 − γ)ξ)), κρ,γ := max(κρ/(1 − γ), 1), and c > 0 is a

problem-dependent constant from Lemma 26.

Theorem 6 states that the primal-dual iterates of OPG-PD converge to Π? × Λ? in a linear rate,
or putting it differently, (9) is contracting to a set of optimal primal/dual variables. The rate is
governed by a problem-dependent constant. Proof of Theorem 6 is provided in Appendix D. A
key to our analysis is to bridge the per-state policy gradient update and the policy improvement for
V πr+λg(ρ) that is non-convex in policy π, which departs from the convex last-iterate analysis [38,
39]. In addition, we address two technical difficulties. First, the lack of uniformly optimal policies
prevents learning an optimal policy from per-state bilinear games in zero-sum Markov games [43,
44]. Instead, we characterize the proximity of primal-dual iterates to a saddle point supported by
an optimal state visitation distribution dπ

?

ρ . Second, Problem (3) is an asymmetric game since one
plays a stochastic policy over a finite set of discrete actions and controls the transition dynamics,
but the other selects an action in a continuous interval. Thus, our dual-player analysis handles the
long-term effect of the policy-player, which did not appear in the symmetric game [43, 44].

A direct corollary of Theorem 6 is stated below; see Appendix D.3 for the proof.
Corollary 7 (Nearly-optimal constrained policy). Let Assumption 1 hold and the optimal state visi-
tation distribution be unique, i.e., dπρ = dπ

?

ρ for any π ∈ Π?, and ρmin > 0. If we use the stepsize η
from Theorem 6, then the policy iterates of OPG-PD (9) satisfy

V π
?

r (ρ)− V π̂tr (ρ) ≤ ε and − V π̂tg (ρ) ≤ ε for any t = Ω

(
log2 1

ε

)
where Ω(·) only has some problem-dependent constant.

Corollary 7 states that the last policy iterate of OPG-PD is an ε-optimal policy for Problem (1) after
an almost constant number of iterations, which improves the sublinear rate in Corollary 3. OPG-
PD also improves the average-value convergence of the single-time-scale methods [23, 54] and the
two-time-scale methods [28, 24, 34, 35], and matches the last-iterate convergence rate of the two-
time-scale methods [34, 35]. We stress that our last-iterate convergence indicates the stability of
whole primal-dual iterates, which is not the last policy iterate from a subroutine [34, 35]. Again,
when ε is small, we can design a conservative constraint such that the policy iterates of OPG-PD
satisfy V π

?

r (ρ)− V π̂tr (ρ) ≤ ε and V π̂tg (ρ) ≥ 0 for large t; see Appendix D.4 for the proof.

5 Computational Experiment

We validate the effectiveness of RPG-PD (6) and OPG-PD (9) by comparing them with typical
primal-dual methods in Figure 1. A few observations are in order. The initial oscillation of RPG-PD
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(– –) is damped, and OPG-PD (—) is almost free of oscillation as PID Lagrangian (····). However,
oscillation of NPG-PD (–·–) causes its last-iterate policy violating the constraint V πg (ρ) ≥ 0. OPG-
PD (—) reaches the maximum reward value in four methods and RPG-PD (– –) converges to a
slightly smaller value due to regularization, while both meet the constraint at the end. However, PID
Lagrangian (····) is highly sub-optimal. Hence, our methods OPG-PD and RPG-PD can overcome
oscillation and approach a nearly-optimal constrained policy in the last-iterate fashion.
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Figure 1: Convergence performance of RPG-PD, OPG-PD, and primal-dual methods. Learning
curves of our RPG-PD (– –) and OPG-PD (—), and NPG-PD [23] (–·–) and PID Lagrangian [29] (····)
methods. The horizontal axes mean the policy iterations {πt}t≥ 0 that are generated by each method
and the vertical axes mean the value functions of the policy iterates {πt}t≥ 0: reward value V πtr (ρ)
(Left) and utility value V πtg (ρ) (Right). In this experiment, we use the same stepsize η = 0.1 for all
methods, the regularization parameter τ = 0.08 for RPG-PD, and the uniform initial distribution ρ.

We showcase the linear convergence of OPG-PD (9) with three constant stepsizes in Figure 2. Three
policy optimality gaps decrease linearly in the logarithmic scale plot, which verifies the linear last-
iterate convergence of OPG-PD’s policy iterates in Theorem 6. Noticeably, there is no oscillation
behavior in OPG-PD’s policy iterates, which perhaps is best for learning constraints [29, 10]. We
also see that a large stepsize η = 0.2 improves the convergence, which is reflected by our rate.
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Figure 2: Convergence performance of OPG-PD with stepsize η: (η = 0.05, ····), (η = 0.1, –·–),
(η = 0.2, —). The horizontal axis represents the policy iterations {πt}t≥ 0 that are generated by
OPG-PD and the vertical axis means the policy optimality gap that measures the distance of the
policy iterates {πt}t≥ 0 to an optimal policy π?:

∑
s ‖πt(· | s)− π?(· | s)‖

2. In this experiment, we
take the initial distribution ρ to be a uniform one.

Please see Appendix E for more details of this experiment, more baselines, and sensitivity analysis.

6 Concluding Remarks

We have presented two single-time-scale policy-based primal-dual methods for finding an optimal
policy of a constrained MDP, with global non-asymptotic and last-iterate policy convergence guar-
antees. Our first regularized method enjoys a nearly dimension-free sublinear rate, while our second
optimistic method possesses a linear rate that is problem-dependent. Our work stimulates a num-
ber of compelling future directions: (i) Our problem setting circumvents the exploration difficulty,
which leaves online exploration open; (ii) Our convergence rates are not as sharp as solving convex-
concave minimax optimization problems, regarding the order or instance-related constant; (iii) Last-
iterate convergence is under-examined in constrained MDPs with other constraints, and unexplored
for other gradient methods.
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[46] Csaba Szepesvári. Constrained MDPs and the reward hypothesis. http://readingsml.
blogspot.com/2020/03/constrained-mdps-and-reward-hypothesis.html, 2020.
Access on January 21, 2023.

[47] Tom Zahavy, Brendan O’Donoghue, Guillaume Desjardins, and Satinder Singh. Reward is
enough for convex MDPs. Proceedings of the Advances in Neural Information Processing
Systems, 34:25746–25759, 2021.

[48] Dongsheng Ding, Kaiqing Zhang, Jiali Duan, Tamer Başar, and Mihailo R Jovanović. Con-
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Supplementary Materials for
“Last-Iterate Convergent Policy Gradient Primal-Dual Methods

for Constrained MDPs”

A More Comparisons and Additional Related Works

In this section, we discuss more comparison details and other related works.

Iterate Type Method Single-time-scale Complexity

Occupancy
measure

Saddle flow dynamics [36] Yes asymptotic

ReLOAD [40] Yes asymptotic

OPD (18) Yes Ω
(

log2 1
ε

)

Policy

Dual descent [34] No Ω
(

log2 1
ε

)
Cutting-plane [35] No Ω

(
log3 1

ε

)
Policy-based ReLOAD [40] Yes —

RPG-PD (6) Yes Ω
(

1
ε6 log2 1

ε

)
OPG-PD (9) Yes Ω

(
log2 1

ε

)
Table 1: Iteration complexities of our methods and representative algorithms for solving a con-
strained MDP problem: maximizeπ V

π
r (ρ) subject to V πg (ρ) ≥ 0 with reward/utility functions

r ∈ [0, 1], g ∈ [−1, 1]. The iteration complexity is the number of gradient-based updates for an
algorithm to output the last policy-iterate πt that satisfies V ?r (ρ)− V πtr (ρ) ≤ ε and −V πtg (ρ) ≤ ε.

Last-iterate and value-average (or policy-mixture) performance in constrained MDPs. There
has been a flurry of research activities in studying convergence behaviors of direct policy search or
policy gradient-based algorithms for constrained MDPs in the infinite-horizon discounted setting.
There are two main streams: (i) Lagrangian-based policy search and (ii) Approximate constrained
policy search.

(i) Lagrangian-based policy search. In the Lagrangian-based framework, last-iterate perfor-
mance has been established as asymptotic convergence for several policy-based primal-dual
algorithms, e.g., naive policy gradient-based primal-dual method [21] and actor-critic vari-
ants of policy gradient primal-dual methods [6, 22, 16, 9]. These studies rely on modeling
primal-dual updates in two separate time scales and/or two nested loops as continuous-time
gradient flow dynamics, and their asymptotic convergence is often restricted to some sta-
tionary points. We notice that recent global asymptotic convergence results [36, 40] are in
terms of occupancy measure iterates instead of instantaneous policy iterates, as highlighted
in Table 1. In contrast, our first method: OPD strengthens the asymptotic last-iterate con-
vergence to non-asymptotic and last-iterate convergence with a linear rate.
To provide efficiency and optimality performances, it is crucial to develop algorithms with
global non-asymptotic convergence guarantees. Several recent policy-based primal-dual al-
gorithms have been proved to converge with non-asymptotic convergence rates, e.g., policy
gradient primal-dual method [69], natural policy gradient-based or policy mirror-descent
style primal-dual methods [23, 27, 54], accelerated natural policy gradient-based primal-
dual methods [24, 25, 28], actor-critic version of natural policy gradient-based primal-dual
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method [26], and anchor-changing natural policy gradient-based primal-dual method [70].
These studies characterize non-asymptotic convergence to an optimal constrained policy
regarding the average of value functions, except for [27] in which the convergence is for
a mixture of past policies and [28] in which the convergence is for a policy induced by
a history-weighted occupancy measure. Similar non-asymptotic convergence can also be
found in an occupancy measure-based primal-dual method [42], where the convergence is
in terms of the average of occupancy measures. Besides, sublinear non-asymptotic con-
vergence can be found in generative model-based methods [71, 41], regarding a mixture of
past policies. In contrast, our two policy-based methods: RPG-PD and OPG-PD strengthen
the sublinear non-asymptotic convergence of average value functions or a mixture of past
policies to sublinear and linear non-asymptotic convergence of policy iterates. In particu-
lar, we exploit the regularization technique [52] and the optimistic gradient method [72, 37]
to augment typical policy-based primal-dual methods with novel identification of decreas-
ing distances of policy iterates to an optimal constrained policy, which allows for stronger
convergence.
Instead of working with policy primal and dual variables both, Lagrangian-based dual
method formulates a constrained MDP as a convex dual problem that enables classical
dual ascent method [12]. Despite guaranteed convergence in dual space from convex opti-
mization, it is challenging to compute an optimal constrained policy in primal policy space
even if we use an optimal dual variable [9, 47, 30]. Recently, regularization [52] has been
used in dual ascent methods [34, 35] in which policy last-iterates of natural policy gradient-
based subroutines can be nearly-optimal. These dual-based algorithms [34, 35] work with
two nested loops and their non-asymptotic last-iterate convergence relies on tuning loop
parameters optimally. In contrast, our two policy-based methods: RPG-PD and OPG-PD
remove the double loop requirement as listed in Table 1, which permits outputting the last-
iterate policy as a nearly-optimal constrained policy. In Table 1, we see that our RPG-PD
method has a worse rate while OPG-PD achieves a linear rate which is similar as the dual-
based methods [34, 35]. Importantly, our non-asymptotic convergence characterizes the
stability of primal-dual iterates generated by the algorithms, which is theoretically stronger
and more appealing in practice.

(ii) Approximate constrained policy search. Approximation of constrained MDPs with sur-
rogate functions has been shown to be effective, e.g., constrained policy optimization [8],
successive convex relaxation [73], projection-based constrained policy optimization [74],
first-order constrained optimization [75], and conservative policy update [76]. These stud-
ies have shown impressive empirical performance by iteratively solving an approximated
constrained optimization problem and such performance is characterized in the worst-case
policy improvement, except for [73] in which local asymptotic convergence is established,
which leaves non-asymptotic convergence of policy iterates open. A related approach is the
primal method [77] that treats a constrained MDP as an unconstrained one and corrects pol-
icy iterates whenever constraint violation happens. Non-asymptotic convergence of primal
method has been established in terms of mixture of past policies. Another approximation
method is the interior-point policy optimization [78] that solves an unconstrained MDP
by adding a logarithm barrier function into the objective function, while convergence of
this method is unknown. In contrast, we have supported our methods with non-asymptotic
last-iterate convergence. Since Lagrangian-based methods are typically used to solve an
approximated constrained optimization problem [8, 74, 75, 76], our methodologies can be
applied to these methods for better convergence, which we leave as future work.

For constrained MDPs in the finite-horizon episodic setting and the total or average-reward settings,
there is a rich line of works that have developed learning algorithms with non-asymptotic conver-
gence guarantees in terms of the average of value functions [79, 80, 81, 82, 83, 84, 85, 55, 86, 87, 88,
89, 56, 90, 91, 92, 93, 94, 95], except for [96] in which global asymptotic convergence of a policy
gradient method has been established in the finite-horizon constrained MDP setting. Although being
not directly comparable, their non-asymptotic and last-iterate convergence are not established yet,
to the best of our knowledge.

Lagrangian-based policy gradient methods in constrained MDPs. Our methods are closely per-
tinent to Lagrangian-based policy gradient methods for solving constrained MDPs in the infinite-
horizon discounted setting, e.g., policy gradient-based primal-dual methods [21, 6, 22, 16, 9, 69],
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natural policy gradient-based or mirror-descent style primal-dual methods [23, 27, 28, 24, 54, 25,
26], dual descent methods [97, 34, 35, 12]. Regarding algorithm implementation, primal-dual meth-
ods [21, 6, 22, 16, 9, 23, 27, 28, 24, 54, 25, 26, 69] work with primal-dual iterates simultaneously in
a single loop, which is similar to the classical gradient-based primal-dual methods in constrained op-
timization [31, 32, 33], while diminishing stepsizes in different speeds is often required in many of
them [21, 6, 16, 9]; dual descent methods [97, 34, 35, 12] intermittently operate the dual iterate only
after a sufficient number of primal iterations, which often adds difficulty of tuning hyper-parameters
of nested loops in practice. It is worth mentioning that, it is convenient to view such dual descent
methods as primal-dual methods that update primal variable faster than iterating dual variable. With
respect to convergence analysis, stochastic approximation has been widely used to establish asymp-
totic convergence of several primal-dual methods [6, 22, 16, 9] by analyzing the stability of limiting
gradient flow dynamics, while recent methods [28, 24, 54, 25, 26, 69, 34, 35] exploit the connec-
tion between policy gradient and mirror-descent in convex optimization to prove non-asymptotic
convergence. However, non-asymptotic convergence of primal-dual methods only characterizes the
average of value functions [23, 54, 25, 26, 69] or a mixture of past policies [27, 28, 24] because
of the dual update that results from regulating constraint violation. For the dual descent meth-
ods [34, 35], non-asymptotic convergence is characterized in terms of last-iterate policies that are
computed by approximately solving unconstrained RL problems with fixed dual variables. There-
fore, designing Lagrangian-based policy gradient methods that enjoy the single-loop simplicity and
the non-asymptotic convergence of policy iterates is challenging, because of the oscillation and
overshoot issues of updating primal-dual variables simultaneously [29, 40]. In this work, we have
established non-asymptotic and last-iterate convergence of two single-loop Lagrangian-based policy
gradient methods via the regularization and optimistic gradient techniques and our analysis builds
on the mirror-descent analysis for policy gradient methods [49, 98, 65, 99] while focusing on the
distance of policy iterates, which is stronger than the prior art. Compared with recent efforts [40, 36]
as shown in Table 1, our algorithms are simpler and our theoretical guarantees are stronger.

Gradient-based methods with last-iterate convergence for learning in games. Since the
Lagrangian-based approach for constrained MDPs can be viewed as solving a constrained saddle-
point problem, another line of related work is gradient-based methods for solving saddle-point (or
minimax optimization) problems with last-iterate convergence. Last-iterate convergence of gradient-
based methods has been established in several scenarios, e.g., linear rates of extragradient meth-
ods for strongly convex problems [100, 101], asymptotic convergence of optimistic multiplicative
weights updates for convex problems [67, 68], linear rates of optimistic gradient methods for convex
problems [43], and lower bound-matching rates of extragradient and optimistic gradient methods
for convex problems [39]. These studies focus on convex-concave saddle-point problems except
for [102, 103, 104] in which non-asymptotic last-iterate convergence is achievable for saddle-point
problems with special non-convexity structure. In contrast, our constrained saddle-point problem
that result from constrained MDP is non-convex in policy primal variable, which prevents direct ap-
plication of these last-iterate results. A slightly twisted exception is that our constrained saddle-point
problem can be reformulated to be convex in occupancy measure instead of policy, which leads the
second and third methods in Table 1. To solve our Lagrangian-based constrained saddle-point prob-
lem in policy space, our first policy-based method: RPG-PD relaxes the non-convexity by adding
regularization into the objective function and we provide sublinear last-iterate policy convergence
guarantee using the distance analysis for policy primal-dual iterates. To improve the convergence
rate, we further develop another policy-based method: OPG-PD that extends the optimistic gradient
method [37] for a class of non-convex constrained saddle-point problems. This extension departs
from previous extensions for zero-sum Markov games [43, 44], because lacking of uniformly opti-
mal policies prevents learning an optimal policy from per-state bilinear games. Instead, we provide
a new distance analysis of policy primal-dual iterates of an optimistic gradient method for solving
a new class of constrained non-convex saddle-point problems, with linear last-iterate policy conver-
gence.

Non-asymptotic last-iterate (or non-ergodic) convergence in constrained optimization. Re-
duction of constrained optimization to saddle-point problems is a classical idea to solve con-
strained optimization problems by developing primal-dual algorithms, e.g., primal-dual interior-
point methods [105], Uzawa and Arrow–Hurwicz algorithms [31, 106, 107], and Lagrange mul-
tiplier methods [108, 45]. Inspired by the Lagrange multiplier methods, many recent studies
on constrained optimization have significantly advanced primal-dual algorithms with last-iterate
convergence, e.g., accelerated augmented Lagrangian method [109], accelerated universal primal-
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dual gradient method [110], Douglas-Rachford alternating direction method [111], inexact aug-
mented Lagrangian method [112, 113], alternating proximal augmented Lagrangian algorithm [114],
augmented Lagrangian-based decomposition method [115], faster Lagrangian method [116], and
prediction-correction-based primal-dual method [117]. However, all these studies build on aug-
mented Lagrangian methods to solve the classical convex optimization problems with linear con-
straints. In comparison, we have studied a class of non-convex constrained optimization problems
that result from constrained MDPs using the standard Lagrange multiplier method. We notice
that a Lagrangian-based two-player game has been used to study general non-convex constrained
optimization problems with average performance analysis [118]. Our two policy-based primal-
dual methods with sublinear and linear last-iterate convergence appear to be the first global non-
asymptotic and last-iterate convergence result in non-convex constrained optimization.

B Proofs in Section 2

In this section, we make some helpful observations and provide proofs of the claims in Section 2.

B.1 Lack of uniformly optimal stationary policies in constrained MDPs

In unconstrained MDPs, there always exists an optimal policy that is optimal simultaneously for all
states (e.g., see [119] and [120, Chapter 6]). In contrast, this is not true anymore for constrained
MDPs. To see this, we adopt a counter-example from [46] and investigate it in the constrained MDP
setting.

L R
(R, 1,−1)

(L, 0, 0) (R/L, 1, 1)

Figure 3: An example of a constrained MDP that has the objective function V πr (ρ) and the con-
straint set {π ∈ Π |V πg (ρ) ≥ 0}. The pair (a, r, g) associated with a directed arrow represents
(reward, utility) received when an action a at a certain state is taken.

We introduce a constrained MDP with two states: Left (L) and Right (R), in Figure 3. In each state,
there are two actions {L,R}. The MDP transition dynamics is deterministic. In state L, if the agent
chooses action L, then the next state is L and the reward/utility (0, 0) is received; otherwise, action
R leads to next stateR and reward/utility (1,−1). In stateR, no matter which action the agent takes,
the next state is R and the reward/utility (1, 1) is received.

Since the state R is trivial, a stationary policy π can be represented by the probability of taking
action L in state L denoted by p. With a slight abuse of notation, we use notion ρ to represent the
probability of starting off from state L. Thus, we can compute the value functions as follows via the
Bellman equations, i.e., V (s) =

∑
a π(a | s)(r(s, a) + γ

∑
s′ P (s′ | s, a)V (s)) for all s.

Vr(L) = p× (0 + γ(Vr(L)× 1 + Vr(R)× 0))︸ ︷︷ ︸
take action L

+ (1− p) (1 + γ(Vr(L)× 0 + Vr(R)× 1))︸ ︷︷ ︸
take action R

Vr(R) =
1

1− γ
and

Vg(L) = p× (0 + γ(Vg(L)× 1 + Vg(R)× 0))︸ ︷︷ ︸
take action L

+ (1− p) (−1 + γ(Vg(L)× 0 + Vg(R)× 1))︸ ︷︷ ︸
take action R

Vg(R) =
1

1− γ
or, equivalently,

Vr(L) =
1− p

1− γp
× 1

1− γ
, Vr(R) =

1

1− γ
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and Vg(L) =
1− p

1− γp
× 2γ − 1

1− γ
, Vg(R) =

1

1− γ
.

(i) It is easy to check a basic case: γ = 0 [46]. We can compute the value functions as follows,

V pr (ρ) = (1− p)ρ + (1− ρ)

V pg (ρ) = −(1− p)ρ + (1− ρ).

Feasibility of the policy p requires that V pg (ρ) ≥ 0, i.e.,

p ≥ 2ρ− 1

ρ
for any ρ ∈

[
1

2
, 1

]
. (10)

Hence, the maximum V pr (ρ) within the feasible region can be reached at the optimal policy,

p? =
2ρ− 1

ρ
.

Therefore, the optimal policy p? depends on the initial state distribution ρ. Moreover,
except that ρ = 1 or 1

2 , the optimal policy p? is a stochastic policy and is unique.

(ii) A slightly more general case is given by γ = 1
4 . Thus, we can compute the value functions

as follows,

V pr (ρ) =
4

3
× 1− p

1− p/4
× ρ +

4

3
× (1− ρ)

V pg (ρ) = −2

3
× 1− p

1− p/4
× ρ +

4

3
× (1− ρ).

Feasibility of the policy p requires that V pg (ρ) ≥ 0, i.e.,

p ≥ 2× 3ρ− 2

3ρ− 1
for any ρ ∈

(
1

3
, 1

]
.

In particular, if we take ρ = 7
9 , then p ≥ 1

2 . In this case, the maximization of V pr (ρ) yields
an optimal policy p? = 1

2 , which is a uniform policy and is unique.

B.2 Scalarization fallacy in constrained MDPs

In constrained RL, scalarization is often used to reduce a constrained MDP problem to a standard
unconstrained one, which might permit many unconstrained RL algorithms [8, 9]. Unfortunately,
as pointed out in the literature (e.g., [46, Part 4] and [30]), such a reduction does not necessarily
provide a solution to the original constrained MDP problem. It is easy to see this from the previous
examples in Figure 3. In the basic case: γ = 0, if we take ρ = 3

4 , then from (10) the optimal policy
is given by p? = 2

3 , which is a stochastic policy; we see a uniform optimal policy when γ = 1
4 . By

shaping a composite function r + λg with some fixed λ ∈ [0,∞], the scalarization method aims to
solve the following unconstrained MDP problem,

maximize
π∈Π

V πr+λg(ρ). (11)

However, by the optimality of dynamic programming [120, Chapter 6], an optimal policy is given
in a deterministic form which has been widely used in theory and practice. Therefore, solving the
above scalarized version of a constrained MDP problem does not necessarily provide an optimal
solution for the original constrained MDP problem. We also notice that this phenomenon is reported
in recent empirical studies [9, 30] and a more formal statement [47, Lemma 1]. Hence, it can be
infeasible for dual descent methods [12, 30] to find an optimal constrained policy, because solving
Problem (11) often yields a deterministic policy, which can be sub-optimal for a constrained MDP
with a unique stochastic optimal policy, e.g., constrained MDP examples in Appendix B.1.
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B.3 Properties of saddle points

First, we state the invariance property of saddle points [121] for our constrained saddle-point prob-
lem (3). By the invariance property of saddle points, we can restrict the problem domain without
changing the saddle-point property when the original saddle points are contained in the restricted
domain. Let the set of max-min points be Π? := argmaxπ ∈Π minλ∈ [0,∞] V

π
r+λg(ρ) and the set of

min-max points be Λ? := argminλ∈ [0,∞] maxπ ∈Π V
π
r+λg(ρ).

Lemma 8 (Invariance of saddle points). Let (π?, λ?) ∈ Π?×Λ? be a saddle point of V πr+λg(ρ) over
Π× [0,+∞]. For any subset Λ′ ⊂ [0,+∞], if (π?, λ?) ∈ Π×Λ′, then (π?, λ?) is a saddle point of
V πr+λg(ρ) over Π× Λ′.

Proof. From the saddle-point property of (π?, λ?), we have

π? ∈ argmax
π ∈Π

V πr+λ?g(ρ) and λ? ∈ argmin
λ∈ [0,+∞]

V π
?

r+λg(ρ)

It is straightforward to see that

V πr+λ?g(ρ) ≤ V π
?

r+λ?g(ρ) for any π ∈ Π. (12)

Since Λ′ ⊂ [0,+∞] and λ? ∈ Λ′, V π
?

r+λ?g(ρ) = minλ∈Λ′ V
π?

r+λg(ρ). Hence,

V π
?

r+λ?g(ρ) ≤ V π
?

r+λg(ρ) for any λ ∈ Λ′. (13)

Finally, combining (12) and (13) defines (π?, λ?) as a saddle point of of V πr+λg(ρ) over Π×Λ′.

We next show the interchangeability of saddle points in two-player zero-sum games [122] for our
non-convex game.
Lemma 9 (Interchangeability of saddle points). Let (π?, λ?), (π̄?, λ̄?) ∈ Π? × Λ? be two sad-
dle points of V πr+λg(ρ) over Π × [0,+∞]. Then, both (π?, λ̄?) and (π̄?, λ?) are saddle points of
V πr+λg(ρ) over Π× [0,+∞].

Proof. By the definition of saddle points (π?, λ?) and (π̄?, λ̄?),

V πr+λ?g(ρ) ≤ V π
?

r+λ?g(ρ) ≤ V π
?

r+λg(ρ) for all π ∈ Π and λ ∈ [0,∞]

V πr+λ̄?g(ρ) ≤ V π̄
?

r+λ̄?g(ρ) ≤ V π̄
?

r+λg(ρ) for all π ∈ Π and λ ∈ [0,∞].

Then,
V π̄

?

r+λ̄?g(ρ) ≤ V π̄
?

r+λ?g(ρ) ≤ V π
?

r+λ?g(ρ)

V π
?

r+λ?g(ρ) ≤ V π
?

r+λ̄?g(ρ) ≤ V π̄
?

r+λ̄?g(ρ).

Therefore,

V πr+λ̄?g(ρ) ≤ V π̄
?

r+λ̄?g(ρ) ≤ V π
?

r+λ?g(ρ) ≤ V π
?

r+λ̄?g(ρ) ≤ V π̄
?

r+λ̄?g(ρ) ≤ V π
?

r+λ?g(ρ) ≤ V π
?

r+λg(ρ)

for all π ∈ Π and λ ∈ [0,∞], which shows that (π?, λ̄?) is a saddle point of V πr+λg(ρ) over
Π× [0,+∞].

Similarly, we can prove it for (π̄?, λ?).

B.4 Constrained MDPs in occupancy-measure space

In the analytic approach [123, 5], the value functions in Problem (1) are bilinear in the occupancy
measure V π� (ρ) = 〈�, q〉 for � = r or u, where qπ: S × A → R is an (un-normalized) occupancy
measure over the state-action space,

qπ(s, a) =

∞∑
t= 0

γtPr(st = s, at = a |π, s0 ∼ ρ) (14)
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which adds up discounted probabilities of visiting (s, a) in the execution of π. Furthermore, we
let the operator P>: R|S||A| → R|S| be (P>q)(s) :=

∑
s′,a′ P (s | s′, a′)q(s′, a′), and the operator

E>: R|S||A| → R|S| be (E>q)(s) :=
∑
a q(s, a) or simply q(s). With a slight abuse of notation,

we denote ρ = [ ρ(s1), . . . , ρ(s|S|) ]>. A valid occupancy measure qπ ∈ R|S||A| satisfies the the
Bellman flow equations,

Q :=
{
q ∈ R|S||A| |E>q = γP>q + ρ and q ≥ 0

}
. (15)

It is known that the Bellman flow constraint is necessary and sufficient for any q ∈ R|S||A| to be a
valid occupancy measure (e.g., [124, Lemma 1]).

Let the concatenation of r(s, a), u(s, a) for all (s, a) be r, u ∈ R|S||A|, respectively. In the occu-
pancy measure space, the goal of a constrained MDP is to find a solution q? of a linear program,

maximize
q∈Q

〈r, q〉 subject to 〈u, q〉 ≥ b. (16)

Denoting g: S × A → [−1, 1] as g := u − (1 − γ)b, we simplify the constraint 〈u, q〉 ≥ b as
〈g, q〉 ≥ 0. By the method of Lagrange multipliers, we dualize two constraints in (16) and introduce
a standard Lagrangian,

L(q, λ, µ) := 〈 r + λg, q 〉 + µ>
(
ρ− (E − γP )>q

)
where π ∈ Π is the primal variable, λ ∈ [0,∞] is the dual variable for the constraint 〈g, q〉 ≥ 0,
and µ is the dual variable for the equality constraint in Q. Since the strong duality holds for any
feasible linear program, the boundedness of λ? in Lemma 1 holds for L(q, λ, µ). Thus, any saddle
point (q?, λ?, µ?) is also a max-min and min-max point, i.e., q? is the occupancy measure associated
with the optimal policy π?, and (λ?, µ?) ∈ argminλ≥ 0,µ maxq≥ 0 L(q, λ, µ). Boundedness of q?
is straightforward from (14),

q? ∈ Q :=

{
q ∈ R|S||A|

∣∣ 0 ≤ q(s, a) ≤ 1

1− γ
,∀(s, a) ∈ S ×A

}
which allows us further restrict q ∈ Q ⊂ Q. We next show boundedness of (λ?, µ?) in Lemma 10.
Lemma 10 (Boundedness). Let Assumption 1 hold. Then, λ? ∈ Λ and µ? ∈ M , where Λ is stated
below (3) and M := {µ | |µ(s)| ≤ µmax,∀s ∈ S} where µmax := 1−γ+1/ξ

(1−γ)2 .

Proof. From the saddle-point property of (q?, λ?, µ?), we have

q? ∈ argmax
q ∈Q

L(q, λ?, µ?)

(λ?, µ?) ∈ argmin
λ≥ 0,µ

L(q?, λ, µ)

equivalently, for any q ∈ Q, ∂qL(q?, λ?, µ?)>(q − q?) ≤ 0, and for any µ and λ ≥ 0,
∂µL(q?, λ?, µ?)>(µ− µ?) + ∂λL(q?, λ?, µ?)(λ− λ?) ≥ 0. Hence, for any q ∈ Q,

〈r + (γP − E)µ? + λ?g, q − q?〉 ≤ 0.

Arbitrary q ∈ Q demands the inequality r+(γP −E)µ?+λ?g ≤ 0. By the definition of occupancy
measure, we know that for any s ∈ S there exists an action a ∈ A such that q?(s, a) > 0. Thus, the
equality r + (γP −E)µ? + λ?g = 0 must hold at such state-action pairs in which we represent the
associated reward and transition by (r̄, P̄ ). Hence,

‖r̄ + λ?g‖∞ =
∥∥(γP̄ − Ē)µ?

∥∥
∞

≥ (1− γ) ‖µ?‖∞ .

Thus, (1− γ) ‖µ?‖∞ ≤ 1 + λ?. However, by Assumption 1, L(q̄, λ?, µ?) ≤ L(q?, λ?, µ?). Hence,

〈r, q? − q̄〉 + λ? 〈g, q? − q̄〉 ≥ 0

which, together with the feasibility of q̄ and the optimality of q?, imply that 0 ≤ λ?ξ ≤ 〈r, q? − q̄〉.
Hence, 0 ≤ λ? ≤ 1

(1−γ)ξ , which further yields a bound on ‖µ?‖∞.

26



We now obtain a constrained saddle-point problem in terms of the q-based Lagrangian,

maximize
q∈Q

minimize
λ∈Λ, µ∈M

L(q, λ, µ) = minimize
λ∈Λ, µ∈M

maximize
q ∈Q

L(q, λ, µ) (17)

where we take bounded polytopesQ and Λ×M such that they contain q? and (λ?, µ?), respectively.

For notational brevity, we introduce z = (q, λ, µ), Z := Q × Λ ×M , and Z? := Q? × Λ? ×M?

which contains all saddle points z? := (q?, λ?, µ?). Let the gradient of L(q, λ, µ) be

F (q, λ, µ) :=

 −∇qL(q, λ, µ)

∇(λ,µ)L(q, λ, µ)

 .
Due to the bilinearity of L(q, λ, µ) over a compact domain, L(q, λ, µ) has a gradient Lipschitz
constant Lf . Let PX be the projection operator onto a setX , i.e., PX(x) := argminx′ ∈X ‖x′ − x‖.
Since the q-based Lagrangian L(q, λ, µ) is bilinear and the domains are polytopes, Problem (17)
satisfies the metric subregularity condition [38, Theorem 5].
Lemma 11 (Metric subregularity condition). Let Assumption 1 hold. Then, the gradient function
F (z) satisfies that for any z ∈ Z/Z? with z? = PZ?(z),

sup
z′ ∈Z

F (z)>(z − z′)
‖z − z′‖

≥ C ‖z − z?‖

where C > 0 is a problem-dependent constant.

Hence, application of the optimistic gradient method [38] to Problem (17) yields an Opti-
mistic Primal-Dual (OPD) algorithm that begins with two initial tuples of primal/dual variables
(q0, λ0, µ0) = (q̂1, λ̂1, µ̂1) ∈ Z, and performs two gradient steps for each primal/dual variable at
time t ≥ 1,

zt = PZ ( ẑt − ηF (zt−1) )

ẑt+1 = PZ ( ẑt − ηF (zt) )

(18)

where η is the stepsize. Let the squared distance of a point z ∈ Z to the set Z? be dist2(z, Z?) :=

‖z − PZ?(z)‖2. It is straightforward to employ [38, Theorem 8] to claim last-iterate convergence
guarantee of OPD (18) below.
Theorem 12 (Linear convergence of OPD). Let Assumption 1 hold. If the stepsize η in OPD (18)
satisfies η < 1

8Lf
, then the iterates {zt}t≥ 0 converge to the set of saddle points Z? linearly,

dist2(zt, Z
?) ≤ C1

(
1

1 + C2

)t
where C1 = 64 dist2(ẑ1, Z

?) and C2 = min( 16η2C2

81 , 1
2 ) for a problem-dependent constant C > 0.

Theorem 12 shows that the primal-dual iterates of OPD converge to the saddle point set Z? in
linear rate. Compared with a contemporaneous work [40], OPD is free of projection to a occupancy
measure set, and enjoys non-asymptotic and last-iterate linear convergence. If the underlying policy
is recovered via πt(a | s) = qt(s,a)∑

a′ qt(s,a
′) for all (s, a), these policy iterates πt associated with the

occupancy measure iterates qt also converge to an optimal constrained policy π?.
Corollary 13 (Nearly-optimal constrained policy). Let Assumption 1 hold. Assume ρmin :=
mins ρ(s) > 0 and re-define Q := {q ∈ R|S||A| | 0 ≤ q(s, a) ≤ 1/(1 − γ), q(s) ≥ ρmin/(1 −
γ),∀(s, a) ∈ S ×A}. If we set the stepsize η in a similar way as in Theorem 12, then the recovered
policy iterates {πt}t≥ 0 of OPD (18) satisfy

V π
?

r (ρ)− V πtr (ρ) ≤ ε and − V πtg (ρ) ≤ ε for any t = Ω

(
log2 1

ε

)
where πt(a | s) = qt(s,a)∑

a′ qt(s,a
′) for all (s, a), and Ω(·) only has some problem-dependent constant.
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Proof. The key to our proof is to connect the occupancy measure iterates qt with associated policy
iterates πt. It is straightforward that Theorem 12 continues to hold, with a further restricted the
domain Q. If we set the stepsize η in a similar way as in Theorem 12, then for any t = Ω(log 1

ε ),

max
{
‖PQ?(qt)− qt‖2 , ‖PΛ?(λt)− λt‖2 , ‖PM?(µt)− µt‖2

}
= O(ε).

Let π?t be a policy that is associated with the occupancy measure qπ
?
t = PQ?(qt) and πt be a policy

that is associated with the occupancy measure iterate qt, i.e., πt(a | s) = qt(s,a)∑
a′ qt(s,a

′) for all (s, a).
We denote (λ?t , µ

?
t ) := (PΛ?(λt),PM?(µt)). Thus,∑

s

d
π?t
ρ (s) ‖πt(· | s)− π?t (· | s)‖

=
∑
s

d
π?t
ρ (s)

∥∥∥∥qt(s, ·)qt(s)
− qπ

?
t (s, ·)
qπ

?
t (s)

∥∥∥∥
≤

∑
s

d
π?t
ρ (s)

∥∥qt(s, ·)− qπ?t (s, ·)
∥∥ qt(s)

qt(s)qπ
?
t (s)

+
∑
s

d
π?t
ρ (s)

‖qt(s, ·)‖ |qt(s)− qπ
?
t (s)|

qt(s)qπ
?
t (s)

≤
∑
s

∥∥qt(s, ·)− qπ?t (s, ·)
∥∥

qπ
?
t (s)

+
√
|A|
∑
s

|qt(s)− qπ
?
t (s)|

qt(s)

≤
√
|A|

ρmin

∑
s

(∥∥∥qt(s, ·)− qπ?t (s, ·)
∥∥∥+ |qt(s)− qπ

?
t (s)|

)
≤

√
|A|

ρmin

√|S|√∑
s

‖qt(s, ·)− qπ
?
t (s, ·)‖2 +

√
|S||A|

√∑
s,a

|qt(s, a)− qπ?t (s, a)|2


≤

2
√
|S||A|
ρmin

∥∥∥qt − qπ?t ∥∥∥
=

2
√
|S||A|
ρmin

‖qt − PQ?(qt)‖

where the first inequality is due to triangle inequality, we use the fact: (1 − γ)qπ
?
t (s) = d

π?t
ρ (s),

d
π?t
ρ (s) ≤ 1, and ‖qt(s, ·)‖ ≤

√
|A|

1−γ in the second inequality, the third inequality is due to that
qπ

?
t (s), qt(s) ≥ ρmin, and ρmin > 0, we apply Cauchy-Schwarz inequality in the fourth inequality,

and finally we combine two square root terms by relaxing the first one in the last inequality.

First, we have

V
π?t
r (ρ)− V πtr (ρ) =

1

1− γ
∑
s,a

d
π?t
ρ (s) (π?t (a | s)− πt(a | s))Qπtr (s, a)

≤ 1

(1− γ)2

∑
s

d
π?t
ρ (s) ‖π?t (· | s)− πt(· | s)‖1

≤
√
|A|

(1− γ)2

∑
s

d
π?t
ρ (s) ‖π?t (· | s)− πt(· | s)‖

where the equality is due to performance difference lemma in Lemma 28, we use Cauchy–Schwarz
inequality in the first inequality, and the second inequality is due to ‖x‖1 ≤

√
d ‖x‖2 for x ∈ Rd,

which shows V π
?
t

r (ρ)− V πtr (ρ) ≤ O(
√
ε). By the optimality of π?t , V π

?
t

r (ρ) = V π
?

r (ρ). Therefore,
V π

?

r (ρ)− V πtr (ρ) ≤ O(
√
ε).

Second, we have
−V πtg (ρ) = −V π̂

?
t

g (ρ)︸ ︷︷ ︸
(i)

+ V
π̂?t
g (ρ)− V πtg (ρ)︸ ︷︷ ︸

(ii)

.

Similar to bounding V π
?
t

r (ρ)−V πtr (ρ), we can show that (ii) ≤ O(
√
ε). By the optimality of π?t , we

have V π
?
t

g (ρ) ≥ 0. Therefore, −V πtg (ρ) ≤ O(
√
ε).

Finally, we replace the accuracy
√
ε by ε and combine all big O notation to conclude the proof.
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Corollary 13 states that after an almost constant number of iterations a policy induced by the last oc-
cupancy measure iterate of OPD is an ε-optimal constrained policy for Problem (1). We notice that
recent last-iterate convergence result for convex-concave saddle-point problems [39] is also appli-
cable to Problem (17), which provides the optimal rate without problem-dependent constants. It is
worth mentioning that direct application of such last-iterate convergence results in convex minimax
optimization to constrained MDPs with general utilities [125, 126] and convex MDPs [124, 47] in
occupancy-measure space is also straightforward. We omit these exercises in this paper, and focus
on the design and analysis of algorithms in policy space.

C Proofs in Section 3

In this section, we provide proofs of the claims in Section 3.

C.1 Existence and uniqueness of regularized saddle points

Lemma 14 (Existence and uniqueness). There exists a unique primal-dual pair (π̄, λ̄) ∈ Π × Λ
such that Lτ (π̄, λ) ≥ Lτ (π̄, λ̄) ≥ Lτ (π, λ̄) for any π ∈ Π and λ ∈ Λ.

Proof. We first re-write the regularized Lagrangian Lτ (π, λ) in terms of occupancy measure q ∈ Q,

Lτ (π, λ) = 〈r + λg, q〉 + τ

(
H(π) +

1

2
λ2

)

H(π) = −
∑
s,a

q(s, a) log
q(s, a)∑
a′ q(s, a

′)
:= H(q).

We next use notation Lπ(q, λ) to represent Lτ (π, λ). We first check thatH(q) is a concave function,

H(αq1 + (1− α)q2)

= −
∑
s,a

(αq1(s, a) + (1− α)q2(s, a)) log
αq1(s, a) + (1− α)q2(s, a)

α
∑
a′ q1(s, a′) + (1− α)

∑
a′ q2(s, a′)

≥ −
∑
s,a

αq1(s, a) log
αq1(s, a)

α
∑
a′ q1(s, a′)

−
∑
s,a

(1− α)q2(s, a) log
(1− α)q2(s, a)

(1− α)
∑
a′ q2(s, a′)

= αH(q1) + (1− α)H(q2)

for any q1, q2 ∈ Q and α ∈ [ 0, 1 ], where the inequality is because of the log sum inequality
(
∑
i ai) ln

∑
i ai∑
i bi
≤
∑
i ai ln ai

bi
for non-negative ai and bi, and the equality holds if and only if

q1(s, a)∑
a′ q1(s, a′)

=
q2(s, a)∑
a′ q2(s, a′)

for all s, a.

Therefore, Lτ (q, λ) is concave in q ∈ Q and strongly convex in λ ∈ Λ. We notice that Q is a
polytope and Λ is a bounded interval. By Sion’s minimax theorem [127], Lτ (q, λ) has a saddle
point (q̄, λ̄) ∈ Q×Λ. From the one-to-one correspondence between policy and occupancy measure,
q̄ induces a policy π̄ and (π̄, λ̄) serves as a saddle point of Lτ (π, λ), which proves the existence of
saddle points.

To show the uniqueness of (π̄, λ̄) (or (q̄, λ̄)), it is sufficient to show that Lτ (q, λ) is strictly concave
in q and strictly convex in λ. The second argument is straightforward from the strong convexity of
Lτ (q, λ) in λ. We next show the first argument that Lτ (q, λ) is strictly concave in q for any λ ∈ Λ.
Assume that there are two (different) policies π1 and π2 and the associated two occupancy measures
are q1 and q2. From the concavity of H(q), there is another occupancy measure αq1 + (1 − α)q2
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that satisfies

Lτ (αq1 + (1− α)q2, λ)

= 〈r + λg, αq1 + (1− α)q2〉+ τ

(
H(αq1 + (1− α)q2) +

1

2
λ2

)
≥ α

(
〈r + λg, q1〉+ τH(q1) +

τ

2
λ2
)

+ (1− α)
(
〈r + λg, q2〉+ τH(q2) +

τ

2
λ2
)

= αLτ (q1, λ) + (1− α)Lτ (q2, λ)

where the inequality ≥ has to be strict since π1 and π2 differentiate by at least one state-action pair
(s̄, ā),

π1(ā | s̄) =
q1(s̄, ā)∑
a′ q1(s̄, a′)

6= q2(s̄, ā)∑
a′ q2(s̄, a′)

= π2(ā | s̄).

Hence, a new policy associated with αq1 + (1 − α)q2 can achieve a strictly higher value of the
convex combination of two objective functions, unless q1 = q2 or α equals either 0 or 1. Therefore,
Lτ (q, λ) is strictly concave in q ∈ Q for any λ ∈ Λ.

Let a saddle point of Lτ (π, λ) be π?τ = argmaxπ ∈Π minλ∈Λ Lτ (π, λ) and λ?τ =
argminλ∈Λ maxπ∈Π Lτ (π, λ). Existence of saddle points in Lemma 14 ensures that,

Lτ (π, λ?τ ) ≤ Lτ (π?τ , λ
?
τ ) ≤ Lτ (π?τ , λ) for all (π, λ) ∈ Π× Λ

in which the first inequality implies that for any π ∈ Π,

V
π?τ
r+λ?τg

(ρ) + τ

(
H(π?τ ) +

1

2
(λ?τ )2

)
≥ V πr+λ?τg(ρ) + τ

(
H(π) +

1

2
(λ?τ )2

)
≥ V πr+λ?τg(ρ) + τ

1

2
(λ?τ )2

and the second inequality implies that for any λ ∈ Λ,

V
π?τ
r+λg(ρ) + τ

(
H(π?τ ) +

1

2
λ2

)
≥ V

π?τ
r+λ?τg

(ρ) + τ

(
H(π?τ ) +

1

2
(λ?τ )2

)
≥ V

π?τ
r+λ?τg

(ρ) + τH(π?τ )

Combination of two implied inequalities above leads to (5), i.e., (π?τ , λ
?
τ ) is a saddle point of the

original Lagrangian V πr+λg(ρ), up to two τ -terms.

C.2 Proof of Theorem 2

Proof. We begin with the standard decomposition of the primal-dual gap,

Lτ (π?τ , λt)− Lτ (πt, λ
?
τ ) = Lτ (π?τ , λt)− Lτ (πt, λt)︸ ︷︷ ︸

(i)

+ Lτ (πt, λt)− Lτ (πt, λ
?
τ )︸ ︷︷ ︸

(ii)

(19)

and we next deal with (i) and (ii), separately. We notice that

H(π) := E

[ ∞∑
t= 0

−γt log π(at | st)

]
= − 1

1− γ
∑
s, a

dπρ (s)π(a | s) log π(a | s).

We note thatQπtr+λtg+τψt(s, a) is a sum of a softQ value function associated with a composite func-
tion r+λtg− τ log πt, and−τ log πt. Because of the boundedness of the soft Q value function and
the ε0-restriction on the policy domain ∆̂(A), |Qπtr+λtg+τψt(s, a)| ≤ 1

1−γ (1 + 1
(1−γ)ξ + τ log |A|)−
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τ log ε0
|A| := Cτ,ξ,ε0 . For the term (i),

Lτ (π?τ , λt)− Lτ (πt, λt)

= V
π?τ
r+λtg

(ρ) − V πtr+λtg(ρ)

− τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log π?τ (a | s) +

τ

1− γ
∑
s,a

dπtρ (s)πt(a | s) log πt(a | s)

= V
π?τ
r+λtg+τψt

(ρ) − V πtr+λtg+τψt(ρ) − τV
π?τ
ψt

(ρ) + τV πtψt (ρ)

− τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log π?τ (a | s) +

τ

1− γ
∑
s,a

dπtρ (s)πt(a | s) log πt(a | s)

=
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πt(a | s))Qπtr+λtg+τψt(s, a)

+
τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log πt(a | s) −

τ

1− γ
∑
s,a

dπtρ (s)πt(a | s) log πt(a | s)

− τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log π?τ (a | s) +

τ

1− γ
∑
s,a

dπtρ (s)πt(a | s) log πt(a | s)

=
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πt(a | s))Qπtr+λtg+τψt(s, a)− τ

1− γ
∑
s

d
π?τ
ρ (s)KLt(s)

≤
∑
s

d
π?τ
ρ (s)

(
KLt(s)− KLt+1(s)

η(1− γ)

)
+ η(Cτ,ξ,ε0)2 − τ

1− γ
∑
s

d
π?τ
ρ (s)KLt(s)

=
∑
s

d
π?τ
ρ (s)

(
(1− ητ)KLt(s)− KLt+1(s)

η(1− γ)

)
+ η(Cτ,ξ,ε0)2

=
(1− ητ)KLt(ρ)− KLt+1(ρ)

η(1− γ)
+ η(Cτ,ξ,ε0)2.

where the first two equalities are because of the entropy regularization H(π), we apply the per-
formance difference lemma in Lemma 28 and ψt(s, a) = − log πt(a | s) to the third equality,
the first inequality is due to an application of Lemma 27 with x? = π?τ (· | s), x = πt(· | s),
g = −Qπtr+λtg+τψt(s, a)/(1− γ), and η ≤ 1/Cτ,ξ,ε0 .

Similarly, for the term (ii),

Lτ (πt, λt)− Lτ (πt, λ
?
τ )

= V πtr+λtg(ρ) − V πtr+λ?τg
(ρ) +

1

2
τ(λt)

2 − 1

2
τ(λ?τ )2

= (λt − λ?τ )V πtg (ρ) +
1

2
τ(λt)

2 − 1

2
τ(λ?τ )2

= (λt − λ?τ )
(
V πtg (ρ) + τλt

)
− 1

2
τ(λt − λ?τ )2

≤ (λ?τ − λt)2 − (λ?τ − λt+1)2

2η
+

1

2
η(C ′τ,ξ)

2 − 1

2
τ(λt − λ?τ )2

=
(1− ητ)(λ?τ − λt)2 − (λ?τ − λt+1)2

2η
+

1

2
η(C ′τ,ξ)

2

where the inequality is due to the standard descent lemma [128] and V πtg (ρ)+τλt ≤ 1
1−γ (1+ τ

ξ ) :=

C ′τ,ξ.

Using the definition Φt := KLt(ρ) + 1
2 (λ?τ − λt)2, we combine the two inequalities above to show

that,

Φt+1 ≤ (1− ητ)Φt − η(Lτ (π?τ , λt)− Lτ (πt, λ
?
τ )) + η2 max

(
(Cτ,ξ,ε0)2, (C ′τ,ξ)

2
)

≤ (1− ητ)Φt + η2 max
(

(Cτ,ξ,ε0)2, (C ′τ,ξ)
2
)
.
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where the second inequality is due to Lemma 14. If we expand the inequality above recursively,
then,

Φt+1 ≤ (1− ητ)Φt + η2 max
(
(Cτ,ξ,ε0)2, (C ′τ,ξ)

2
)

≤ (1− ητ)2Φt−1 + (η2 + η2(1− ητ)) max
(
(Cτ,ξ,ε0)2, (C ′τ,ξ)

2
)

≤ · · ·

≤ (1− ητ)tΦ1 +
(
η2
(
1 + (1− ητ) + (1− ητ)2 + · · ·

))
max

(
(Cτ,ξ,ε0)2, (C ′τ,ξ)

2
)

≤ (1− ητ)tΦ1 +
η

τ
max

(
(Cτ,ξ,ε0)2, (C ′τ,ξ)

2
)

≤ e−ητtΦ1 +
η

τ
max

(
(Cτ,ξ,ε0)2, (C ′τ,ξ)

2
)

which completes the proof.

C.3 Proof of Corollary 3

Proof. According to Theorem 2, if we take τ = Θ(ε), η = Θ(ε2), and ε0 = ε, then Φt+1 = O(ε)
for any t = Ω( 1

ε3 log 1
ε ), where Ω(·) hides some problem-dependent constant. We next consider a

primal-dual iterate (πt, λt) for some t = Ω( 1
ε3 log 1

ε ). It is straightforward to check that

KLt(ρ) = O(ε) and
1

2
(λ?τ − λt)2 = O(ε).

First, we have

V π
?

r (ρ)− V πtr (ρ) = V π
?

r (ρ)− V π
?
τ

r (ρ)︸ ︷︷ ︸
(i)

+ V
π?τ
r (ρ)− V πtr (ρ)︸ ︷︷ ︸

(ii)

. (20)

For the term (ii), because KLt(ρ) = O(ε), we have

(ii) =
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πt(a | s))Qπtr (s, a)

≤ 1

(1− γ)2

∑
s

d
π?τ
ρ (s) ‖π?τ (· | s)− πt(· | s)‖1

≤ 1

(1− γ)2

∑
s

d
π?τ
ρ (s)

√
2 KLt(s)

≤ 1

(1− γ)2

√
2
∑
s

d
π?τ
ρ (s)KLt(s)

=
1

(1− γ)2

√
2 KLt(ρ)

where we use Cauchy–Schwarz inequality in the first and third inequalities, and the second inequal-
ity is due to Pinsker’s inequality, which shows V π

?
τ

r (ρ) − V πtr (ρ) ≤ O(
√
ε). For the term (i), if we

take π = π? in (5), then,

V π
?

r (ρ)− τH(π?τ ) ≤ V
π?τ
r (ρ) + λ?τ

(
V
π?τ
g (ρ)− V π

?

g (ρ)
)
.

Meanwhile, if we take λ = 0 in (5), then λ?τV
π?τ
g (ρ) ≤ 0. We notice that the feasibility of π? yields

V π
?

g (ρ) ≥ 0. Hence,

(i) = V π
?

r (ρ)− V π
?
τ

r (ρ) ≤ τH(π?τ ).

We now substitute the upper bounds of (i) and (ii) above into (20) to obtain V π
?

r (ρ) − V πtr (ρ) ≤
O(
√
ε), where we take τ = Θ(ε).
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Second, we have
− V πtg (ρ) = −V π

?
τ

g (ρ)︸ ︷︷ ︸
(iii)

+ V
π?τ
g (ρ)− V πtg (ρ)︸ ︷︷ ︸

(iv)

. (21)

Similar to bounding V π
?
τ

r (ρ) − V πtr (ρ), we can show that (iv) ≤ O(
√
ε). Let λmax := 1

(1−γ)ξ . For
the term (iii), if we take λ = λmax in (5), then,

−(λmax − λ?τ )V
π?τ
g (ρ) ≤ τ

2
(λmax)2.

By the definition λ?τ := argminλ∈Λ

{
λV

π?τ
g (ρ) + τ

2λ
2
}

, there are three values for λ?τ to take:

−V
π?τ
g (ρ)
τ , or 0, or λmax as follows

(1) When 0 < −V
π?τ
g (ρ)
τ < λmax, λ?τ = −V

π?τ
g (ρ)
τ which shows that λmax − λ?τ > 0;

(2) When −V
π?τ
g (ρ)
τ ≤ 0, λ?τ = 0 which shows that λmax − λ?τ = λmax > 0;

(3) When −V
π?τ
g (ρ)
τ ≥ λmax, λ?τ = λmax. In this case, using (5) with π = π? leads to

λmax(V π
?

g (ρ)− V π
?
τ

g (ρ)) ≤ V
π?τ
r (ρ)− V π

?

r (ρ) + τH(π?τ ). (22)

Meanwhile, for any saddle point (π?, λ?) ∈ Π? × Λ?, V π
?
τ

r (ρ)− V π?r (ρ) ≤ λ?(V π
?

g (ρ)−
V
π?τ
g (ρ)), which in conjunction with (22) and V π

?

g (ρ) ≥ 0 yields,

−(λmax − λ?)V
π?τ
g (ρ) ≤ τH(π?τ ).

It is easy to see that we can always take λ? < λmax. In fact, except for λ? = 0, we know
that λ?V π

?

g (ρ) ≤ 0 leads to V π
?

g (ρ) = 0. By the definition λ? ∈ argminλ∈Λ V
π?

r+λg(ρ),
any λ? < λmax is a min-max point. Therefore,

(iii) ≤ τ

(λmax − λ?)
H(π?τ ).

By combining three cases above, we conclude that (iii) ≤ O(τ) = O(ε).

We now substitute the upper bounds of (iii) and (iv) above into (21) to obtain −V πtg (ρ) ≤ O(
√
ε).

Finally, we replace the accuracy
√
ε by ε and combine all big O notation to conclude the proof.

C.4 Zero constraint violation of RPG-PD (6)

Corollary 15 (Zero constraint violation). Let Assumption 1 hold. For small ε, there exists δ > 0
such that if we instead use the conservative constraint V πg′ (ρ) ≥ 0 for g′ = g − (1 − γ)δ, and take
η = Θ(ε4), τ = Θ(ε2), and ε0 = ε, then the policy iterates of RPG-PD (6) satisfy

V π
?

r (ρ)− V πtr (ρ) ≤ ε and − V πtg (ρ) ≤ 0 for any t = Ω

(
1

ε6
log2 1

ε

)
where Ω(·) only has some problem-dependent constant.

Proof. We apply the conservatism to the translated constraint V πg (ρ) ≥ 0 in Problem (1). Specifi-
cally, for any δ < min(ξ, 1), we let g′ := g − (1− γ)δ and define a conservative constraint,

V πg′ := V πg (ρ)− δ ≥ 0.

It is straightforward to see that Assumption 1 ensures that V πtg′ (ρ) ≥ 0 is strictly feasible for a new
slack variable ξ′ := ξ − δ. We now can apply RPG-PD (6) to a new regularized Lagrangian,

L′τ (π, λ) := V πr+λg′(ρ) + τ

(
H(π) +

1

2
λ2

)
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and Corollary 3 holds if we replace g in RPG-PD by g′. Thus,

V
π?δ
r (ρ)− V πtr (ρ) ≤ ε and − V πtg′ (ρ) ≤ ε for any t = Ω

(
1

ε6
log2 1

ε

)
where Ω(·) hides some problem-dependent constant, and π?δ is an optimal policy to the δ-perturbed
constrained policy optimization problem,

maximize
π ∈Π

V πr (ρ) subject to V πg (ρ)− δ ≥ 0. (23)

We notice that the above Ω(·) has ξ′-dependence and we denote it by Ξ(ξ′), where Ξ: R+ → R+

is a positive function. Thus, we select δ such that δ ≥ εΞ(ξ′), which is always possible for small
enough ε, for instance, δ = ξ

2 and ξ′ = ξ
2 . Hence, if we take δ = ξ

2 and such small ε, then,

−V πtg′ (ρ) = −V πtg (ρ) + δ ≤ εΞ(ξ′) for any t = Ω

(
1

ε6
log2 1

ε

)
which shows that V πtg (ρ) ≥ 0 for some large t.

The rest is to show that V π
?

r (ρ) − V πtr (ρ) ≤ O(ε). We notice that π? is an optimal policy to
Problem (23) when δ = 0. Let q? and q?δ be associated occupancy measures of policies π? and π?δ . In
the occupancy measure space, Problem (23) becomes a linear program and it has a solution q?δ . Thus,
we can view q?δ as a δ-perturbed solution of a convex optimization problem in which all functions
are continuously differentiable and the domain is convex and compact. It is known from [129,
Theorem 3.1] that the optimal solution q?δ is continuous in δ, which implies that for any ε > 0, there
exists δ′ > 0 such that |〈r, q?〉 − 〈r, q?δ 〉| ≤ O(ε) for any δ < δ′. Thus, |V π?r (ρ)− V π

?
δ

r (ρ)| ≤ O(ε)
for small enough ε. Therefore,

V π
?

r (ρ)− V πtr (ρ) ≤ V
π?δ
r (ρ)− V πtr (ρ) + |V π

?

r (ρ)− V π
?
δ

r (ρ)| ≤ O(ε)

for some large t. Collecting all conditions on δ leads to our final choice of δ = min( ξ2 , 1, δ
′).

Finally, we combine all big O notation to complete the proof.

C.5 Reduction of RPG-PD (6) as a NPG variant (7)

We introduce some useful notation in the regularized MDP [52]. Let V πτ (ρ) := V πr+λg(ρ) + τH(π).
We introduce the soft-Q value function Qπτ : S ×A→ R and V πτ : S → R via Bellman equations,

Qπτ (s, a) = r(s, a) + λg(s, a) + γEs′∼P (· | s,a) [V πτ (s′) ]

V πτ (s) = Ea ∼ π(·| s) [−τ log π(a | s) +Qπτ (s, a) ] .

We also define Aπτ (s, a) := Qπτ (s, a)− τ log π(a | s)− V πτ (s). Hence,

Qπr+λg+τψ(s, a) = Qπτ (s, a)− τ log π(a | s)

Aπr+λg+τψ(s, a) = Qπr+λg+τψ(s, a)− V πr+λg+τψ(s)

where ψ(s, a) := − log π(a | s) for all (s, a) ∈ S ×A.

Setting ε0 = 0, it is easy to show that RPG-PD (6) is a case of (7) in the tabular case by introducing
the softmax policy that is widely used in policy optimization. A softmax policy πθ: S → ∆(A) is
parametrized by a parameter θ ∈ R|S||A| via a softmax function,

πθ(a | s) =
exp(θs,a)∑
a′ exp(θs,a′)

for all (s, a) ∈ S ×A.

With a slight abuse of notation, we also use notation πθ as a vector in R|S||A|.
Lemma 16. Set ε0 = 0. Under the softmax policy parametrization, RPG-PD (6) is equivalent to (7).
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Proof. Dual update (7b) is straightforward. We next show the equivalence for the primal update by
applying the softmax function to both sides of Primal update (7a).

We first notice that Fρ(θt)† · ∇θLτ (πθt , λt) = Fρ(θt)
† · ∇θV πθτ (ρ). Thus,

exp(θt+1,s,a) = exp(θt,s,a) exp
(
η(1− γ)(Fρ(θt)

† · ∇θLτ (πθt , λt))s,a
)

= exp(θt,s,a) exp
(
ηA

πθt
τ (s, a) + ηc(s)

)

where c(s) is an action-independent constant, and the second equality is the property of natural
policy gradient (e.g., Lemma 29). Hence, after normalization over actions and some re-arrangement,
we have

πθt+1
(a | s) = πθt(a | s)

exp
(
ηA

πθt
τ (s, a) + ηc(s)

)∑
a′ πθt(a

′ | s) exp
(
ηA

πθt
τ (s, a′) + ηc(s)

)
= πθt(a | s)

exp
(
ηQ

πθt
τ (s, a)− ητ log πθt(a | s)

)∑
a′ πθt(a

′ | s) exp
(
ηQ

πθt
τ (s, a′)− ητ log πθt(a

′ | s)
)

= πθt(a | s)
exp

(
ηQ

πθt
r+λtg+τψt

(s, a)
)

∑
a′ πθt(a

′ | s) exp
(
ηQ

πθt
r+λtg+τψt

(s, a′)
)

which is an explicit form of the policy update in (6). Since the above derivation holds in both
directions, the proof is complete.

C.6 Proof of Theorem 4

Proof. We utilize the decomposition of the primal-dual gap as in (19) and analyze the term (i) and
the term (ii), separately.
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For the term (i), we have

Lτ (π?τ , λt)− Lτ (πθt , λt)

= V
π?τ
r+λtg

(ρ)− V πθtr+λtg
(ρ)

− τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log π?τ (a | s) +

τ

1− γ
∑
s,a

d
πθt
ρ (s)πθt(a | s) log πθt(a | s)

= V
π?τ
r+λtg+τψt

(ρ)− V πθtr+λtg+τψt
(ρ)− τV π

?
τ

ψt
(ρ) + τV

πθt
ψt

(ρ)

− τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log π?τ (a | s) +

τ

1− γ
∑
s,a

d
πθt
ρ (s)πθt(a | s) log πθt(a | s)

=
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))Q

πθt
r+λtg+τψt

(s, a)

+
τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log πθt(a | s) −

τ

1− γ
∑
s,a

d
πθt
ρ (s)πθt(a | s) log πθt(a | s)

− τ

1− γ
∑
s,a

d
π?τ
ρ (s)π?τ (a | s) log π?τ (a | s) +

τ

1− γ
∑
s,a

d
πθt
ρ (s)πθt(a | s) log πθt(a | s)

=
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))φ>s,awt −

τ

1− γ
∑
s

d
π?τ
ρ (s)KLt(s)

+
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))

(
Q
πθt
r+λtg+τψt

(s, a)− φ>s,awt
)

≤
∑
s

d
π?τ
ρ (s)

(
KLt(s)− KLt+1(s)

η(1− γ)

)
+ η(CW )2 − τ

1− γ
∑
s

d
π?τ
ρ (s)KLt(s)

+
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))

(
Q
πθt
r+λtg+τψt

(s, a)− φ>s,awt
)

=
∑
s

d
π?τ
ρ (s)

(
(1− ητ)KLt(s)− KLt+1(s)

η(1− γ)

)
+ η(CW )2

+
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))

(
Q
πθt
r+λtg+τψt

(s, a)− φ>s,awt
)

=
(1− ητ)KLt(ρ)− KLt+1(ρ)

η(1− γ)
+ η(CW )2

+
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))

(
Q
πθt
r+λtg+τψt

(s, a)− φ>s,awt
)
,

where the first two equalities are because of the entropy regularizationH(π), we apply performance
difference lemma in Lemma 28 and ψt(s, a) = − log πθt(a | s) to the third equality, the inequality
is due to an application of Lemma 27 with x? = π?τ (· | s), x = πθt(· | s), g = −φ>s,awt, and
η ≤ 1/CW , where |φ>s,awt/(1 − γ)| ≤ 2W/(1 − γ) := CW . Moreover, the cross term has the
following decomposition,∑

s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))

(
Q
πθt
r+λtg+τψt

(s, a)− φ>s,awt
)

=
∑
s,a

d
π?τ
ρ (s)π?τ (a | s)

(
Q
πθt
r+λtg+τψt

(s, a)− φ>s,aw?t
)

︸ ︷︷ ︸
(a)

+
∑
s,a

d
π?τ
ρ (s)πθt(a | s)φ>s,a (wt − w?t )︸ ︷︷ ︸

(b)

+
∑
s,a

d
π?τ
ρ (s)π?τ (a | s)φ>s,a (w?t − wt)︸ ︷︷ ︸

(c)

+
∑
s,a

d
π?τ
ρ (s)πθt(a | s)

(
φ>s,aw

?
t −Q

πθt
r+λtg+τψt

(s, a)
)

︸ ︷︷ ︸
(d)

.
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We now deal with the four terms (a), (b), (c), and (d), separately. For the term (a),

|(a)| ≤
∑
s,a

d
π?τ
ρ (s)π?τ (a | s)

∣∣∣Qπθtr+λtg+τψt
(s, a)− φ>s,aw?t

∣∣∣
≤

√√√√∑
s,a

(d
π?τ
ρ (s)π?τ (a | s))2

d
π?τ
ρ (s)UnifA(a)

∑
s,a

d
π?τ
ρ (s)UnifA(a)

(
Q
πθt
r+λtg+τψt

(s, a)− φ>s,aw?t
)2

=

√√√√∑
s,a

(d
π?τ
ρ (s)π?τ (a | s))2

d
π?τ
ρ (s)UnifA(a)

EQ(w?t , θt, ν
?)

≤

√√√√∑
s,a

d
π?τ
ρ (s)π?τ (a | s)

UnifA(a)
EQ(w?t , θt, ν

?)

=
√
|A|EQ(w?t , θt, ν

?),

where we recall the definition of EQ(w?t , θt, ν
?). Similarly, we can bound the term (d) by |(d)| ≤√

|A|EQ(w?t , θt, ν
?). For the term (b),

|(b)| ≤
∑
s,a

d
π?τ
ρ (s)πθt(a | s)|φ>s,a (wt − w?t ) |

≤

√√√√∑
s,a

(d
π?τ
ρ (s)πθt(a | s))2

d
π?τ
ρ (s)UnifA(a)

∑
s,a

dπ?ρ (s)UnifA(a)
(
φ>s,a (wt − w?t )

)2
=

√√√√∑
s,a

(d
π?τ
ρ (s)πθt(a | s))2

d
π?τ
ρ (s)UnifA(a)

‖wt − w?t ‖
2
Σν?

≤

√√√√∑
s,a

d
π?τ
ρ (s)πθt(a | s)

UnifA(a)
‖wt − w?t ‖

2
Σν?

≤
√
|A| ‖wt − w?t ‖

2
Σν?

≤
√
|A|κν ‖wt − w?t ‖

2
Σdt,ν

,

where we recall the definition of κν to obtain the last line. Similarly, we can bound the term (c)

by |(c)| ≤
√
|A| ‖wt − w?t ‖

2
Σν?

. Moreover, the optimality of w?t ∈ argminw∈Rd EQ(w, θt, dt,ν)

yields,
(w − w?t )>∇wEQ(w?t , θt, dt,ν) ≥ 0, for any ‖w‖ ≤W

which further implies that for any ‖w‖ ≤W ,

EQ(w, θt, dt,ν)− EQ(w?t , θt, dt,ν)

= E(s,a)∼ dt,ν

[(
φ>s,aw − φ>s,aw?t + φ>s,aw

?
t −Q

πθt
r+λtg+τψt

(s, a)
)2
]
− EQ(w?t , θt, dt,ν)

= E(s,a)∼ dt,ν

[ (
φ>s,aw − φ>s,aw?t

)2 ]
+ 2(w − w?t )>E(s,a)∼ dt,ν

[
φs,a

(
φ>s,aw

?
t −Q

πθt
r+λtg+τψt

(s, a)
) ]

= E(s,a)∼ dt,ν

[ (
φ>s,aw − φ>s,aw?t

)2 ]
+ 2(w − w?t )>∇wEQ(w?t , θt, dt,ν)

≥ E(s,a)∼ dt,ν

[ (
φ>s,aw − φ>s,aw?t

)2 ]
= ‖w − w?t ‖

2
Σdt,ν

.

Therefore,

|(b)| ≤
√
|A|κν ‖wt − w?t ‖

2
Σdt,ν

≤
√
|A|κν (EQ(wt, θt, dt,ν)− EQ(w?t , θt, dt,ν)).
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With a similar reasoning, we can bound the term (c) by

|(c)| ≤
√
|A|κν (EQ(wt, θt, dt,ν)− EQ(w?t , θt, dt,ν)).

By applying the upper bounds above to the cross term, and then taking expectation over the random-
ness in wt, we have

E [Lτ (π?τ , λt)− Lτ (πθt , λt) ]

≤ (1− ητ)E[KLt(ρ)]− E[KLt+1(ρ)]

η
+ η(CW )2 + 2E

[√
|A|EQ(w?t , θt, ν

?)

]
+ 2E

[√
|A|κν (EQ(wt, θt, dt,ν)− EQ(w?t , θt, dt,ν))

]
≤ (1− ητ)E[KLt(ρ)]− E[KLt+1(ρ)]

η
+ η(CW )2 + 2

√
|A|E [ EQ(w?t , θt, ν

?) ]

+ 2
√
|A|κνE [ EQ(wt, θt, dt,ν)− EQ(w?t , θt, dt,ν) ]

≤ (1− ητ)E[KLt(ρ)]− E[KLt+1(ρ)]

η
+ η(CW )2 + 2

√
|A|εbias + 2

√
|A|κνεstat.

Similarly, for the term (ii),

Lτ (πθt , λt)− Lτ (πθt , λ
?
τ )

= V
πθt
r+λtg

(ρ)− V πθtr+λ?τg
(ρ) +

1

2
τ(λt)

2 − 1

2
τ(λ?τ )2

= (λt − λ?τ )V
πθt
g (ρ) +

1

2
τ(λt)

2 − 1

2
τ(λ?τ )2

= (λt − λ?τ )
(
V
πθt
g (ρ) + τλt

)
− 1

2
τ(λt − λ?τ )2

≤ (λ?τ − λt)2 − (λ?τ − λt+1)2

2η
+

1

2
η(C ′τ,ξ)

2 − 1

2
τ(λt − λ?τ )2

=
(1− ητ)(λ?τ − λt)2 − (λ?τ − λt+1)2

2η
+

1

2
η(C ′τ,ξ)

2

where the inequality is due to the standard descent lemma [128] and V πθtg (ρ)+τλt ≤ 1
1−γ (1+ τ

ξ ) :=

C ′τ,ξ. By taking expectation over the randomness in wt,

E [Lτ (πθt , λt)− Lτ (πθt , λ
?
τ ) ] ≤

(1− ητ)E
[
(λ?τ − λt)2

]
− E

[
(λ?τ − λt+1)2

]
2η

+
1

2
η(C ′τ,ξ)

2.

Using the definition E [ Φt ] := E [ KLt(ρ) ] + 1
2E
[
(λ?τ − λt)2

]
, we combine the two inequalities

above to show that,

E [ Φt+1 ] ≤ (1− ητ)E [ Φt ] − ηE [Lτ (π?τ , λt)− Lτ (πθt , λ
?
τ ) ] + η2 max

(
(CW )2, (C ′τ,ξ)

2
)

+ 2η
√
|A|εbias + 2η

√
|A|κνεstat

≤ (1− ητ)E [ Φt ] + η2 max
(

(CW )2, (C ′τ,ξ)
2
)

+ 2η
√
|A|εbias + 2η

√
|A|κνεstat,
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where the second inequality is due to Lemma 14. If we expand the inequality above recursively,
then,

E [ Φt+1 ] ≤ (1− ητ)E [ Φt ] + η2 max
(
(CW )2, (C ′τ,ξ)

2
)

+ 2η
√
|A|εbias + 2η

√
|A|κνεstat

≤ (1− ητ)2E [ Φt−1 ] + (η2 + η2(1− ητ)) max
(
(CW )2, (C ′τ,ξ)

2
)

+ 2η (1 + (1− ητ))
(√
|A|εbias + 2

√
|A|κνεstat

)
≤ · · ·

≤ (1− ητ)tE [ Φ1 ] +
(
η2
(
1 + (1− ητ) + (1− ητ)2 + . . .

))
max

(
(CW )2, (C ′τ,ξ)

2
)

+ 2η
(
1 + (1− ητ) + (1− ητ)2 + . . .

) (√
|A|εbias +

√
|A|κνεstat

)
≤ (1− ητ)tE [ Φ1 ] +

η

τ
max

(
(CW )2, (C ′τ,ξ)

2
)

+
2

τ

(√
|A|εbias +

√
|A|κνεstat

)
≤ e−ητtE [ Φ1 ] +

η

τ
max

(
(CW )2, (C ′τ,ξ)

2
)

+
2

τ

(√
|A|εbias +

√
|A|κνεstat

)
which completes the proof.

C.7 Proof of Corollary 5

Proof. The proof is similar to the proof of Corollary 3, except that we take the expectation over the
randomness of computing wt via a sample-based algorithm.

According to Theorem 4 and εstat = O(ε4), εstat = O(ε4), if we take τ = Θ(ε) and η = Θ(ε2), then
E[Φt+1] = O(ε) for any t = Ω

(
1
ε3 log 1

ε

)
. We next consider a primal-dual iterate (πθt , λt) for some

t = Ω
(

1
ε3 log 1

ε

)
. It is straightforward to check that

E [ KLt(ρ) ] = O(ε) and
1

2
E
[

(λ?τ − λt)2
]

= O(ε).

First, we have

E
[
V π

?

r (ρ)− V πθtr (ρ)
]

= V π
?

r (ρ)− V π
?
τ

r (ρ)︸ ︷︷ ︸
(i)

+ E
[
V
π?τ
r (ρ)− V πθtr (ρ)

]
︸ ︷︷ ︸

(ii)

. (24)

For the term (ii), because of KLt(ρ) = O(ε), we have

(ii) = E

[
1

1− γ
∑
s,a

d
π?τ
ρ (s) (π?τ (a | s)− πθt(a | s))Q

πθt
r (s, a)

]
≤ 1

(1− γ)2

∑
s

d
π?τ
ρ (s)E [ ‖π?τ (· | s)− πθt(· | s)‖1 ]

≤ 1

(1− γ)2

∑
s

d
π?τ
ρ (s)

√
2E [ KLt(s) ]

≤ 1

(1− γ)2

√
2
∑
s

d
π?τ
ρ (s)E [ KLt(s) ]

=
1

(1− γ)2

√
2E [ KLt(ρ) ]

where we use Cauchy–Schwarz inequality in the first and third inequalities, and the second inequal-
ity is due to Pinsker’s inequality and Jensen’s inequality, which shows E

[
V
π?τ
r (ρ)− V πθtr (ρ)

]
≤

O(
√
ε). For the term (i), if we take π = π? in (5), then,

V π
?

r (ρ)− τH(π?τ ) ≤ V
π?τ
r (ρ) + λ?τ

(
V
π?τ
g (ρ)− V π

?

g (ρ)
)
.
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Meanwhile, if we take λ = 0 in (5), then λ?τV
π?τ
g (ρ) ≤ 0. We notice that the feasibility of π? yields

V π
?

g (ρ) ≥ 0. Hence,

(i) = V π
?

r (ρ)− V π
?
τ

r (ρ) ≤ τH(π?τ ).

We now substitute the upper bounds of (i) and (ii) into (24) to obtain E
[
V π

?

r (ρ)− V πθtr (ρ)
]
≤

O(
√
ε), where we take τ = Θ(ε).

Second, we have

E
[
−V πθtg (ρ)

]
= −V π

?
τ

g (ρ)︸ ︷︷ ︸
(iii)

+ E
[
V
π?τ
g (ρ)− V πθtg (ρ)

]
︸ ︷︷ ︸

(iv)

. (25)

Similar to bounding E
[
V
π?τ
r (ρ)− V πθtr (ρ)

]
, we can show that E [(iv)] ≤ O(

√
ε). For the term (iii),

we can show that (iii) ≤ O(τ) = O(ε) in a similar way as dealing with (iii) in (21).

We now substitute the upper bounds of (iii) and (iv) above into (25) to obtain E
[
−V πθtg (ρ)

]
≤

O(
√
ε).

Finally, we replace the accuracy
√
ε by ε and combine all big O notation to conclude the proof.

C.8 Zero constraint violation of inexact RPG-PD

Corollary 17 (Zero constraint violation). Let Assumptions 1–2 hold and εstat, εbias = O(ε8) for small
ε, ε0 > 0. For small ε, there exists δ > 0 such that if we instead use the conservative constraint
V πg′ (ρ) ≥ 0 for g′ = g − (1− γ)δ, and take the stepsize η = Θ(ε4) and τ = Θ(ε2), then the policy
iterates of inexact RPG-PD satisfy

E
[
V π

?

r (ρ)− V πθtr (ρ)
]
≤ ε and E

[
−V πθtg (ρ)

]
≤ 0 for any t = Ω

(
1

ε6
log2 1

ε

)
where Ω(·) only has some problem-dependent constant.

Proof. We apply the conservatism to the translated constraint V πg (ρ) ≥ 0 in Problem (1). Specifi-
cally, for any δ < min(ξ, 1), we let g′ := g − (1− γ)δ and define a conservative constraint,

V πg′ := V πg (ρ)− δ ≥ 0.

It is straightforward to see that Assumption 1 ensures that V πtg′ (ρ) ≥ 0 is strictly feasible for a new
slack variable ξ′ := ξ− δ. We now can apply inexact RPG-PD (8) to a new regularized Lagrangian,

L′τ (π, λ) := V πr+λg′(ρ) + τ

(
H(π) +

1

2
λ2

)
and Corollary 5 holds if we replace g in inexact RPG-PD by g′ and εstat, εbias = O(ε8) for small
ε > 0. Thus,

E
[
V
π?δ
r (ρ)− V πθtr (ρ)

]
≤ ε and E

[
−V πθtg′ (ρ)

]
≤ ε for any t = Ω

(
1

ε6
log2 1

ε

)
where Ω(·) has some problem-dependent constant, and π?δ is an optimal policy to the δ-perturbed
constrained policy optimization problem,

maximize
π ∈Π

V πr (ρ) subject to V πg (ρ)− δ ≥ 0. (26)

We notice that the above Ω(·) has ξ′-dependence and we denote it by Ξ(ξ′), where Ξ: R+ → R+

is a positive function. Thus, we select δ such that δ ≥ εΞ(ξ′), which is always possible for small
enough ε, for instance, δ = ξ

2 and ξ′ = ξ
2 . Hence, if we take δ = ξ

2 and such small ε, then

E
[
−V πθtg′ (ρ)

]
= E

[
−V πθtg (ρ)

]
+ δ ≤ εΞ(ξ′) for any t = Ω

(
1

ε6
log2 1

ε

)
which shows that E

[
V
πθt
g (ρ)

]
≥ 0 for some large t.
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The rest is to show that E
[
V π

?

r (ρ)− V πθtr (ρ)
]
≤ O(ε). We notice that π? is an optimal policy

to Problem (26) when δ = 0. Let q? and q?δ be associated occupancy measures of policies π?
and π?δ . In the occupancy measure space, Problem (26) becomes a linear program and it has a
solution q?δ . Thus, we can view q?δ as a δ-perturbed solution of a convex optimization problem
in which all functions are continuous differentiable and the domain is convex and compact. It is
known from [129, Theorem 3.1] that the optimal solution q?δ is continuous in δ, which implies
that for any ε > 0, there exists δ′ such that |〈r, q?〉 − 〈r, q?δ 〉| ≤ O(ε) for any δ < δ′. Thus,
|V π?r (ρ)− V π

?
δ

r (ρ)| ≤ O(ε) for small enough ε. Therefore,

E
[
V π

?

r (ρ)− V πθtr (ρ)
]
≤ E

[
V
π?δ
r (ρ)− V πθtr (ρ)

]
+ |V π

?

r (ρ)− V π
?
δ

r (ρ)| ≤ O(ε)

for some large t. Collecting all conditions on δ leads to our final choice of δ = min( ξ2 , 1, δ
′).

Finally, we combine all big O notation to complete the proof.

C.9 Sample-based inexact RPG-PD algorithm

We generalize the inexact RPG-PD to be a sample-based algorithm that only takes sample-based
estimates. We propose a sample-based RPG-PD with linear function approximation as follows,

πθt+1
(· | s) = argmax

π(· | s)∈ ∆̂(A)

{∑
a

π(a | s)φ>s,aŵt −
1

η
KL(π(· | s), πθt(· | s))

}
(27a)

λt+1 = argmin
λ∈Λ

{
λ
(
V̂
πθt
g (ρ) + τλt

)
+

1

2η
(λ− λt)2

}
, (27b)

where ŵt and V̂ πtg (ρ) are the sample-based estimates of NPG directions and value functions. It is
standard to assume that there exists a policy simulator that generates policy rollouts for any given
policies [49]. At time t, we can estimate ŵt by solving the regression problem EQ(w, θt, dt,ν) =

E(s,a)∼ dt,ν [ (φ>s,aw−Qπθt (s, a))2 ] withQπθt (s, a) = Q
πθt
r+λtg+τψt

(s, a) via a projected stochastic
gradient descent (SGD) method,

wk+1
t = P‖w‖≤W

(
wkt − αGkt

)
where k ≥ 0 counts the number of SGD iterations, and Gkt is a sample-based estimate of the
population gradient∇wEQ(w, θt, dt,ν),

Gkt = 2
(
φ>s,aw

k
t − Q̂

πθt
r+λtg+τψt

(s, a)
)
φs,a.

From the projected SGD result [130], we use a weighted average 2
K(K+1)

∑K−1
k= 0(k + 1)wkt as our

ŵt. We note that Qπθtr+λtg+τψt
(s, a) is a sum of a soft-Q value function associated with a com-

posite function r + λtg − τ log πθt , and −τ log πθt . Thus, we can estimate the value function
Q̂
πθt
r+λtg+τψt

(s, a) using policy rollouts in Algorithm 2, which provides an unbiased estimate and it
has bounded variance [131],

E
[
Q̂
πθt
r+λtg+τψt

(s, a)
∣∣ s, a ] = Q

πθt
r+λtg+τψt

(s, a) and E
[
Gkt
]

= ∇wEQ(wkt , θt, dt,ν)

where the expectation E is taken over the randomness of drawing (s, a) ∼ dt,ν . Another value

function V̂ πθtg (ρ) can be estimated using policy rollouts in Algorithm 3, E
[
V̂
πθt
g (ρ)

]
= V

πθt
g (ρ),

which is also unbiased and has bounded variance [23]. Hence, simply replacing all population
quantities in inexact RPG-PD by their sample-based estimates leads to a sample-based inexact RPG-
PD that is detailed in Algorithm 1.

We are now ready to establish the sample complexity of Algorithm 1 by exploiting the projected
SGD result [130].

Corollary 18 (Sample complexity of inexact RPG-PD). Let Assumptions 1–2 hold. Assume Σν =
E(s,a)∼ ν

[
φs,aφ

>
s,a

]
≥ κ0I for any state-action distribution ν and some κ0 > 0. If we take the
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Algorithm 1 Sample-based inexact RPG-PD algorithm with log-linear policy parametrization

1: Input: Learning rate η, number of SGD iterations K, SGD learning rate α.
2: Initialize θ0 = 0, λ0 = 0,
3: for t = 0, . . . , T − 1 do
4: Initialize w0

t = 0.
5: for k = 0, 1, . . . ,K − 1 do
6: Estimate Q̂πθtr+λtg+τψt

(s, a) for some (s, a) ∼ dt,ν , using Algorithm 2 with policy πθt .
7: Perform projected SGD step with αk = 2

κ0(k+2) ,

wk+1
t = P‖w‖≤W

(
wkt − 2αk

(
φ>s,aw

k
t − Q̂

πθt
r+λtg+τψt

(s, a)
)
φs,a

)
.

8: end for
9: Set ŵt = 2

K(K+1)

∑K−1
k= 0(k + 1)wkt .

10: Estimate V̂ πθtg (ρ) using Algorithm 3 with policy πθt .
11: Perform inexact RPG-PD update,

πθt+1
(· | s) = argmax

π(· | s)∈ ∆̂(A)

{∑
a

π(a | s)φ>s,aŵt −
1

η
KL(π(· | s), πθt(· | s))

}
λt+1 = PΛ

(
(1− ητ)λt − ηV̂

πθt
g (ρ)

)
.

12: end for

Algorithm 2 Unbiased estimate Q

1: Input: Initial state-action distribution ν, policy π, dual variable λ, regularization parameter τ ,
discount factor γ.

2: Sample (s0, a0) ∼ ν, execute the policy π with probability γ at each step h; otherwise, accept
(sh, ah) as the sample.

3: Start with (sh, ah), execute the policy π with the termination probability 1 − √γ. Once ter-
minated, add all composite values γ(k−h)/2(r + λg + τψ) from step k = h + 1 onwards and
−τ log π(ah | sh) as Q̂πr+λg+τψ(sh, ah).

4: Output: (sh, ah) and Q̂πr+λg+τψ(sh, ah).

Algorithm 3 Unbiased estimate V

1: Input: Initial state distribution ρ, policy π, discount factor γ.
2: Sample s0 ∼ ρ, execute the policy π with the termination probability 1 − γ. Once terminated,

add all utilities up as V̂ πg (ρ).
3: Output: V̂ πg (ρ).
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stepsize η ≤ 1/CW , then the primal-dual iterates of sample-based inexact RPG-PD in Algorithm 1
satisfy

E[ Φt+1 ] ≤ e−ητtE[ Φ1 ] +
η

τ
max

(
(CW )2, (C ′τ,ξ)

2
)

+
CW,ξ,τ,ε0

τ

√
|A|κν
K + 1

+
2

τ

√
|A|εbias

where CW := 2W/(1− γ), CW,ξ,τ,ε0 := 8(W + 2/(ξ(1−√γ)2) + τ(2 log |A|+ | log ε0|)/((1−√
γ)2ξ))/

√
κ0, and C ′τ,ξ := (1 + τ/ξ)/(1− γ).

Proof. The proof is based on the proof of Theorem 4. Additionally, we have to take the randomness
of sample-based estimates into account and bound the statistical error εstat using the projected SGD
result [130]. We first check all conditions of the projected SGD [130] are indeed satisfied by the
SGD step in Algorithm 1: (i) The domain ‖w‖ ≤ W is convex and bounded; (ii) The gradient Gkt
is an unbiased estimate of the population gradient; (iii) The minimizer of EQ(w, θt, dt,ν) is unique,
since Σdt,ν ≥ κ0I for some κ0 > 0; (iv) The squared norm of the estimated gradient Gkt is bounded
or the gradient has bounded variance. To show (iv), it is sufficient to check that

E
[ ∥∥φ>s,aφs,awkt ∥∥2

]
≤ E

[ ∥∥φ>s,aφs,a∥∥2 ∥∥wkt ∥∥2
]
≤ W 2

E
[ ∥∥∥Q̂πθtr+λtg+τψt

(s, a)φs,a

∥∥∥2
]
≤ E

[(
Q̂
πθt
r+λtg+τψt

(s, a)
)2

‖φs,a‖2
]

≤ E
[(
Q̂
πθt
r+λtg+τψt

(s, a)
)2
]

where we use the boundedness of
∥∥wkt ∥∥ ≤ W and ‖φs,a‖ ≤ 1. We notice that |r + λtg| ≤ 2

(1−γ)ξ .
By [131, Lemma 3.5], we know that

E
[(
Q̂
πθt
r+λtg+τψt

(s, a)
)2
]
≤ 4

(
2/((1− γ)ξ)

1−√γ

)2

+ 4

(
τ log |A|
1−√γ

)2

+ 2

(
τ log

ε0
|A|

)2

where the first two terms in the upper bound is due to the variance of soft-Q value function, and
the last term is due to | log πθt | ≤ | log ε0

|A| | for πθt ∈ ∆̂(A). Hence, the estimated gradient Gkt
has bounded second-order moment (or variance), which verifies (iv). From the projected SGD re-
sult [130], if the SGD stepsize αk = 2

k+2 , then

E [ EQ(ŵt, θt, dt,ν)− EQ(w?t , θt, dt,ν) ] ≤
16
(
W + 2

ξ(1−√γ)2 + τ(2 log |A|+| log ε0|)
(1−√γ)2ξ

)2

κ0(K + 1)

which leads to
√
εstat ≤

4(W+2/(ξ(1−√γ)2)+τ(2 log |A|+| log ε0|)/((1−
√
γ)2ξ))√

κ0(K+1)
. Substituting the bound

of
√
εstat into the proof of Theorem 4 yields our desired result.

Corollary 18 states a similar result as Theorem 4. The effect of using sample-based estimates to
update inexact RPG-PD appears as the number K of SGD steps at each time t. Thus, we can
interpret the iteration complexity in Corollary 5 in terms of the number of SGD steps by taking
εstat = O(ε8), i.e., K = Ω( 1

ε8 ). Thus, whenever εbias = O(ε8) for small ε > 0, if we take (η, τ) in
Corollary 5 and K = Ω( 1

ε8 ) for Algorithm 1, then,

E
[
V π

?

r (ρ)− V πθtr (ρ)
]
≤ ε and E

[
−V πθtg (ρ)

]
≤ ε for any t = Ω

(
1

ε6
log2 1

ε

)
where Ω(·) only has some problem-dependent constant. In other words, the total number of policy
rollouts or sampled trajectories tK = Ω

(
1
ε14

)
is required for Algorithm 1 to output an ε-optimal

constrained policy. Furthermore, the zero constraint violation in Corollary 17 can be interpreted
similarly. When ε is small enough, we can design a conservative constraint such that the policy
iterates of Algorithm 1 satisfy V π

?

r (ρ) − V πtr (ρ) ≤ ε and V πθtg (ρ) ≥ 0 for some t, K that sat-
isfy tK = Ω

(
1
ε14

)
. This appears to be the first sample-based zero constraint violation result for

constrained MDPs in the function approximation setting. We leave achieving the optimal sample
complexity as future work.
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D Proofs in Section 4

In this section, we provide proofs for the claims in Section 4.

D.1 Preliminary last-iterate analysis of OPG-PD (9)

To measure the proximity of the primal-dual iterates of OPG-PD (9) to the optimal pair (π?, λ?), we
introduce the following two distance metrics Θt and ζt at time t ≥ 1,

Θt :=
1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖π̂t(· | s)− PΠ?(π̂t(· | s))‖2 +
1

2
(λ̂t − PΠ?(λ̂t))

2

+
1

16(1− γ)

∑
s

dπ
?

ρ (s) ‖π̂t(· | s)− πt−1(· | s)‖2 +
1

16
(λ̂t − λt−1)2

ζt :=
1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖π̂t+1(·|s)− πt(·|s)‖2 +
1

2
(λ̂t+1 − λt)2

+
1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖πt(·|s)− π̂t(·|s)‖2 +
1

2
(λt − λ̂t)2

and a problem-dependent constant ι,

ι := max

(
2κ2

ρ|A|
(1− γ)6

,
8γ2
√
|A|κρ

(1− γ)6

(
1 +

1

(1− γ)2ξ2

)
,

4

(1− γ)3

)
. (28)

Lemma 19. Let the optimal state visitation distribution be unique, i.e., dπρ = dπ
?

ρ for any π ∈ Π?.
If we set the stepsize η ≤ 1/(4

√
ι), then the primal-dual iterates of OPG-PD (9) satisfy

Θt+1 ≤ Θt −
7

16
ζt for all t ≥ 1. (29)

Proof. We begin with the standard decomposition of the primal-dual gap at time t ≥ 1,

V π
?

r+λtg(ρ)− V πtr+λ?g(ρ) = V π
?

r+λtg(ρ)− V πtr+λtg(ρ)︸ ︷︷ ︸
(i)

+ V πtr+λtg(ρ)− V πtr+λ?g(ρ)︸ ︷︷ ︸
(ii)

(30)

and we next deal with (i) and (ii), separately.

For the first term (i),

V π
?

r+λtg
(ρ)− V πtr+λtg(ρ)

=
1

1− γ
∑
s,a

dπ
?

ρ (s)(π?(a | s)− πt(a | s))Qπtr+λtg(s, a)

=
1

1− γ
∑
s,a

dπ
?

ρ (s)(π?(a | s)− π̂t+1(a | s))Qπtr+λtg(s, a)

+
1

1− γ
∑
s,a

dπ
?

ρ (s)(π̂t+1(a | s)− πt(a | s))Qπt−1

r+λt−1g
(s, a)

+
1

1− γ
∑
s,a

dπ
?

ρ (s)(π̂t+1(a | s)− πt(a | s))
(
Qπtr+λtg(s, a)−Qπt−1

r+λt−1g
(s, a)

)
≤ 1

2η(1− γ)

∑
s

dπ
?

ρ (s)
(
‖π?(· | s)− π̂t(· | s)‖2 − ‖π?(· | s)− π̂t+1(· | s)‖2 − ‖π̂t+1(· | s)− π̂t(· | s)‖2

)
+

1

2η(1− γ)

∑
s

dπ
?

ρ (s)
(
‖π̂t+1(· | s)− π̂t(· | s)‖2 − ‖π̂t+1(· | s)− πt(· | s)‖2 − ‖πt(·|s)− π̂t(·|s)‖2

)
+

1

1− γ
∑
s

dπ
?

ρ (s)(π̂t+1(a | s)− πt(a | s))
(
Qπtr+λtg(s, a)−Qπt−1

r+λt−1g
(s, a)

)
(31)

44



where the first equality is due to performance difference lemma in Lemma 28, the second equality
is because of some re-arrangement, the inequality is from an application of Lemma 24 to π̂t+1(· | s)
and πt(· | s):∑

a

(π?(a | s)− π̂t+1(a | s))Qπtr+λtg(s, a)

≤ 1

2η

(
‖π?(·|s)− π̂t(·|s)‖2 − ‖π?(·|s)− π̂t+1(·|s)‖2 − ‖π̂t+1(·|s)− π̂t(·|s)‖2

)
∑
a

(π̂t+1(a | s)− πt(a | s))Qπt−1

r+λt−1g
(s, a)

≤ 1

2η

(
‖π̂t+1(·|s)− π̂t(·|s)‖2 − ‖π̂t+1(·|s)− πt(·|s)‖2 − ‖πt(·|s)− π̂t(·|s)‖2

)
.

Similarly, we deal with the second term (ii) with some re-arrangement, and apply Lemma 24 to λ̂t+1

and λt,

V πtr+λtg(ρ)− V πtr+λ?g(ρ) = (λt − λ?)V πtg (ρ)

= (λt − λ̂t+1)V
πt−1
g (ρ) + (λt − λ̂t+1)

(
V πtg (ρ)− V πt−1

g (ρ)
)

+ (λ̂t+1 − λ?)V πtg (ρ)

≤ 1

2η

(
(λ̂t+1 − λ̂t)2 − (λ̂t+1 − λt)2 − (λt − λ̂t)2

)
+ (λt − λ̂t+1)

(
V πtg (ρ)− V πt−1

g (ρ)
)

+
1

2η

(
(λ? − λ̂t)2 − (λ? − λ̂t+1)2 − (λ̂t+1 − λ̂t)2

)
.

(32)

On the other hand, from Lemma 25, we have

‖π̂t+1(· | s)− πt(· | s)‖1 ≤ η
∥∥∥Qπtr+λtg(s, ·)−Qπt−1

r+λt−1g
(s, ·)

∥∥∥
∞

(33)

and
|λt − λ̂t+1| ≤ η|V πtg (ρ)− V πt−1

g (ρ)|. (34)
Hence,∑

s,a

dπ
?

ρ (s)(π̂t+1(a | s)− πt(a | s))
(
Qπtr+λtg(s, a)−Qπt−1

r+λt−1g
(s, a)

)
≤ η

∑
s

dπ
?

ρ (s)
∥∥∥Qπtr+λtg(s, ·)−Qπt−1

r+λt−1g
(s, ·)

∥∥∥2

∞

≤ 2η
∑
s

dπ
?

ρ (s)

(∥∥(λt − λt−1)Qπtg (s, ·)
∥∥2

∞ +
∥∥∥Qπtr+λt−1g

(s, ·)−Qπt−1

r+λt−1g
(s, ·)

∥∥∥2

∞

)
≤ 2η

(1− γ)2
(λt − λt−1)2 +

4ηγ2

(1− γ)4

(
1 +

1

(1− γ)2ξ2

)
max
s
‖πt(· | s)− πt−1(· | s)‖21

≤ 2η

(1− γ)2
(λt − λt−1)2 +

4ηγ2κρ
(1− γ)5

(
1 +

1

(1− γ)2ξ2

)∑
s

dπ
?

ρ (s) ‖πt(· | s)− πt−1(· | s)‖21

≤ 4η

(1− γ)2

(
(λt − λ̂t)2 + (λ̂t − λt−1)2

)
+

8ηγ2
√
|A|κρ

(1− γ)5

(
1 +

1

(1− γ)2ξ2

)∑
s

dπ
?

ρ (s)
(
‖πt(· | s)− π̂t(· | s)‖2 + ‖π̂t(· | s)− πt−1(· | s)‖2

)
where the first inequality is due to Cauchy–Schwarz inequality and (33), we subtract and add
Qπtr+λt−1g

and apply the inequality (x+y)2 ≤ 2x2+2y2 in the second inequality, the third inequality
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is due to Lemma 22 and the boundedness of value functions and dual variables, the fourth inequality
comes from the property of κρ, and the last inequality is due to the inequality (x+ y)2 ≤ 2x2 + 2y2

and the inequality ‖p− p′‖1 ≤
√
|A| ‖p− p′‖2 for two probability distributions p and p′. Mean-

while, using a similar reasoning, we can derive that

(λt − λ̂t+1)
(
V πtg (ρ)− V πt−1

g (ρ)
)

≤ η
(
V πtg (ρ)− V πt−1

g (ρ)
)2

≤
ηκ2

ρ

(1− γ)6

(∑
s

dπ
?

ρ (s) ‖πt(· | s)− πt−1(· | s)‖1

)2

≤
ηκ2

ρ

(1− γ)6

∑
s

(√
dπ?ρ (s) ‖πt(· | s)− πt−1(· | s)‖1

)2

≤
2ηκ2

ρ|A|
(1− γ)6

∑
s

dπ
?

ρ (s)
(
‖πt(· | s)− π̂t(· | s)‖2 + ‖π̂t(· | s)− πt−1(· | s)‖2

)

where the first inequality is due to Cauchy–Schwarz inequality and (34), the second inequality is
due to Lemma 22, the third inequality is an application of Cauchy-Schwarz inequality, and the
last inequality is due to the inequality (x + y)2 ≤ 2x2 + 2y2 and the inequality ‖p− p′‖1 ≤√
|A| ‖p− p′‖2 for two probability distributions p and p′.

We set notation,

ι := max

(
2κ2

ρ|A|
(1− γ)6

,
8γ2
√
|A|κρ

(1− γ)6

(
1 +

1

(1− γ)2ξ2

)
,

4

(1− γ)3

)
.

After applying the established inequalities above to (31) and (32), we combine them into (30) as,

V π
?

r+λtg
(ρ)− V πtr+λ?g(ρ)

≤ 1

2η(1− γ)

∑
s

dπ
?

ρ (s)
(
‖π?(· | s)− π̂t(· | s)‖2 − ‖π?(· | s)− π̂t+1(· | s)‖2 − ‖π̂t+1(· | s)− π̂t(· | s)‖2

)
+

1

2η(1− γ)

∑
s

dπ
?

ρ (s)
(
‖π̂t+1(· | s)− π̂t(· | s)‖2 − ‖π̂t+1(· | s)− πt(· | s)‖2 − ‖πt(· | s)− π̂t(· | s)‖2

)
+

1

2η

(
(λ̂t+1 − λ̂t)2 − (λ̂t+1 − λt)2 − (λt − λ̂t)2

)
+

1

2η

(
(λ? − λ̂t)2 − (λ? − λ̂t+1)2 − (λ̂t+1 − λ̂t)2

)
+ ηι(λt − λ̂t)2 + ηι(λ̂t − λt−1)2

+ ηι
∑
s

dπ
?

ρ (s)
(
‖πt(· | s)− π̂t(· | s)‖2 + ‖π̂t(· | s)− πt−1(· | s)‖2

)
.

We notice that V π
?

r+λtg
(ρ) − V πtr+λ?g(ρ) ≥ 0 and non-expansiveness of projection operators PΠ? ,

PΛ? ,

‖PΠ?(π̂t+1(· | s))− π̂t+1(· | s)‖ ≤ ‖π?(· | s)− π̂t+1(· | s)‖∥∥∥PΛ?(λ̂t+1)− λ̂t+1

∥∥∥ ≤
∥∥∥λ? − λ̂t+1

∥∥∥
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for any π? ∈ Π? and λ? ∈ Λ?. If we take π? = PΠ?(π̂t(· | s)) and λ? = PΛ?(λ̂t), then after some
re-arrangement, we have

1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖PΠ?(π̂t+1(· | s))− π̂t+1(· | s)‖2 +
1

2
(PΛ?(λ̂t+1)− λ̂t+1)2

≤ 1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖PΠ?(π̂t(· | s))− π̂t+1(· | s)‖2 +
1

2
(PΛ?(λ̂t)− λ̂t+1)2

≤ 1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖PΠ?(π̂t(· | s))− π̂t(·|s)‖2 +
1

2
(PΛ?(λ̂t)− λ̂t)2

− 1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− πt(· | s)‖2 −
1

2
(λ̂t+1 − λt)2

−
(

1

2(1− γ)
− η2ι

)∑
s

dπ
?

ρ (s) ‖πt(· | s)− π̂t(· | s)‖2 −
(

1

2
− η2ι

)
(λt − λ̂t)2

+ η2ι
∑
s

dπ
?

ρ (s) ‖π̂t(· | s)− πt−1(· | s)‖2 + η2ι(λ̂t − λt−1)2

where we also use the assumption dπ
?

ρ = dπρ for any π ∈ Π?. By taking η2ι ≤ 1
16 and using notation

Θt and ζt, we have Θt+1 ≤ Θt − 7
16ζt.

To show the convergence, we next relate ζt with Θt+1. An intermediate step is to show that ζt has
the following lower bound.

Lemma 20. Let κρ,γ := max(
κρ

1−γ , 1). If we set the stepsize η ≤ min( (1−γ)3

4|A| ,
(1−γ)3

2κρ
), then the

primal-dual iterates of OPG-PD (9) satisfy∑
s

dπ
?

ρ (s)
(
‖πt(· | s)− π̂t(· | s)‖2 + ‖π̂t+1(· | s)− πt(· | s)‖2

)
+
(
|λt − λ̂t|2 + |λt − λ̂t+1|2

)

≥ η2

9κ2
ρ,γ

[
V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λg(ρ)
]2

+(
maxs ‖π(· | s)− π̂t+1(· | s)‖+ |λ− λ̂t+1|

)2 for all (π, λ) 6= (π̂t+1, λ̂t+1).

Proof. From the optimality of π̂t+1(· | s) in OPG-PD, we know that for any π ∈ Π,

〈π̂t+1(· | s)− π̂t(· | s), π(· | s)− π̂t+1(· | s)〉

≥ η〈Qπtr+λtg(s, ·), π(· | s)− π̂t+1(· | s)〉

= η〈Qπ̂t+1

r+λ̂t+1g
(s, ·), π(· | s)− π̂t+1(· | s)〉 + η〈Qπtr+λtg(s, ·)−Q

π̂t+1

r+λtg
(s, ·), π(· | s)− π̂t+1(· | s)〉

+ η〈Qπ̂t+1

r+λtg
(s, ·)−Qπ̂t+1

r+λ̂t+1g
(s, ·), π(· | s)− π̂t+1(· | s)〉.

(35a)
Similarly, from the optimality of πt+1(· | s) in OPG-PD, we know that for any π ∈ Π,

〈πt+1(· | s)− π̂t+1(· | s), π(· | s)− πt+1(· | s)〉

≥ η〈Qπtr+λtg(s, ·), π(· | s)− πt+1(· | s)〉

= η〈Qπt+1

r+λt+1g
(s, ·), π(· | s)− πt+1(· | s)〉 + η〈Qπtr+λtg(s, ·)−Q

πt+1

r+λtg
(s, ·), π(· | s)− πt+1(· | s)〉

+ η〈Qπt+1

r+λtg
(s, ·)−Qπt+1

r+λt+1g
(s, ·), π(· | s)− πt+1(· | s)〉.

(35b)

47



On the other hand, from the optimality of λ̂t+1 in OPG-PD, we know that for any λ ∈ Λ,

(λ̂t+1 − λ̂t)(λ− λ̂t+1) ≥ ηV πtg (ρ)(λ̂t+1 − λ)

= ηV
π̂t+1
g (ρ)(λ̂t+1 − λ) + η(V πtg (ρ)− V π̂t+1

g (ρ))(λ̂t+1 − λ)

(36a)
and the optimality of λt+1 in OPG-PD yields,

(λt+1 − λ̂t)(λ− λt+1) ≥ ηV πtg (ρ)(λt+1 − λ)

= ηV
πt+1
g (ρ)(λt+1 − λ) + η(V πtg (ρ)− V πt+1

g (ρ))(λt+1 − λ).

(36b)

First, we take the expectation of (35a) over some state distribution dπρ on both sides and add it
to (36a),

1

1− γ
∑
s

dπρ (s)〈π̂t+1(· | s)− π̂t(· | s), π(· | s)− π̂t+1(· | s)〉 + (λ̂t+1 − λ̂t)(λ− λ̂t+1)

≥ η

1− γ
∑
s

dπρ (s)〈Qπ̂t+1

r+λ̂t+1g
(s, ·), π(· | s)− π̂t+1(· | s)〉

+
η

1− γ
∑
s

dπρ (s)〈Qπtr+λtg(s, ·)−Q
π̂t+1

r+λtg
(s, ·), π(· | s)− π̂t+1(· | s)〉

+
η

1− γ
∑
s

dπρ (s)〈Qπ̂t+1

r+λtg
(s, ·)−Qπ̂t+1

r+λ̂t+1g
(s, ·), π(· | s)− π̂t+1(· | s)〉

+ ηV π̂t+1
g (ρ)(λ̂t+1 − λ) + η(V πtg (ρ)− V π̂t+1

g (ρ))(λ̂t+1 − λ)

≥ η
(
V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λ̂t+1g
(ρ)
)

− η

1− γ
∑
s

dπρ (s)
∥∥∥Qπtr+λtg(s, ·)−Qπ̂t+1

r+λtg
(s, ·)

∥∥∥
∞
‖π(· | s)− π̂t+1(· | s)‖1

− η

1− γ
∑
s

dπρ (s)
∥∥∥Qπ̂t+1

r+λtg
(s, ·)−Qπ̂t+1

r+λ̂t+1g
(s, ·)

∥∥∥ ‖π(· | s)− π̂t+1(· | s)‖

+ ηV π̂t+1
g (ρ)(λ̂t+1 − λ) − η|V πtg (ρ)− V π̂t+1

g (ρ)||λ̂t+1 − λ|

≥ η
(
V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λ̂t+1g
(ρ)
)

+ ηV π̂t+1
g (ρ)(λ̂t+1 − λ)

− ηγ|A|
(1− γ)3

max
s
‖πt(· | s)− π̂t+1(· | s)‖

∑
s

dπρ (s) ‖π(· | s)− π̂t+1(· | s)‖

− η

(1− γ)2

∑
s

dπρ (s)|λt − λ̂t+1| ‖π(· | s)− π̂t+1(· | s)‖

−
ηκρ
√
|A|

(1− γ)3

∑
s

dπ
?

ρ (s) ‖πt(· | s)− π̂t+1(· | s)‖
∣∣∣λ̂t+1 − λ

∣∣∣
(37)

where the second inequality is due to performance difference lemma in Lemma 28 and Cauchy-
Schwarz inequality, and the last inequality results from Lemma 22 and the inequality ‖p− p′‖1 ≤√
|A| ‖p− p′‖2 for two probability distributions p and p′. By using the inequality ac + bd ≤

48



(a+ b)(c+ d) for a ≥ 0, b ≥ 0, c ≥ 0, and d ≥ 0, with some re-arrangement, we have(
max
s
‖π(· | s)− π̂t+1(· | s)‖+ |λ− λ̂t+1|

)
×[

κρ
1− γ

∑
s

dπ
?

ρ (s)

(
1

1− γ
‖π̂t+1(· | s)− π̂t(· | s)‖+

2η|A|
(1− γ)3

‖π̂t+1(· | s)− πt(· | s)‖
)

+ |λ̂t+1 − λ̂t| +
ηκρ

(1− γ)3
|λt − λ̂t+1|

]
≥ max

s
‖π(· | s)− π̂t+1(· | s)‖ κρ

1− γ
∑
s

dπ
?

ρ (s)×(
1

1− γ
‖π̂t+1(· | s)− π̂t(· | s)‖+

ηγ|A|
(1− γ)3

‖π̂t+1(· | s)− πt(· | s)‖+
η

(1− γ)2
|λt − λ̂t+1|

)
+ |λ− λ̂t+1|

(
|λ̂t+1 − λ̂t|+

ηκρ
√
|A|

(1− γ)3

∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− πt(· | s)‖

)
≥ max

s
‖π(· | s)− π̂t+1(· | s)‖

∑
s

dπρ (s)×(
1

1− γ
‖π̂t+1(· | s)− π̂t(· | s)‖+

ηγ|A|
(1− γ)3

max
s
‖π̂t+1(· | s)− πt(· | s)‖+

η

(1− γ)2
|λt − λ̂t+1|

)
+ |λ− λ̂t+1|

(
|λ̂t+1 − λ̂t|+

ηκρ
√
|A|

(1− γ)3

∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− πt(· | s)‖

)
≥ η

(
V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λg(ρ)
)

where the second inequality comes from the property of κρ and the last inequality is straightforward

from (37). We take η > 0 such that max
(

2η|A|
(1−γ)3 ,

ηκρ
(1−γ)3

)
≤ 1

2 and denote κρ,γ := max
(
κρ

1−γ , 1
)

.
If we take the square of both sides of the inequality above, then the second product argument has
the following upper bound,(∑

s

dπ
?

ρ (s)

(
‖π̂t+1(· | s)− π̂t(· | s)‖+

2η|A|
(1− γ)3

‖π̂t+1(· | s)− πt(· | s)‖
)

+ |λ̂t+1 − λ̂t| +
ηκρ

(1− γ)3
|λt − λ̂t+1|

)2

≤

(∑
s

dπ
?

ρ (s)

(
‖π̂t+1(· | s)− π̂t(· | s)‖+

1

2
‖π̂t+1(· | s)− πt(· | s)‖

)
+ |λ̂t+1 − λ̂t|+

1

2
|λt − λ̂t+1|

)2

≤

(∑
s

dπ
?

ρ (s)

(
‖πt(· | s)− π̂t(· | s)‖+

3

2
‖π̂t+1(· | s)− πt(· | s)‖

)
+ |λt − λ̂t|+

3

2
|λt − λ̂t+1|

)2

≤

(
3

2

∑
s

dπ
?

ρ (s) (‖πt(· | s)− π̂t(· | s)‖+ ‖π̂t+1(· | s)− πt(· | s)‖) +
3

2

(
|λt − λ̂t|+ |λt − λ̂t+1|

))2

≤ 9
∑
s

dπ
?

ρ (s)
(
‖πt(· | s)− π̂t(· | s)‖2 + ‖π̂t+1(· | s)− πt(· | s)‖2

)
+ 9

(
|λt − λ̂t|2 + |λt − λ̂t+1|2

)
where we use the inequality (x+ y)2 ≤ 2x2 + 2y2 and Jensen’s inequality.

Recall the definition of κρ and κρ ≤ 1/ρmin, where ρmin := mins ρ(s).
Lemma 21. Assume ρmin > 0. For any t ≥ 1, the primal-dual iterates of OPG-PD (9) satisfy

sup
π ∈Π, λ∈Λ

V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λg(ρ)

maxs ‖π(· | s)− π̂t+1(· | s)‖+ |λ− λ̂t+1|

≥ Cρ,ξ

(∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− PΠ?(π̂t+1(· | s))‖+ |λ̂t+1 − PΛ?(λ̂t+1)|

)
where Cρ,ξ := cρmin/(2

√
|S||A|)/(1 + 1/((1− γ)ξ)) in which c > 0 is described in Lemma 26.
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Proof. Denote V ? := V π
?

r+λ?g(ρ) and Dmax := maxπ,π′ ∈Π,λ,λ′ ∈Λ(maxs ‖π(· | s)− π′(· | s)‖ +

|λ− λ′|). We observe that if we can prove that there exist constants c1, c2 > 0 such that

max
π ∈Π

V π
r+λ̂t+1g

(ρ)− V ? ≥ c1|λ̂t+1 − PΛ?(λ̂t+1)| (38a)

V ? − min
λ∈Λ

V
π̂t+1

r+λg(ρ) ≥ c2
∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− PΠ?(π̂t+1(· | s))‖ , (38b)

then,

sup
π ∈Π, λ∈Λ

V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λg(ρ)

maxs ‖π(· | s)− π̂t+1(· | s)‖+ |λ− λ̂t+1|

≥ 1

Dmax
sup

π ∈Π, λ∈Λ
V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λg(ρ)

=
1

Dmax

(
max
π∈Π

V π
r+λ̂t+1g

(ρ)− V ?
)

+
1

Dmax

(
V ? − min

λ∈Λ
V
π̂t+1

r+λg(ρ)

)
≥ min(c1, c2)

Dmax

(∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− PΠ?(π̂t+1(· | s))‖+ |λ̂t+1 − PΛ?(λ̂t+1)|

)
which proves the lemma by taking Cρ,ξ := min(c1,c2)

Dmax
.

We next prove (38) using the bilinear game result in Lemma 26. By the linear program formulation
of constrained MDP, we can express the value function in terms of the occupancy measure qπ , e.g.,
V πr+λg(ρ) = 〈qπ, r+λg〉, where qπ is the occupancy measure that lives in a polytopeQ that is given
by (15). Hence, the constrained saddle-point problem (3) reduces to,

maximize
qπ ∈Q

minimize
λ∈Λ

〈qπ, r + λg〉 = minimize
λ∈Λ

maximize
qπ ∈Q

〈qπ, r + λg〉.

We notice that the game value keeps the same as V ? that is achieved at (qπ
?

, λ?), where qπ
?

is the
occupancy measure under the policy π?. Let the set of occupancy measures associated with Π? be
Q?. According to Lemma 26, we know that there exists a constant c > 0 such that

max
qπ ∈Q

〈qπ, r + λg〉 − V ? ≥ c|λ− PΛ?(λ)| (39a)

V ? − min
λ∈Λ
〈qπ, r + λg〉 ≥ c ‖qπ − PQ?(qπ)‖ . (39b)

It is more straightforward to see (38a) from (39a) if we take λ = λ̂t+1 and c1 = c. We next
show (38b) using (39b) by taking π?(· | s) to be the policy associated with PQ?(qπ),∑

s

dπ
?

ρ (s) ‖π(· | s)− π?(· | s)‖

=
∑
s

dπ
?

ρ (s)

∥∥∥∥qπ(s, ·)
qπ(s)

− qπ
?

(s, ·)
qπ?(s)

∥∥∥∥
≤

∑
s

dπ
?

ρ (s)

∥∥qπ(s, ·)− qπ?(s, ·)
∥∥ qπ?(s)

qπ(s)qπ?(s)
+
∑
s

dπ
?

ρ (s)

∥∥qπ?(s, ·)
∥∥ |qπ(s)− qπ?(s)|

qπ(s)qπ?(s)

≤
∑
s

∥∥qπ(s, ·)− qπ?(s, ·)
∥∥

qπ(s)
+
∑
s

|qπ(s)− qπ?(s)|
qπ(s)

≤ 1

ρmin

∑
s

(∥∥∥qπ(s, ·)− qπ
?

(s, ·)
∥∥∥+ |qπ(s)− qπ

?

(s)|
)

≤ 1

ρmin

√|S|√∑
s

‖qπ(s, ·)− qπ?(s, ·)‖2 +
√
|S||A|

√∑
s,a

|qπ(s, a)− qπ?(s, a)|2


=

2
√
|S||A|
ρmin

∥∥∥qπ − qπ?∥∥∥
=

2
√
|S||A|
ρmin

‖qπ − PQ?(qπ)‖
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where the first inequality is due to triangle inequality, we use the fact: (1 − γ)qπ
?

(s) = dπ
?

ρ (s),
dπ

?

ρ (s) ≤ 1, and
∥∥qπ?(s, ·)

∥∥ ≤ 1 in the second inequality, the third inequality is due to that qπ(s) ≥
ρmin, and we apply Cauchy-Schwarz inequality in the last inequality. Hence, we can further lower
bound (39b),

V ? − min
λ∈Λ
〈qπ, r + λg〉 ≥ c ‖qπ − PQ?(qπ)‖

≥ cρmin

2
√
|S||A|

∑
s

dπ
?

ρ (s) ‖π(· | s)− π?(· | s)‖

≥ cρmin

2
√
|S||A|

∑
s

dπ
?

ρ (s) ‖π(· | s)− PΠ?(π(· | s))‖

which yields (38b) using c2 = cρmin

2
√
|S||A|

.

Finally, we combine all selected constants and take Dmax = 1 + 1
(1−γ)ξ to conclude the proof.

Lemma 22. For any policies π and π′, we have∥∥∥Qπr (·, ·)−Qπ
′

r (·, ·)
∥∥∥
∞
≤ γ

(1− γ)2
max
s
‖π(· | s)− π′(· | s)‖1

|V πg (ρ)− V π
′

g (ρ)| ≤ κρ
(1− γ)3

∑
s

dπ
?

ρ (s) ‖π(· | s)− π′(· | s)‖1 .

Proof. By the Bellman equations, for each pair (s, a),

Qπr (s, a) = r(s, a) + γ
∑
s′,a′

P (s′ | s, a)π(a′ | s′)Qπr (s′, a′)

Qπ
′

r (s, a) = r(s, a) + γ
∑
s′,a′

P (s′ | s, a)π′(a′ | s′)Qπ
′

r (s′, a′).

Hence, for each pair (s, a),

|Qπr (s, a)−Qπ′r (s, a)| ≤ γ
∑
s′,a′

P (s′ | s, a)
∣∣∣π(a′ | s′)Qπr (s′, a′)− π′(a′ | s′)Qπ

′

r (s′, a′)
∣∣∣

≤ γ
∑
s′,a′

P (s′ | s, a) |π(a′ | s′)− π′(a′ | s′)|Qπ
′

r (s′, a′)

+ γ
∑
s′,a′

P (s′ | s, a)π′(a′ | s′)
∣∣∣Qπr (s′, a′)−Qπ

′

r (s′, a′)
∣∣∣

≤ γ

1− γ
max
s
‖π(· | s)− π′(· | s)‖1 + γ

∥∥∥Qπr (·, ·)−Qπ
′

r (·, ·)
∥∥∥
∞

which yields the first inequality.

To show the second inequality, we employ the performance difference lemma to show that,

|V πg (ρ)− V π′g (ρ)| ≤ 1

1− γ
∑
s,a

dπρ (s)|π(a | s)− π′(a | s)||Qπ
′

g (s, a)|

≤ 1

(1− γ)2

∑
s

dπρ (s) ‖π(· | s)− π′(· | s)‖1

≤ 1

(1− γ)2

∑
s

dπρ (s) ‖π(· | s)− π′(· | s)‖1

where we replace dπρ by dπ
?

ρ using the inequality
∥∥dπρ/dπ?ρ ∥∥∞ ≤ κρ/(1− γ) for any policy π ∈

Π.
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D.2 Proof of Theorem 6

Proof. From the non-increasing relation (29) in Lemma 19, we have
1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖π̂t+1(·|s)− πt(·|s)‖2 +
1

2
(λ̂t+1 − λt)2 ≤ ζt ≤

16

7
Θt ≤

16

7
Θ1.

Meanwhile, from Lemma 20, we obtain that

ζt ≥ 1

4

∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− πt(· | s)‖2 +
1

4
(λ̂t+1 − λt)2

+
1

4

∑
s

dπ
?

ρ (s)
(
‖π̂t+1(· | s)− πt(· | s)‖2 + ‖πt(· | s)− π̂t(· | s)‖2

)
+

1

4

(
(λ̂t+1 − λt)2 + (λt − λ̂t)2

)
≥ 1

4

∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− πt(· | s)‖2 +
1

4
(λ̂t+1 − λt)2

+
η2

36κ2
ρ,γ

sup
π ∈Π,λ∈Λ

[
V π
r+λ̂t+1g

(ρ)− V π̂t+1

r+λg(ρ)
]2

+(
maxs ‖π(· | s)− π̂t+1(· | s)‖+ |λ− λ̂t+1|

)2

≥ 1

4

∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− πt(· | s)‖2 +
1

4
(λ̂t+1 − λt)2

+
η2C ′ρ,ξ
36κ2

ρ,γ

(∑
s

dπ
?

ρ (s) ‖π̂t+1(· | s)− PΠ?(π̂t+1(· | s))‖2 + (λ̂t+1 − PΛ?(λ̂t+1))2

)

≥ (1− γ) min

(
2,

4η2C ′ρ,ξ
9κ2

ρ,γ

)
Θt+1

where the third inequality is due to Lemma 21, the inequalities: (x + y)2 ≥ x2 + y2 for x, y ≥ 0,
and dπ

?

ρ (s) ≥ (1− γ)ρmin, and C ′ρ,ξ := (1− γ)C2
ρ,ξρmin. Hence, the relation (29) reduces into,

Θt+1 ≤ Θt − (1− γ) min

(
7

8
,

7η2C ′ρ,ξ
36κ2

ρ,γ

)
Θt+1

which implies that Θt is decreasing to zero at an exponential rate.

D.3 Proof of Corollary 7

Proof. According to Theorem 6, if we take the same stepsize η, then for any t = Ω(log 1
ε ),

1

2(1− γ)

∑
s

dπ
?

ρ (s) ‖PΠ?(π̂t(· | s))− π̂t(· | s)‖2 = O(ε) and
1

2
(PΛ?(λ̂t)− λ̂t)2 = O(ε).

Let π̂?t (· | s) := PΠ?(π̂t(· | s)) and λ̂?t := PΛ?(λ̂t). Because of the interchangeability of saddle
points from Lemma 9, (π̂?t , λ̂

?
t ) is a saddle point in the set Π? × Λ? for any t ≥ 0.

First, we have

V
π̂?t
r (ρ)− V π̂tr (ρ) =

1

1− γ
∑
s,a

d
π̂?t
ρ (s) (π̂?t (a | s)− π̂t(a | s))Qπtr (s, a)

≤ 1

(1− γ)2

∑
s

d
π̂?t
ρ (s) ‖π̂?t (· | s)− π̂t(· | s)‖1

≤
√
|A|

(1− γ)2

∑
s

d
π̂?t
ρ (s) ‖π̂?t (· | s)− π̂t(· | s)‖

≤
√
|A|

(1− γ)2

√∑
s

d
π̂?t
ρ (s) ‖π̂?t (· | s)− π̂t(· | s)‖2
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where we use Cauchy–Schwarz inequality in the first and third inequalities, and the second inequal-
ity is due to ‖x‖1 ≤

√
d ‖x‖2 for x ∈ Rd, which shows V π̂

?
t

r (ρ) − V π̂tr (ρ) ≤ O(
√
ε). By the

saddle-point property of (π̂?t , λ̂
?
t ), π̂?t is also an optimal constrained policy, i.e., V π̂

?
t

r (ρ) = V π
?

r (ρ).
Therefore, V π

?

r (ρ)− V π̂tr (ρ) ≤ O(
√
ε).

Second, we have
−V π̂tg (ρ) = −V π̂

?
t

g (ρ)︸ ︷︷ ︸
(i)

+ V
π̂?t
g (ρ)− V π̂tg (ρ)︸ ︷︷ ︸

(ii)

.

Similar to bounding V π̂
?
t

r (ρ)−V π̂tr (ρ), we can show that (ii) ≤ O(
√
ε). By the saddle-point property

of (π̂?t , λ̂
?
t ), V π̂

?
t

g (ρ) ≥ 0. Therefore, −V π̂tg (ρ) ≤ O(
√
ε).

Finally, we replace the accuracy
√
ε by ε and combine all big O notation to conclude the proof.

D.4 Zero constraint violation of OPG-PD (9)

Corollary 23 (Zero constraint violation). Let Assumption 1 hold and the optimal state visitation
distribution be unique, i.e., dπρ = dπ

?

ρ for any π ∈ Π?, and ρmin > 0. For small ε, there exists δ > 0
such that if we instead use the conservative constraint V πg′ (ρ) ≥ 0 for g′ = g − (1 − γ)δ, and take
the stepsize η from Theorem 6, then the policy iterates of OPG-PD satisfy

V π
?

r (ρ)− V π̂tr (ρ) ≤ ε and − V π̂tg (ρ) ≤ 0 for any t = Ω

(
log2 1

ε

)
where Ω(·) only omits some problem-dependent constant.

Proof. We apply the conservatism to the translated constraint V πg (ρ) ≥ 0 in Problem (1). Specifi-
cally, for any δ < min(ξ, 1), we let g′ := g − (1− γ)δ and define a conservative constraint,

V πg′ := V πg (ρ)− δ ≥ 0.

It is straightforward to see that Assumption 1 ensures that V πtg′ (ρ) ≥ 0 is strictly feasible for a new
slack variable ξ′ := ξ − δ. We now can apply OPG-PD (9) to a new Lagrangian,

L′(π, λ) := V πr+λg′(ρ)

and Corollary 7 holds if we replace g in OPG-PD by g′. Thus,

V
π?δ
r (ρ)− V π̂tr (ρ) ≤ O(ε) and − V π̂tg′ (ρ) ≤ O(ε) for any t = Ω

(
log2 1

ε

)
where Ω(·) hides some problem-dependent constant, and π?δ is an optimal policy to the δ-perturbed
constrained policy optimization problem,

maximize
π ∈Π

V πr (ρ) subject to V πg (ρ)− δ ≥ 0. (40)

We notice that the above Ω(·) has some problem-dependent constant Υ > 0. Thus, we select δ such
that δ ≥ εΥ, which is always possible for small enough ε, for instance δ = ξ

2 and ξ′ = ξ
2 . Hence, if

we take δ = ξ
2 and such small ε, then,

−V π̂tg′ (ρ) = −V π̂tg (ρ) + δ ≤ εΥ for any t = Ω

(
log2 1

ε

)
which shows that V π̂tg (ρ) ≥ 0 for some large t.

The rest is to show that V π
?

r (ρ) − V π̂tr (ρ) ≤ O(ε). We notice that π? is an optimal policy to
Problem (40) when δ = 0. Let q? and q?δ be associated occupancy measures of policies π? and
π?δ . In the occupancy measure space, Problem (40) becomes a linear program and it has a solution
q?δ . Thus, we can view q?δ as a δ-perturbed solution of a convex optimization problem in which
all functions are continuous differentiable and the domain is convex and compact. It is known
from [129, Theorem 3.1] that the optimal solution q?δ is continuous in δ, which implies that for any
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ε > 0, there exists δ′ such that |〈r, q?〉−〈r, q?δ 〉| ≤ O(ε) for any δ < δ′. Thus, |V π?r (ρ)−V π
?
δ

r (ρ)| ≤
O(ε) for small enough ε. Therefore,

V π
?

r (ρ)− V π̂tr (ρ) ≤ V
π?δ
r (ρ)− V π̂tr (ρ) + |V π

?

r (ρ)− V π
?
δ

r (ρ)| ≤ O(ε)

for some large t. Collecting all conditions on δ leads to our final choice of δ = min( ξ2 , 1, δ
′).

Finally, we combine all big O notation to complete the proof.

E Other Computational Experiments

In this section, we report details of our experimental setup and additional experimental results that
verify merits and effectiveness of our methods: RPG-PD (6) and OPG-PD (9). We implement
RPG-PD in the form of NPG [49] and the restricted probability simplex ∆̂(A) by restraining policy
parameter to be bounded.

To properly assess the convergence performance, our experiment is a tabular constrained MDP with
a randomly generated transition kernel, a discount factor γ = 0.9, uniform rewards r ∈ [0, 1] and
utilities g ∈ [−1, 1], and a uniform initial state distribution ρ. The constraint is V πg (ρ) ≥ 0. To check
feasibility, we employ the standard policy iteration procedure to solve a standard MDP problem with
respect to V πg (ρ). If feasible, we then solve a linear program in occupancy-measure space to find the
optimal reward value V π

?

r (ρ) at an optimal policy π? induced by the optimal occupancy measure.
Throughout all experiments, the random seed is fixed and V π

?

r (ρ) takes the value 8.16 at an optimal
policy π?.

We compare our methods RPG-PD and OPG-PD with three typical learning algorithms in the con-
strained MDP literature: (i) primal-dual methods [23, 29]; (ii) dual methods [28, 24, 34]; and (iii)
primal method [77]. We have reported our comparison for primal-dual methods in Section 5 and
Figure 1. We now report our comparison experiments on other two baseline methods: (ii) dual
methods [28, 24, 34] and (iii) primal method [77], in Section E.1. In addition, we showcase the
last-iterate zero constraint violation performance of our methods in Section E.2, and conduct sensi-
tivity analysis of our methods to regularization and stepsize in Section E.3 and Section E.4, together
with a variant of OPG-PD and policy-based ReLOAD [40]. All the experiments were conducted on
an Apple MacBook Pro 2017 laptop equipped with a 2.3 GHz Dual-Core Intel Core i5 in Jupyter
Notebook.

E.1 Last-iterate convergence comparison with other baselines

We report our comparison for dual methods in Figure 4. We notice that dual methods [28, 24, 34]
work in a double-loop fashion, where a (regularized) NPG subroutine is executed to perform the
dual update. To make a fair comparison, the number of dual updates and the number of NPG steps
are set to be 53 and 20 to ensure that dual methods take the same number of policy gradient updates:
1060, as RPG-PD and OPG-PD, and we evaluate all policy iterates inside the NPG subroutines of
dual methods.

In Figure 4, RPG-PD (– –) and OPG-PD (—) outperform PMD-PD [24] (– –), AR-CPO [28] (–·–),
and Accelerated Dual [34] (····) in several aspects. First, we see that the known oscillation behavior
in primal-dual methods also shows up in these dual methods, which could result from that we can’t
exactly evaluate the search direction of the dual update via a NPG subroutine. Thus, dual methods
can be viewed an instantiation of two-time-scale methods in which the primal update performs faster
than the dual update. Regarding this, RPG-PD and OPG-PD show outstanding performance in
suppressing oscillation behavior. Second, since RPG-PD and OPG-PD are single-time-scale primal-
dual methods, it is easy to tune algorithmic parameters compared with double-loop dual methods.
For instance, in Accelerated Dual, it is relatively difficult to find a set of algorithmic parameters that
avoid the sub-optimal performance in Figure 4. Third, OPG-PD reaches the maximum reward value
8.16 and RPG-PD converges to a slightly smaller reward value because of regularization, while
both methods enjoy the utility constraint satisfaction in the last-iterate fashion, which seems to be
difficult for dual methods because of oscillating utility values. Hence, using the same number of
policy gradient updates, we have verified that OPG-PD and RPG-PD also can outperform several
dual methods by yielding an optimal constrained policy in the last-iterate fashion.
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Figure 4: Convergence performance of RPG-PD, OPG-PD, and dual methods. Learning curves of
our RPG-PD (– –) and OPG-PD (—), and PMD-PD [24] (– –), AR-CPO [28] (–·–), and Accelerated
Dual [34] (····) methods. The horizontal axes represent the policy iterations {πt}t≥ 0 that are gener-
ated by each method and the vertical axes mean the value functions of the policy iterates {πt}t≥ 0:
reward value V πtr (ρ) (Left) and utility value V πtg (ρ) (Right). In this experiment, for RPG-PD and
OPG-PD, we use the stepsize η = 0.1 and the regularization parameter τ = 0.08 for RPG-PD,
and the initial distribution ρ is uniform. For PMD-PD, AR-CPO, and Accelerated Dual, we use the
stepsize η = 0.1 for the dual update, the regularized NPG stepsize α = 1, and the regularization
parameter τ = 0.08, and the uniform initial distribution ρ.

We report our comparison for a primal method in Figure 5. In Figure 5, RPG-PD (– –) and OPG-PD
(—) outperform CRPO [77] (–·–). We notice that although CRPO [77] works in a single-time-scale
fashion as RPG-PD and OPG-PD, the policy has to be updated by alternatively using the gradient
directions of reward/utility value functions. To ensure constraint satisfaction, CRPO often switches
between the gradient directions of reward/utility value functions depending on the amount of con-
straint violation. As a result, we see that CRPO reaches a slightly lower reward value than OPG-
PD’s, and the constraint satisfaction is relatively conservative and has mild oscillation behavior. In
contrast, OPG-PD achieves the maximum reward value 8.16 and RPG-PD converges to a slightly
smaller reward value because of regularization, while both methods enjoy the utility constraint satis-
faction in the last-iterate fashion. Last but not least, we have supported RPG-PD and OPG-PD with
a policy last-iterate convergence theory, while such theory is unknown for CRPO as far as we know.
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Figure 5: Convergence performance of RPG-PD, OPG-PD, and primal methods. Learning curves
of our RPG-PD (– –) and OPG-PD (—), and CRPO [77] (–·–) methods. The horizontal axes repre-
sent the policy iterations {πt}t≥ 0 that are generated by each method and the vertical axes mean the
value functions of the policy iterates {πt}t≥ 0: reward value V πtr (ρ) (Left) and utility value V πtg (ρ)
(Right). In this experiment, for RPG-PD and OPG-PD, we use the stepsize η = 0.1 and the regu-
larization parameter τ = 0.08 for RPG-PD, and the initial distribution ρ is uniform. For CRPO, we
update the policy via the NPG step with stepsize η = 0.1 and the uniform initial distribution ρ.
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E.2 Last-iterate zero constraint violation comparison

In this experiment, we continue our previous tabular constrained MDP with a random transition,
a discount factor γ = 0.9, uniform rewards r ∈ [0, 1] and utilities g ∈ [−1, 1], and an uniform
initial state distribution ρ. Instead of the nominal constraint V πg (ρ) ≥ 0, we use a conservative
constraint V πg′ (ρ) ≥ 0 in RPG-PD and OPG-PD, where g′ := g − (1 − γ)δ is a conservative
utility function and δ is the conservative parameter. To get zero constraint violation regarding the
nominal constraint, we apply RPG-PD and OPG-PD to the conservative constraint V πg (ρ) ≥ δ
where we take the conservative parameter δ = 0.1. As above, we compare conservative RPG-PD
and OPG-PD with three typical learning algorithms in the constrained MDP literature: (i) primal-
dual methods [23, 29]; (ii) dual methods [28, 24, 34]; and (iii) primal approach [77]. We report
our comparison for primal-dual methods in Figure 6, for dual methods [28, 24, 34] in Figure 7, and
for primal approach [77] in Figure 8. We observe that conservative RPG-PD and OPG-PD achieve
similar performance regarding the oscillation suppression and the optimality of reward values as
shown in Figure 1, Figure 4, and Figure 5. Interestingly, in Figure 6, Figure 7, and Figure 8, RPG-
PD and OPG-PD converge to a utility value that is strictly above zero, i.e., V πtg (ρ) > 0 for large t,
which is not guaranteed in many of other methods. To sum up, we have confirmed that RPG-PD and
OPG-PD can ensure zero constraint violation of instantaneous policy iterates in a finite number of
training time.
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Figure 6: Convergence performance of RPG-PD, OPG-PD, and primal-dual methods. Learning
curves of our RPG-PD (– –) and OPG-PD (—), and NPG-PD [23] (–·–) and PID Lagrangian [29]
(····) methods. The horizontal axes represent the policy iterations {πt}t≥ 0 that are generated by
each method and the vertical axes mean the value functions of the policy iterates {πt}t≥ 0: reward
value V πtr (ρ) (Left) and utility value V πtg (ρ) (Right). In this experiment, we apply RPG-PD and
OPG-PD to a conservative constraint V πg (ρ) ≥ δ, and we take the conservative parameter δ = 0.1,
the same stepsize η = 0.1 for all methods, the regularization parameter τ = 0.08 for RPG-PD, and
the uniform initial distribution ρ.

E.3 Sensitivity of RPG-PD (6) to regularization and stepsize

In this experiment, we use our previous tabular constrained MDP with a random transition, a dis-
count factor γ = 0.9, uniform rewards r ∈ [0, 1] and utilities g ∈ [−1, 1], and an uniform initial state
distribution ρ. The constraint is V πg (ρ) ≥ 0. We recall that when we set the regularization parameter
τ = 0, RPG-PD becomes a policy-based primal-dual method [23] that often suffers the oscillation
issue as shown in Figure 1. However, larger regularization usually bias regularized methods more to
sub-optimal solutions. Hence, it is important to reveal how the last-iterate convergence of RPG-PD
depends on the regularization parameter τ and the stepsize η.

We first repeat executing RPG-PD with a fixed stepsize η = 0.1, but varying three different reg-
ularization parameters τ ∈ {0.1, 0.05, 0.01}. In Figure 9, RPG-PD damps initial oscillations suc-
cessfully for τ = 0.1 and 0.05, and oscillates for τ = 0.01. When we decrease τ from 0.1 to 0.05,
the reward value RPG-PD converges to becomes higher, and the utility value’s oscillation is slightly
amplified initially, but damped eventually. When τ is further reduced to 0.01, although the reward
value reaches a value around the optimal reward value 8.16, the utility value behaves oscillating.
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Figure 7: Convergence performance of RPG-PD, OPG-PD, and dual methods. Learning curves of
our RPG-PD (– –) and OPG-PD (—), and PMD-PD [24] (– –), AR-CPO [28] (–·–), and Accelerated
Dual [34] (····) methods. The horizontal axes represent the policy iterations {πt}t≥ 0 that are gener-
ated by each method and the vertical axes mean the value functions of the policy iterates {πt}t≥ 0:
reward value V πtr (ρ) (Left) and utility value V πtg (ρ) (Right). In this experiment, we apply RPG-
PD and OPG-PD to a conservative constraint V πg (ρ) ≥ δ, and we take the stepsize η = 0.1, the
conservative parameter δ = 0.1, the regularization parameter τ = 0.08 for RPG-PD, and the ini-
tial distribution ρ is uniform. For PMD-PD, AR-CPO, and Accelerated Dual, we use the stepsize
η = 0.1 for the dual update, the regularized NPG stepsize α = 1, and the regularization parameter
τ = 0.08, and the uniform initial distribution ρ.
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Figure 8: Convergence performance of RPG-PD, OPG-PD, and primal methods. Learning curves of
our RPG-PD (– –) and OPG-PD (—), and CRPO [77] (–·–) methods. The horizontal axes represent
the policy iterations {πt}t≥ 0 that are generated by each method and the vertical axes mean the
value functions of the policy iterates {πt}t≥ 0: reward value V πtr (ρ) (Left) and utility value V πtg (ρ)
(Right). In this experiment, we apply RPG-PD and OPG-PD to a conservative constraint V πg (ρ) ≥ δ,
and we take the conservative parameter δ = 0.1, the stepsize η = 0.1, the regularization parameter
τ = 0.08 for RPG-PD, and the initial distribution ρ is uniform. For CRPO, we update the policy via
the NPG step with stepsize η = 0.1 and the uniform initial distribution ρ.

A reason for this is that RPG-PD with a relatively small regularization parameter (compared to the
stepsize) works as usual un-regularized single-time-scale primal-dual methods. Hence, increasing
the regularization parameter, τ = 0.1 can accelerate the convergence and attenuate the oscillation
more effectively, although it makes the reward value more sub-optimal, which is also clearly shown
in Figure 10.

To demonstrate the convergence of RPG-PD’s policy iterates, we measure the policy optimality gap
via the squared norm distance of policy iterates to an optimal policy π? that is obtained from an
occupancy-measure-based linear program. From the optimality gap in Figure 10, we see that three
policy optimality gaps decrease sublinearly to some constants in the logarithmic scale plot, which
verifies the sublinear last-iterate convergence of RPG-PD’s policy iterates in Theorem 2. Hence, we
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conjecture that it is impossible to improve the order of RPG-PD’s sublinear rate, without introducing
new algorithmic design.

To reduce the oscillation behavior, we repeat this experiment with a smaller stepsize η = 0.01 as
suggested by Corollary 3. We report our result in Figure 11 and Figure 12. The oscillation in the
utility value previously happened for τ = 0.01 becomes less frequent, and the best reward value is
achieved in this case. A noticeable loss is that the convergence has been slowed down, apparently
in Figure 12. Hence, we have shown that balancing the stepsize and the regularization parameter
(e.g., Corollary 3) is important for RPG-PD to achieve better oscillation attenuation and last-iterate
convergence in practice.
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Figure 9: Convergence performance of RPG-PD with regularization parameter τ : (τ = 0.1, —),
(τ = 0.05, – –), (τ = 0.01, ····). The horizontal axes represent the policy iterations {πt}t≥ 0 that are
generated by RPG-PD and the vertical axes mean the value functions of the policy iterates {πt}t≥ 0:
reward value V πtr (ρ) (Left) and utility value V πtg (ρ) (Right). In this experiment, we fix the same
stepsize η = 0.1 and take the regularization parameter τ among 0.1, 0.05, and 0.01, and the uniform
initial distribution ρ.
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Figure 10: Convergence performance of RPG-PD with regularization parameter τ : (τ = 0.1, —),
(τ = 0.05, – –), (τ = 0.01, ····). The horizontal axis represents the policy iterations {πt}t≥ 0 that
are generated by RPG-PD and the vertical axis means the policy optimality gap that measures the
distance of the policy iterates {πt}t≥ 0 to an optimal policy π?:

∑
s ‖πt(· | s)− π?(· | s)‖

2. In this
experiment, we fix the stepsize η = 0.1 and take the regularization parameter among 0.1, 0.05, and
0.01, and the uniform initial distribution ρ.
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Figure 11: Convergence performance of RPG-PD with regularization parameter τ : (τ = 0.1, —),
(τ = 0.05, – –), (τ = 0.01, ····). The horizontal axes represent the policy iterations {πt}t≥ 0 that are
generated by RPG-PD and the vertical axes mean the value functions of the policy iterates {πt}t≥ 0:
reward value V πtr (ρ) (Left) and utility value V πtg (ρ) (Right). In this experiment, we fix the same
stepsize η = 0.01 and take the regularization parameter τ among 0.1, 0.05, and 0.01, and the
uniform initial distribution ρ.
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Figure 12: Convergence performance of RPG-PD with regularization parameter τ : (τ = 0.1, —),
(τ = 0.05, – –), (τ = 0.01, ····). The horizontal axis represents the policy iterations {πt}t≥ 0 that
are generated by RPG-PD and the vertical axis means the policy optimality gap that measures the
distance of the policy iterates {πt}t≥ 0 to an optimal policy π?:

∑
s ‖πt(· | s)− π?(· | s)‖

2. In this
experiment, we fix the stepsize η = 0.01 and take the regularization parameter among 0.1, 0.05, and
0.01, and the uniform initial distribution ρ.

E.4 Sensitivity of OPG-PD (9) to stepsize

In this experiment, we use our previous tabular constrained MDP with a random transition, a dis-
count factor γ = 0.9, uniform rewards r ∈ [0, 1] and utilities g ∈ [−1, 1], and an uniform initial
state distribution ρ. The constraint is V πg (ρ) ≥ 0. We repeat executing OPG-PD by varying three
different stepsizes η ∈ {0.05, 0.1, 0.2}. To demonstrate the optimality of OPG-PD’s policy iterates,
we measure the policy optimality gap via the squared norm distance of policy iterates to an optimal
policy π? that is obtained from an occupancy-measure-based linear program. To demonstrate the
optimality of OPG-PD’s policy iterates, we measure the policy optimality gap via the squared norm
distance of policy iterates to an optimal policy π? that is obtained from an occupancy-measure-based
linear program. From the policy optimality gap in Figure 2, we see that three policy optimality gaps
decrease linearly in the logarithmic scale plot, which verifies the linear last-iterate convergence of
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OPG-PD’s policy iterates in Theorem 6. Furthermore, in Figure 13 we show the optimality of OPG-
PD’s policy iterates by plotting the optimality gap |V π?r (ρ) − V πtr (ρ)| and the constraint violation
|V πtg (ρ)|, where V π

?

r (ρ) = 8.16. We see that the optimality gap and the constraint violation both
decay asymptotically in linear rates in spite of some oscillations, and larger stepsize enjoys faster
convergence. It is worth mentioning that, these descending oscillations actually show that value
functions are approaching the optimal ones. Hence, we have verified the linear last-iterate conver-
gence of OPG-PD’s policy iterates in Theorem 6 using a range of constant stepsizes.
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Figure 13: Convergence performance of OPG-PD with stepsize η: (η = 0.05, ····), (η = 0.1, –·–),
(η = 0.2, —). The horizontal axes represent the policy iterations {πt}t≥ 0 that are generated by
OPG-PD and the vertical axes mean the optimality of the policy iterates {πt}t≥ 0: optimality gap of
reward value |V π?r (ρ)− V πtr (ρ)| (Left) and constraint violation of utility value |V πtg (ρ)| (Right). In
this experiment, we take the stepsize η among 0.05, 0.1, and 0.2, and the uniform initial distribution
ρ.

Last but not least, we extend this experiment for a variant of OPG-PD that is based on the multi-
plicative weights update (MWU). We call this variant as an optimistic multiplicative weights update
primal-dual (OMWU-PD) method which maintains two sequences for policy and dual variables
each: {πt}t≥ 1 and {π̂t}t≥ 1 for the policy-player, and {λt}t≥ 1 and {λ̂t}t≥ 1 for the dual-player,

πt(· | s) = argmax
π(· | s)∈∆(A)

{∑
a

π(a | s)Qπt−1

r+λt−1g
(s, a) − 1

η
KL(π(· | s), π̂t(· | s))

}

π̂t+1(· | s) = argmax
π(· | s)∈∆(A)

{∑
a

π(a | s)Qπtr+λtg(s, a) − 1

η
KL(π(· | s), π̂t(· | s))

} (41a)

λt = argmin
λ∈Λ

{
λV πt−1

g (ρ) +
1

2η
(λ− λ̂t)2

}
λ̂t+1 = argmin

λ∈Λ

{
λV πtg (ρ) +

1

2η
(λ− λ̂t)2

} (41b)

where η is the stepsize and (π̂0, λ̂0) = (π0, λ0) ∈ Π × Λ is the initial point. OMWU-PD con-
currently works with two primal iterates and two dual iterates, which is similar to OPG-PD. The
only difference is that Primal update (41a) works as the NPG or MWU updates [23, 54], instead
of the projected Q-ascent [58, 65], which is also different from the one-step optimistic MWU in
policy-based ReLOAD [40].

To further investigate the applicability of optimistic gradient methods, we execute OMWU-PD in the
same setting and report our result in Figure 14 and Figure 15. We see that the policy optimality gaps
decay sublinearly in Figure 14, and the optimality gap and the constraint violation asymptotically
decay in sulinear rates in Figure 15. As a comparison, we repeat the same experiment for policy-
based ReLOAD [40], which is different from our OMWU-PD in using one-step optimistic gradient
updates. In Figure 16 and Figure 17, we observe sublinear decay of policy optimality gap, optimality
gap and constraint violation, where are similar as shown in Figure 14 and Figure 15.
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The empirical results from two MWU-based optimistic primal-dual algorithms are suggestive. First,
MWU-based optimistic algorithms can also have policy last-iterate convergence to an optimal pol-
icy. Second, convergence rates of MWU-based optimistic algorithms look slower than OPG-PD’s
under the same constant stepsize, which we leave as an immediate future work to establish sublinear
convergence rates for MWU-based optimistic primal-dual algorithms.
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Figure 14: Convergence performance of OMWU-PD with stepsize η: (η = 0.05, ····), (η = 0.1, –·–),
(η = 0.2, —). The horizontal axis represents the policy iterations {πt}t≥ 0 that are generated by
OMWU-PD and the vertical axis means the policy optimality gap that measures the distance of the
policy iterates {πt}t≥ 0 to an optimal policy π?:

∑
s KL(π?(· | s), πt(· | s)). In this experiment, we

take the stepsize η among 0.05, 0.1, and 0.2, and the uniform initial distribution ρ.
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Figure 15: Convergence performance of OMWU-PD with stepsize η: (η = 0.05, ····), (η = 0.1,
–·–), (η = 0.2, —). The horizontal axes represent the policy iterations {πt}t≥ 0 that are generated
by OMWU-PD and the vertical axes mean the optimality of the policy iterates {πt}t≥ 0: optimality
gap of reward value |V π?r (ρ) − V πtr (ρ)| (Left) and constraint violation of utility value |V πtg (ρ)|
(Right). In this experiment, we take the stepsize η among 0.05, 0.1, and 0.2, and the uniform initial
distribution ρ.

F Supporting Lemmas

In this section, we collect some lemmas that are helpful to our analysis.
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Figure 16: Convergence performance of policy-based ReLOAD [40] with stepsize η: (η = 0.05,
····), (η = 0.1, –·–), (η = 0.2, —). The horizontal axis represents the policy iterations {πt}t≥ 0 that
are generated by ReLOAD and the vertical axis means the policy optimality gap that measures the
distance of the policy iterates {πt}t≥ 0 to an optimal policy π?:

∑
s KL(π?(· | s), πt(· | s)). In this

experiment, we take the stepsize η among 0.05, 0.1, and 0.2, and the uniform initial distribution ρ.
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Figure 17: Convergence performance of policy-based ReLOAD [40] with stepsize η: (η = 0.05,
····), (η = 0.1, –·–), (η = 0.2, —). The horizontal axes represent the policy iterations {πt}t≥ 0 that
are generated by ReLOAD and the vertical axes mean the optimality of the policy iterates {πt}t≥ 0:
optimality gap of reward value |V π?r (ρ) − V πtr (ρ)| (Left) and constraint violation of utility value
|V πtg (ρ)| (Right). In this experiment, we take the stepsize η among 0.05, 0.1, and 0.2, and the
uniform initial distribution ρ.

F.1 Lemmas in optimization

For any convex differentiable function ψ: X → R, the Bregman divergence of x, x′ ∈ X is given
by Dψ(x′, x) := ψ(x′) − ψ(x) − 〈∇ψ(x), x′ − x〉. When ψ is σ-strongly convex, Dψ(x′, x) ≥
σ
2 ‖x

′ − x‖2 for any x′, x ∈ X . Specifically, when ψ(x) = 1
2 ‖x‖

2, Dψ(x′, x) = 1
2 ‖x

′ − x‖2.
Lemma 24. Let X be a convex set. If x′ = argminx̄∈X〈x̄, g〉+Dψ(x̄, x), then for any x? ∈ X ,

〈x′ − x?, g〉 ≤ Dψ(x?, x)−Dψ(x?, x′)−Dψ(x′, x).

Proof. See [38, Lemma 10].

Lemma 25. Assume that Dψ(x, x′) ≥ 1
2 ‖x− x

′‖2p for some ψ and p ≥ 1. If

x1 = argmin
x̄∈X

〈x̄, g1〉+Dψ(x̄, x) and x2 = argmin
x̄∈X

〈x̄, g2〉+Dψ(x̄, x)
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then
‖x1 − x2‖p ≤ ‖g1 − g2‖q

where 1
p + 1

q = 1.

Proof. See [38, Lemma 11].

Lemma 26. Let X ⊂ Rm and Y ⊂ Rn be polytopes and M ∈ Rm×n be a matrix. Then, there
exists a problem-dependent constant c > 0 such that

max
y′ ∈Y

x>My′ − V ? ≥ c ‖x− PX?(x)‖

V ? − min
x′ ∈X

(x′)>My ≥ c ‖y − PY ?(y)‖
where V ? is the game value,

V ? := minimize
x∈X

maximize
y∈Y

x>My = maximize
y∈Y

minimize
x∈X

x>My

and (X?, Y ?) is the set of minimax optimal strategies.

Proof. See [38, Theorem 5].

Lemma 27. Let X ⊆ ∆(A) be a convex set and g be a bounded vector in R|A|. If x′ =
argminx̄∈X〈x̄, g〉+ 1

ηKL(x̄, x), then for any x? ∈ X ,

〈x− x?, g〉 ≤ KL(x?, x)− KL(x?, x′)

η
+ η

∑
a∈A

xa(ga)2

where η satisfies ηga ≥ −1 for a ∈ A.

Proof. See [132, Theorem 2].

F.2 Properties of policy gradient

Lemma 28 (Performance difference lemma). For any two policies π and π′, and any state s0,

V π(s0) − V π
′
(s0) =

1

1− γ
Es∼ dπs0Ea∼π(· | s)

[
Aπ
′
(s, a)

]
Proof. See [49, Lemma 3.2].

Lemma 29 (Regularized PG and NPG under softmax parametrization). Let an entropy-regularized
value function be V πτ (ρ) := V πr (ρ) + τH(π), and define Qπτ : S × A → R and V πτ : S → R via
Bellman equations,

Qπτ (s, a) = r(s, a) + λg(s, a) + γEs′∼P (· | s,a) [V πτ (s′) ]

V πτ (s) = Ea∼π(·,| s) [−τ log π(a | s) +Qπτ (s, a) ] .

Let a parametrized policy be πθ for some parameter θ ∈ Rd. If the policy πθ is differentiable and∑
a πθ(a | s) = 1, then,

∂V πθτ (ρ)

∂θs,a
=

1

1− γ
dπθρ (s) · πθ(a | s) ·Aπθτ (s, a)

=
1

1− γ
dπθρ (s) · πθ(a | s) · (Qπθτ (s, a)− τ log πθ(a | s))

for all (s, a) ∈ S × A, where Aπθτ (s, a) := Qπθτ (s, a) − τ log πθ(a | s) − V πθτ (s). Moreover, if the
policy πθ is in form of the softmax function πθ(a | s) =

exp(θs,a)∑
a′ exp(θs,a′ )

for all (s, a) ∈ S ×A, then[
(Fρ(θ))

† · ∇θV πθτ (ρ)
]
s,a

=
1

1− γ
Aπθτ (s, a) + c(s)

where c(s) is an action-independent constant.

Proof. See [52, Lemma 6].
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