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Abstract

The classification of employment types in on-
line job advertisements (OJAs) is crucial for
labor market analysis and recruitment. This
study addresses the limitations of manual data
annotation by leveraging synthetic data gener-
ation (SDG) techniques using large language
models (LLMs). We evaluate four SDG meth-
ods—plain prompting, sampling, precise at-
tributes, and adjective attributes—to generate
synthetic job ads and assess their impact on
classification model performance. Our analysis
focuses on the balance between dataset size,
data diversity and label-fit, and we explore the
use of Natural Language Inference (NLI) filter-
ing to enhance data quality. Results show that
models trained on synthetic data can effectively
classify real-world job ads, achieving competi-
tive performance. However, we observed sig-
nificant volatility in outcomes, which we could
not fully explain. By making our code and
data publicly available, we provide the research
community with opportunities to further inves-
tigate SDG techniques. By publishing our best
models, we offer researchers tools capable of
achieving up to 96% F1 on a real-world dataset
for classifying German OJAs by employment

type.
1 Introduction

Classifying employment types in online job
advertisements (OJAs) is crucial for labor market
analysis and recruitment. Kriiger (2023) catego-
rized OJAs into four types but faced data scarcity
and imbalance issues. This study addresses these
challenges using synthetic data generation (SDG)
techniques with large language models (LLMs).
This study evaluates SDG methods for generating
synthetic job ads and their impact on employment
type classification models, focusing on balancing
data diversity and label-fit. We also explore using
Natural Language Inference (NLI) filtering to
enhance data quality.

The main contributions of this paper are:

1. We compare four prompting meth-
ods for SDG: plain prompting, sam-
pling, precise attributes, and adjec-
tive attributes.

2. We investigate the effects of these
methods on data diversity and label-
fit, reflecting on measurement meth-
ods and identifying research needs.

3. We assess the effectiveness of NLI-
based filtering in improving syn-
thetic data quality and model per-
formance.

4. We benchmark models trained on
synthetic data against those trained
on real-world data, showing SDG’s
potential in employment type clas-
sification.

5. Our results show seemingly arbi-
trary performance volatility. We of-
fer our code, data, and models pub-
licly for further investigation and
improvement.

6. We release distilBERT models with
up to 96% F1 score for employment
type classification, providing robust
tools for researchers working with
German OJAs.

2 Motivation and Background

We build on Kriiger (2023), which classified Ger-
man OJAs into the employment type categories Ap-
prenticeships, Other Minor Positions, Leading Posi-
tions, and Regular Workers. They faced challenges
due to data scarcity and label imbalance, with some
categories appearing fewer than ten times in 15,000
labeled OJAs. This necessitated merging labels and
highlighted the resource-intensive nature of manual
labeling. Therefore, a more feasible and dynamic



approach is required.

Recently, SDG in Natural Language Processing is
increasingly used to address data scarcity issues
(Delmas et al., 2024; Li et al., 2023; Schmidhu-
ber and Kruschwitz, 2024; Josifoski et al., 2023;
Veselovsky et al., 2023) due to the rise of genera-
tive LLMs. The idea is to prompt LLMs to generate
text conditioned on various aspects such as the la-
bel space, text type, or genre. This data can then be
used to train downstream Language Models. Con-
temporary research has shown that this technique is
also promising to OJA research (Clavié and Soulié,
2023; Magron et al., 2024; Borchers et al., 2022).
Prompting LLMs to generate job ads appears to
consistently output relatively realistic job ads. This
is presumably due to the large amount of OJAs
available publicly on the internet, which results
in these data being included in the often publicly
scraped training data of LLMs. Furthermore, using
LLMs to generate synthetic data to train a down-
stream task (like text classification) specific model
has proven to yield better results than using the
LLM as a zero-shot predictor for the specific task
directly (Schick and Schiitze, 2021; Meng et al.,
2022; Ye et al., 2022; Josifoski et al., 2023). Also,
downstream models can be a lot cheaper computa-
tionally (Ye et al., 2022; Schick and Schiitze, 2021),
which has major practical and ethical (Bannour
et al., 2021; Strubell et al., 2019) advantages.

As a recent technique, SDG is still under research.
One key advantage is the potential to generate prac-
tically unlimited training data. While generating
an infinite amount of data is impractical and un-
necessary for simple tasks, the ability to create
large volumes of data can significantly enhance
model performance'. However, one particular as-
pect that has been found to be relevant in this re-
gard is text diversity. Since data generation with
LLMs, even with sampling techniques for random-
ization, is a statistical process, repeatedly using the
same prompt will eventually produce outputs with
certain biases, resulting in redundancy. When the
dataset then becomes too similar, the ability of the
downstream model to generalize will be affected.
In their research, Ye et al. (2022) show that with
increasing the size of the synthetic dataset, the per-
formance of the downstream model increases, up
to a certain "threshold" point at which the perfor-
mance plateaus (or even drops). We argue that the

'"The absolute amount of data required for good perfor-
mance depends on the problem’s complexity.

reason behind this is that the data has become too
similar, causing the model to overfit. We hypoth-
esize that the more diverse the generated data is,
the higher this threshold can be. Therefore, finding
ways to diversify synthetically generated datasets
has been brought up by researchers as a promis-
ing approach to improve SDG (Yu et al., 2024; Ye
et al., 2022; Schick and Schiitze, 2021; Clavié and
Soulié, 2023). One pitfall in this regard has been
brought up by (Ye et al., 2022), who mention that
a more diverse dataset will only be beneficial as
long the quality or correctness, which in this paper
we will call label-fit (see Section 3.2 for a formal
definition), is not impaired. Generating random
words would create a more diverse dataset, but in
order to train a functioning downstream model, the
data will need pertain their label-fit. In their study,
Ye et al. (2022) find there to be a balance between
diversity and label-fit. In our study we want to test
different prompting methods to generate synthetic
OJAs for employment type classification and inves-
tigate the interaction between dataset size, diversity,
label-fit and the performance of the downstream
model. We also investigate how applying a NLI
filter influences the performance of SDG.

3 Related Work
3.1 Diversifying SDG

We present recent approaches to diversifying SDG
similar to our research. Ye et al. (2022) find that
more sampling leads to higher diversity but less
stable label-fit, using Self-BLEU to measure diver-
sity and human evaluation for label-fit. Yu et al.
(2024) use what they call attributes to diversify
prompts, meaning that they introduce a template
to the prompt where certain attributes that the de-
sired output should have can be specified. For their
work on topic classification of newspaper articles,
these attributes are the subtopic, length, style, and
location of the articles generated by the LLMs.
They measure diversity by Vocabulary Size, Aver-
age Pairwise Sample Similarity and Inter-Sample
N-gram Frequency. They do not directly measure
label-fit, but perform manual analysis of biases in
their data. They find that their technique creates
somewhat more diverse data compared to a sim-
ple prompting technique, but much less diverse
than the public gold standard datasets. They also
conclude that designing prompts with diverse at-
tributes contributed positively to the performance
of the downstream model.



For skills matching, Magron et al. (2024) gener-
ate synthetic training sentences containing skills,
whereby they seek to diversify their dataset by vary-
ing the lengths of skill combinations for each sen-
tence. They also prompt the model to vary the open-
ings of the descriptions and avoid certain phrases.
They claim to measure diversity and quality of their
generated data based on Perplexity, Skill-Sentence
Similarity and Explicitness, but do not mention
which metric specifically measures diversity. They
do, however, conclude that higher diversity of train-
ing data leads to a better skill matching perfor-
mance.

3.2 Measuring Diversity and Label-fit

In Section 3.1 we have already discussed how other
work in SDG has quantified text diversity. They
all use different metrics. We argue that this is a
consequence of the fact that quantifying text diver-
sity is a non trivial task with various conceptual and
operational challenges. Beyond SDG, text diversity
measurement is discussed in broader research areas
like Natural Language Generation (NLG) and Ma-
chine Translation (MT). We summarize key aspects
from this literature.

Tevet and Berant (2021) review commonly used
diversity metrics and cluster them into the
four categories Perplexity, N-gram-based metrics,
Embedding-based metrics and Human evaluation.
They also make an important point that to our
knowledge has not been considered in works on
diversity in SDG: there are be different types of di-
versity (Tevet and Berant, 2021). They use the divi-
sion of form and content diversity, but acknowledge
that these can be divided further into, for example
in the case of form diversity, syntactic and lexical
diversity (Tevet and Berant, 2021). We argue that
designing research on diversity in SDG should first
identify the specific type of diversity being studied
and then select appropriate quantifying metrics or
at least reflect on it.

With regards to the metrics and types of diversity
introduced above, it can be said that Perplexity,
which is commonly used (Tevet and Berant, 2021;
Hashimoto et al., 2019), measures the LLM rather
than the dataset, making it unsuitable for evaluating
texts obtained from different sampling and prompt-
ing strategies in SDG. N-gram-based metrics like
Self-BLEU (Zhu et al., 2018) measure form diver-
sity well but poorly assess content diversity (Tevet
and Berant, 2021). Lexical diversity also counts
as an N-gram metric. Embedding-based metrics

evaluate diversity by embedding sentences in a la-
tent space, performing similar in form diversity
but better in content diversity (Tevet and Berant,
2021). Human evaluation captures diversity most
effectively (Tevet and Berant, 2021) but is resource-
intensive.

We argue that in SDG, focusing on form diversity
is reasonable as content diversity is often limited
by factors like text type or class set. OJAs, for ex-
ample, have predetermined content. Research on
quantifying text diversity is ongoing, with no single
perfect metric. Therefore, we use a combination of
methods for our analysis, listed in Section 5.4.
Since previous literature uses various to describe
label-fit and similar concepts (quality?, correctness,
density), we first create a definition of it. Consider
L ={l,la,...,l;}, asetof labels. For a text ¢ to
be conditionally generated for a specific label (e.g.,
[1) and used in training a downstream classification
model, it must possess distinguishing features char-
acteristic of /; and not simultaneously associated
with other labels in £. To the best of our knowl-
edge, there exists very limited literature on how to
quantify label-fit. Ye et al. (2022) measure it in two
different ways. Firstly, they train a classification
model based on a standard training dataset, which
might be suitable for their purpose, but cannot be
applied in a real-world scenario because such a
dataset is not available in contexts of data sparsity.
Secondly, they perform human evaluation, which
is an option but is also resource-intensive. To the
best of our knowledge, the only work to automati-
cally quantify label-fit agnostic to existing training
data is by Lai et al. (2020), who call it density.
They measure the number of data points (texts) that
fall within a unit volume in the embedding space,
accounting for high-dimensional space through a
dimension-normalized volume calculation. How-
ever, the authors did not provide code or data to
replicate their findings or method. Hence, for this
work, we opted to perform a human evaluation to
quantify label-fit.

3.3 NLI Filtering

Improving label-fit involves filtering out data with
poor label alignment. Bartolo et al. (2021) showed
that various filtering methods improve question
answering models, though not directly applicable
here. Chen and Liu (2022) build on the common

*Note, that quality as measured frequently in MT (for
example Alihosseini et al. (2019)) is different from label-fit,
because it is measured w.r.t reference data.



idea to use NLI (Bowman et al., 2015) as a Zero-
Shot method by reformulating NLP problems as
premise and hypothesis pairs (Wei et al., 2021).
They used synthetic text as the premise and label
space as the hypothesis, showing that NLI filtering
generally improves results (Chen and Liu, 2022).
We adopted a simple NLI filtering approach for this
work.

4 Research Questions

This study addresses aspects of synthetic data gen-
eration (SDG) for employment type classification
in OJAs based on the current state of research as
outlined above. We focus on the following research
questions:

1. Effectiveness of Synthetic Data: Can models
trained on synthetic job ads classify real-world
ads effectively?

2. Optimal Data Generation Strategies: What
strategies generate training data with optimal
diversity and label-fit?

3. NLI Filter: Does integrating an NLI filter
significantly improve model performance?

4. Data Diversity and Label-Fit: Is there a cor-
relation between data diversity, label-fit, and
model performance? Does enhancing diver-
sity while preserving label-fit expand the pla-
teuing threshold?

5. Diversity Metrics: How do different diversity
metrics impact experimental outcomes?

S Methodology

For our experiments, we generate job ad data condi-
tioned to a label space from the task of employment
type classification and use this data to fine-tune a
downstream text classification model, whose per-
formance we test on manually curated test sets.
More specifically, we seek to test different meth-
ods to generate synthetic data with respect to the
diversity and label-fit of the dataset as well as the
performance of the downstream model. For each
method, we also generate datasets of different sizes
to investigate the plateauing effect of synthetic data
generation (SDG). Additionally, for each dataset,
we employ a filtering step and calculate each metric
with and without the filter.

More formally, if we let D = {(X,Y)} be a
dataset containing text and label pairs, we can de-
fine that:

e D¢t = [(X,Y)} is a manually curated test
set.

» M is a set of methods for generating synthetic
data conditioned to a label space.

N is a set of size parameters, indicating how
much synthetic data is generated.

For each combination (m;,n;) € M x N, we gen-
erate synthetic datasets Dg%n ; and filtered datasets
Dﬁfmj. We fine-tune a text classification model
Cin;,n; on each dataset and denote models trained
on unfiltered and filtered datasets as Cﬁr?:,n]- and

cf Then, for each C*f

mg,n; > mq,n;

Cfni’nj we calculate a Performance (P) of the

respectively. and

model Cy; n; on D'**, e.g., Fl-score. For each

D,g?fm]. we also calculate a Diversity Score (DS)
and manually evaluate the Label-Fit (LF). We
chose to assess these metrics only on the filtered
data, because they are very resource intensive to
measure, requiring significant computational power
(DS) and human effort (LF).

We will detail the experimental pipeline in the fol-
lowing sections, specifying the metrics used to mea-
sure P, DS, and LF.

5.1 Parameters

The experiment pipeline operates with two primary
parameters:

1. Size: This parameter dictates the total number
of job ads in the training set, divided equally
across all classes (rounded down for parity).
For instance, a size setting of 500 results in
55 ads per class. The size range [500, 1000,
2500, 5000, 7500] was selected based on prior
studies (Kriiger, 2023; Ye et al., 2022).

2. Method: This refers to the technique used
for creating prompts fed into the LLM. Four
distinct methods are employed:

(a) Plain: The baseline method, where the
prompt straightforwardly requests a job
ad for a specific class, e.g., "A job ad for
an internship."

(b) Sampling: Similar to Plain, but with a
higher ’top k’ sampling parameter (Plain
=35; Sampling = 50), encouraging dataset
diversity at the potential cost of quality.
This method is based on the findings in
Ye et al. (2022).



(c) Precise Attributes (Prec): This method
diversifies prompts with detailed instruc-
tions about the ad, varying by class.
These include ad length, language style,
content elements, and industry sector (or
other relevant class-specific details such
as the formalized name of the apprentice-
ship), adhering to German WZ08 taxon-
omy standards (Kla, 2008). This method
is based on the ideas presented in Yu et al.
(2024). Rather than their approach of us-
ing a LLM to derive relevant attributes,
we manually reflected on possibly rel-
evant attributes for our text type. The
template and all options can be found in
appendix B.

(d) Adjective Attributes (Adj): Here,
prompts are enhanced with 2 to 5 adjec-
tives, randomly selected from a list of
30, describing possible language styles
of OJAs. This method also is based on
the ideas presented in Yu et al. (2024),
but is simpler. Instead of having to man-
ually construct a set of attributes (with
or without the help of LLMs), we simply
had to come up with a set of adjectives
that can describe the style of text type,
which is quicker and requires less effort.

Each method was conceived to explore different as-
pects of job ad generation, with the ultimate goal of
enhancing the diversity and quality of the synthetic
dataset for effective model training.

5.2 Dataset Generation

The dataset generation aligns with the parame-
ters delineated in 5.1. We utilized the Falcon-40b
model?, because at the time of conducting the ex-
periments it was the state-of-the-art open source*
option that included German text in its training data.
The only alternative, a larger 180b model, was not
feasible due to GPU constraints. For efficient infer-
ence, we utilized the VLLM library?, incorporating
techniques like continuous batching and paged at-
tention for enhanced performance ((Kwon et al.,
2023)).

Shttps://huggingface.co/tiiuae/falcon-40b

“The term open source can be debated, we refer to (Liesen-
feld and Dingemanse, 2024) for an in depth discussion

3.//github.com/vllm-project/vllm

5.3 Filtering

A NLI model was employed for dataset filtration,
assessing each job ad against the hypothesis "class
label name wanted" using the multilingual mDe-
BERTa model’s® zero-shot classification pipeline
(Yang et al., 2020). Ads not ranking their actual
class within the top three predictions were excluded.
Both filtered and unfiltered datasets were used for
training downstream models to evaluate the filter-
ing’s impact on performance. In a preliminary test
phase, we found that this approach seemed to yield
decent results for all label categories except regu-
lar full-time positon from which the model filtered
out ads disproportionately. This category is special
in the sense that it is the norm and therefore less
specific and salient than the other label categories,
which may be the reason why the model performed
worse for this class. Therefore, for experiments,
we skipped the filtering for ads from the regular
full-time positon category.

5.4 Data Analysis

In this step, we quantify the diversity and label-fit
of all datasets Dg{;n - Label-fit, assessed through
human judgment, was measured by annotating
a sample of 50 ads from each dataset based on
whether the ads possess distinctive features char-
acteristic of their respective labels. The ads are
categorized into five groups as per Table 5, using
broad guidelines inductively developed from initial
data analysis. To quantify diversity, we use the
following metrics. Diversity Metrics:

1. Unique Lemmas: Counting unique lemmas
to measure lexical diversity.

2. Self-BLEU: We calculate Self-BLEU (Zhu
et al., 2018) to measure diversity of lexical
patterns as well as syntactic diversity to some
extend.

3. BERT Vendi-Score: As an embedding-based
method, we choose to calculate the Vendi-
Score (VS) (Dan Friedman and Dieng, 2023),
which measures dataset diversity based on
the Shannon entropy of a similarity matrix.
To create such a matrix we calculated the co-
sine distance based on the embeddings of the
pooler output of a BERT model.

6https://huggingface.co/Mor‘itzLaurer‘/
mDeBERTa-v3-base-xnli-multilingual-nli-2mil7


https://huggingface.co/tiiuae/falcon-40b
://github.com/vllm-project/vllm
https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
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5.5 Training and Testing

Each synthetic dataset undergoes training and test-
ing five times to mitigate random variation. The
training process involves fine-tuning a distilBERT
(Sanh, 2019) model on both filtered and unfiltered
datasets, following hyperparameters from Kriiger
(2023) (see Appendix C). Test data encompasses
two distinct test datasets that are constant across all
runs:

* Qual-Testset: A manually annotated dataset
with 20 ads per class, measuring performance
on real-world data.

* Ausklasser-Testset: Adopted from Kriiger
(2023), consisting of apprenticeship and non-
apprenticeship OJAs, allowing performance
comparison with models trained on real-world
data. We aggregate all predictions to this bi-
nary label space the same way they did in their
experiments.

6 Results and Discussion

In this section, we summarize and interpret the
most important results. Supplementary metrics can
be accessed in Appendix E. We specifically dis-
cuss our results concerning our research questions
from Section 4. Figure 1 shows the F17 scores on
the Qual-Testset for all Cfnim across five runs each.
The results show, concerning the first research ques-
tion, that models trained on synthetically generated
data can indeed classify real-world job ads well,
achieving up to 96% F1 on our Qual-Testset. For
the binary Ausklasser-Testset, some of our mod-
els even achieved 100% accuracy and are gener-
ally competitive with the models trained on 10,000
manually annotated job ads in Kriiger (2023). How-
ever, the models also appear to be volatile, show-
ing arbitrary behavior concerning method and size
combinations. For example, the dataset D%L 5000
achieved only 59% F1 on average, despite having
much better results with smaller datasets and in the
two adjacent size categories also having slightly
better performance when unfiltered.

This observation makes it difficult to answer re-
search questions two and three. Due to the volatility
the results cannot be viewed in an overly statisti-
cal manner. Specific comparisons of parameters,
even with statistical significance testing, may not
be meaningful due to the arbitrary nature of some

TAll reported F1 scores, precision, and recall refer to the
macro-averaged metrics unless otherwise specified.

outcomes, indicating the presence of factors we
have not yet identified or a large random factor in
SDG independent of the specific parameters. Such
factors might be aspects of Fidelity or Utility as
described in Yuan et al. (2024). Therefore, we will
rather descriptively analyze the results. Table 1
shows that Plain has the highest overall mean F1
and a relatively high median, indicating that this
method was relatively stable with fewer outliers
compared to other methods, which have a larger
difference between their mean and median. This
might be explained by the fact that Sampling is
more random by its nature and within the Prec and
Adj methods, there is also some additional random-
ness in the prompting. It is plausible that, for ex-
ample, certain adjectives from the list of adjectives
in Adj did cause the model to output low quality
data. If these adjectives were sampled frequently
in dataset creation, the quality of the dataset would
be lower compared to when they were sampled
fewer times. However, given the limited number of
adjectives and repeated sampling, it is statistically
unlikely that any single adjective would have im-
pact on the overall results as large as in the case
described above for the Dg,{lj,7500 dataset. The ran-
dom distribution and repeated appearances of each
adjective mitigate the influence of individual ad-
jectives on dataset quality. Analyzing the results
further, the size factor played an important role
as Figure 1 shows. Overall, results show that in-
creasing the size parameter has improved scores
initially, but all methods appear to have plateaued.
Comparing our size to the results in Kriiger (2023),
models trained on synthetically generated data do
not require more training for comparable perfor-
mance. In the case of Prec, we observe that there
were several outliers in the lower dataset size set-
tings, but the results became much more stable with
increased data.

Filtering had a slightly positive effect on both
mean and median (3% F1 and 1% F1 gain re-
spectively), but again the results are very volatile,
because often, the effect was rather small, while
sometimes it seemed to have a huge impact in both
directions. For example in the Prec 500 setting, the
models performed very well on the unfiltered data,
but much worse on the filtered data. This variabil-
ity can be attributed to the extent of data filtering;
if too much data is removed, the remaining dataset
may be insufficient to train a model that generalizes
well.



F1 Score on Qual-Testset by Method and Size
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Figure 1: F1 on Qual-Testset by Method and Size. Proportion of our £F annotation labels per method.

Method | Mean F1 | Median F1
Plain 0.89 0.90
Sampling 0.85 0.91
Prec 0.87 0.92
Adj 0.88 091

Table 1: Overall Mean and Median F1 Scores per
Method on Qual-Testset

For our fourth and fifth research question, we
have to consider the DS and LF metrics. Com-
paring the results of Unique Lemmas, Self-BLEU
and BERT Vendi-Score across different metrics and
sizes (see Table 2 for an overview and Appendix E
for more in-depth results), we find that metrics are
relatively stable across sizes, indicating that a given
method will behave similar with respect to other
methods regardless of size. Each metric singles out
Sampling as producing the most diverse datasets.
Since Sampling is known to increase diversity in
text generation, this result is expected and shows
that our metrics work as intended. Surprisingly
however, the order of the other three methods differ
depending on the metric. This proves that our fifth
research question is highly relevant and the insight
from our literature review in Section 3.2 that there
is no single ground truth metric for measuring text
diversity holds truth. It shows that SDG research
using diversity is highly dependant on the metric
chosen. As we have pointed out in Section 3.2, dif-
ferent metrics can measure different aspects of text

diversity. We believe that our results show that this
idea needs to be made more prominently within
SDG diversity research. This behavior of our DS
measures also means that we cannot answer our
fourth research question. Any form of correlation
between DS, P and LF w.rt M and N would
always be dependant on the DS we choose.

Method | Mean BERT-VS 1 | Mean Self-BLEU | | Mean Unique Lemmas 1
Plain 1.412 61.18 22227
Sampling 1.526 35.99 36179
Prec 1.430 60.32 21988
Adj 1.478 60.426 18568

Table 2: Diversity scores. Averaged DS per method.
The arrow indicates whether a higher or lower score
means that the data is more diverse.

Relative Distribution of Label-Fit by Method
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Figure 2: Label-fit by method. Proportion of our LF
annotation labels per method.

At the same time, Figure 2 shows that Plain has
the highest label-fit, whilst seemingly plateauing



at a lower F1 score than the other methods.
This could hint at datasets being generated by
this method being less diverse. With this logic,
BERT-VS and Self-BLEU would be more useful to
measure diversity than counting unique lemamas,
because they measure Plain as being less diverse
than Adj and Prec. We do acknowledge, though,
that such a claim requires further investigation,
because the volatility described earlier hints at
further factors still unknown to us are contributing
to the P. We also acknowledge that we randomly
sampled fifty ads per dataset to manually annotate
and our annotation process was relatively simple
(single-blind). This makes the results of our
label-fit less stable. Since our testsets are also
rather small, our results are to be taken with
caution.

Finally, during the manual data annotation, we had
some intriguing qualitative observations, which
we want to briefly summarize in the following.
Most prominently, we see in Figure 2 that there is
a portion of ten to twenty percent of ads labeled
as not being OJAs. This, however, is to a large
extend caused by a design choice in annotations.
Most of these cases are actually partly a regular
OJA, but then at some point turn into something
else. The model seems to get confused and starts
to generate other text genres related to jobs or job
ads. Most frequently were job applications letters,
forum posts or newspaper articles. In most of these
cases, however, the job ad did start normally and
did also contain a correct label-fit. Therefore, these
data might still help the downstream model learn
to distinguish between employment type labels to
some extend.

7 Conclusion and Outlook

In this study, we explored synthetic data genera-
tion (SDG) methods to enhance the classification
of employment types in online job advertisements
(OJAs). Our experiments focused on four main
strategies: plain prompting, sampling, precise at-
tributes, and adjective attributes, while investigat-
ing the impact of dataset size, diversity, and label-fit
on downstream model performance. Additionally,
we examined the efficacy of a NLI filter in improv-
ing the quality of the synthetic data.

Our findings indicate that models trained on syn-
thetically generated data can classify real-world
job ads effectively, achieving competitive perfor-

mance compared to models trained on manually
annotated data. However, the results exhibited
volatility, with significant fluctuations in perfor-
mance depending on the method and dataset size
combination. Our best performing model, trained
on ngx]gj,moo» configuration achieved 96% F1 score
on our Qual-Testset and 99% F1 on the Ausklasser-
Testset. Despite this, the plain prompting method
demonstrated the highest overall stability and mean
F1 score, suggesting that simpler methods may
yield more consistent results.

Data diversity and label-fit were measured us-
ing multiple metrics, revealing that the sampling
method consistently produced the most diverse
datasets. Nonetheless, the choice of diversity met-
ric significantly influenced the evaluation, high-
lighting the need for careful consideration when se-
lecting metrics for SDG research. Our label-fit anal-
ysis showed that while plain prompting achieved
the highest label-fit, it did not necessarily correlate
with the best performance, suggesting that a bal-
ance between diversity and label-fit is crucial.
Filtering synthetic data using NLI had a slightly
positive overall impact on model performance,
but its effect varied across different methods and
dataset sizes. This suggests that while NLI fil-
tering can improve data quality, its benefits may
be context-dependent and require further optimiza-
tion.

Overall, our most important finding is the volatil-
ity of our results. This indicates that there were
additional factors influencing the outcomes of our
results. Future work seek to identify those by per-
forming more in-depth analyses on factors such as
variance of label performance, the variance in dif-
ferent attributes in Adj and Prec, qualitative analy-
sis of unexpected results like the poor performance
of DZ];L 5000 and in what way statistically as well as
qualitatively the NLI filter influenced the datasets.
Furthermore, our work shows the importance to de-
velop more unified ways to measure text diversity
and label-fit in SDG research.



8 Limitations

This section discusses the limitations of our study.
Most importantly, we reported metrics across five
runs during the training of each C;’,rl‘inj and C,fni’nj
to mitigate randomness. However, during the gener-
ation of each Dy, ,, ; the sampling also introduces
randomness. Therefore, if we want to analyze the
impact of our input parameters, it would be better
to also generate each Dy, ,,; several times, which
then each time goes through the rest of the pipeline.
This, however, was beyond of the scope of this pa-
per due to the major increase in computational cost
this would entail.

There are two major limitations when it comes
to our P-measures. First, our D! are relatively
small, which generally makes results less reliable.
Furthermore, our Qual testset was constructed by
manually searching OJAs online, because we be-
lieved, based on the heavy label imbalance in OJA
data w.r.t employment type, annotating data would
result in heavy manual annotation effort. There-
fore, our data comes from a relatively small time
span, in which the OJAs went online. This could
have introduced biases. Second, P-measures are
all calculated based on the same configuration w.r.t.
several parameters, such as Hyperparameters or the
choice of the pretrained model, which likely influ-
ence the performance P. Especially using more so-
phisticated techniques could substantially improve
results even further.

We also see limitations in the way we treat our
label space. As mentioned in REF APPENDIX
we derived the labels based on labor market expert
opinions on what they thought were beneficial for
OJA research. However, it can be debated whether
we capture all different types of employment ex-
haustively. More importantly, it can be debated
whether the categories we opened up are clearly
distinguishable in all cases. For example, a PhD
position may be full or part time. Also, in real
world data it can occur that employers state some
flexibility, for example by looking for an intern or
a working student, which we do not account for in
the way we treat the employment type classifica-
tion. As our qualitative analysis shows the LLMs
sometimes did generate instances like that, indi-
cating that they can potentially be leveraged for a
more sophisticated system.

One important consideration regarding our Prec
method is that we did not consider the plausibility
of our randomly sampled attribute combinations.

For example, some employment types like volun-
tary social year might be extremely uncommon in
certain industry sectors as they are typically asso-
ciated with specific types of employers and orga-
nizations from the social sector. Prompting such
unrealistic combinations might have negatively im-
pacted data generation. Similarly, our list of adjec-
tives for Adj did not have any scientific foundation,
because we could not find any in the literature we
considered, which included linguistic literature on
discourse analysis, register analysis or genre lin-
guistics as well as literature on corporate identity
from economics. It is likely that some of the adjec-
tives negatively impacted label-fit. We believe that
studying aspects of text style and how to describe
it could benefit SDG.

There are also limitations w.r.t. the way we measure
LF. Firstly, we only annotate a relatively small
sample from our data. Secondly, we to the best of
our knowledge there exist no public guidelines to
aid such annotation for label-fit in synthetic data.
We believe that sharing our experience annotating,
however, can help other researchers in SDG that
seek to manually examine their data. Developing
a shared and more refined approach to annotation
should be a goal in this research area.



References

2008. Klassifikation der Wirtschaftszweige.
Bundesamt, Wiesbaden.

Statist.

Danial Alihosseini, Ehsan Montahaei, and Mahdieh So-
leymani Baghshah. 2019. Jointly measuring diversity
and quality in text generation models. In Proceed-
ings of the Workshop on Methods for Optimizing and
Evaluating Neural Language Generation, pages 90—
98.

Nesrine Bannour, Sahar Ghannay, Aurélie Névéol, and
Anne-Laure Ligozat. 2021. Evaluating the carbon
footprint of NLP methods: a survey and analysis of
existing tools. In Proceedings of the Second Work-
shop on Simple and Efficient Natural Language Pro-
cessing, pages 11-21, Virtual. Association for Com-
putational Linguistics.

Max Bartolo, Tristan Thrush, Robin Jia, Sebastian
Riedel, Pontus Stenetorp, and Douwe Kiela. 2021.
Improving question answering model robustness with
synthetic adversarial data generation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 8830-8848.

Conrad Borchers, Dalia Gala, Benjamin Gilburt, Eduard
Oravkin, Wilfried Bounsi, Yuki M Asano, and Han-
nah Kirk. 2022. Looking for a handsome carpenter!
debiasing gpt-3 job advertisements. In Proceedings
of the 4th Workshop on Gender Bias in Natural Lan-
guage Processing (GeBNLP), pages 212-224.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 632—
642.

Yanan Chen and Yang Liu. 2022. Nli-based filtering
for data augmentation in topic classification. In 2022
IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology
(WI-IAT), pages 103-110. IEEE.

Benjamin Clavié and Guillaume Soulié. 2023. Large
language models as batteries-included zero-shot esco
skills matchers. Recsys in HR @ Recsys.

Dan Dan Friedman and Adji Bousso Dieng. 2023. The
vendi score: A diversity evaluation metric for ma-
chine learning. Transactions on machine learning
research.

Maxime Delmas, Magdalena Wysocka, and André Fre-
itas. 2024. Relation extraction in underexplored
biomedical domains: A diversity-optimised sampling
and synthetic data generation approach. Computa-
tional Linguistics, pages 1-49.

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang.
2019. Unifying human and statistical evaluation for
natural language generation. In Proceedings of the
2019 Conference of the North American Chapter of

10

the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 1689-1701.

Martin Josifoski, Marija Sakota, Maxime Peyrard, and
Robert West. 2023. Exploiting asymmetry for syn-
thetic training data generation: Synthie and the case
of information extraction. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1555-1574.

Kai Kriiger. 2023. Ausklasser-a classifier for german
apprenticeship advertisements. In Proceedings of
the Communication Papers of the 17th Conference
on Computer Science and Intelligence Systems, vol-
ume 36. IEEE Piscataway, NJ, USA.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention.  Preprint,
arXiv:2309.06180.

Yi-An Lai, Xuan Zhu, Yi Zhang, and Mona Diab. 2020.
Diversity, density, and homogeneity: Quantitative
characteristic metrics for text collections. In Proceed-
ings of the Twelfth Language Resources and Evalua-
tion Conference, pages 1739-1746.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin.
2023. Synthetic data generation with large language
models for text classification: Potential and limita-
tions. In The 2023 Conference on Empirical Methods
in Natural Language Processing.

Andreas Liesenfeld and Mark Dingemanse. 2024. Re-
thinking open source generative ai: open washing
and the eu ai act. In The 2024 ACM Conference on
Fairness, Accountability, and Transparency, pages

1774-1787.

Antoine Magron, Anna Dai, Mike Zhang, Syrielle Mon-
tariol, and Antoine Bosselut. 2024. Jobskape: A
framework for generating synthetic job postings to
enhance skill matching. In /st Workshop on Natural
Language Processing for Human Resources. Associ-
ation for Computational Linguistics.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. Ad-
vances in Neural Information Processing Systems,

35:462-477.

V Sanh. 2019. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. In Proceedings
of Thirty-third Conference on Neural Information
Processing Systems (NIPS2019).

Timo Schick and Hinrich Schiitze. 2021. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943—
6951.


https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
https://doi.org/10.18653/v1/2021.sustainlp-1.2
http://arxiv.org/pdf/2307.03539.pdf
http://arxiv.org/pdf/2307.03539.pdf
http://arxiv.org/pdf/2307.03539.pdf
http://arxiv.org/pdf/2307.03539.pdf
http://arxiv.org/pdf/2307.03539.pdf
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180

Maximilian Schmidhuber and Udo Kruschwitz. 2024.
Llm-based synthetic datasets: Applications and limi-
tations in toxicity detection. LREC-COLING 2024,
page 37.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in nlp. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics.

Guy Tevet and Jonathan Berant. 2021. Evaluating the
evaluation of diversity in natural language generation.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 326-346, Online.
Association for Computational Linguistics.

Veniamin Veselovsky, Manoel Horta Ribeiro, Akhil
Arora, Martin Josifoski, Ashton Anderson, and
Robert West. 2023. Generating faithful synthetic
data with large language models: A case study
in computational social science. arXiv preprint
arXiv:2305.15041.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2021. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang,
Chandra Bhagavatula, Yejin Choi, and Doug Downey.
2020. Generative data augmentation for common-
sense reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1008-1025.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022. Zerogen: Efficient zero-shot learning via
dataset generation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language

Processing, pages 11653-11669.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander J Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2024. Large language model as
attributed training data generator: A tale of diversity
and bias. Advances in Neural Information Processing
Systems, 36.

Yefeng Yuan, Yuhong Liu, and Liang Cheng. 2024.
A multi-faceted evaluation framework for assessing
synthetic data generated by large language models.
arXiv preprint arXiv:2404.14445.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
SIGIR 18, page 1097-1100, New York, NY, USA.
Association for Computing Machinery.

11


https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080

A Employment Type Classification

Label Name Label Nr | Translation

Praktikum 0 Internship

Freiwilliges Soziales Jahr | 1 Voluntary Social Year
Volontariat 2 Voluntary Service

regulire Vollzeitstelle 3 Regular Full-Time Position
Ausbildungsstelle 4 Apprenticeship Position
Promotionsstelle 5 Doctoral Position
Teilzeitstelle 6 Part-Time Position
Werksstudentenstelle 7 Working Student Position
Traineestelle 8 Trainee Position

Table 3: Class label overview

Table 3 shows the labels we derived for employ-
ment type classification. The choice of these labels
was motivated by consultations with experts in la-
bor market research, but does not claim to be the
exhaustive ground truth to employment types. Also,
not all labels are easily translatable to English, be-
cause some of them are specific to the Germany.

B Data Generation

Data generation was executed using the falcon-
40b® model using default parameters from the
huggingface transfomers pipeline, except for top-
k sampling (5, 50 as described above) and
max_token=512 configuration. We wrapped the
model in the VLLM? library, where we set the
dtype parameter to half, which means using 16-bit
floating-point precision, and tensor-parallel-size
to two as we ran our code on two NVIDIA RTX
A6000 GPUs.

Below, we list the (translated) templates and ex-
plain the variables. For the original templates as
well as a full list of all possible input values, we re-
fer to the source code. All parameters we randomly
sampled with the constrains specified below, except
for the input_class. Here, we took the overall num-
ber of ads to be generated (depending on the size
parameter) and divided it by the number of input
classes (nine) such that each generated dataset had
an even label distribution.

B.1 Plain

{
"prompt”: "A job ad for a {
input_class}”,
"input_class": "The employment type
categories we use in this paper

n
b

8h’ctps ://huggingface.co/tiiuae/falcon-40b
https://github.com/vllm-project
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"top_k": 5
}
B.2 Sampling
{
"prompt”: "A job ad for a {
input_class}.\n Job ad:\n"
"input_class”: The employment type
categories we use in this paper.
top_k: 50
}
B.3 Prec
{

"prompt”: "A job ad for a {
input_class}.\n

{mainModule}\n

{lenModule}\n

{infoModule}\n

{styleModule}\n

Job ad:\n"

"input_class”: The employment type
categories we use in this paper.

"mainModule”: This was dependant on
the type of input classes. For
most input classes, the prompt
here was: ’industry sector of
the searching company: {industry
sector}’. The industry sector
was sampled the German industry
sector taxonomy \textit{
Klassifikation der
Wirtschaftszweige @8}. However,
for the apprenticeships we
instead specified the type of
apprenticeship instead.
Apprenticeships are highly
formalized in Germany and there
is a finite amount of official
apprenticeship programs
available. For the PhD class we
instead used a list of research
subject sampled from WikiData.

"lenModule"” : We specified the
length the ad should have.
Lengths were always a
descriptive word (e.g.: \textit{
long}, \textit{short}) as well
as a range of words (e.g. \
textit{100 to 150 words}).



https://huggingface.co/tiiuae/falcon-40b
https://github.com/vllm-project

"infoModule"”: We sampled from a list
of zones typically found in
0JAs (e.g.: \textit{company
description}, \textit{job tasks},
\textit{contact information}).

"styleModule”: One of four styles
the language of the job ad
should have. Simlar to Adj, but
less creative.

top_k: 5
}
B.4 Adj
{
"prompt”: "A job ad for a {
input_class}.\n
Characterstics: {sampled adjectives
I\n
Job ad:\n"
"input_class”: The employment type
categories we use in this paper.
"sampled adjectives”: Two to five
randomly sampled adjectives
describing the style of 0JAs
from a list of 30 adjectives.
top_k: 5
3

C Training Parameters

For the downstream training, we fine-tune a
German distilBERT!? model with the hyper-
parameters specified in Table 4. All other hyper-
parameters were set to default. For the test metrics,
we calculated macro F1, Precision and Recall.

Hyperparameter Value
num_train_epochs 4
learning_rate 0.0001

per_device_train_batch_size 8
per_device_eval_batch_size 8
warmup_steps False

Table 4: Hyperparameters used for LLM training with
HuggingFace

D Label-fit Annotation

Label-fit annotation was done by three annotators
in a single blind annotation process. We randomly

10https://huggingface.co/distilbert/
distilbert-base-german-cased

sampled 50 texts from the filtered datasets for each
D% ;- Bach time, the annotator was given the
choice between five labels as detailed in Table 5.

Label Name Label Nr
label-fit 0
no label-fit 1

Explanation

The job ad fits the label.
The job ad does not fit the
label.

The job ad contains
features for two or more
labels, including the input
label (e.g., "We seek an
intern or an apprentice").
Instances where the
model fails to generate a
job ad, producing an
unrelated text type.

Cases where annotators
are uncertain, requiring
further review.

double label-fit 2

no job ad 3

unsure 4

Table 5: Label-Fit Category Descriptions. These in-
structions were given to the annotators.

E Supplementary Results

Tables 6 and 7 show the average F1 performances
across all method/size combinations on the two
testsets respectively. Figures 3 to 5 plot the results
aggregated for filtering, methods and size respec-
tively.
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Method | Size Filtered F1 Score | Unfiltered F1 Score
Mean | Median | Mean Median

500 | 0.84 0.88 0.86 0.83

1000 | 0.88 0.88 0.89 0.89

Plain 2500 | 0.92 0.93 0.92 0.92
5000 | 0.92 0.92 0.86 0.87

7500 | 0.91 091 0.90 0.90

500 | 0.70 0.73 0.53 0.53

1000 | 0.86 0.89 0.91 091

Sampling | 2500 | 0.93 0.93 0.83 0.83
5000 | 0.93 0.93 0.93 0.93

7500 | 0.93 0.93 0.95 0.95

500 | 0.58 0.70 0.90 0.90

1000 | 0.84 0.89 0.81 0.81

Prec 2500 | 0.88 0.90 0.95 0.95
5000 | 0.93 0.93 0.93 0.93

7500 | 0.93 0.94 0.94 0.94

500 | 0.86 0.88 0.87 0.87

1000 | 0.90 0.91 0.90 0.90

Adj 2500 | 0.88 0.91 0.93 0.93
5000 | 0.94 0.95 0.59 0.59

7500 | 0.95 0.95 0.96 0.96

Table 6: F1 Score Statistics on Qual-Testset by Method and Size

Filtered F1 Score | Unfiltered F1 Score
Mean | Median | Mean Median
500 | 0.93 0.95 0.88 0.86
1000 | 0.90 0.90 0.93 0.96
Plain 2500 | 0.96 0.97 0.92 0.91
5000 | 0.95 0.95 0.93 0.95
7500 | 0.96 0.97 0.95 0.95
500 | 0.85 0.95 0.65 0.65
1000 | 0.94 0.95 0.92 0.92
Sampling | 2500 | 0.98 0.99 0.85 0.85
5000 | 0.95 0.95 0.94 0.94
7500 | 0.96 0.96 0.96 0.96
500 | 0.72 0.90 0.94 0.94
1000 | 0.91 0.91 0.77 0.77
Prec 2500 | 0.88 0.91 0.91 0.91
5000 | 0.94 0.94 0.96 0.96
7500 | 0.94 0.95 0.92 0.92
500 | 0.94 0.94 0.87 0.87
1000 | 0.97 0.97 0.86 0.86
Adj 2500 | 0.96 0.97 1.00 1.00
5000 | 0.95 0.95 0.33 0.33
7500 | 0.98 0.97 0.99 0.99

Method | Size

Table 7: F1 Score Statistics on Ausklasser-Testset by Method and Size
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Comparison of Filtered vs Unfiltered F1 Scores for Ausklasser and Qual Testsets
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Comparison of F1 Scores for Different Methods by Testset
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Figure 4: Method Comparison. Compares F1 scores across methods on Ausklasser- and Qual-Testset.
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Comparison of F1 Scores for Different Sizes by Testset

fﬁ-ﬁ%

e
o
o
wnv
=o7
8
(=]
o
0.6
[e]
0.5 Testset
B ausklasser
J - mm qual
500 1000 2500 5000 7500

size

Figure 5: Size Comparison. Compares F1 scores across sizes on Ausklasser- and Qual-Testset.

16



	Introduction
	Motivation and Background
	Related Work
	Diversifying SDG
	Measuring Diversity and Label-fit
	NLI Filtering

	Research Questions
	Methodology
	Parameters
	Dataset Generation
	Filtering
	Data Analysis
	Training and Testing

	Results and Discussion
	Conclusion and Outlook
	Limitations
	Employment Type Classification
	Data Generation
	Plain
	Sampling
	Prec
	Adj

	Training Parameters
	Label-fit Annotation
	Supplementary Results

