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ABSTRACT

Prior methods that tackle the problem of generalizable object pose estimation
highly rely on having dense views of the unseen object. By contrast, we address
the scenario where only a single reference view of the object is available. Our
goal then is to estimate the relative object pose between this reference view and
a query image that depicts the object in a different pose. In this scenario, robust
generalization is imperative due to the presence of unseen objects during test-
ing and the large-scale object pose variation between the reference and the query.
To this end, we present a new hypothesis-and-verification framework, in which
we generate and evaluate multiple pose hypotheses, ultimately selecting the most
reliable one as the relative object pose. To measure reliability, we introduce a
3D-aware verification that explicitly applies 3D transformations to the 3D object
representations learned from the two input images. Our comprehensive experi-
ments on the Objaverse, LINEMOD, and CO3D datasets evidence the superior
accuracy of our approach in relative pose estimation and its robustness in large-
scale pose variations, when dealing with unseen objects. Our project website is at:
https://sailor-z.github.io/projects/ICLR2024 3DAHV.html.

1 INTRODUCTION

Object pose estimation is crucial in many computer vision and robotics tasks, such as
VR/AR (Azuma, 1997), scene understanding (Geiger et al., 2012; Chen et al., 2017; Xu et al.,
2018; Marchand et al., 2015), and robotic manipulation (Collet et al., 2011; Zhu et al., 2014; Trem-
blay et al., 2018; Pitteri et al., 2019). Much effort has been made toward estimating object pose
parameters either by direct regression (Xiang et al., 2017; Wang et al., 2019a; Hu et al., 2020) or
by establishing correspondences (Peng et al., 2019; Wang et al., 2021; Su et al., 2022) which act
as input to a PnP algorithm (Lepetit et al., 2009). These methods have achieved promising results
in the closed-set scenario, where the training and testing data contain the same object instances.
However, this assumption restricts their applicability to the real world, where unseen objects from
new categories often exist. Therefore, there has been growing interest in generalizable object pose
estimation, aiming to develop models that generalize to unseen objects in the testing phase.

In this context, some approaches (Zhao et al., 2022b; Shugurov et al., 2022) follow a template-
matching strategy, matching a query object image with reference images generated by rendering the
3D textured object mesh from various viewpoints. To address the scenario where the object mesh is
unavailable, as illustrated in Fig. 1(a), some methods take real dense-view images as references. The
object pose in the query image is estimated either by utilizing a template-matching mechanism (Liu
et al., 2022) or by building 2D-3D correspondences (Sun et al., 2022). A computationally expensive
3D reconstruction (Schonberger & Frahm, 2016) is involved to either calibrate the reference images
or reconstruct the 3D object point cloud. In any event, the requirement of dense-view references pre-
cludes the use of these methods for individual or sparse images, e.g., downloaded from the Internet.
Intuitively, with sufficiently diverse training data, one could think of learning to regress the object
pose parameters directly from a single query image. However, without access to a canonical ob-
ject frame, the predicted object pose would be ill-defined as it represents the relative transformation
between the camera frame and the object frame.

∗Corresponding author.
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Figure 1: Difference between previous work and our method. Previous approaches (a) estimate
the pose of an unseen object building upon either template matching or 2D-3D correspondences,
which requires dense views of the object as references. By contrast, our method (b) takes only one
reference as input and predicts the relative object pose between the reference and query. The object
pose in the query can be derived when the pose of the reference is available.

To bypass this issue, we assume the availability of a single reference image that contains the novel
object. As shown in Fig. 1(b), we take this reference to be the canonical view and estimate the
relative object pose between the reference view and the query view, which is thus well-defined.
If the object pose in the reference is provided, the object pose in the query can be derived. In
this scenario, one plausible solution is to compute the relative object pose based on pixel-level
correspondences (Lowe, 2004; Rublee et al., 2011). However, the two views may depict a large-
scale object pose variation, and our experiments will evidence that even the state-of-the-art feature-
matching approaches (Sarlin et al., 2020; Sun et al., 2021; Goodwin et al., 2022) cannot generate
reliable correspondences in this case, which thus results in inaccurate relative object pose estimates.
As an alternative, Zhang et al. (2022); Lin et al. (2023) predict the likelihood of pose parameters
leveraging an energy-based model, which, however, lacks the ability to capture 3D information
when learning 2D feature embeddings.

By contrast, we adopt a hypothesis-and-verification paradigm, drawing inspiration from its remark-
able success in robust estimation (Fischler & Bolles, 1981). We randomly sample pose parameter
hypotheses and verify the reliability of these hypotheses. The relative object pose is determined
as the most reliable hypothesis. Since relative pose denotes a 3D transformation, achieving robust
verification from two 2D images is non-trivial. Our innovation lies in a 3D-aware verification mech-
anism. Specifically, we develop a 3D reasoning module over 2D feature maps, which infers 3D
structural features represented as 3D volumes. This lets us explicitly apply the pose hypothesis as
a 3D transformation to the reference volume. Intuitively, the transformed reference volume should
be aligned with the query one if the sampled hypothesis is correct. We thus propose to verify the
hypothesis by comparing the feature similarities of the reference and the query. To boost robustness,
we aggregate the 3D features into orthogonal 2D plane embeddings and compare these embeddings
to obtain a similarity score that indicates the reliability of the hypothesis.

Our method achieves state-of-the-art performance on an existing benchmark of Lin et al. (2023).
Moreover, we extend the experiments to a new benchmark for generalizable relative object pose
estimation, which we refer to as GROP. Our benchmark contains over 10,000 testing image pairs,
exploiting objects from Objaverse (Deitke et al., 2023) and LINEMOD (Hinterstoisser et al., 2012)
datasets, thus encompassing both synthetic and real images with diverse object poses. In the context
of previously unseen objects, our method outperforms the feature-matching and energy-based tech-
niques by a large margin in terms of both relative object pose estimation accuracy and robustness.
We summarize our contributions as follows:

• We highlight the importance of relative pose estimation for novel objects in scenarios where
only one reference image is available for each object.

• We present a new hypothesis-and-verification paradigm where verification is made aware
of 3D by acting on a learnable 3D object representation.

2



Published as a conference paper at ICLR 2024

• We develop a new benchmark called GROP, where the evaluation of relative object pose
estimation is conducted on both synthetic and real images with diverse object poses.

2 RELATED WORK

Instance-Specific Object Pose Estimation. The advancements in deep learning have revolution-
ized the field of object pose estimation. Most existing studies have focused on instance-level object
pose estimation (Xiang et al., 2017; Peng et al., 2019; Wang et al., 2021; Su et al., 2022; Wang et al.,
2019a), aiming to determine the pose of specific object instances. These methods have achieved re-
markable performance in the closed-set setting, which means that the training data and testing data
contain the same object instances. However, such an instance-level assumption restricts the appli-
cations in the real world where previously unseen objects widely exist. The studies of Zhao et al.
(2022b); Liu et al. (2022) have revealed the limited generalization ability of the instance-level ap-
proaches when confronted with unseen objects. Some approaches (Wang et al., 2019b; Chen et al.,
2020a; Lin et al., 2022) relaxed the instance-level constraint and introduced category-level object
pose estimation. More concretely, the testing and training datasets consist of different object in-
stances but the same object categories. As different instances belonging to the same category depict
similar visual patterns, the category-level object pose estimation methods are capable of generaliz-
ing well to new instances. However, these approaches still face challenges in generalizing to objects
from novel categories, since the object appearance could vary significantly.

Generalizable Object Pose Estimation. Recently, some effort has been made toward generalizable
object pose estimation. The testing data may include objects from categories that have not been
encountered during training. The objective is to estimate the pose of these unseen objects without
retraining the network. In such a context, the existing approaches can be categorized into two groups,
i.e., template-matching methods (Sundermeyer et al., 2020; Labbé et al., 2022; Zhao et al., 2022b;
Liu et al., 2022; Shugurov et al., 2022) and feature-matching methods (Sun et al., 2022; He et al.,
2022b). Given a query image of the object, the template-matching methods retrieve the most similar
reference image from a pre-generated database. The object pose is taken as that in the retrieved
reference. The database is created by either rendering the 3D object model or capturing images
from various viewpoints. The feature-matching methods reconstruct the 3D object point cloud by
performing SFM (Schonberger & Frahm, 2016) over a sequence of images. The 2D-3D matches
are then built over the query image and the reconstructed point cloud, from which the object pose is
estimated by using the PnP algorithm. Notably, these two groups both require dense-view reference
images to be available. Therefore, they cannot be applied in scenarios where only sparse images are
accessible.

Relative Object Pose Estimation. Some existing methods could nonetheless be applied for relative
object pose estimation, even though they were designed for a different purpose. For example, one
could use traditional (Lowe, 2004) or learning-based (Sarlin et al., 2020; Sun et al., 2021; Goodwin
et al., 2022) methods to build pixel-pixel correspondences and compute the relative pose by using
multi-view geometry (Hartley & Zisserman, 2003). However, as only two views (one query and
one reference) are available, large-scale object pose variations are inevitable, posing challenges to
the correspondence-based approaches. Moreover, RelPose (Zhang et al., 2022) and RelPose++ (Lin
et al., 2023) build upon an energy-based model, which combines the pose parameters with the two-
view images as the input and predicts the likelihood of the relative camera pose. However, RelPose
and RelPose++ exhibit a limitation in their ability to reason about 3D information, which we found
crucial for inferring the 3D transformation between 2D images. By contrast, we propose to explicitly
utilize 3D information in a new hypothesis-and-verification paradigm, achieving considerably better
performance in our experiments.

3 METHOD

3.1 PROBLEM FORMULATION

We train a network on RGB images depicting specific object instances from a set Otrain. During
testing, we aim for the network to generalize to new objects in the set Otest, with Otest∩Otrain = ∅.
In contrast to some previous methods which assume that Otrain and Otest contain the same cate-
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Figure 2: Overview of our framework. Our method estimates the relative pose of previously
unseen objects given two images, building upon a new hypothesis-and-verification paradigm. A hy-
pothesis ∆P is randomly sampled and its accuracy is measured as a score s. To explicitly integrate
3D information, we perform the verification over a 3D object representation indicated as a learnable
3D volume. The sampled hypothesis is coupled with the learned representation via a 3D transfor-
mation over the reference 3D volume. We learn the 3D volumes from the 2D feature maps extracted
from the RGB images by introducing a 3D reasoning module. To improve robustness, we randomly
mask out some blocks colored in white during training.

gories, i.e., Ctrain = Ctest, we work on generalizable object pose estimation. The testing objects
in Otest may belong to previously unseen categories, i.e., Ctest ̸= Ctrain. In such a context, we
propose to estimate the relative pose ∆P of the object depicted in two images Iq and Ir. As the
3D object translation can be derived by utilizing 2D detection (Saito et al., 2022; Wang et al., 2023;
Kirillov et al., 2023), we focus on the estimation of 3D object rotation ∆R ∈ SO(3), which is more
challenging. As illustrated in Fig. 2, our method builds upon a hypothesis-and-verification mecha-
nism (Fischler & Bolles, 1981). Concretely, we randomly sample an orientation hypothesis ∆Ri,
utilizing the 6D continuous representation of Zhou et al. (2019). We then verify the correctness of
∆Ri using a verification score si = f(Iq, Ir|∆Ri,Θ), where f indicates a network with learn-
able parameters Θ. The expected ∆R∗ is determined as the hypothesis with the highest verification
score, i.e.,

∆R∗ = argmax
∆Ri∈SO(3)

f(Iq, Ir|∆Ri,Θ) . (1)

To facilitate the verification, we develop a 3D transforming layer over a learnable 3D object repre-
sentation. The details will be introduced in this section.

3.2 3D OBJECT REPRESENTATION LEARNING

Predicting 3D transformations from 2D images is inherently challenging, as it necessitates the ca-
pability of 3D reasoning. Furthermore, the requirement of generalization ability to unseen objects
makes the problem even harder. Existing methods (Zhang et al., 2022; Lin et al., 2023) tackle this
challenge by deriving 3D information from global feature embeddings, which are obtained through
global pooling over 2D feature maps. However, this design exhibits two key drawbacks: First, the
low-level structural features which are crucial for reasoning about 3D transformations are lost; Sec-
ond, the global pooling process incorporates high-level semantic information (Zhao et al., 2022b),
which is coupled with the object category. Therefore, these approaches encounter difficulties in
accurately estimating the relative pose of previously unseen objects.

To address this, we introduce a 3D object representation learning module that is capable of reason-
ing about 3D information from 2D structural features. Concretely, the process begins by feeding
the query and reference images into a pretrained encoder (Ranftl et al., 2020), yielding two 2D
feature maps Fq,Fr ∈ RC×Hf×Wf . As no global pooling layer is involved, Fq and Fr contain
more structural information than the global feature embeddings of (Zhang et al., 2022; Lin et al.,
2023). Subsequently, Fq and Fr serve as inputs to a 3D reasoning module. Since each RGB im-
age depicts the object from a particular viewpoint, inferring 3D features from a single 2D feature
map is intractable. To address this issue, we combine the query and reference views and utilize
the transformer (Vaswani et al., 2017; Dosovitskiy et al., 2020), renowned for its ability to capture
relationships among local patches.
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Our 3D reasoning block comprises a self-attention layer and a cross-attention layer, which account
for the intra-view and inter-view relationships, respectively. Notably, unlike the existing method
of Lin et al. (2023) that utilizes transformers at an image level, i.e., treating a global feature embed-
ding as a token, our module takes Fq and Fr as input, thereby preserving more structural information
throughout the process. Specifically, we compute

Fq
l+1 = g(Fq

l ,F
r
l |Ω

q
self,Ω

q
cross), (2)

Fr
l+1 = g(Fr

l ,F
q
l |Ω

r
self,Ω

r
cross), (3)

where g denotes the 3D reasoning block with learnable parameters {Ωq
self,Ω

q
cross,Ωr

self,Ω
r
cross}. Let

us take Fq as an example as the process over Fr is symmetric. We tokenize Fq by flattening it from
RC×Hf×Wf to RN×C , where N = Hf × Wf . A position embedding (Dosovitskiy et al., 2020)
is added to the sequence of tokens, which accounts for positional information. To ensure a broader
receptive field that covers the entire object, the tokens are fed into a self-attention layer, which
is formulated as F̃q

l = t(Fq
l ,F

q
l |Ω

q
self), where t denotes the attention layer. As aforementioned,

F̃q
l only describes the object in Iq , which is captured from a single viewpoint. We thus develop a

cross-attention layer, incorporating information from the other view Ir into F̃q
l . We denote the cross

attention as Fq
l+1 = t(F̃q

l , F̃
r
l |Ωr

cross), where Fq
l+1 serves as the input of the next 3D reasoning block.

We denote the output of the last 3D reasoning block as F̂q, F̂r ∈ RC×Hf×Wf . F̂q and F̂r comprise
both intra-view and inter-view object-related information. Nevertheless, it is still non-trivial to cou-
ple the 3D transformation with the 2D feature maps, which is crucial in the following hypothesis-
and-verification module. To handle this, we derive a 3D object representation from the 2D fea-
ture map in a simple yet effective manner. We lift F̂q and F̂r from 2D space to 3D space, i.e.,
RC×Hf×Wf → RC3d×Df×Hf×Wf , where C = C3d × Df . The 3D representations are thus en-
coded as 3D volumes Vq and Vr. Since the spatial dimensionality of Vq and Vr matches that of
the 3D transformation, such a lifting process enables the subsequent 3D-aware verification.

3.3 3D-AWARE HYPOTHESIS AND VERIFICATION

The hypothesis-and-verification mechanism has achieved tremendous success as a robust estima-
tor (Fischler & Bolles, 1981) for image matching (Yi et al., 2018; Zhao et al., 2021). The objective
is to identify the most reliable hypothesis from multiple samplings. In such a context, an effec-
tive verification process is critical. Moreover, in the scenario of relative object pose estimation, we
expect the verification to be differentiable and aware of the 3D transformation. We thus tailor the
hypothesis-and-verification mechanism to meet these new requirements.

We develop a 3D masking approach in latent space before sampling hypotheses, drawing inspi-
ration from the success of the masked visual modeling methods (He et al., 2022a; Xie et al.,
2022). Instead of masking the RGB images, we propose to mask the learnable 3D volumes, which
we empirically found more compact and effective. Specifically, we sample two binary masks
Vq

b ,V
r
b ∈ RC3d×Df×Hf×Wf during training, initialized as all ones. h of the elements in each

mask are randomly set to 0. 3D masking is performed as Ṽq = Vq ⊙Vq
b , Ṽr = Vr ⊙Vr

b , where
⊙ denotes the Hadamard product. Note that the masking is asymmetric over Vq

b and Vr
b . Such a

design enables the modeling of object motion between two images (Gupta et al., 2023), offering
potential benefits to the task of relative object pose estimation.

The hypothesis-and-verification process begins by randomly sampling hypotheses, utilizing the 6D
continuous representation of Zhou et al. (2019). Each hypothesis is then converted to a 3D rotation
matrix ∆Ri, i.e., R6 → R3×3. During the verification, we explicitly couple the hypothesis with the
learnable 3D representation by performing a 3D transformation. This is formulated as

Ṽr = φ(∆RiX
r),Xr ∈ R3×L, (4)

where Xr denotes the 3D coordinates of the elements in Ṽr with L = Df × Hf × Wf and φ
indicates trilinear interpolation. We keep the query 3D volume unchanged and only transform the
reference 3D volume. Intuitively, the transformed Ṽr should be aligned with Ṽq if the sampled hy-
pothesis is correct. Conversely, an incorrect 3D transformation is supposed to result in a noticeable
disparity between the two 3D volumes. Therefore, our transformation-based approach facilitates
the verification of ∆Ri, which could be implemented by assessing the similarity between Ṽq and
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Ṽr. However, the transformed Ṽr tends to be noisy in practice because of zero padding during the
transformation and some nuisances such as the background. We thus introduce a feature aggrega-
tion module, aiming to distill meaningful information for robust verification. More concretely, we
project Ṽq and Ṽr back to three orthogonal 2D planes, i.e., RC3d×Df×Hf×Wf → R3C×Hf×Wf

with C = C3d × Df , and aggregate the projected features as Aq = g(Ṽq|Ψ),Ar = g(Ṽr|Ψ),
where Aq,Ar ∈ RC2d×Hf×Wf represent the distilled feature embeddings and g is the aggregation
module with learnable parameters Ψ. The verification score is then computed as

si =
1

N

∑
j,k

Aq
jk ·Ar

jk

∥Aq
jk∥ · ∥Ar

jk∥
, Aq

jk,A
r
jk ∈ RC2d . (5)

We run the hypothesis and verification M times in parallel and the expected ∆R∗ is identified as

∆R∗ = ∆Rk, k = argmax
i

{si, i = 1, 2, . . . ,M}. (6)

Note that compared with the dynamic rendering method (Park et al., 2020) which optimizes the ob-
ject pose by rendering and comparing depth images, our approach performs verification in the latent
space. This eliminates the need for computationally intensive rendering and operates independently
of depth information. An alternative to the hypothesis-and-verification mechanism consists of opti-
mizing ∆R via gradient descent. However, our empirical observations indicate that this alternative
often gets trapped in local optima. Moreover, compared with the energy-based approaches (Zhang
et al., 2022; Lin et al., 2023), our method achieves a 3D-aware verification. To highlight this, let us
formulate the energy-based model with some abuse of notation as

∆R∗ = argmax
∆Ri∈SO(3)

si, si = FC(f(Iq, Ir) + h(∆Ri)), (7)

where FC denotes fully connected layers. In this context, the 2D image embedding and the pose
embedding are learned as f(Iq, Ir) and h(∆Ri), separately. By contrast, in our framework, the
volume features are conditioned on ∆Ri via the 3D transformation, which thus facilitates the 3D-
aware verification.

We train our network using an infoNCE loss (Chen et al., 2020b), which is defined as

L = −log

∑P
j=1 exp(spj/τ)∑M
i=1 exp(si/τ)

, (8)

where spj denotes the score of a positive hypothesis, and τ = 0.1 is a predefined temperature. The
positive samples are identified by computing the geodesic distance as

D = arccos
(

tr(∆RT
i∆Rgt)− 1

2

)
/π, (9)

where ∆Rgt is the ground truth. We then consider hypotheses with D < λ as positive samples.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In our experiments, we employ 4 3D reasoning blocks. We set the number of hypotheses during
training and testing to M = 9, 000 and M = 50, 000, respectively. We define the masking threshold
h = 0.25 and the geodesic distance threshold λ = 15◦ (Zhang et al., 2022; Lin et al., 2023). We
train our network for 25 epochs using the AdamW (Loshchilov & Hutter, 2017) optimizer with a
batch size of 48 and a learning rate of 10−4, which is divided by 10 after 20 epochs. Training takes
around 4 days on 4 NVIDIA Tesla V100s.

4.2 EXPERIMENTAL SETUP

We compare our method with several relevant competitors including feature-matching methods,
i.e., SuperGlue (Sarlin et al., 2020), LoFTR (Sun et al., 2021), and ZSP (Goodwin et al., 2022),
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SuperGlue LoFTR ZSP Regress RelPose RelPose++ Ours
Angular Error ↓ 67.2 77.5 87.5 46.0 50.0 38.5 28.5
Acc @ 30◦ (%) ↑ 45.2 37.9 25.7 60.6 64.2 77.0 83.5
Acc @ 15◦ (%) ↑ 37.7 33.1 14.6 42.7 48.6 69.8 71.0

Table 1: Experimental results on CO3D.

SuperGlue LoFTR ZSP Regress RelPose RelPose++ Ours
Angular Error ↓ 102.4 134.1 107.2 55.9 80.4 33.5 28.1
Acc @ 30◦ (%) ↑ 15.1 9.6 4.2 39.2 20.8 72.3 78.6
Acc @ 15◦ (%) ↑ 12.1 7.7 1.5 15.6 6.7 42.9 58.4

Table 2: Experimental results on Objaverse.

SuperGlue LoFTR ZSP Regress RelPose RelPose++ Ours
Angular Error ↓ 64.8 84.5 78.6 52.1 58.3 46.6 41.7
Acc @ 30◦ (%) ↑ 26.2 24.2 10.7 26.5 26.1 42.5 61.5
Acc @ 15◦ (%) ↑ 14.3 13.5 2.7 7.6 7.0 15.8 29.9

Table 3: Experimental results on LINEMOD.

energy-based methods, i.e., RelPose (Zhang et al., 2022) and RelPose++ (Lin et al., 2023), and a
regression method (Lin et al., 2023). We first perform an evaluation using the benchmark defined
in (Lin et al., 2023), where the experiments are conducted on the CO3D (Reizenstein et al., 2021)
dataset. We report the angular error between the predicted ∆R and the ground truth, which is
computed as in Eq. 9, and the accuracy with thresholds of 30◦ and 15◦ (Zhang et al., 2022; Lin
et al., 2023). Furthermore, We extend the evaluation by introducing a new benchmark called GROP.
To this end, we utilize the Objaverse (Deitke et al., 2023) and LINEMOD (Hinterstoisser et al., 2012)
datasets, which include synthetic and real data, respectively. We retrain RelPose, RelPose++, and
the regression method in our benchmark, and use the pretrained models for SuperGlue and LoFTR
since retraining these two feature-matching approaches requires additional pixel-level annotations.
For ZSP, as there is no training process involved, we evaluate it using the code released by the
authors. We derive ∆R from the estimated essential matrix (Hartley & Zisserman, 2003) for the
feature-matching methods because we only have access to RGB images. We evaluate all methods
on identical predefined query and reference pairs (8,304 on Objaverse and 5,000 on LINEMOD),
which ensures a fair comparison. Given our emphasis on relative object rotation estimation, we crop
the objects from the original RGB image utilizing the ground-truth object bounding boxes (Xiao
et al., 2019; Zhao et al., 2022b; Park et al., 2020; Nguyen et al., 2022). In Sec. 4.5, we evaluate
robustness against noise in the bounding boxes.

4.3 EXPERIMENTS ON CO3D

Let us first evaluate our approach in the benchmark used in (Zhang et al., 2022; Lin et al., 2023),
which builds upon the CO3D dataset (Reizenstein et al., 2021). All testing objects here are pre-
viously unseen and the evaluation thus emphasizes the generalization ability. Table 1 reports the
results in terms of angular error and accuracy. Note that the results of SuperGlue, Regress, RelPose,
and RelPose++ shown here align closely with the ones reported in (Lin et al., 2023), lending cred-
ibility to the evaluation. More importantly, our method produces consistently more precise relative
object poses, with improvements of at least 10% in angular error. This evidences the generalization
ability of our approach to unseen objects.

4.4 EXPERIMENTS ON GROP

Let us now develop the evaluation in our benchmark. Table 2 and Table 3 provide the experimental
results on Objaverse and LINEMOD, respectively. Our method also achieves superior generalization
ability to unseen objects, outperforming the previous methods by a substantial margin. For instance,
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Reference Query OursRegressSuperGlue RelPose++RelPose

Figure 3: Qualitative results on Objaverse and LINEMOD. Here, we assume the reference to be
calibrated and visualize the object pose in the query, which is derived from the estimated relative
object pose. The predicted and ground-truth object poses are indicated by blue and green arrows,
respectively.
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Figure 4: Robustness. (a) Acc @ 30◦ curves obtained with varying degrees of object pose variation
between the reference and the query, measured by the geodesic distance. (b) Similar curves but for
different levels of noise added to the object bounding boxes.

we achieve an improvement of at least 15.5% on Objaverse and 14.1% on LINEMOD, measured
in terms of Acc @ 15◦. Moreover, we illustrate some qualitative results in Fig. 3. To this end, we
assume the object pose Rr in the reference to be available, and the object pose Rq in the query is
computed as Rq = ∆RRr. We represent the predicted and the ground-truth object poses as blue
and green arrows, respectively. This evidences that our method consistently yields better predictions.
In the scenario where there is a notable difference in object pose between the reference and query
(as in the cat images in the third row), the previous methods struggle to accurately predict the pose
for the unseen object, while our approach continues to deliver an accurate prediction.

4.5 ABLATION STUDIES

To shed more light on the superiority of our method, we develop comprehensive ablation studies on
Objaverse and LINEMOD. Most of the experiments are conducted on LINEMOD since it is a real
dataset. As the two sparse views, i.e., a reference and a query, might result in a large-scale object
pose variation, we start the ablations by analyzing the robustness in such a context. Specifically,
we divide the Objaverse testing data into several groups based on the object pose variation between
the reference and query, measured by geodesic distance. The task becomes progressively more
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w/o att. w/o mask w/ 2D mask w/o agg. RelPose∗ Ours
Angular Error ↓ 41.9 42.1 42.6 41.9 59.7 41.7
Acc @ 30◦ (%) ↑ 60.0 59.6 60.1 59.4 26.4 61.5
Acc @ 15◦ (%) ↑ 28.2 27.9 27.3 26.4 7.9 29.9

Table 4: Effectiveness of the key components in our pipeline.

challenging as the distance increases. We developed this experiment on Objaverse because of its
wider range of pose variations compared to LINEMOD. Fig. 4(b) shows the Acc @ 30◦ curves
as the distance varies from 0◦ to 180◦. Note that all methods demonstrate satisfactory predictions
when the distance is small, i.e., when the object orientations in the reference and query views are
similar. However, the performance of feature-matching approaches, i.e., SuperGlue, LoFTR, and
ZSP, dramatically drops as the distance increases. This observation supports our argument that the
feature-matching methods are sensitive to the pose variations. By contrast, our method consistently
surpasses all competitors, thus showing better robustness.

As the object bounding boxes obtained in practice are inevitably noisy, we evaluate the robustness
against the noise in this context on LINEMOD. Concretely, we add noise to the ground-truth bound-
ing boxes by applying jittering to both the object center and scale. The jittering magnitude varies
from 0.05 to 0.30, which results in different levels of noise. The experimental results are shown
in Fig. 4(b), where our method outperforms the competitors across all scenarios. This promising
robustness underscores the possibility of integrating our method with existing unseen object detec-
tors (Zhao et al., 2022a; Liu et al., 2022). To showcase this, we extend our method to 6D unseen
object pose estimation by combining it with the detector introduced in (Liu et al., 2022) and provide
some results in the appendix.

Furthermore, we evaluate the effectiveness of the key components in our framework. The results on
LINEMOD are summarized in Table 4, where the evaluation of effectiveness encompasses four dis-
tinct aspects: First, we develop a counterpart by excluding self-attention and cross-attention layers
(w/o att.) from the 3D reasoning blocks; Second, we modify the 3D masking by either omitting it
(w/o mask) or substituting it with a 2D masking process over RGB images (w/ 2D mask); Third,
we directly compute the similarity of 3D volumes without utilizing the 2D aggregation module (w/o
agg.); Fourth, we replace our 3D-aware verification mechanism with the energy-based model (Zhang
et al., 2022; Lin et al., 2023) (RelPose∗), while retaining our feature extraction backbone unchanged.
The modified versions, namely w/o att., w/o mask, w/ 2D mask, and w/o agg., exhibit worse perfor-
mance, which thus demonstrates the effectiveness of the presented components, i.e., attention layers,
3D masking, and the feature aggregation module. Additionally, the inferior results yield by RelPose∗
highlight that the 3D-aware verification mechanism contributes to the high-accuracy predictions, in-
stead of the feature extraction backbone in our framework. Consequently, this observation supports
our claim that the proposed verification module facilitates the relative pose estimation for unseen
objects by preserving the structural features and explicitly utilizing 3D information.

5 CONCLUSION

In this paper, we have tackled the problem of relative pose estimation for unseen objects. We assume
the availability of only one object image as the reference and aim to estimate the relative object
pose between the reference and a query image. In this context, we have tailored the hypothesis-
and-verification paradigm by introducing a 3D-aware verification, where the 3D transformation is
explicitly coupled with a learnable 3D object representation. We have developed comprehensive
experiments on Objaverse, LINEMOD, and CO3D datasets, taking both synthetic and real data with
diverse object poses into account. Our method remarkably outperforms the competitors across all
scenarios and achieves better robustness against different levels of object pose variations and noise.
Since our verification module incorporates local similarities when computing the verification scores,
it could be affected by the occlusions. This stands as a potential limitation that we consider, and we
intend to explore and address this issue in our future research endeavors.
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Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan Birchfield, Jonathan Trem-
blay, Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef Sivic. MegaPose: 6D Pose Estima-
tion of Novel Objects via Render & Compare. In CoRL, 2022.

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o (n) solution to the
pnp problem. International Journal of Computer Vision, 81:155–166, 2009.

Amy Lin, Jason Y Zhang, Deva Ramanan, and Shubham Tulsiani. Relpose++: Recovering 6d poses
from sparse-view observations. arXiv preprint arXiv:2305.04926, 2023.

Jiehong Lin, Zewei Wei, Changxing Ding, and Kui Jia. Category-level 6d object pose and size es-
timation using self-supervised deep prior deformation networks. In Proceedings of the European
Conference on Computer Vision, pp. 19–34. Springer, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of
the European Conference on Computer Vision, pp. 740–755. Springer, 2014.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object. arXiv preprint arXiv:2303.11328, 2023.

Yuan Liu, Yilin Wen, Sida Peng, Cheng Lin, Xiaoxiao Long, Taku Komura, and Wenping Wang.
Gen6d: Generalizable model-free 6-dof object pose estimation from rgb images. Proceedings of
the European Conference on Computer Vision, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

David G Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, 2004.

Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose estimation for augmented reality:
a hands-on survey. IEEE Transactions on Visualization and Computer Graphics, 22(12):2633–
2651, 2015.

Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann, and Vincent Lepetit. Templates for
3d object pose estimation revisited: Generalization to new objects and robustness to occlusions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6771–6780, 2022.

Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter Fox. Latentfusion: End-to-end differen-
tiable reconstruction and rendering for unseen object pose estimation. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pp. 10710–10719, 2020.

Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hujun Bao. Pvnet: Pixel-wise voting
network for 6dof pose estimation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4561–4570, 2019.

11



Published as a conference paper at ICLR 2024

Giorgia Pitteri, Slobodan Ilic, and Vincent Lepetit. Cornet: generic 3d corners for 6d pose estimation
of new objects without retraining. In Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pp. 0–0, 2019.
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APPENDIX

A ARCHITECTURE OF THE 3D REASONING MODULE

We show the architecture of the 3D reasoning module in Fig. 5. Each 3D reasoning block consists
of a self-attention layer and a cross-attention layer, which excel at capturing intra-view and inter-
view relationships, respectively. The input 2D feature map is flattened from RC×Hf×Wf to RN×C ,
where N = Hf × Wf . A position embedding, denoted as PE, is added to the flattened feature
map. Fig. 5(b) illustrates the attention layer. The context refers to the input feature map itself in
the self-attention layer and it represents the feature map of another view in the cross-attention layer.
We use the standard multi-head attention (Vaswani et al., 2017) and layer normalization (Ba et al.,
2016) in our attention layers.

B DATA CONFIGURATION

The synthetic images are generated by rendering objects of Objaverse from randomly sampled view-
points (Liu et al., 2023). We attach these images to random backgrounds which are sampled from
COCO (Lin et al., 2014). We randomly sample 128 objects from Objaverse and use 5 objects from
LINEMOD sampled by Liu et al. (2022) as testing data, reserving the remaining objects for training.
This design guarantees that all objects are previously unseen during the testing phase. We train the
network on both synthetic and real data, alleviating the problem of domain gap.

Recall that we assume we have access to only one reference image and the objective is to estimate
the relative object pose between the reference and the query. Therefore, the selection of the reference
image is a crucial aspect of our benchmark. As multi-view images are available in Objaverse and
LINEMOD datasets, one could randomly sample a reference given a query. However, such a strategy
may yield an inappropriate reference. As shown in Fig. 6, the object depicted in the reference
image barely overlaps with the one in the query, which makes the relative object pose estimation too
challenging. Therefore, we filter out the inappropriate references from the datasets during training
and testing, which makes our evaluation more reasonable.

Specifically, we convert the object rotation matrices Rr and Rq to Euler angles (αr, βr, γr) and
(αq, βq, γq), which indicate azimuth, elevation, and in-plane rotation, respectively. Note that only
azimuth and elevation lead to viewpoint changes, which thus determine the co-visible regions be-
tween the reference and query. Consequently, we set the in-plane rotation to 0 and convert the Euler
angle back to the rotation matrix, i.e., R̃ = h(α, β, 0). We then measure the difference of the new
rotation matrices R̃r and R̃q by computing the geodesic distance. We exclude the image pair with a
distance larger than a predefined threshold (90◦ by default in our experiments). As illustrated in Fig.
4 in our main paper, the retained image pairs display acceptable variations in object pose. Moreover,
we utilize the synthetic images on Objaverse generated by Liu et al. (2023). Each 3D object model
is rendered from 10 randomly sampled viewpoints, which yields synthetic images without in-plane
rotations. To introduce in-plane rotations, we rotate the reference and query images using randomly
sampled 2D in-plane rotations during training and testing.

Fig. 7 shows the histograms of object pose variations between the reference and query images. We
measure the variations based on the geodesic distance between the two object rotation matrices Rr

and Rq . The histograms show that the image pairs we used in our experiments exhibit a diverse
range of object pose variations, which makes our evaluation results convincing.

C QUALITATIVE RESULTS OF 6D OBJECT POSE ESTIMATION

We extend our method to 6D pose estimation for unseen objects by utilizing an off-the-shelf gener-
alizable object detector (Liu et al., 2022). More concretely, instead of using dense-view reference
images, we feed the one reference we have in our benchmark to the pretrained detection network,
which predicts the object bounding box in the query image. We use the parameters of the object
bounding box to compute 3D object translation, following the implementation in (Liu et al., 2022).
Subsequently, we crop the object from the query and employ our approach to predict the relative 3D
object rotation. The object rotation in the query is derived as Rq = ∆RRr. Fig. 8 shows some qual-
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Figure 5: Architecture of the 3D reasoning module.
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Figure 7: Histograms of the object pose variation between the reference and query. We measure
the object pose variation as the geodesic distance between the two object rotation matrices Rr and
Rq . The histogram depicts the number of image pairs falling within different distance intervals.

itative results of 6D pose estimation for the unseen objects on LINEMOD. We draw the 3D object
bounding boxes in blue and green, using the predicted 6D object pose and the ground truth, respec-
tively. The promising results demonstrate the potential of our approach in terms of generalizable 6D
object pose estimation.

D MORE DETAIL ABOUT THE ABLATION STUDIES

As we introduced in the main paper, we performed an ablation study, evaluating the robustness
against the noise added to the 2D object bounding boxes. We simulate the bounding boxes in real-
world applications by performing jittering to the ground truth with different levels of noise. We
denote the object center and the size of the bounding box as c and s. We then randomly sample the
perturbed parameters from the intervals (c − 0.5 ∗ n ∗ s, c + 0.5 ∗ n ∗ s) and ( s

1+n , s ∗ (1 + n)),
respectively, where n indicates the noise. We varied n from 0.05 to 0.3 in our experiments. Please
refer to Fig. 5 (b) in our main paper for the experimental results.
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Figure 8: Qualitative results of 6D pose estimation for unseen objects on LINEMOD. The blue
and green 3D object bounding boxes are drawn using the predicted 6D object pose and the ground
truth, respectively.

Figure 9: Verification scores of all sampled pose hypotheses. The x-axis and y-axis represent
the geodesic distance between the pose samplings and the ground-truth relative object pose, and the
verification scores, respectively.

Method RelPose++ Ours RelPose++-5000 Ours-5000
MACs 94.6 54.7 11.3 16.3
Angular Error 38.5 28.5 50.7 35.3

Table 5: Efficiency. Relpose++ uses 500,000 pose samples by default, while we sample 50,000
poses for our method in our experiments. RelPose++-5000 and Ours-5000 denote RelPose++ and
our method with 5,000 pose samples, respectively. The multiply-accumulate operations (MACs) are
used to measure the computation consumption.

E EFFICIENCY

It is worth noting that during testing, our method utilizes 50,000 pose samples, while RelPose++ uses
500,000. Despite processing fewer samples, our method achieves better accuracy in relative object
pose estimation. To further evaluate the efficiency, we measure the computation cost in multiply-
accumulate operations (MACs) and show the results in Table 5. All evaluated methods process the
pose samples in parallel. “RelPose++-5000 and “Ours-5000” refer to RelPose++ and our method
with 5,000 samples, respectively. The results clearly show that our method achieves a better trade-
off between efficiency and accuracy in relative object pose estimation. Additionally, our method
with only 5,000 samples still delivers more accurate results than RelPose++ with 500,000 samples.
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