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Abstract

Single-cell RNA sequencing (scRNA-seq) en-
ables high-resolution profiling of cellular hetero-
geneity, offering a promising foundation for pre-
dicting phenotypes such as disease status. We pro-
pose a pooling strategy that utilizes cell type an-
notations by first aggregating cell representations
within each cell type, followed by integration
of cell type representations into a sample-level
representation. Evaluated across three scRNA-
seq datasets of varying sizes and biological con-
texts, our model consistently outperforms baseline
models in phenotype classification. Our model
is particularly effective in datasets with missing
or sparsely represented cell types. These results
underscore the importance of carefully incorpo-
rating cell type information for robust phenotype
prediction from scRNA-seq data.

1. Introduction

Single-cell RNA sequencing (scRNA-seq) enables high-
resolution characterization of the transcriptomic landscape
across heterogeneous cellular populations. Recent advances
have demonstrated the potential of scRNA-seq data for pre-
dicting sample-level phenotypes such as disease status and
treatment response (Xiong et al., 2023; Verlaan et al., 2025;
Do & Lihdesmiki, 2025). These predictions offer critical
insights for understanding disease mechanisms and advanc-
ing personalized medicine (He et al., 2021; Litinetskaya
et al., 2024).

Only a limited number of studies have explored cell-type-
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aware modeling for phenotype prediction from scRNA-seq
data (Xiong et al., 2023; Do & Lihdesmiki, 2025). Proto-
Cell4P (Xiong et al., 2023) uses cell type information by
encouraging cells of the same type to cluster in the latent
space. On the other hand, (Do & Lahdesmiki, 2025) in-
troduced a hierarchical pooling framework based on cell
types, but relies on attention mechanisms at cell and cell
type levels. While effective in some settings, attention-based
pooling can overfit in noisy, low-sample regimes typical of
scRNA-seq data (Lin et al., 2022; Zhong et al., 2025).

To address these limitations, we propose Cell Type Mean
(CTMean), a simple yet effective two-step pooling frame-
work for sample-level phenotype prediction. CTMean first
aggregates cell representations within each annotated cell
type via mean pooling and then integrates the resulting cell
type representations via another mean pooling step. This
strategy enforces shared global weights to cell types across
samples, improving robustness, particularly in settings with
high noise or limited sample sizes. By explicitly leverag-
ing the hierarchical structure of biological data, CTMean
provides a scalable and interpretable solution for robust
phenotype prediction.

We evaluated CTMean on three scRNA-seq datasets, show-
ing consistent improvements over baselines that either ig-
nore cell type information or rely on attention-based pooling.
These results highlight that careful design of the pooling
mechanism is critical for accurate and robust phenotype
prediction.

Our contributions are summarized as follows:

* We propose CTMean, a novel, cell-type-aware pool-
ing strategy for phenotype prediction from scRNA-seq
data.

* We demonstrate that CTMean is particularly robust in
settings with incomplete cell type compositions.

* We show that incorporating auxiliary prediction at the
cell type level can improve model performance.
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Figure 1. Model architecture. A sample has multiple cells, which is embedded into cell representations. Cell pooling aggregates cell
representations into cell type representations, which in turn is aggregated into sample representations by cell type pooling. The sample
representation is used for phenotype predictions. Additionally, each cell type representation passes through the same phenotype predictor

for auxiliary prediction.

2. Method

Figure 1 illustrates the overall architecture of our proposed
model, CTMean. Each sample consists of multiple cells,
where each cell is annotated with a cell type label (e.g.,
astrocyte, immune cell). Each cell is represented by its
gene expression profile, which is embedded into a latent
representation via a multi-layer perceptron (MLP).

The model employs a hierarchical two-step pooling strat-
egy. First, cell-level pooling aggregates cell representations
within each cell type to form a cell-type-specific representa-
tion. Next, cell-type-level pooling aggregates these represen-
tations to form a final sample-level representation, which is
used for phenotype classification (e.g., disease vs. control).

While simple mean pooling is effective, it does not explic-
itly encourage phenotype-relevant signals to emerge in the
intermediate representations. To address this, we introduced
auxiliary prediction tasks at the cell type level, allowing the
cell type representations to capture phenotype information
directly. Each cell type representation is passed through the
same MLP classifier used for sample-level prediction, en-
couraging the intermediate features to retain discriminative
information relevant to the target phenotype.

The total loss function is defined as:
N,

1 ct
— Asample N % 1
L = Lample + thi;E (1)

where Lsampie is the cross-entropy loss for sample-level
prediction, £; is the cross-entropy loss for auxiliary classi-
fication using ith cell type, and N.; denotes the number of
distinct cell types.

3. Experiments

3.1. Datasets

We evaluated our model on three publicly available scRNA-
seq datasets spanning a range of sample sizes, cell counts,

and numbers of cell types, as summarized in Table 1.
Each dataset was preprocessed to produce normalized, log-
transformed gene expression values using up to 1,000 genes.
We also removed unannotated cells without cell type in-
formation. This ensures robust and fair comparison across
diverse biological contexts. We briefly describe each dataset
below; detailed preprocessing steps are provided in the Ap-
pendix A.

The Immune Checkpoint Blockade (ICB) dataset consists
of single-cell transcriptomic profiles from 57 patients who
underwent immune checkpoint blockade therapy (Gondal
et al., 2025). The task involves binary classification of
treatment outcome (38 responders vs. 19 non-responders).
Cell type labels were provided by the authors of (Do &
Liahdesmaki, 2025), using SingleR (Aran et al., 2019) for
automatic annotation, resulting in 23 distinct cell types.

COVID dataset includes scRNA-seq profiles from 56 in-
dividuals spanning three clinical conditions: 15 healthy
controls, 35 patients with COVID-19, and 6 patients with
respiratory failure (Ziegler et al., 2021). Samples labeled
as “long COVID” were excluded due to the small number
of such cases (n=2). The dataset includes 18 cell types, as
annotated in the original study.

The Religious Orders Study and Memory and Aging
Project (ROSMAP) dataset contains single-nucleus RNA-
seq (snRNA-seq) data from 139 postmortem human brain
samples (Mathys et al., 2023). The binary classification task
is to distinguish between 78 Alzheimer’s Disease (AD) and
61 cognitively healthy individuals. The dataset includes 7
cell types from the original study (Mathys et al., 2023).

3.2. Performance Comparison

We evaluated phenotype classification performance on three
datasets using Area Under the receiver operating charac-
teristic Curve (AUC) as the primary evaluation metric, as
shown in Table 2. We compare CTMean against several
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Table 1. Summary statistics of the datasets used for phenotype classification from scRNA-seq.

DATASET SAMPLES CELLS AVG. CELLS CELL TYPES AVG. CELL TYPES
(CLASS DISTRIBUTION) PER SAMPLE PER SAMPLE
ICB 57 (38 +19) 9,292 163 23 8.3 (36%)
COVID 56 (15+35+6) 30,282 541 18 11.4 (63%)
ROSMAP 139 (78 + 61) 890,314 6,405 7 7 (100%)

Table 2. Performance comparison with baseline models. “O” indicates cell type annotation used; “X” indicates it was not used. AUC +
standard deviation on test dataset across 10 repetitions. Bold values indicate the best performance, while underlined values indicate the

second-best.

MODEL CELL TYPE CELL CELL TYPE ICB COVID ROSMAP
ANNOTATION POOLING POOLING
PROTOCELL4P (0] X X 0.63+0.05 0.82+£0.02 0.77£0.01
CELL ATTENTION (CA) X ATTENTION X 0.67+£0.03 0.81£0.05 0.71£0.04
MEAN-POOLING X MEAN X 0.73+0.05 0.794£0.05 0.74+0.03
HIERARCHICAL ATTENTION (HA) (0] ATTENTION  ATTENTION 0.76£0.04 0.754+0.05 0.73£0.04
CELL TYPE ATTENTION (CTA) (0] MEAN ATTENTION 0.71£0.04 0.76+0.03 0.77£0.05
CTMEAN (0] MEAN MEAN 0.794+0.01 0.8440.04 0.80+0.03
CTMEAN + AUXILIARY PREDICTION (0] MEAN MEAN 0.79+0.03 0.86+0.03 0.79+0.02

baselines, including ProtoCell4P (Xiong et al., 2023), and
pooling-based models from (Do & Lihdesmiki, 2025). All
models were evaluated according to their original paper
using repeated, nested cross-validation as done in (Do &
Lihdesmaki, 2025). For pooling-based models from (Do
& Lihdesmiki, 2025), we fix the dimensionality of all cell
representations to the same dimensions, 32, to ensure that all
models have the same expressive power. Details of training
procedures and hyperparameter optimization are provided
in the Appendix B.

Mean-pooling and Cell Attention (CA) aggregate cell repre-
sentations directly into a sample-level representation with-
out incorporating cell type information. Mean-pooling sim-
ply averages all cell representations, being equivalent to
a weighted average of cell type representation based on
their proportions. CA instead applies attention over individ-
ual cells, following a standard Multiple Instance Learning
(MIL) approach.

Hierarchical Attention (HA) and Cell Type Attention (CTA)
follow a two-step pooling strategy: they first aggregate cells
within each cell type, then combine cell type representations
using attention-based pooling. In contrast, CTMean also
adopts a two-step pooling approach but replaces attention
with mean pooling at both levels. This simplified design
consistently outperforms attention-based models, particu-
larly in datasets with limited or missing cell types, such as
ICB and COVID. This advantage may arise from the ten-
dency of attention mechanisms to overfit under high noise
and small sample sizes, which are common in scRNA-seq

data (Lin et al., 2022; Zhong et al., 2025).

Lastly, unlike ICB and COVID, the ROSMAP dataset pro-
vides complete cell type coverage across all samples and
contains over ten times more cells per sample. This richer
structure enables models that incorporate cell type informa-
tion to achieve improved performance. In particular, we
observed that CTA achieved relatively strong performance
on ROSMAP, likely due to its ability to exploit the abundant
and consistent cell type signals. For example, cell types such
as immune cells - suggested to be implicated in AD (Green
et al., 2024; Verlaan et al., 2025)—consistently received
higher attention weights (Appendix Figure 4). However,
these scores remained sensitive to random initialization,
suggesting limited robustness. In contrast, the use of shared
cell type weights in CTMean encourages more stable and
generalizable representations, leading to improved perfor-
mance even in large and complete datasets.

3.3. Model Analysis

To assess the effectiveness of auxiliary prediction, we eval-
uated the performance of CTMean both with and without
it. As shown in Table 2, auxiliary prediction led to an
improvement on the COVID dataset, while its effect was
marginal on ICB and ROSMAP. This suggests that auxiliary
prediction is especially beneficial in datasets with limited
signal or higher variability. Furthermore, UMAP visualiza-
tions in Appendix Figure 3 confirm that auxiliary prediction
helps enforce phenotype-relevant structure in the cell type
representations, making them more discriminative.
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To understand why mean pooling exhibits greater robust-
ness than attention mechanisms when some cell types are
missing, we analyzed the ICB dataset, which has the most
diverse cell type distribution. We trained the CTA using 10
random seeds and computed the attention scores assigned to
each cell type within individual samples. Then, for each cell
type, we averaged these scores across the 10 random seeds.
To quantify variability of attention scores, we calculated the
relative attention deviation by subtracting the uniform atten-
tion score and normalizing the result by the uniform score.
As shown in Figure 2, most samples exhibit deviations close
to zero, indicating near-uniform attention. Additionally,
95% of samples show a relatively low coefficient of varia-
tion which is below 0.3, confirming that attention is nearly
uniform across present cell types.

We hypothesize that this near-uniform attention arises from
the high variability and sparsity of cell types across sam-
ples, which hinders the model’s ability to learn meaningful
and sample-specific attention patterns. Consequently, the
model defaults to a mean pooling-like behavior that treats
all present cell types more equally. While slight deviations
from uniformity do occur, these may act as a noise and lead
to overfitting. This may explain why CTMean outperforms
CTA in scenarios involving missing cell types.

3.4. The Use of Single-Cell Foundation Models

We also tested whether pretrained single-cell foundation
models could improve performance in low-sample settings.
Specifically, we replaced normalized gene expression values
with embeddings from scGPT (Cui et al., 2024), evaluating
both general-purpose (whole-human) and organ-specific
variants in a zero-shot setting. As shown in Appendix
Table 5, using scGPT embeddings consistently degraded
performance across all datasets. This aligns with recent
findings that zero-shot application of single-cell foundation
models may underperform compared to task-specific mod-
els (Kedzierska et al., 2025). These results suggest that
fine-tuning may be necessary to fully leverage foundation
models for phenotype prediction.

4. Conclusion

We introduced CTMean, a cell-type-aware framework for
phenotype prediction from scRNA-seq data. CTMean em-
ploys a two-step mean pooling strategy: aggregating cell
representations within each cell type, followed by combin-
ing cell type representations into a sample-level representa-
tion. Evaluated across three datasets with varying numbers
of cells and cell types, CTMean consistently outperforms
existing methods. Notably, its simple and robust design
makes it particularly effective in datasets with missing cell
types or a limited number of cells.
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Figure 2. Distribution of relative attention deviation for each cell
type in ICB dataset, computed as (attention - uniform attention) /
uniform attention.

Despite its strong performance, CTMean has room for im-
provement. It does not explicitly incorporate cell type pro-
portions, which have been shown to be informative for phe-
notype prediction (Litinetskaya et al., 2024; Verlaan et al.,
2025); incorporating this information may further enhance
accuracy. In addition, CTMean depends on predefined cell
type annotations, making it sensitive to annotation quality.
Future work could explore end-to-end models that jointly
learn cell type groupings and phenotype predictions, po-
tentially uncovering novel cell populations. Lastly, CT-
Mean offers a promising foundation for extension to multi-
modal single-cell omics data, such as paired scRNA-seq and
scATAC-seq (Litinetskaya et al., 2024).
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A. Dataset Preprocessing

ICB. We used a preprocessed version of the Immune Checkpoint Blockade (ICB) dataset, publicly available on Zenodo
(accession ID: 10407126) (Gondal et al., 2025). Following the data selection protocol of (Do & Ldhdesmiki, 2025), we
included only pre-treatment samples from three of the original studies (Alvarez-Breckenridge et al., 2022; Pozniak et al.,
2024; Bassez et al., 2021). For each sample, cells were downsampled to a maximum of 200 in (Gondal et al., 2025).

COVID. The COVID-19 dataset was downloaded from the Single Cell Portal (accession ID: SCP1289) (Ziegler et al.,
2021). We applied the following preprocessing steps: (1) removed genes expressed in fewer than five cells; (2) normalized
total counts to 10,000 per cell; (3) applied a log(x + 1) transformation; and (4) selected the top 1,000 most highly expressed
genes. The dataset includes 18 cell types as annotated in the original study.

ROSMAP. We used the ROSMAP dataset, downloaded from the authors’ website at compbio.mit.edu/ad_aging_brain.
Following prior work (Wan et al., 2020; Verlaan et al., 2025), individuals were labeled as AD only if they met both clinical
and neuropathological criteria. We removed genes expressed in fewer than 200 cells and cells expressing fewer than 200
genes. Total counts were normalized to 10,000 per cell and transformed using log(x + 1). We then selected the top 1,000
most highly expressed genes. The dataset includes 7 cell types, as defined in the original study (Mathys et al., 2023).

B. Hyperparameter Optimization

All models are evaluated using a repeated, nested cross-validation (CV) procedure, following (Do & Lihdesmaiki, 2025).
For each repeat, we perform 5-fold CV in the outer loop to evaluate model performance. Within each outer training
fold, we perform 3-fold CV in the inner loop to optimize hyperparameters using 30 Optuna trials. The combination of
hyperparameters that yields the highest AUC across the inner folds is selected and used to train the model on the entire outer
training fold. Predictions from all outer test folds are aggregated to compute the final AUC per repeat.

This entire procedure is repeated 10 times using different random seeds for CV splitting, resulting in 10 independent AUC
scores per model. We report the mean and standard deviation of these 10 AUCs. The hyperparameter search space is
summarized in Table 3.

Table 3. Hyperparameter search space used during optimization.

HYPERPARAMETER SEARCH SPACE
NUMBER OF EPOCHS {100, 500, 1000}
DROPOUT RATE {0,0.3,0.5,0.7}
WEIGHT DECAY {1E-4, 1E-3, 1E-2}
NUMBER OF LAYERS {1, 2}
LEARNING RATE {1E-3, 5E-3}
ACTIVATION FUNCTION {RELU, ELU}

C. Effect of Embedding Dimension

Table 4. AUC comparison across three datasets (ICB, COVID, ROSMAP) at embedding dimensions 64 and 128. Each value is reported as
mean =+ standard deviation.

MODEL ICB COVID ROSMAP
EMBEDDING DIMENSION 64 128 64 128 64 128
CA 0.68 £0.05 0.67+0.04 | 0.81 £0.03 0.81 £0.05 | 0.71+£0.03 0.70 £ 0.04
MEAN-POOLING 0.74+0.04 0.734+£0.04 | 0.794+0.04 0.80£0.04 | 0.75+£0.02 0.74 +0.03
HA 0.724+0.05 0.74+0.05 | 0.73£0.07 0.72+0.05 | 0.74+0.03 0.72+0.05
CTA 0.734+0.04 0.73+0.06 | 0.74+£0.04 0.73+0.04 | 0.77+0.03 0.77 £ 0.02
CTMEAN 0.78+0.04 0.76 +£0.04 | 0.81 £0.03 0.82+£0.03 | 0.79+0.02 0.80 + 0.01

In Table 2, we reported model performance using a fixed embedding dimension of 32. To assess the robustness of our
results with respect to embedding size, we additionally evaluated all models with embedding dimensions of 64 and 128. As
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shown in Table 4, CTMean consistently outperforms CA, Mean-pooling, HA, and CTA across all embedding dimensions,
demonstrating that its superior performance is not sensitive to embedding size.

D. Auxiliary Prediction

To enhance the representation learning of individual cell types, we introduce an auxiliary loss that provides additional
supervision during training. This loss encourages the model to learn more discriminative features specific to each cell
type, thereby improving sample-level classification performance. Concretely, for each cell type, we obtain a cell type
representation by aggregating the representations of all corresponding cells within a sample, and then apply an auxiliary
classifier to predict the sample label from this cell type representation. Empirically, we find that incorporating this auxiliary
loss leads to more well-separated latent space as shown in Figure 3, which may contribute to improved classification
accuracy.
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Figure 3. UMAP visualization of cell type representations from the COVID dataset. Representations were extracted after cell pooling but
before cell type pooling to examine the effect of the auxiliary loss. Each point corresponds to a unique sample—cell-type pair. The top two
panels show representations from the CTMean model trained without auxiliary loss, while the bottom two panels show representations
from the model trained with auxiliary loss. As our model is a classifier, representations naturally cluster by patient label (right panels)
with various cell types in the cluster (left panels). The introduction of the auxiliary loss leads to better label separation in the latent space,
corresponding to improved sample-level classification performance.

E. Attention Distribution Across Cell Types

To understand why CTMean outperforms CTA, we analyzed how cell type attention scores vary in the CTA model using
the ROSMAP dataset. Specifically, we trained the CTA model with 10 different random seeds, and for each sample, we
computed the Jensen—Shannon divergence (JSD) between the attention score distributions across all cell types for every
pair of seeds. We then averaged these pairwise JSD values to quantify the variability in attention scores caused by random
initialization. Figure 4 shows that, among cell types implicated in Alzheimer’s disease, immune cells consistently receive
higher attention scores, indicating that the model relies on neuroinflammatory signals when making predictions. At the same
time, although samples with the highest mean JSD naturally display the greatest seed-to-seed variability, even those with
median or low mean JSD exhibit substantial fluctuations in which cell types are deemed most important. In other words,
random initialization alone can shift the model’s attention ranking, underscoring that attention outputs from a single seed
should be interpreted with caution.
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Figure 4. Seed-wise distribution of cell type attention scores for representative ROSMAP samples. For each sample, we computed the
Jensen—Shannon divergence (JSD) between attention-score distributions across all cell types for every pair of 10 random seeds, then
averaged those JSD values. Shown are the attention score distribution of samples with the highest mean JSD (left), the median mean JSD
(center), and the lowest mean JSD (right).

F. The Use of Single-Cell Foundation Models

We investigated whether leveraging a single-cell foundation model could enhance phenotype prediction performance.
Specifically, we utilized scGPT (Cui et al., 2024) to obtain pretrained embeddings for each cell, replacing normalized
gene expression values as input to our model. To examine the effect of context-specific pretraining, we evaluated two
variants of scGPT for each dataset: a general-purpose whole-human model and an organ-specific model. The organ-specific
models were selected to match the biological context of each dataset—using the pan-cancer model for ICB, the lung model
for COVID, and the brain model for ROSMAP. All experiments were conducted using the CTMean architecture without
auxiliary prediction, with the scGPT encoder frozen, reflecting a zero-shot evaluation setting.

Table 5. Performance comparison of normalized counts and scGPT across datasets. Values are AUC = standard deviation.

INPUT ICB COVID ROSMAP
NORMALIZED COUNTS 0.79+0.01 0.84+0.04 0.80+0.03
EMBEDDINGS FROM SCGPT (WHOLE-HUMAN) 0.76+0.04 0.81+£0.04 0.71+£0.03
EMBEDDINGS FROM SCGPT (ORGAN) 0.73£0.04 0.80+0.04 0.72%0.03

As shown in Table 5, using scGPT embeddings resulted in decreased performance across all datasets. This aligns with prior
findings that zero-shot applications of single-cell foundation models can underperform compared to simpler, task-specific
models (Kedzierska et al., 2025). Additionally, the whole-human model outperformed the organ-specific models, which
may be attributed to the broader training data available for the whole-human variant. These results suggest that fine-tuning
foundation models on downstream tasks is likely necessary to fully realize their potential in phenotype prediction.



