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Abstract

Multimodal large language models have fueled progress in image captioning.
These models, fine-tuned on vast image datasets, exhibit a deep understanding
of semantic concepts. In this work, we show that this ability can be re-purposed
for audio captioning, where the joint image-language decoder can be leveraged to
describe auditory content associated with image sequences within videos featuring
audiovisual content. This can be achieved via multimodal alignment. Yet, this
multimodal alignment task is non-trivial due to the inherent disparity between
audible and visible elements in real-world videos. Moreover, multimodal repre-
sentation learning often relies on contrastive learning, facing the challenge of the
so-called modality gap which hinders smooth integration between modalities. In
this work, we introduce a novel methodology for bridging the audiovisual modality
gap by matching the distributions of tokens produced by an audio backbone and
those of an image captioner. Our approach aligns the audio token distribution
with that of the image tokens, enabling the model to perform zero-shot audio
captioning in an unsupervised fashion while keeping the initial image captioning
component unaltered. This alignment allows for the use of either audio or audiovi-
sual input by combining or substituting the image encoder with the aligned audio
encoder. Our method achieves significantly improved performances in zero-shot
audio captioning, compared to existing approaches.1

1 Introduction
Recent progress in image captioning has been driven by methods integrating Large Language Models
(LLMs) with vision encoders (1; 2; 3). The impressive capabilities of Vision Language Models
(VLMs) stem from supervised training on large image-text collections and extensive parameterization.
Even the smallest VLMs exceed more than a billion parameters (4; 5). These models excel in
generating human-like text descriptions for images and understanding complex semantic relationships.
Such capabilities can be potentially extended to other tasks, beyond image analysis.

One such task is audio captioning, in which large-scale audio-text collections, with precise descrip-
tions of the audio content, are lacking. Recent works have proposed diverse solutions to address this
limitation. Solutions include augmenting class labels with phrases such as “This is a sound of ” (6; 7)
or prompting LLMs to generate natural language descriptions directly from class labels (8). Further,
datasets from related domains like Speech (9) or Music (10; 11), have been considered to enlarge
training data. While such methods show impressive results, scaling them further is challenging due to
the rarity and low quality of such labels-captions. In particular, these approaches cannot cope with
the annotation noise encountered in existing audio datasets, especially in the largely adopted resource:
audio tracks of AudioSet (12), which is only partially and weakly labeled.

1https://github.com/hugomalard/AnEyeForAnEar.git
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Figure 1: Conventional audiovisual alignment through contrastive learning leads to a gap between
modalities. Our proposed distribution alignment method matches closely both distributions leading
to better joint representations for audio captioning.

We hypothesize that VLM-based image captioning models, inherently possess the knowledge to
perform audio captioning. Thus, joint image-language representations of VLMs can be used to
describe auditory content associated with image sequences from videos featuring audiovisual content,
eliminating the need for handcrafted audio-caption pairs. To our knowledge, this is the first attempt
to leverage VLMs for this purpose. Extending VLMs to audio captioning is non-trivial due to the
inherent disparity between audible and visible elements in real-world videos. For instance, sound-
producing objects in images may be occluded or out of view, while visible objects might not generate
sound. This mismatch hinders connecting visual and auditory modalities seamlessly.

Multimodal representation learning (13), crucial for tasks like image captioning, is often accomplished
through contrastive learning (14; 6). This paradigm aligns features across modalities by maximizing
agreement between similar samples and minimizing agreement between dissimilar ones. Despite
its effectiveness, contrastive learning faces the so-called “modality gap”, where embedded data
are represented in distinct, non-overlapping regions of the embedding space (15; 16) (the distance
between red and green manifolds in Figure 1), limiting flexibility when conditioning modalities.

We propose a novel methodology to bridge the audiovisual modality gap by matching the distribu-
tions of tokens produced by an audio backbone and those from the encoder of an image captioner
(represented as the green and blue manifolds in Figure 1), enabling the image captioner to perform
zero-shot audio captioning in an unsupervised way. We define zero-shot audio captioning as the task
of generating audio captions without training on manually assembled audio-caption pairs. We propose
and compare two token distribution alignment methods: one based on Maximum Mean Discrepancy
(MMD) (17) and a more flexible alternative using Optimal Transport (OT) (18), possibly enhanced
with a cross-attention mechanism. This mechanism refines distribution matching by attending to each
token within a modality and determining its match with a token from the other modality based on
semantic similarity. We find this approach to result in more accurate and coherent joint audiovisual
representations.

Acknowledging the challenges of zero-shot audio captioning, we enhance caption quality using
“prefix tuning”, a technique commonly employed across domains to adapt LLMs to diverse tasks in
a few-shot manner (19; 20; 21). This tuning process conditions the model with few image-audio
caption pairs, prompting it to generate audio-centric captions and thereby boosting performance
across standard audio captioning metrics (22; 23; 24; 25; 26; 27).

Notably, our methodology allows for the use of either audio or audiovisual input by combining or
substituting the image encoder with the aligned audio encoder. As a result, our approach extends the
ability of the VLM to audio captioning without compromising its image performance. Moreover, the
method achieves significantly improved performances in zero-shot audio captioning, compared to
existing approaches.

In summary, our contributions are as follows:

• We introduce a novel methodology for unsupervised zero-shot audio captioning through
Distribution ALIgnment (DALI), leveraging advanced image captioning models, and suc-
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cessfully instantiate it with a particular image captioner (namely Llava 1.5), as we obtain
state-of-the-art zero-shot audio captioning results without any supervision from annotated
audio data (see Section 5).

• To bridge the “modality gap”, we propose and study two multimodal token distribution
alignment methods exploiting MMD or Optimal Transport (OT). The latter—never used
before in this context—is enhanced with a cross-attention mechanism for greater robustness.

• We introduce the use of prefix tuning to guide the image captioner towards audio captioning,
adapting the model with a few shots of image and audio-caption pairs (only using the textual
descriptions of sound and not the audio signals).

• Finally, our method supports both audio and audiovisual inputs, extending the image
captioner’s capabilities without compromising its performance in image analysis tasks.

2 Related works

Vision Language models Large Vision Language Models (VLMs) typically use a pre-trained LLM
that processes both visual and textual information. The image encoder usually consists of a ViT (28)
trained via multimodal contrastive learning using millions of image-text pairs such as the ones used
in CLIP (14). Integrating visual information into the LLM is usually done by concatenating image
tokens extracted by a vision encoder and then further transformed by an MLP, with textual tokens
from a prompt. This straightforward architecture can be easily adapted to other modalities by simply
replacing the input tokens to accommodate the new input modality.

Audio Language models Recently, a similar paradigm emerged in the audio application domain.
Various works rely on both LLMs and audio encoders trained jointly on millions of audio-text pairs,
similarly to CLAP (6). Listen Think and Understand (LTU) (29), Pengi (11), QwenAudio (9) and
AudioFlamingo(10) rely on a language model fed with tokens from both audio and text modalities.
These large models require substantial volumes of training data. For instance, AudioFlamingo has
been trained on nearly all publicly available labeled audio data. One limitation is that the quality
of the audio-text data is generally not comparable to that of image-text data. This situation is made
worse by the fact that audio data labelling is inherently difficult due to the potential overlap of
multiple sound sources at different acoustic levels, which sometimes makes it hard to perceive some
of the audio classes in presence. Despite this limitation, AudioFlamingo and similar models exhibit
remarkable performance. To further enhance the capabilities of audio-language models it is of
paramount importance to explore alternative paradigms beyond strong reliance on (often unreliable)
annotations and supervised learning. This is the goal pursued in this work.

Audio captioning Training large audio captioner models, as mentioned previously, requires large
volumes of audio and textual descriptions and substantial computational resources. To address this
limitation, some approaches leverage existing robust backbones to enable zero-shot audio captioning.
ZerAuCaps (30) uses CLAP (an 80.8M-parameter model trained on 3.4M audio-text pairs) to infer
potential classes from a predefined word bank (45 words) before using them to prompt an LLM (OPT
(31) 1.3B), generating multiple plausible captions. The final caption is the closest to the audio in
the CLAP space. However, this method is constrained by the finite set of classes in the word bank,
limiting its application to predefined scenarios. The most closely related work to ours is that of
Shaharabany et al. (32) who also performed unsupervised zero-shot audio captioning. The authors
adopted the audio encoder of ImageBind (33) (86M parameters trained on AudioSet), a multimodal
model trained to align various modalities in the image space via a contrastive loss. They fine-tuned
a GPT-2 (34) model (117M parameters) fed with ImageBind audio tokens using two distinct loss
functions for the captioning task: an audibility score ensures the generation of audio-centric captions
without visual artifacts, while an ImageBind score measures the similarity between the generated
caption and the audio. Despite its innovative approach, its performance falls short compared to
ZerAuCaps primarily due to ImageBind’s less effective handling of audio.

Audiovisual Alignment Multimodal alignment aims to encode information from different modali-
ties such as text, image, or audio into a shared semantic space, enabling cross-modal relationships
and multimodal retrieval (e.g., retrieve the image closest to a caption) (13). Despite the abundance
of web video datasets, aligning the audio and image/video modalities remains a challenge. The
conventional contrastive loss (35) often fails to effectively co-train the encoders. Unlike the relatively
clean associations in image-text pairs, audio-image pairs present a greater degree of variability, with
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Figure 2: Overview of the proposed approach. In the first stage, a prefix tuning is performed using a
few (image, audio-caption) pairs (1-a). Additionally, the audio backbone is aligned with the image
backbone (1-b) through distribution alignment. Audio captioning can then be performed by switching
the image backbone with the audio backbone and adding the prefix tokens (1-c). In a second stage,
visually-informed audio captions are generated using both audio, image, and prefix tokens. The
MLP mapping the audio encoder to the language model is then fine-tuned with these pseudo captions
(2-d). The final inference for audio captioning, using audio or audio visual inputs, is performed by
forwarding the aligned audio backbone’s output through the trained MLP to obtain the LLM input
(2-e).

the content described in the audio often differing from that depicted in the corresponding image or
video. Consequently, stable pre-training needs augmenting the contrastive loss with a reconstruction
loss (36; 37; 38), reducing the similarity of the representations between the two modalities.

3 Method

Current Large Vision Language Models (VLMs) exhibit a sophisticated understanding of concepts
related to real-world objects in the visual domain. This capability arises from optimizing the language
model, already containing a lot of intrinsic knowledge, so as to extract additional information from
image features and learn how to describe the (visual) world. We hypothesize that the knowledge
gained through this process is sufficiently general to be transferable across different modalities.
To test this hypothesis, we developed a methodology that employs an VLM’s image captioner to
generate audio captions from images, audios and audiovisual inputs, while preserving the original
performance of the image captioner. Our methodology stands out for its applicability to any
modality requiring integration with image data. Here, we focus on audiovisual alignment for audio
captioning, benefiting from the abundance of audiovisual content in videos from web data.

3.1 Proposed Framework Overview

An image captioning system outputs descriptions of objects in an image, such as "A dog in the grass,"
providing visual cues. To adapt this system for audio captioning, we need it to focus on audible
information instead of visuals. For example, given an image of a dog, the audio caption should
instead be "A dog is barking.". Our methodology enables audio captioning from an image captioner
by keeping both the image encoder and LLM frozen, ensuring that the image captioner original
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performance is preserved. In our work, we choose Llava (1) (Apache License 2.0) as an instance of
an image captioner, for its proven effectiveness. We use the CAV-MAE (36) (BSD 2-Clause License)
audio model as our audio encoder, since it is already roughly aligned with an image backbone, which
is expected to help reach faster convergence.

As seen in Figure 2, we follow a 2-stage process. First, we use prefix tuning to start re-tasking the
system for audio captioning, learning tokens from a few image-caption pairs, ensuring that the textual
descriptions target the audio content (stage 1, step (a)). We also align the token distribution of an
audio encoder with that of the image encoder (stage 1, step (b)), then replace the image encoder
with the aligned audio encoder for direct audio captioning from audio files (step (c)). We can also
combine both encoders for visually informed audio captioning, using both audio and visual inputs.
This setup generates audio captions to fine-tune the MLP that maps audio tokens to the language
model embedding space, a process we call audiovisual distillation (stage 2, step (d)). The fine-tuned
MLP then replaces the original MLP, generating robust audio captions from audio or audiovisual
inputs (step (e)). In the following, we zoom on specific aspects of the proposed methodology.

Prefix-tuning with image-caption pairs Image captioners, while effective for image analysis
tasks, struggle to produce accurate audio-centric descriptions when prompted to describe sounds
from images. For example, when asked, "What sounds can the objects in this image generate?", the
descriptions provided heavily reflect the visual characteristics of the objects. Instead of focusing
on sound-related details, their outputs are dominated by visual descriptions, which are considered
artifacts in the context of audio captioning. To address this problem, we adopted a prompt tuning
strategy (39), aiming to guide the model to generate captions that exclusively describe audible events
as depicted in Figure 2-a. Prompt tuning involves learning a portion of the prompt tokens: the prefix,
that guides the model to perform a specified task (39). This method allows the rest of the model to
remain frozen, and by simply removing the learned tokens, the model is able to perform its original
task with the same performance. This approach requires only a small number of parameters to be
trained and can be effectively trained using a few examples, a process akin to few-shot adaptation.
We employed this technique to re-task the model to perform audio captioning. We trained the
additional tokens using image-text pairs, with the text describing the sounds associated with the
images i.e., audio captions. Specifically, we used images from AudioSet videos and corresponding
captions from AudioCaps (40) (MIT). We used negative log-likelihood as the loss function for the
prefix tuning:

Lprefix = −
N∑

n=1

l∑
j=1

log pθ(C
n
j |In1 , ..., Inni

, Cn
1 , ..., C

n
j−1) ; (1)

with n and j being respectively the image and caption token indices, N the number of elements in
the batch, l the number of predicted tokens, the index I referring to the vision tokens (from 1 to ni),
Cj the j-th caption token and θ the parameters of the model. Using the prefix tokens, the image
captioner can now output more plausible sound descriptions.

Audio captioning via token distribution alignment Aligning the distribution of the audio encoder
with that of the image one allows for substituting one encoder with another and therefore conditioning
the generation either on the audio or image modality. We align the distributions (Figure 2: step
(b)) using either Maximum Mean Discrepancy or Optimal Transport. More details are provided in
Section 3.2. Using the aligned audio backbone, as represented in Figure 2: step (c), we feed the
language model with the audio tokens along with the prefix, which enables the model to perform
audio captioning. Additionally, we incorporate both the image and audio tokens, to give the ability
to the model to perform audio captioning fusing visual and audible cues. This setup allows us to
infer and generate, visually informed, audio captions for AudioSet balanced (12), a standard subset
of AudioSet, containing ∼ 20k videos, curated such that they involve the same number of samples
for each class.

Audiovisual distillation The captions generated from audiovisual inputs serve as pseudo-labels
to supervise the fine-tuning process of an audio captioner with an audio-only setup. This process
refines only the MLP that maps the audio tokens to the LLM embedding space. Training employs a
negative log-likelihood loss, as per equation (1), albeit without conditioning on image tokens. Instead
of relying on a limited number of real captions, pseudo-labels are employed. This procedure is
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illustrated in Figure 2: step (d), and optimized through the following loss:

Ldistil = −
N∑

n=1

l∑
j=1

log pθ(C
n
j |An

1 , ..., A
n
na
, Cn

1 , ..., C
n
j−1) ; (2)

with A referring to the audio tokens (from 1 to na).

Audio captioning via audio or audiovisual inputs With all components trained, our model can
perform audio captioning using the aligned audio encoder and fine-tuned audio MLP, or visualy-
informed audio captioning by feeding to the LLM the image tokens in addition to the audio tokens
(shown in Figure 2: step (e)). Notably, the original image captioning task can still be performed at its
original performance level by using only the image tokens, without the audio.

3.2 Token distribution alignment

Many studies on multimodal alignment typically use a contrastive loss on the averaged output tokens
(14; 41). This method merely aligns token mean-statistics, potentially leading to information loss,
when the full token distribution is needed. Llava (1) for instance, makes use of the full token
distribution as input, naturally creating the need for a full token distribution alignment, to allow for
swapping the pretrained encoder with a new one targeting a new modality. Moreover, contrastive
learning faces the so-called “modality gap” problem where each modality is encoded in distinct
sub-regions of the embedding space (see Figure 4). For all these reasons, replacing image tokens with
audio tokens obtained by alignment through a contrastive learning approach may yield undesirable
responses from the language model. In light of these issues, we propose to learn the full image token
distributions, rather than relying solely on contrastive learning, so as to facilitate knowledge transfer.
We refer to our distribution alignment framework as DALI which stands for Distribution ALIgnment.
We study two variants of distribution matching.

Modality alignment through MMD Maximum Mean Discrepancy (MMD) serves as a robust
measure of dissimilarity—or more specifically, discrepancy—between two probability distributions.
MMD has been shown to be effective in distribution alignment, notably, but not exclusively, for
domain adaptation (42; 43). It computes the distance between the expected values of two distributions,
denoted by P and Q, within a feature space characterized by a mapping Φ : X → H where H is a
reproducing kernel Hilbert space (RKHS):

MMD(P,Q) = ||EX∼P [Φ(X)]− EY∼Q[Φ(Y )]||H . (3)

In practice the MMD is computed using the kernel trick (44). In our work, we consider the Gaussian
Radial Basis Function (RBF) kernel and use MMD as a loss function to directly align the audio and
image token distributions. We term this distribution alignment through MMD: DALIMMD.

Modality alignment through Optimal Transport Optimal Transport (OT) stands out as a powerful
method for aligning probability distributions (45). Despite its successful application across various
domains such as unsupervised domain adaptation (46), image generation (47), and style transfer (48),
its application to multimodal representation alignment remains relatively unexplored. In our context,
where the alignment of audiovisual modalities is paramount, OT emerges as a natural solution for its
intrinsic capacity to integrate the geometry of the underlying space, enabling optimal distribution
matching. Discrete optimal transport considers two distributions x ∈ RN and y ∈ RM , where Nand
M represent the number of samples in each distribution. These distributions are represented by their
empirical measures: α =

∑N
i=1 αiδxi and β =

∑M
j=1 βjδyj , and OT seeks a coupling γ ∈ Π(α, β)

between them that minimizes a transportation cost. The problem can be formalized as:

OT(α, β) = min
γ∈Π(α,β)

⟨γ,D⟩F ; (4)

where D ∈ RN×M is the cost matrix, ⟨·, ·⟩F denotes the Frobenius dot product, and γ ∈ RN×M

represents the transportation coupling matrix. The minimum of the optimization problem can be
interpreted as a distance (45). When considering the square of the l2 norm, the distance is known as
the Earth Mover Distance (EMD). In this work, we align the audio and image token distributions using
EMD and refer to this approach as Distribution ALIgnment through Optimal Transport (DALIOT).
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Improving cross-modal correspondence with attentive distribution alignment Optimal transport
is typically applied assuming uniform distributions of the weights {αi}Ni=1 and {βj}Mj=1. However, in
audiovisual content, objects producing sound are often occluded, with the visual information serving
to complement the auditory content. The classic formulation of OT enforces strict mass preservation,
needing that all mass from the source distribution is transported to the target distribution. This
constraint becomes problematic in audiovisual alignment, where not all tokens from one modality
may find a match in the other. While alternative methods exist to circumvent these constraints, such
as Unbalanced Optimal Transport (UOT) (49), which replaces this rigid requirement with a soft
penalization term, the tuning of such hyper-parameter poses significant challenges (50). Alternatively,
we propose learning the weights αi and βj via a cross-attention mechanism which offers as well a
robust approach. This mechanism, attending to both modalities, enables learning which objects and/or
sound-related tokens are present in both modalities. Tokens encoding modality-specific information,
e.g., an occluded source, or an object apparently not generating a sound, receive lower weights. Thus,
this approach promotes the alignment of modality-shared content. We provide the details of this
cross-attention mechanism in Appendix F. It is important to note that to avoid the trivial solution that
would put all the weights to 0 except the one of the closest tokens, we regularize the entropy of the
weights.

The final loss consists of a weighted sum of the optimal transport distance and the entropy of
distribution weights:

L(x, y, αAtt, βAtt) = OT(x, y, αAtt, βAtt)− λ(H(αAtt) + H(βAtt)), (5)

where H(·) denotes the Shannon entropy and OT(x, y, αAtt, βAtt) represents the optimal transport
between αAtt and βAtt, the weights at the output of the attention mechanism, with the cost matrix
computed from x and y. An intuitive depiction of the method is illustrated in Figure 3. Note that the
cross-attention layers are only used for training and discarded afterward. We refer to this alignment
method as DALIAtt

OT.

Figure 3: Multimodal distribution alignment through optimal transport. The audio and image tokens
are used to compute the cost matrix, while two separate cross-attention layers estimate the weights
αAtt and βAtt.

4 Experiments

Our experiments focus on AudioSet, a widely explored large-scale collection of videos from YouTube.
We evaluate our proposed approach on two popular and publicly available human-annotated audio
captioning datasets: AudioCaps and Clotho (Tampere University licence), using conventional audio
captioning metrics. We also provide details of our training and fine-tuning procedures.

Datasets AudioSet (12) is a dataset (license CC BY 4.0) composed of 2 million YouTube videos
with annotations indicating the presence of environmental sound events at the clip level (without
precise time location), spanning 527 classes. The dataset includes reliability scores for annotations,
some below 50%. Despite a diverse range of classes, a significant portion predominantly features
music or speech content. Many videos show notable disparities between their visual and auditory
content, thus attempting to align audio and image representations without any pre-filtering of the
content is challenging. Similarly to Nagrani et al. (51), who filtered the dataset by balancing the
classes, we train our models on a subset of 500k videos from AudioSet. We chose them by computing
the similarity between the noisy audio labels and an image caption generated by BLIP-2(52) (chosen
for the conciseness of the captions), to remove the biggest discrepancies between images and audios.
More details on this filtering process are given in Appendix C. For each video, we extracted 10 frames
(the first of each second), and we randomly chose, during training, one of these 10 frames for each
video.
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Alignment METEOR↑ ROUGE-L↑ SPIDEr↑
Image only∗ 0.1324 0.3008 0.1499

Ours (Audio-Only) DALIAtt
OT 0.1277 0.3106 0.1592

Contrastive 0.1215 0.2914 0.1524
DALIOT 0.1332 0.2923 0.1422

DALIMMD 0.1346 0.3025 0.1360

Ours (Audio+Image) DALIAtt
OT+Image 0.1257 0.3061 0.1946

Shaharabany et al. ImageBind n.a 0.082 n.a
Salewski et al. CLAP∗∗ 0.123 0.331 0.183

Ablation of audiovisual distillation (Stage 2-d) DALIAtt
OT 0.11 0.2901 0.1443

DALIMMD 0.1330 0.3018 0.1385
DALIOT 0.1062 0.2709 0.1183

Contrastive 0.0728 0.1838 0.0871
Table 1: Audio captioning performance on AudioCaps test set. Our results are obtained using 16
(image,audio-captions) pairs for the prefix tuning phase. (∗): No alignment. (∗∗): Trained in a
supervised fashion using audio-caption pairs. Results are ordered by SPIDEr score.

Evaluation metrics We evaluated our system on all known audio captioning datasets which are
publicly available: AudioCaps (40) which contains AudioSet audio samples captioned by humans,
and Clotho (53), which is composed of audio samples from FreeSound, also annotated by humans.
Performance was measured using 3 standard captioning metrics: METEOR (24), ROUGE-L (23),
and SPIDEr (27), which combines both the CIDEr (25) and SPICE (26) scores. Additional evaluation
metrics are available in Appendix G. We evaluate our model in the context of zero-shot audio
captioning, comparing it against other models in the field. All the training details and hyper parameters
are given in Appendix E.

5 Results and discussion

Audio Captioning performance Table 5 presents the audio captioning performance of our methods
on the AudioCaps test set, using 16 image captions to train the prefix tokens. We show the relatively
small importance of the number of pairs in the audio captioning learning process in Appendix A. Our
study compares the alignment variants considered in our zero-shot audio captioning framework against
the current state-of-the-art methods, which employ audio encoders trained in either a supervised or
an unsupervised manner. Our results indicate that the alignment through contrastive learning without
audiovisual distillation does not fully match distributions, compared to DALI. Indeed, even without
audiovisual distillation, DALIMMD and DALIAtt

OT significantly outperform Shaharabany et al. (32), this
system being our closest competitor, as it relies on a backbone trained in an unsupervised fashion.

Without audiovisual distillation, DALIMMD performs comparably to DALIAtt
OT, however, the latter

improves with audiovisual distillation. We hypothesize that this occurs because DALIMMD is trained
to learn the complete image token distribution, while DALIAtt

OT only learns a part of it (due to the
attentive optimal transport mechanism). Therefore DALIAtt

OT features can take more advantage of the
combination with image tokens. We verify qualitatively this hypothesis in the Discussion paragraph
below. Interestingly, both DALIOT and the contrastive backbone benefit from the audiovisual distil-
lation. Given the relatively low-performance scores prior to the distillation process, it is plausible
that they primarily learn from the image captioner (as the audiovisual pseudo captions tend to rely
solely on visual features due to the inadequate audio representations) which is shown to be already
performing well for audio captioning (first line of results). We hypothesize that the second stage is
effective even for poorly aligned backbones because the distillation occurs on a subset of AudioSet
where the images align well with the audio. If this distillation were applied to the entire dataset,
the performance of these backbones might decline substantially. These hypotheses will require
further investigation in future work. Lastly, it is important to note that feeding the image tokens in
addition to the DALIAtt

OT ones, increases even more the performances, leaving the door open for further
improvements.
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Figure 4: AudioCaps average tokens distribution.
While contrastive learning maps the audio in a
space separate from the image ones, MMD and
optimal transport project in the same part of the
space. The model trained using attentive optimal
transport projects the audios in a space closer to
the image, with marginal overlap.

Discussion Unlike standard contrastive meth-
ods, we do not average the output of the back-
bone, which allows us to employ token-level
distribution alignment methods that do not rely
on negative samples. Both Optimal Transport
(OT) and Maximum Mean Discrepancy (MMD)
focus on directly aligning the embedding’s dis-
tributions.OT minimizes the cost of transporting
one distribution to another, aligning them with-
out the need for negative samples, and avoiding
the issue of pushing different modalities into
separate subspaces. Similarly, MMD measures
the distance between kernel-projected mean em-
beddings, aligning the distributions without neg-
ative sampling. These methods promote a more
cohesive embedding space, closely aligning dif-
ferent modalities and thus avoiding the modality
gap inherent in contrastive learning approaches.

Indeed, Figure 4 shows a Principal Component
Analysis (PCA) of the global representation (the
average of the output tokens) of audio and im-
ages from various backbones on a subset of the AudioCaps test set. In our audiovisual experiment,
we observe a phenomenon akin to the one demonstrated by Liang et al.(15) for image-text contrastive
learning. Specifically, models encode each modality in a narrow cone, resulting in the so-called
modality gap where the embeddings of each encoder are confined to a subregion of the embedding
space. However, our backbones, which are trained using distribution alignment, do not exhibit this
issue. The embeddings generated by both the DALIMMD and DALIOT encoders closely resemble
those of the image modality. In contrast, the DALIAtt

OT ones, while located in the same region of
the embedding space, remain distinct from the image tokens and exhibit minimal overlap. This
indicates DALIAtt

OT and image tokens are complementary and provides an explanation for why the
former benefits more from audiovisual distillation than the DALIMMD model.

The root cause of this discrepancy lies in the training process: the cross-attention-based DALIAtt
OT

model is trained using only to the matching audiovisual tokens, whereas DALIMMD model is trained
on the complete image distribution, which inherently includes a degree of image bias.

To verify this claim, we examined whether the aligned backbone with DALIMMD (after Stage 1)
exhibits image bias. We prompted the captioner with "What can you see? Answer concisely" along
with the audio tokens without the tuned prefix to avoid constraining it to generate only audio-related
captions. Table 2 presents multiple captions generated using the DALIAtt

OT and DALIMMD backbones.
As shown, the encoder trained with MMD often produces captions with notable visual biases, which
are absent in the outputs of DALIAtt

OT. These results confirm our hypothesis and align with the
visualizations in Figure 4. Note that the captions may seem incomplete as we ask the model to answer
concisely, focusing only on the main element of the scene . Complete generated captions by different
models are provided in Appendix D.

Ground Truth DALIMMD DALIAtt
OT

A woman is speaking from a microphone A woman in a black shirt and a red scarf is speaking into a microphone. A woman
A male voice and a machine buzzing A man is using a drill to make a hole in a piece of wood. A person’s hand holding a tool.

A bell is ringing A person and a dog standing in front of a large machine. Bell
A long burp ends in a sigh A man with a beard and mustache. A man

A chainsaw cutting as wood is cracking A man cutting a tree trunk with a chainsaw. A lawn mower
A man speaking as rain lightly falls followed by thunder A man wearing a black shirt and a grey suit. A man

A vehicle engine revving and squealing tires A car racing on a track. A car.

Table 2: Ground-truth audio captions, and captions generated by our audio models (after stage 1,
without prefix tokens) by asking “What can you see answer concisely”.

Assessing generalization ability The Clotho dataset presents a greater challenge than AudioCaps,
primarily due to the complexity of the captions, which is reflected in the relatively lower performance
of all the methods. The audio tracks in AudioCaps are sourced from AudioSet, thus the distribution of
audio events resembles that of the data on which our models are trained. In contrast, Clotho’s audios
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Alignment METEOR↑ ROUGE-L↑ SPIDEr↑
Ours DALIMMD 0.1067 0.2993 0.0655

DALIAtt
OT 0.1008 0.2850 0.0625

Contrastive 0.0918 0.2490 0.0620
DALIOT 0.1049 0.2765 0.0574

Salewski et al. CLAP∗ 0.094 0.254 0.097

Ablation of of audiovisual distillation (Stage 2-d) DALIMMD 0.1058 0.2768 0.0640
Contrastive 0.0630 0.1777 0.0377

DALIAtt
OT 0.0666 0.2101 0.0355

DALIOT 0.0617 0.1825 0.0299
Table 3: Clotho audio captioning performance. Similarly to AudioCaps, DALIAtt

OT is performing,
however, DALIMMD gives slightly better results. The bias learned by matching the complete image
distribution seems to be beneficial for out-of-domain samples. (∗): Trained in a supervised fashion
using audio-caption pairs.

are sourced from FreeSound, a dataset distinct from AudioSet. Consequently, our model, having
been trained solely on AudioSet’s audio excerpts and images, may encounter unfamiliar concepts in
Clotho, thereby testing its capacity for generalization. Table 6 presents the models’ performance on
Clotho’s test set. The observed trends are consistent with those on AudioCaps where DALIMMD does
not benefit from audiovisual distillation, while DALIAtt

OT does. However, the absolute results differ, as
DALIMMD marginally outperforms DALIAtt

OT even after the second training stage. We posit that the
image bias inherent in DALIMMD becomes beneficial when confronted with out-of-distribution data.
Indeed what may be regarded as out-of-distribution for the audio backbone might have been seen by
the image one (due to its bigger training set). Consequently, the learning of the image backbone’s
bias could potentially be beneficial. Notably, our method outperforms Saleswki et al., despite the fact
that the latter employs a backbone trained using millions of audio-text pairs (CLAP). It is important
to note that our method differs from Saleswki et al. in that we perform unsupervised instead of
supervised zero-shot audio captioning.

6 Conclusion
We presented a novel methodology for unsupervised zero-shot audio captioning, effectively leveraging
advanced image captioning models, such as Llava. We adapted it to the audio captioning task by
making use of prefix tuning and using innovative token distribution alignment techniques (using
MMD or optimal transport with a cross-attention mechanism) that successfully bridged the modality
gap between audio and visual inputs. Our comprehensive evaluation, both quantitative and qualitative,
demonstrates that our method achieves state-of-the-art results in unsupervised zero-shot audio
captioning. Remarkably, our approach, not using any audio recordings, not only matches but even
sometimes, exceeds the performance of existing methods that rely on a backbone trained with
extensive audio-text data such as CLAP. Moreover, our method requires only raw videos without any
audio annotations, significantly enhancing its potential scalability. This positions our approach as a
promising direction as a leading direction for the future of audio captioning.

Limitations Although capable of addressing partial audiovisual mismatches, our method remains
insufficiently robust to complete cross-modal mismatches, such as instances where the image is
entirely unrelated to the audio. We reserve addressing this limitation for future work. Moreover, to
achieve even higher performance in audio captioning, our method would benefit from a degree of
supervision. The requirement for an external supervisory source (e.g., audio-text pairs) arises due
to the method’s dependence on audiovisual alignments, which makes it challenging to learn certain
sounds because they cannot be seen. For example, it is almost impossible to generate a caption for
the sound of the wind by merely using images.

Acknowledgement This work was supported by the Audible project, funded by French BPI. This
work was performed using AI resources from GENCI-IDRIS (Grant 2023-AD011014885).
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The appendix is organized as follows: The first part presents additional experiments that aid in
understanding the behavior of our encoders, followed by a detailed explanation of the pre-filtering
process performed on AudioSet and the training parameter details.

A Impact of the number of image captions

To determine whether the tuned prefixes only specify the task and help avoid visual artifacts in
the captions, we analyzed the performance of the method by varying the number of image- audio
caption pairs. Figure 5 illustrates that only 16 captions are required to achieve good performance,
and increasing this number does not lead to further improvement. In fact, while the SPIDER, CIDEr,
and ROUGE metrics remain stable, the SPICE, METEOR, and BLEU scores even show a slight
decline. This suggests that prefix tokens only serve to specify the task to the language model and
do not contribute to learning the captioning task itself. We hypothesize that this prefix tuning could
potentially be replaced by a carefully chosen hand-crafted prompt.

Figure 5: Captioning performances according to the number of image captions. After 16, the
performance does not improve, indicating that the prefix tuning does not play an important role in the
learning process, it just specifies the task.

B Deeper analysis of the learned distributions

Figure 6 presents a 2-D projection through PCA of CLIP image tokens along with the audio tokens
learned by DALIAtt

OT, DALIMMD, and contrastive learning for the audiovisual pair shown in the figure
(“A sound of a guitar playing”). The contrastive learning method maps the audio tokens to a very
restricted subset of the space, without any overlapping with the image distribution. Interestingly,
while DALIMMD only learns to align the expected value of the distribution, it appears to fit the full
image distribution quite well. DALIAtt

OT exhibits similar behavior but is less noisy: the tokens are either
very close to the image tokens or much further away. This behavior is inherited from the attentive
optimal transport, which assigns low weights to points considered as mismatches.
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Figure 6: Audio and image tokens distribution. While contrastive learning encodes tokens in a
completely separated subspace, the MMD learns a distribution similar to the image one, noisier. The
attentive optimal transport fits more the image distribution, except in some points that are mapped
further.

Figure 7 illustrates the optimal transport weights computed by the cross-attention mechanism for the
given image and its associated audio (an emergency vehicle siren). The size of the circles represents
the weights. Although the overall distribution appears uniform, a closer inspection of the bottom
right section reveals that many tokens have scores close to zero. These tokens likely represent the
road, which does not produce any sound and thus has no corresponding match in the audio tokens.
Consequently, these tokens are not considered in the calculation of the transportation coupling

Figure 7: DALIAtt
OT Cross-Attention scores. The size of the dots represents the weights of the transport

defined by the cross-attentions. The image and its associated audio show a partial mismatch: the audio
only contains the siren sound and the image also shows the road. All the tokens with low weights
belong to the same part of the space which might indicate that they represent similar information
such as the road.

C AudioSet pre-filtering to limit audiovisual discrepancies

As AudioSet primarily focuses on audio rather than audiovisual content, it features audio events that
may be unrelated to the visual event depicted. For example, many videos feature music as an audio
event while displaying a static image of the album cover.

To address this issue, we filtered out audiovisual discrepancies. To achieve this, we generated
captions for the first frame of each second of a video using BLIP2, which we then encoded into
GPT2-embedding space. Subsequently, we computed the distance between the embedding of each
frame’s caption and the embedding of the corresponding AudioSet labels. This process is illustrated
in Figure 8. The average distance across the video frames was used as the distance between the video
and the audio. We retained the 500,000 pairs with the smallest distance.
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Figure 8: Discreptancies filtering process: 10 frames of the video are captioned by BLIP2, captions
are embedded in a text space and compared to the embedding of the class labels. The average of the
distances of the frame is considered as the distance between audio and video.

D Caption examples

Ground Truth Contrastive DALIAtt
OT

Humming of an engine with a woman and men speaking A man with a vanity A car engine
Rustling with some distant banging and people speaking in the distance A loud noise A person is talking

Wind is blowing and heavy rain is falling and splashing Rain The sound of a waterfall
A woman is speaking from a microphone Describe the sound that can be heard in this scene. A woman speaking

A bell is ringing The sound of a large stone structure. The sound of a bell ringing
A man speaking as rain lightly falls followed by thunder The sound of a building being built A man talking

Man speaking and clinking dishes A person is seen eating a donut A person is talking
A chainsaw cutting as wood is cracking The sound of chainsaws and dirt being moved. The sound of a chainsaw cutting through a tree.

A woman speaks and a cat meows ’[0.0]’ A person is talking
A male voice and a machine buzzing The sound of a metal being cut or a saw A person is talking

Table 4: Example of captions from our method after stage 1, using contrastive backbone and DALIAtt
OT

Table 4 shows multiple examples of captions generated by the model using the contrastive backbone
and DALIAtt

OT, both after the first stage of training. While the captions from the latter are accurate, using
the contrastive backbone generates quite noisy/bad captions. This outlines the fact that contrastive
learning is not well suited to swap the encoder of a modality with the one from another.

E Training details

For the MMD alignment, following (54) we use a mixture of K kernels spanning multiple ranges
(being the average pairwise squared distance between samples multiplied by k with k = {0, ...,K}),
with K = 5. As far as optimal transport is concerned, the first epoch of the first stage is performed
with uniform transport weights. A decreasing value of λ is then used: from 500 to 100 at the end of
the 5th epoch. λ = 100 is then used for the remaining epochs. We observed that the training is quite
robust to small variations of λ, as long as the first epoch is performed with uniform weights. We used
the Python Optimal Transport (POT)(55) library to compute efficiently the EMD. In the prefix tuning
stage, we learned 16 prefix tokens on different numbers of image and audio caption pairs. We used
cosine decay and a learning rate of 2e-4 for both the prefix tuning and the MLP tuning in the second
stage. The prompt used for all the experiment is: “What sound can be heard in this scene ?”. We
used version 1.5 of Llava: the image encoder being the ViT-L@336px version of CLIP (14), and
the mapping network between image tokens and the LLM embedding space a 2 layer-perceptron.
As for the audio encoder, we start from a pre-trained CAV-MAE (36) model in order to speed-up
convergence. This model consists of 12 transformer encoder layers of dimension 768 and one final
linear layer that maps the output of the transformers to a 1024-dimensional space (dimension of the
CLIP encoder). Note that this encoder is way smaller than the image one (88M vs 428M parameters),
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because the training set used is 2 orders of magnitude smaller than the CLIP one.
All the trainings were performed using 4 Nvidia A100 gpus, and all the steps of the training can be
performed within 30 hours of compute on those machines.

F Attentive Optimal Transport details

For DALIAtt
OT, we computed the weights of the optimal transport by averaging on the feature dimen-

sion the tokens resulting from the cross-attention and then feeding them through a softmax with
temperature (we used τ = 20).

More formally, the weights of the transports αAtt and βAtt are computed as follow:

αAtt = softmax(softmax(
(WQ

a A)(WK
i I)T√

d
)WV

i I/τ), (6)

βAtt = softmax(softmax(
(WQ

i I)(WK
a A)T√

d
)WV

a A/τ) , (7)

with A and I being the audio and image tokens, WQ
i ,WK

i ,WV
i ; WQ

a ,WK
a ,WV

a the image and
audio projections, respectively, and τ a hyper-parameter.

G Additional captioning metrics

Alignment BLEU4↑ METEOR↑ ROUGE-L↑ CIDEr↑ SPICE↑ SPIDEr↑
Image only∗ 0.0511 0.1324 0.3008 0.2186 0.0812 0.1499

Ours DALIAtt
OT 0.0817 0.1277 0.3106 0.2441 0.0743 0.1592

DALIMMD 0.0678 0.1346 0.3025 0.1991 0.0729 0.1360
DALIOT 0.0461 0.1332 0.2923 0.1979 0.0866 0.1422

Contrastive 0.0590 0.1215 0.2914 0.2290 0.0779 0.1524

DALIAtt
OT+Image 0.0677 0.1257 0.3061 0.3063 0.0828 0.1946

Shaharabany et al. ImageBind n.a 0.086 0.082 0.092 n.a n.a
Salewski et al. CLAP∗∗ 0.068 0.123 0.331 0.281 0.086 0.183

Ablation of audiovisual distillation DALIAtt
OT 0.0523 0.11 0.2901 0.2227 0.0659 0.1443

DALIMMD 0.0694 0.1330 0.3018 0.1976 0.0794 0.1385
DALIOT 0.0476 0.1062 0.2709 0.1769 0.0597 0.1183

Contrastive 0.0268 0.0728 0.1838 0.1287 0.0455 0.0871
Table 5: AudioCaps captioning results using 16 image captions. (∗): No alignment. (∗∗): Trained in a
supervised fashion using audio-caption pairs.

Alignment BLEU4↑ METEOR↑ ROUGE-L↑ CIDEr↑ SPICE↑ SPIDEr↑

Ours DALIAtt
OT 0.0583 0.1008 0.2850 0.0685 0.0565 0.0625

DALIMMD 0.0587 0.1067 0.2993 0.0713 0.0598 0.0655
DALIOT 0.0396 0.1049 0.2765 0.0567 0.0582 0.0574

Contrastive 0.0358 0.0918 0.2490 0.0682 0.0562 0.0620

Salewski et al. CLAP∗ 0.029 0.094 0.254 0.140 0.053 0.097

Ablation of of audiovisual distillation DALIAtt
OT 0.0193 0.0666 0.2101 0.0408 0.0302 0.0355

DALIMMD 0.0483 0.1058 0.2768 0.0659 0.0621 0.0640
DALIOT 0.0109 0.0617 0.1825 0.0321 0.0278 0.0299

Contrastive 0.0167 0.0630 0.1777 0.0460 0.0293 0.0377

Table 6: Clotho audio captioning performance. Similarly to AudioCaps, DALIAtt
OT is performing,

however, DALIMMD gives slightly better results. The bias learned by matching the complete image
distribution seems to be beneficial for out-of-domain samples. (∗): Trained in a supervised fashion
using audio-caption pairs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We justify by quantitative and qualitative analysis the claims made in the
abstract. This can be found in the Results and discussion section as well as in appendices
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dedicated a paragraph to this (’Limitations’) as part of the Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: NA
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Justification: NA
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the hyper parameters used for the training are given in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Data used are already publicly available, both the model and the training code
will be made available on Github along with a tutorial on how to use it. The preparation of
this repo is in progress.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the hyperparameters are given in the Appendix, the prefiltering process
used on the training dataset as well, and the list of files used for training will be made
available on the Github repo.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Experiments were too costly to be run multiple times, however, a lot of
ablations are available and the model is tested on multiple datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The machine on which we run the experiments, as well as the computing time
needed is mentioned in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects or participants. We systemati-
cally referred to the licences of the licenced datasets that we used (namely CC BY 4.0). We
are not aware of any potential misuse of our algorithm, but there may be some.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We are not competent for such a discussion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not believe that our model can present any risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite both the paper and the licence of each model and dataset we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We did not introduced any assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research did not involve experiments on humans subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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