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Fig. 1: The learning pipeline of SculptDiff, a modification of diffusion policy [1] to incorporate goal conditioning and
leverage 3D point clouds as state representations with PointBERT embeddings [2] for the sculpting task.

Abstract— 3D deformable object manipulation remains
a challenge due to the difficulties of state estimation,
long-horizon planning, and predicting how the object will
deform given an interaction. In this work, we propose
SculptDiff, a goal-conditioned diffusion-based imitation
learning framework that works with point cloud states
to directly learn clay sculpting policies for a variety
of target shapes. To the best of our knowledge this is
the first real-world end-to-end policy for 3D deformable
object manipulation. For sculpting videos, see the project
website: https://sites.google.com/andrew.cmu.edu/imitation-
sculpting/home

I. INTRODUCTION
Advancements in robotic deformable object manipulation

have large-scale implications ranging from manufacturing
[3], [4] to surgery [5]. However, deformable object ma-
nipulation remains an open challenge within the robotics
field due to the complexities of the interaction between
the object and robot, as the object permanently changes
shape with each grasp. In this work, we aim to explore the
challenges of deformable object manipulation with the task
of autonomously sculpting clay. The clay sculpting task is
a useful benchmark to investigate methods for deformable
objects due to the difficulty of the task itself. Firstly, the
deformation behavior is difficult to predict as clay has
no underlying structure and can be deformed in all three
dimensions. When sculpting clay, the system needs to have
a representation of the 3D shape, which poses observation
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and state representation challenges. Additionally, the system
needs to have a sense of the goal shape and execute a
sequence of actions that result in this final goal shape. This
is particularly challenging as multiple sequences of actions
can result in the same final 3D shape, but the ordering of
the actions themselves are important, presenting a difficult
planning problem. Within the realm of deformable object
manipulation there has been recent success learning and
planning with a dynamics model to predict the complicated
interactions between a rigid end-effector and a deformable
object. However, for more complicated sculpting tasks with
3D objects, planning with a dynamics model can be very
time consuming at test time due to the large state and action
space [6], [7], [8]. To address this long planning time, we
can instead train a policy to go directly from observations to
actions. However, due to the high complexity of deformable
objects, it is very challenging to train a robust policy for
3D deformable object sculpting in simulation or in the real-
world [9], [10]. This motivates our proposed work, where
instead we train a policy directly from human demonstrations
to avoid the exploration challenges. In this work, we present
SculptDiff, a point cloud-based diffusion policy for the clay
sculpting task that can successfully sculpt a 3D target shape
from only 10 real-world demonstrations.

II. METHOD

An overview of the SculptDiff pipeline is visualized in
Figure 1. In this work, we define the clay sculpting task as
applying a sequence of parallel grasps to a piece of clay fixed
in the workspace with the goal of replicating a target point
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cloud. We collect point cloud states before and after each
grasp. The action space is defined as the x, y, z position of
the end-effector, the rotation about the z-axis and the distance
between the fingertips at the end of the squeeze action. We
represent a sculpting trajectory as the sequence of point cloud
states and actions given a target shape point cloud.

A. Point Cloud State Representation

The task of sculpting clay into a target shape requires
reasoning about 3D geometry. Thus, we hypothesize that
our system requires an observation space that explicitly
represents this 3D information. Beyond the fact that we are
training a policy for an inherently 3D task, past studies
have shown that for general cases using point clouds as
observations compared with RGB and RGB-D observations
show improvement in robot performance on a variety of
manipulation tasks [11]. Additionally, point clouds as the
state representation allows us to augment our demonstration
dataset, minimizing the number of demos that need to be
collected to train a quality sculpting policy. Our augmen-
tation strategy is based on the assumption that the clay
always remains fixed to the elevated stage (shown in Figure
2). For each demonstration trajectory, we apply a rotational
transform about the z-axis in 1◦ increments to both the state
and goal clouds as well as to the parameterized action. This
allows us to transform a single human demonstration into 360
varying demonstrations. To acquire the full 3D point cloud
of the clay state, we use 4 Intel RealSense D415 cameras
that are mounted to a camera cage for simple multi-camera
calibration. Our physical camera setup is shown in Figure 2.
We use the same point cloud processing pipeline as in our
previous work [6].

B. SculptDiff: Point Cloud Diffusion Policy

We combine diffusion policy with point cloud state and
goal inputs for the robotics sculpting task. In diffusion policy
[1], the robot policy is represented as a denoising diffusion
probabilistic model (DDPM). DDPMs [12] are generative
models that iteratively denoise an input sampled from Gaus-
sian noise. One of the key innovations of diffusion policy was
incorporating visual observation conditioning in which the
DDPM approximates the conditional distribution of p(At |
Ot), where At is the predicted action sequence and Ot

is the observation the action sequence is conditioned on.
In the original diffusion policy framework, the observation
conditioning Ot was a vector stacking the flattened latent
embeddings of the past N image observations of the scene
as well as the robot joint state. In this work, our observation
conditioning instead is a learned latent embedding of the clay
state and goal point clouds as well as the previous deforma-
tion action applied to the clay. To provide a quality latent em-
bedding representing the 3D geometrical information of point
clouds, we use PointBERT [2], a point transformer encoder,
pre-trained on the ShapeNet dataset [13]. PointBERT is
then finetuned end-to-end with the diffusion policy training.
PointBERT takes a point cloud, and clusters it into 64 sub-
clouds to learn both the overall global geometry as well

Fig. 2: The experimental setup includes 4 Intel RealSense
D415 RGB-D cameras mounted to a camera cage to recon-
struct the clay point cloud. An additional camera is used to
record videos. We fit the robot with 3D printed fingertips
and an elevated stage. We assume the clay remains centered
and fixed to the elevated stage throughout the experiments.

as the more regional features. The output of PointBERT is
H = {hs, h1, ..., hg} where hs represents the global feature
and h1, ..., hg represents the regional features. While all of
this information is very relevant, for the downstream task
of learning a policy, we need a much more compact latent
representation of the point cloud geometry. Thus, to combine
PointBERT with the downstream policy, we add on a two-
layer MLP projection head to reduce the latent representation
to a compact size of 512. In particular, we combine together
the entire global feature hs and the maxpool of the regional
features h1, ..., hg before passing this combination through
the MLP projection head. We use PointBERT with the MLP
projection head to encode the current point cloud observation
of the clay as well as the goal point cloud separately into
feature vectors of shape 512. Finally, the observation vector
Ot that conditions the diffusion process is the stacked latent
representation of the clay state and goal as well as the
previous sculpting action applied to the clay.

III. EXPERIMENTS AND RESULTS

The human demonstration dataset is collected using kines-
thetic teaching in which the expert physically moves the
robot to sculpt the clay. We collect 10 demonstration tra-
jectories for each target sculpting shape (’X’, ’Line’ and
’Cone’). We chose these sculpting targets because we believe
they allow us to explore a variety of different sculpting
behaviors while limiting the amount of time consuming
hardware experiments. We apply the rotation transformation
as described in section II-A, to our train dataset with an 80/20
split of the raw demonstrations to expand our training dataset
to 2880 demonstrations per target shape. To further explore
the use of point cloud inputs for imitation learning tasks, we
combine the same proposed point cloud embedding strategy
with two other state-of-the-art imitation learning frameworks,
ACT [14] and VINN [15]. In addition to these imitation
learning baselines, we compare the sculpting performance to
a human using their own hand, a human operating the robot,
and a simple heuristic method where the gripper squeezes
the region of the clay with the greatest difference between



Fig. 3: The final shapes created by the policies trained with point cloud inputs. For the target point cloud on the left-most
column, the lightness of each point is correlated with the point’s z-value to visualize depth. While both human oracles create
the best shapes, point cloud diffusion policy is able to successfully create the closest matches to the human demonstrations.

TABLE I: Performance of SculptDiff compared to baselines.

Model CD ↓ EMD ↓ # Grasps

X

Diff. 0.0073 ± 0.001 0.0071 ± 0.001 6.1 ± 0.9
ACT 0.0077 ± 0.001 0.0077 ± 0.001 8.0 ± 0.0
VINN 0.0156 ± 0.002 0.0137 ± 0.001 9.0 ± 0.0
Heuristic 0.0087 ± 0.000 0.0079 ± 0.000 10.0 ± 0.0
R. Demo 0.0075 ± 0.000 0.0095 ± 0.001 8.0 ± 0.0
H. Demo 0.0059 ± 0.001 0.0053 ± 0.001 13.0 ± 0.9

Line

Diff. 0.0045 ± 0.000 0.0041 ± 0.000 8.0 ± 0.0
ACT 0.0159 ± 0.003 0.0169 ± 0.003 8.0 ± 0.0
VINN 0.0109 ± 0.001 0.0104 ± 0.001 8.0 ± 0.0
Heuristic 0.0071 ± 0.001 0.0079 ± 0.001 2.8 ± 0.4
R. Demo 0.0064 ± 0.004 0.0074 ± 0.004 5.0 ± 0.0
H. Demo 0.0065 ± 0.001 0.0065 ± 0.001 9.8 ± 0.7

Cone

Diff. 0.0060 ± 0.001 0.0054 ± 0.001 12.0 ± 0.0
ACT 0.0070 ± 0.000 0.0079 ± 0.000 12.0 ± 0.0
VINN 0.0096 ± 0.001 0.0092 ± 0.001 13.0 ± 0.0
Heuristic 0.0074 ± 0.000 0.0067 ± 0.000 8.8 ± 0.8
R. Demo 0.0057 ± 0.001 0.0074 ± 0.002 10.2 ± 0.7
H. Demo 0.0038 ± 0.001 0.0032 ± 0.001 16.7 ± 8.5

the current state and goal point clouds.
The numerical results of the sculpting tasks are shown

in Table I in which we report the Chamfer Distance (CD)
and Earth Mover’s Distance (EMD) between the final clay
point cloud and the target shape point cloud. We ran each
policy 5 times for each shape target and report the mean
and standard deviation across experiments. In addition to
quantitative similarity, we show the final shapes created by
our system compared to a variety of baselines in Figure 3.
The SculptDiff policy outperforms the heuristic and learning
baselines in terms of CD and EMD as well as visual shape
quality for all shape goals. Both ACT and VINN struggled
with the sculpting task for all target shapes. This is likely
because both frameworks can struggle with multimodality in
demonstrations, and the sculpting task is highly multimodal.
There are multiple action sequences that can create a 3D
shape, and our demonstrations reflect this. ACT and VINN,
both deterministic policies, often get stuck in modes repeat-
ing similar grasp actions in perpetuity. This due to the rigidity

of these policies, where if the first action is not ideal, and the
subsequent states deviate more from the training demonstra-
tions and the models fail to handle the compounding errors,
a common issue with imitation learning. For both ACT and
VINN, the algorithmic techniques to handle these compound-
ing errors involves averaging, with temporal aggregation for
ACT and kernel-averaging the actions of clustered states for
VINN. However, this averaging scheme is not compatible
with our action parameterization, as averaging two different
grasps may result in a third with a substantially different
deformation behavior than the original two, thus deviating
further from the training states. To ensure we were evaluating
these algorithms in the best light for this application, for
our experiments we did not use temporal aggregation for
ACT and limited the number of nearest neighbors for VINN.
While this improved overall performance by reducing the
errors caused by the averaging mechanisms, the challenges of
compounding errors, particularly with a deterministic policy
remained for both. In contrast to ACT and VINN, diffusion
policy is stochastic and able to successfully capture the
distribution of grasps along the clay over time. Based on
the results of our experiments we attribute the success of
SculptDiff to both the stochastic representation of actions as
well as the point cloud state and goal representations.

IV. CONCLUSION

In this work, we present SculptDiff, the first imitation
learning policy to successfully create a set of 3D clay sculp-
tures entirely in the real world. Through our experiments, we
demonstrate the value of leveraging 3D state representations,
in this case point clouds, as well as the importance of
a stochastic policy for the complex multi-modal task of
sculpting. Our evaluation of sculpting quality compared to
human baselines has demonstrated a clear need for further
exploration of improving hardware to allow for finer changes
to be applied to the clay as well as the development of
semantic-based 3D shape similarity metrics.
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