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ABSTRACT

Multi-agent reinforcement learning (MARL) has made significant progress in re-
cent years, but most algorithms still rely on a discrete-time Markov Decision Pro-
cess (MDP) with fixed decision intervals. This formulation is often ill-suited for
complex multi-agent dynamics, particularly in high-frequency or irregular time-
interval settings, leading to degraded performance and motivating the develop-
ment of continuous-time MARL (CT-MARL). Existing CT-MARL methods are
mainly built on Hamilton—Jacobi—Bellman (HJB) equations. However, they rarely
account for safety constraints such as collision penalties, since these introduce
discontinuities that make HJB-based learning difficult. To address this challenge,
we propose a continuous-time constrained MDP (CT-CMDP) formulation and a
novel MARL framework that transforms discrete MDPs into CT-CMDPs via an
epigraph-based reformulation. We then solve this by proposing a novel PINN-
based actor—critic method that enables stable and efficient optimization in con-
tinuous time. We evaluate our approach on continuous-time safe multi-particle
environments (MPE) and safe multi-agent MuJoCo benchmarks. Results demon-
strate smoother value approximations, more stable training, and improved perfor-
mance over safe MARL baselines, validating the effectiveness and robustness of
our method.

1 INTRODUCTION

MARL has achieved remarkable success in diverse domains, ranging from strategic games
(Samvelyan et al., 2019; Vinyals et al., 2019a;b), multi-robot coordination (Haydari & Y1ilmaz, 2020;
Kuyer et al., 2008), and wireless communication (Wang et al., 2023). These advances demonstrate
the potential of MARL as a powerful framework for solving complex cooperative and competitive
decision-making problems. Despite these successes, most existing MARL algorithms are formulated
in discrete time and fundamentally rely on the Bellman equation (Bellman, 1966). This formulation
often assumes fixed time intervals between decision steps, which is adequate in settings where the
decisions naturally occur at uniform time intervals. However, this assumption is not well-suited
for complex high-frequency domains such as autonomous driving (Kiran et al., 2021; Chen et al.,
2021), financial trading (Shavandi & Khedmati, 2022), where decision-making requires continuous-
time control. In such cases, discrete-time RL often struggles to provide accurate policy (Doya,
2000b; Mukherjee & Liu, 2023), as fixed-step discretization fails to represent non-uniform temporal
dynamics, resulting in degraded performance and unstable learning (Tallec et al., 2019b; Park et al.,
2021b; De Asis & Sutton, 2024b). These limitations highlight the necessity of developing an alter-
native framework beyond discrete-time Bellman equations, which is compatible with CT-MARL.

Recent studies (Wang et al., 2025) have explored the HIB equations to solve CT-MARL problems.
The HJB can be viewed as the continuous-time analogue of the Bellman recursion, where the value
function is characterized as the viscosity solution of a nonlinear PDE (Shilova et al., 2024). In
practice, PINNs have emerged as a common approach to approximate HJB solutions: they train
neural networks to minimize HIB PDE residuals and leverage gradient-consistent signals for policy
improvement (Mukherjee & Liu, 2023; Meng et al., 2024). This formulation eliminates the need
for fixed time discretization and enables MARL to operate in continuous-time domains. However,
in safety CT-MARL settings, state constraints (e.g., when they are treated as collision penalties)
introduce value discontinuities, making it difficult for HIB-based PINNs to approximate the value
functions accurately (Zhang et al., 2024).
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To address these challenges, we first cast safe CT-MARL as a CT-CMDP with explicit state con-
straints. We then introduce a revised epigraph reformulation that augments the system with an aux-
iliary state z, transforming the discontinuous constrained values into a continuous form suitable for
PDE-based learning. On top of this reformulation, we adopt an actor—critic framework to learn val-
ues and policies under continuous-time state constraints. Specifically, we improve epigraph-based
training by integrating the inner and outer optimization into a unified scheme. At each rollout, we
compute the optimal auxiliary state z* and use it directly for training, while keeping all networks
z-independent. This design avoids the noise of random z sampling, yields more accurate policy
updates, and eliminates costly root-finding at execution.

Our main contributions are summarized as follows: (1) To the best of our knowledge, this is the first
work to explicitly incorporate state constraints into the formulation of CT-MARL. We introduce
an epigraph-based reformulation to bounds return of costs and state constraints within a unified
objective, effectively transforming discontinuous values into continuous ones. (2) We design an
improved epigraph training scheme that integrates inner and outer optimization, providing more
stable learning signals and removing the need for costly root-finding algorithms. (3) We prove the
existence and uniqueness of viscosity solutions for epigraph-based HIB PDEs, providing theoretical
support for our method. Extensive experiments on adapted continuous-time safe MPE and multi-
agent MuJoCo benchmarks further demonstrate that our approach consistently outperforms current
safe MARL methods.

2 RELATED WORK

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

Discrete-time reinforcement learning (DTRL) often performs poorly in continuous-time environ-
ments, particularly when decision intervals are irregular (Tallec et al., 2019a; Park et al., 2021a;
De Asis & Sutton, 2024a). Consequently, continuous-time reinforcement learning (CTRL) has re-
ceived growing attention as a more suitable framework for such problems (Doya, 2000a; Yildiz
et al., 2021; Wang et al., 2020; Bradtke & Duff, 1994; Jia & Zhou, 2022a;b). Most existing studies
focus on the single-agent setting, proposing various approaches for value function approximation
(Mukherjee & Liu, 2023; Wallace & Si, 2023; Lee & Sutton, 2021). For example, Mukherjee &
Liu (2023) employ PINNs to approximate the value function and guide a PPO-based policy up-
date, while Jia & Zhou (2022b) address stochastic dynamics through a Martingale loss designed for
stochastic differential equations. In contrast, research on CT-MARL remains limited. Prior works
(Luviano & Yu, 2017; Jiang et al., 2023) have considered multi-agent problems in continuous time,
but largely in application-specific contexts rather than as general-purpose algorithms. The study in
Wang et al. (2025) represents the first systematic attempt to design CT-MARL methods, combining
PINNs with value gradient iteration to improve value approximation and performance. However,
these approaches still inherit the limitations of PINNSs that they can only approximate smooth value
functions and therefore neglect safety constraints.

2.2 MULTI-AGENT SYSTEMS WITH SAFETY CONCERNS

Multi-agent scenarios often raise critical safety concerns, and directly learning under combined
reward and safety signals poses significant challenges. A number of studies have explored safe
MARL frameworks to address these issues (Gu et al., 2023b; ElSayed-Aly et al., 2021; Gu et al.,
2024; Shalev-Shwartz et al., 2016). For instance, Chow et al. (2018) employ primal-dual methods
to enforce safety constraints, while Althoff et al. (2019) adopt a trust-region approach. Gu et al.
(2021) introduce MACPO and MAPPO-Lagrange, which provide theoretical guarantees for both
monotonic reward improvement and safety constraint satisfaction. In addition, Zhang et al. (2025)
leverage epigraph forms to formulate multi-agent safe optimal control problems, improving stability
during training. However, these approaches are primarily developed in discrete-time settings, which
limits their ability to capture continuous-time dynamics. Some efforts have incorporated safety into
continuous-time multi-agent systems (e.g., Tayal et al. (2025)), but they assume fully known system
dynamics and rely on optimal control algorithms, significantly restricting applicability. In more
realistic scenarios, where dynamics are only partially known or highly complex, such methods fail
to provide practical solutions.
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Existing methods remain limited in handling discontinuities and safety constraints in CT-MARL.
Discrete-time safe MARL algorithms provide theoretical guarantees but do not naturally extend to
continuous dynamics, while continuous-time approaches struggle with discontinuous value func-
tions. To address these challenges, we propose an epigraph-based reformulation that unifies safety
constraints and standard cost functions within a single objective, enabling principled and stable
learning in CT-MARL.

3 METHODOLOGY

In this section, we present our epigraph-based PINN actor—critic iteration (EPI) for solving CT-
MARL with state constraints. 1) We first formalize the learning problem as CT-CMDP. Sec-
ondly, 2) we reformulate the CT-CMDP using an epigraph form. By introducing an auxiliary
state z to augment system states, this reformulation converts discontinuous value functions into con-
tinuous ones. Building on this reformulation, 3) we develop an actor-critic learning architecture
that aligns with the epigraph inner-outer optimization scheme. Specifically, the outer optimiza-
tion computes the optimal auxiliary state z* along the rollout, ensuring that the critic captures the
tightest feasible trade-off between return and safety. Based on this, the inner optimization trains
the critic using PINNs, which jointly update the return and constraint networks together with z* to
approximate the epigraph-based value function. This stabilized critic then serves as the foundation
for actor training: we derive an advantage function consistent with the epigraph-based HIB PDEzs,
which provides the key learning signal for policy improvement.

3.1 PROBLEM FORMULATION
3.1.1 CONTINUOUS-TIME CONSTRAINED MARKOV DECISION PROCESS

We consider a CT-CMDP problem, formally defined by the tuple

M= <Xa {ui}iNzlva.ﬂ {Zi}zN:hCa {tk}k207’7>a (D

where X C R" is the global state space, and Y = U; X --- X Uy C R™ is the joint control
space for N agents. The system evolves according to time-invariant nonlinear dynamics @(t) =
fx(t),u(t)) with z(0) = xg, where f : X x U — X. Each agent 7 applies a decentralized policy
m; + X x [0,00) — U;, and the joint policy is denoted as m = (71, ..., my). All agents share the
non-negative cost function [ = Zf\il l;, where [; : X x U; — R is the independent cost function of
agent 7. The system is further subject to state-dependent safety constraints specified by a function
¢: X — R, with the feasible set defined as F = {x € X | ¢(x) < 0}. Control actions are updated
at irregular decision times {ty }x>0, with strictly positive intervals 7, = tx41 — tx. v € (0,1] is
the discount factor. Throughout the paper, we assume that U{; is compact and convex, f and c are
Lipschitz continuous, and /; is Lipschitz continuous and bounded. The joint objective is to minimize
the cumulative cost under joint control input u = (u1, ..., ux) subject to state constraints ¢(x):

ueU

v(z) = min /too AT (2 (), u(T)) dT 2

st. c(z(r)) <0, Vr>t.

3.1.2 EPIGRAPH REFORMULATION

The value becomes discontinuous (Altarovici et al., 2013) when state constraints are violated in
Eq. 2, which hinders the convergence of HJB-based PINN training. To address this, we leverage an
epigraph reformulation that converts value in Eq. 2 into a continuous representation.

Definition 1 (Epigraph Reformulation). We introduce an auxiliary state variable z(t) € R to refor-
mulate Eq. 2 using the epigraph forms. Here, z follows the dynamic 2(t) = —I(x(t), u(t)) — In~y -
z(t). Therefore, the auxiliary value function is defined as

V(z,z) = min Inax{ max _c(x(7)), /tOO Y (2 (), u(T))dT — z} , 3)

ueU TE[t,00]



Under review as a conference paper at ICLR 2026

Lemma 3.1 (Value Equivalence). Suppose the assumptions in Sec. 3.1.1 hold. For all (¢,z,z) €
[0,00) X X x R, the constrained value v and auxiliary value V" are related by

v(z) =min{z € R | V(z,z) < 0}. “4)

Here, the sub-zero level set of auxiliary value V' becomes the epigraph of the constrained value v.
The proof is listed at Appendix A.1.

Lemma 3.2 (Optimality Condition). For all (¢, z,z) € [0,00) x X x R, consider a small enough
h > 0, the auxiliary value function V satisfies

V(z,z) = min max { max  c(x(7)),y"V(x(t + h), 2(t + h))} . 5)
uweU TE[t,t+h]

The proof is listed at Appendix A.2.

Theorem 3.3 (Epigraph-based HIB PDE). Let V : X x R — R be the auxiliary value function
defined in Eq. 3. Then V is the unique viscosity solution of the following HIB PDE for all (¢, z, z) €
[0,00) x X x R.

Inax{ max _c(x) — V(z,2), HIEIZ{{l’H(I, z,V,V, GZV)} =0, (6)

TE[t,00]

where H(x, z, V,V, 0,V) is Hamiltonian and satisfies H = V,V - f(z,u) — 0,V - l(z,u) +1n~vy-V
and optimal control u* = arg min, ,, H. The derivation proof is provided in Appendix A.3.

3.2 EPIGRAPH LEARNING FRAMEWORK
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Figure 1: Overview of the proposed epigraph-based CT-MARL framework. The pipeline begins
with data collection, where individual agent rollouts are aggregated into a centralized rollout Xg
for the training; the outer optimization computes optimal z* to balance return of cost and safety
constraints; the inner optimization corresponds to critic learning, where return networks Vf‘(x) and
constraint value networks V(;"“S(ac) are optimized jointly with the optimal auxiliary state z*; and
actor learning leverages the advantage function to improve policies.

As illustrated in Fig. 1, our framework integrates the epigraph-based inner-outer optimization
(Zhang et al., 2025) into the actor-critic paradigm. The outer loop updates z* along the rollout
by solving Eq. 7, ensuring that the critic is trained with the minimal z that simultaneously satisfies
both costs and safety constraints.

min z s.t. minmax{sup e(z(1)), / Y (z(7), 7 (7)) dT — z} <0. (7
z€R T >t t

In the inner loop, the critic is trained as follows: the return and constraint value networks (Vf‘(x)

and V5" (x)) are optimized using z* to approximate the auxiliary value function V'(x, 2*). This
stabilized critic subsequently supplies the learning signals for decentralized actors, which map lo-
cal observations to continuous-time policies under the standard centralized training decentralized
execution setup (Foerster et al., 2018; Lowe et al., 2017). We next describe the revised outer opti-
mization in detail, focusing on solving the optimal auxiliary state z* that trades off discounted cost
against safety violations without costly root-finding algorithms (So & Fan, 2023; So et al., 2024;
Zhang et al., 2025).
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3.2.1 REVISED OUTER OPTIMIZATION

We seek the minimal z such that the epigraph-based value V' remains non-positive, as defined in
Eq. 4. Using the return and constraint value network learned by the critic, the optimal auxiliary state
z* can be found by solving for the minimal feasible solution:

2F = min{z € R| max{V;*"(z), V" (z) — 2} < 0}, (8)

where return value network Vd‘;et(x) that approximates the discounted cumulative cost, and con-
straint value network V{°"(x) represents the violation for worst-case future constraints.

In previous epigraph formulations (Tayal et al., 2025; Zhang et al., 2025), the outer problem is solved
during the execution phase: z is sampled along the rollouts during training, and z* is computed at
execution time via root-finding (Stoer et al., 1980). This design has two drawbacks in CT-MARL.:
(1) the random sampling of z introduces nonstationary noise that destabilizes the updates of actor
and critic and further leads to poor convergence; (2) at execution, root-finding must be performed at
every step, which is computationally expensive and often incompatible with real-time requirements.
In contrast, we design the return and constraint value networks as functions of the states x solely.
We then integrate the outer optimization into actor-critic training: for each episode, z* is computed
using the current learned value V' along the predicted rollout. The actor is then trained against a z-
independent critic, producing a z-independent policy 7 (). This design ensures stable actor training,
and enables real-time deployment by eliminating the need for root-finding during execution. Since
the critic’s value networks are z-independent, the outer optimization is simplified to a scalar search
for z*, which adds negligible cost to model training.

3.2.2 INNER OPTIMIZATION WITH CRITIC LEARNING

The inner optimization is responsible for updating the PINN-based critic networks. Given a task-
dependent range [zmin, Zmax), the outer optimization computes z*, which is then clipped to this
range (i.e., 2* + min{max{z*, Zmin }, Zmax }) before being used to train the critic module. The
critic consists of two value networks: a return value network Vft (x), and a constraint value network
vgens (z). Together with the computed z*, these define the composite epigraph-based value function:

V(x,2*) = max {Vco’ls(a:), Vit (z) — 2* } )
To ensure stable and accurate training, we employ three complementary losses:

(i) Residual Loss. We use PINN architecture (Mukherjee & Liu, 2023) to approximate the value
function governed by epigraph-based HIB PDEs, and introduce a residual loss that penalizes viola-
tions of the corresponding PDEs:

- - - . 2
LResidual = (max {c(m) -V, Lnelal [VIV flx,u) — 0,V - l(x,u) + Invy - V] }) . (10)

(ii) Target Loss. In standard PINNs, a boundary loss is combined with the PDE residual to ap-
proximate PDE solutions (Cai et al., 2021; Raissi et al., 2019). In the infinite-horizon setting,
however, no boundary condition is available, and training the critic only on residuals is insuffi-
cient: optimization may converge, but to incorrect PDE solutions (Wang et al., 2022). To address
this, we add a rollout-based target loss that measures the discrepancy between the epigraph-based
value approximation with a numerical target defined by Eq. 3. For each episode, the current value
V generates a closed-loop trajectory {x( ) uw(T)}2,; from this trajectory we construct the tar-
get Vig(#,2) = max {max,eps,0) c(@(7)), [ 1(x(7),u(r))dr — 2*} and minimize the
squared error:

2
‘CTarget = (ng(x72*) - maX{ ngong( ) Vret( -z }) . (11)

(iii) Value Gradient Iterations. Standard PINN training in multi-agent settings often struggles to
approximate accurate value functions, primarily because the learned value gradients are inaccurate
or unstable (Wang et al., 2025; Zhang et al., 2024). The VGI techniques (Eberhard et al., 2024;
Wang et al., 2025) are designed to enhance the quality of learned value gradients. In our frame-
work, accurate gradients V, V' (x) are crucial for precise value approximations, which in turn affect
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actor learning and ultimately determine the quality of the resulting policies. To establish the the-
oretical basis of this module, we follow Theorem 3.4 in Bokanowski et al. (2021) and Theorem 2
in Hermosilla & Zidani (2023):

Vi V(@) = Valx(@)l(ze, ue) + (1= x(@0)e(z) At + 73V V(@iear) - Vaf (20, ur), (12)
where the x(z;) = L{Vj"(x¢) — 2 > V5°"*(z;)}. As shown in Eq. 12, the value gradient
satisfies a recursive relation coupling the local cost gradient with the backpropagated dynamics term.

3.2.3 ACTOR LEARNING

After introducing the inner-outer optimization for critic learning, we turn to the actor learning. We
first define the epigraph-based Q-function, which is used for deriving policy update rules.

Definition 2 (Epigraph-based Q-function). Following the definition in (So & Fan, 2023), for any
state-action pair (x, u;) and auxiliary state z;, the epigraph-based Q-function is defined

Q(xt, 27, ue) = max{c(xt), 'th(xt+h,zZ‘+h)}. (13)

where x5, and 2}, are the states and optimal auxiliary state at ¢ + h, respectively. h is a short
time interval.

Lemma 3.4 (Epigraph-based advantage function). The epigraph-based advantage function
Az, 25 ue) = Q(ae, 20 ur) — Vg, 2)) (14)
is equivalent to epigraph-based HIB PDE when i — 0
Az, 27 ur) = max{e(xs) — V(xe, 2{), ViV - flag,ur) — 0,V - Uxg,u) +1Iny - Vi (15)

In practice, evaluating the epigraph-based advantage in Eq. 15 requires knowledge of the true dy-
namics f(x, u) and cost function {(x, u). Since these quantities are generally unknown in model-free
reinforcement learning, we replace them with neural networks that are jointly trained alongside the
actor. The derivation of the epigraph-based advantage function is listed at Appendix A.4.

Dynamics and Cost Networks. To assist with the policy training, we employ two neural networks:
a dynamics network f¢(z,u, A¢) that predicts the next state =’ given the current state—action pair,
and a cost network 4 (z, u, A;) that estimates the instantaneous stage cost. Both models are trained
via supervised regression using observed transitions (x, u, 2’,1) from the environment. Specifically,
the training losses are

2
Edyn(&) = Hff(x7u) _l‘/’ Erew(¢) = (l¢($7u)_l(x7u)) s (16)
where 2’ is the observed next state and I(z,u) is the empirical cost signal. Equivalently, the
dynamics learning can be interpreted as approximating the continuous-time derivative dynamics

(fe(z,u) —a)/At.

Actor Update with Learned Models. By substituting V (z, 2*), f¢ and I, into the epigraph advan-
tage expression Eq. 15, we obtain a differentiable surrogate

2
)

Ag(z, 2% u) = max{c(z) — V,V,V - fe =,V -ly+1Iny -V} (17)
The actor mp(u | x) is updated by minimizing the expected surrogate advantage:
Acactor(e) = EINXR,UNTFQ("I)[A9($7Z*7u):|7 (18)

where X' is the sampled data along the rollout.

The overall training pipeline is summarized in Algorithm 1 in Appendix. It integrates critic learning,
actor updates, and model learning within the epigraph framework for CT-MARL.

4 EXPERIMENTAL RESULTS

We organize our empirical study around the following research questions: Q1. How well does our
method balance return of costs and constraint satisfaction compared to state-of-the-art baselines?
Q2. How does the different loss component in critic learning contribute to stable training and accu-
rate value approximations? Q3. How does performance change when training with versus without
the epigraph reformulation? Q4. How sensitive is the epigraph formulation to the choice of the
auxiliary variable z during training?
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Figure 2: Overall results for adapted multi-agent MuJoCo environments.

4.1 BENCHMARKS AND BASELINES.

To evaluate our approach under continuous-time environments with safety constraints, we consider
two adapted benchmarks: the safe continuous-time MPE (Lowe et al., 2017; Wang et al., 2025)
and continuous-time Safe MA-MuJoCo (Gu et al., 2023a; Wang et al., 2025). In MPE, we de-
sign several scenarios including Corridor, Formation, Line, Target, Simple Spread, and Cooperative
Predator—Prey. These tasks typically place agents in environments with obstacles and require them
to avoid both collisions with obstacles and collisions with other agents while navigating or pursu-
ing their objectives. In MuJoCo, we adapt several scenarios such as Half Cheetah and Ant into
continuous-time versions and introduce randomly placed walls as obstacles. The agents must co-
ordinate to move forward efficiently while avoiding crashing into walls, ensuring that the learned
policies account for both locomotion and safety considerations. Lastly, we design a didactic exam-
ple based on a constrained coupled oscillator, which admits an analytical ground-truth solution for
both value functions and actions. This example provides a transparent testbed to directly validate the
correctness of our learned critics against exact solutions. Full details of the agent setups, metrics,
state and action spaces, and cost specifications are provided in the Appendix C.

We compare our approach EPI with MACPO (Gu et al., 2021), MAPPO-Lag (Gu et al., 2021),
SAC-Lag (Haarnoja et al., 2018), and EPPO (Zhang et al., 2025). The first three represent the most
widely used families of safe MARL algorithms: trust-region based methods (MACPO) and La-
grangian based methods (MAPPO-Lag, SAC-Lag), covering both on-policy and off-policy learning.
We also include EPPO as an epigraph-based baseline that follows the traditional epigraph optimiza-
tion framework. Although these algorithms were originally developed in the discrete-time setting,
we adapt them to continuous time by equipping their critics with the same PDE residual loss used in
our method. Since the performance gap between discrete-time and continuous-time algorithms has
already been well studied (Tallec et al., 2019a; De Asis & Sutton, 2024a), our baselines focus only
on isolating the effect of different safety mechanisms (trust-region, Lagrangian, or epigraph).

4.2 RESULTS ANALYSIS

In this section, we present a systematic analysis of the results, addressing each research question in
turn.

Q1. Our method consistently outperforms all baselines across both adapted MPE and MuJoCo
environments in Fig. 2 and Fig. 8 (Appendix D.2). We design the reward as the summation of the
minus cost and constraints listed in Appendix C, which directly reflects performance under both
objectives. In Fig. 4, each point corresponds to the average performance of one algorithm, with
horizontal and vertical bars denoting standard deviations. Since the goal is to minimize both cost
and constraint violations, the lower-left corner of each panel represents the desirable region. These
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Figure 3: Ablation study of different loss terms in critic network over MPE.

results show that our algorithm EPI achieves nearly the lowest cost and constraint violation in every
scenarios. Specifically, EPPO often remains stuck at suboptimal solutions because it randomly
samples the auxiliary state z instead of using z* for model training, introducing noise that disrupts
policy updates and prevents stable convergence. MACPO enforces constraints through a hard trust-
region style update, which yields strong violation rejection but tends to be overly conservative,
leading to higher costs. SAC-Lag and MAPPO-Lag rely on Lagrangian relaxation, which is known
to suffer from instability when balancing objectives under tight safety requirements (Zhang et al.,
2025). In practice, this manifests as oscillations during training and convergence to poor trade-
offs between constraint satisfaction and cost reduction. Together, these limitations explain why our
revised epigraph-based EPI achieves more reliable and superior performance across tasks.

Q2. The ablation results in Fig. 3 clearly demonstrate the importance of each loss com-
ponent in critic learning. It presents the cumulative reward performance of our full
method compared with its ablation variants across representative continuous-time MPE tasks.
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fact that, unlike Figure 4: Performance of constraints and cost over MPE settings.
existing HJ-based PINN methods (Zhang et al., 2024; Tayal et al., 2025; Cai et al., 2021) that ad-
dress finite-horizon problems with boundary conditions, our framework targets the infinite-horizon
setting where no such boundary conditions are available. In this case, the target loss serves as
an anchor to stabilize value approximations, ensuring that value function V' (z) does not drift
arbitrarily, while the VGI loss enforces consistency of the learned value gradients, which are crucial
for both accurate value approximations and policy improvement. In contrast, the HIB residual loss
mainly regularizes the PDE structure, but its role becomes less critical once the value gradients
are optimized by VGI. As a result, the removal of VGI has a severe impact, since inaccurate value
gradients directly harm both critic accuracy and actor updates, while the residual loss contributes
less critically to overall training stability. In addition, we aggressively increase the weight of these
losses in Fig. 9 in to further confirm the impact or each loss. The experimental results show that
either the target loss or the VGI loss degrades performance (higher average distance to target and
lower return), whereas heavily up-weighting the HJB residual has only a minor effect.
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Q3. We generate one trajectory using EPI and collect the visited states. On these same states, we
compare the value and policy from three methods: EPI, Ground Truth via the LQR method (details
in the Appendix C), and an ablation without the epigraph reformulation, where the state constraint is
treated as a collision penalty added to the cost function /, making the value function discontinuous.
For Ground Truth, the value is computed as the discounted cumulative cost. While for the EPI
and ablation without the epigraph form, the value is predicted through the trained value network.
EPI closely tracks the

. Value Comparison Agentl Action Comparison Agent2 Action Comparison
Ground Truth in both = ~ T — 050 —

. 0.10 Ground Truth s 05 N A i
value and actions for e wobpranizo) | & S 025
both agents, indicating 300 2 oo 2 000

. © 0.05 -~ \ ~
accurate value approxi- = §-o0s .x : T §-02s =T
mation and stable con- 000 . E_l W o Coeamtr | 8 _gsof 4 geneTen
trol policies. In contrast, 0 10 20 30 0 10 20 30 0 0 20 30
Step Step Step

the ablation without the
:ggg{’; mf:f;?a]:gtﬁﬁz Figure 5: Performance with and without epigraph reformulation.
predictions (we plot it after a ><2—10 scaling to share the same y-axis) and noticeably unstable actions,
which in practice are more likely to violate constraints because the discontinuous value function
is not addressed by the epigraph form. The poor performance of the ablation without epigraph
stems from the discontinuity of the value function when state constraints are directly encoded as
hard penalties. Such discontinuities are notoriously difficult to approximate with neural networks,
leading to severely mis-scaled value predictions and unstable gradients for policy updates. By con-
trast, the epigraph reformulation converts the discontinuous penalty into a continuous and smooth
upper-bound optimization, which stabilizes critic learning and yields reliable policies.

Q4. To better understand how model performance depends on z, we test two MPE tasks
(Formation and Line) under different values of z. Specifically, we train the EPI model with
z € {2* — 0.5zmax, 2* — 0.22max, 2%, 2" + 0.22max, 2° + 0.52max}. Fig. 6 reports the re-
sults, where the x-axis indicates cost and the y-axis denotes the constraint violation rate.
Compared with the optimal
auxiliary state z*, using
a suboptimal 2z shifts the
trade-off between cost and
constraint satisfaction, often
resulting in either much

higher violation rates or .
largel" costs. Speciﬁcally, a . 0.8 1.0C°st1.2 1.4 1.6 1.2 1.4 1.6COS;.8 2.0 2.2
smaller z (e.g., 2" — 0.22max,
2* — 0.5zmax) significantly
increases the violation rate
while only slightly reducing
cost. Getting back to the epigraph form max{V§°"*(z), Vlzet (z,2) — 2z}, a smaller z makes
Vet (x, 2) — z lager than Vg‘ms(aj), so the return term dominates in the epigraph form. As a result,
the optimization prioritizes reward improvement while neglecting constraint satisfaction, leading
to frequent violations. In constrast, when z is larger than z* (e.g., z* 4+ 0.2zmax, 2* + 0.52max),
the term V*°'(z, z) — 2 becomes smaller than V{°"*(x), making constraint value dominate in the
epigraph form. This forces the critic and actor to emphasize constraint satisfaction, which reduces
violations but increases cost.
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Figure 6: Sensitivity test of different z choices.

5 CONCLUSION

In this paper, we propose an epigraph-based framework for CT-MARL that addresses the chal-
lenges of balancing reward maximization with constraint satisfaction. By reformulating the prob-
lem through the epigraph forms, we introduced an inner—outer optimization procedure that enables
stable critic learning and effective policy updates. Our design further integrates different losses
in critic learning, including target, residual, and VGI losses, to anchor value approximations and
improve gradient accuracy in the infinite-horizon setting. Through extensive experiments in both
adapted MPE and MuJoCo benchmarks, we demonstrated that our method consistently outperforms
state-of-the-art baselines in terms of both cost reduction and constraint satisfaction.
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A  MATHEMATICAL PROOF

A.1 LEMMA 3.1: EQUIVALENCE OF TWO VALUE FUNCTIONS

Proof. Following proofs in (Lee, 2022; Zhang et al., 2024)), Eq. 4 implies the following equivalence
vir) —2<0 <= V(z,2)<0

To prove the above relation, we first start from v(z) — z < 0, which implies that there exists a joint
control input u € U such that

[mwhvuv»wﬂwf—zsa

with ¢(z(7)) < 0 for V7 > t. Thus, there will exist a joint control u such that V' (z, z) < 0.

Second, when V' (x, z) < 0 and ¢(x(7)) < 0 for ¥7 > ¢ hold, it implies that there exists u € U such
that

/too A (2 (), u(T))dT — 2 <0,

which concludes v(x) — z < 0. Therefore, the Lemma 3.1 is proved. O

A.2 LEMMA 3.2: OPTIMALITY CONDITION

Proof. Following proofs in (Lee, 2022; Zhang et al., 2024; Evans, 2022), given all (¢,x,z) €
[0,00) x X x R and select a enough small » > 0. There exist two different joint control inputs
(u1(-), u2(+)) € U such that

_ Jui(r), Tett+h],
u(r) = {u2(T), TE(t+ h,00).

Then we have the following transformation for Eq. 3

V(z,2z) = ulerziligeu Inax{rerﬁiih] c(z(1)), Te[rlsr}gfoo) c(z(1)),

|ttt amar - 0}

t+h
_ . ’ . ’ ‘rftl , d
l{?ér&max{rer[rgiih]c(x(r)) in maX{TE[ItI}FaiL},(OO)C(x<T)) /t T (x (), u(T))dT

[e%) t+h
+ /t+h Y (2 (), u(r))dT — (2(t+ h) + /t T (2(T), u(T))dr)}}

= min ma a in ma. a
o] gy, (7). pig () (7))

/too AT (2 (), u(T)) dT — 2(t + h)}}

+h

~ mi a a i a a.
i ma{_max c(a(r). mig max{__max e(a(7).

W’h (/t: ’yT—(t+h)l(l‘(T)>U(T))dT — z(t + h))}}

— i h
= min max{rer[rtliih] c(x()), ¥*V(x(t+ h), z(t + h))}

i h
= min maX{Ter[Iﬁ)ih] c(a(7)), A"V (x(t + ), 2(t + h))}

Therefore, the Lemma 3.2 is proved. O
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A.3 THEOREM 3.3: EPIGRAPH-BASED HJB PDE

Proof. Following proofs in (Lee, 2022; Zhang et al., 2024; Evans, 2022), given all all (¢,xz,z) €
[0,00) x X x R with a small horizon A¢ > 0, we apply Lemma 3.2 and Taylor expansion to derive
the epigraph-based HJB PDE as follows

— i h
Vix,z) = min max{Teg’ltacht] c(x(7)), ¥Y*'V(x(t + At), z(t + At))}

~ min max{c(x)7 (1+InyA)(V(x, 2) + VoV - flo, u)At — 8,V - I(z, u) At + o(At))}

= rnax{c(a:)7 (1+InvyAt) glelgll(V(x, 2)+ V.V flz,u)At — 0,V - l(x,u) At + O(At))}

Subtracting V'(x, z) from both sides of above equality, dividing by At, and letting At — 0 yields
the following HIB PDE, where V (z, z) is the optimal solution to such PDE.

max{c(;v) —V(x, z),rrleiE[VzV flx,u) — 0,V - l(x,u) + In-y - V]} =0.
Here H = V,V - f(z,u) — 9,V - i(x,u) + Iny - V is Hamiltonian and optimal control u* =
argmin, ¢, H.

Next we prove that V' (x, z) is the unique viscosity solution to the epigraph-based HIB PDE using
the contradiction technique. First, for U € C°(X x R) such that V' — U has local maximum at
(20,20) € X x Rand (V — U)(xo, 20) = 0, we will prove

max{c(xo)—U(Jco, 20), ZIIGIZB [VxU(xo, 20)-f (20, u)—0.U(x0, 20)- (w0, u)+Iny-U(xo, ZO)] } > 0.

Suppose the above inequality is not correct. We consider that there exists # > 0 and @ € U such that

c(x) — Ul(zo, 20) < —0,
V.U f(z,a) — 0, U - l(xz,d) + Iny-U < —4.
for all points (z, z) sufficiently close to (g, 20): ||z(s) — zo|| + |2(s) — 20| < h for small enough
h > 0, where s € [to,to+ h]. Under the assumptions in Sec. 3.1.1, and given state trajectories « and
z evolved from the initial conditions x = zy and z = 2 according to the corresponding dynamics,
the following inequality holds
c(z(s)) — Uz, 20) < -0,
VoU(x(s), 2(s)) - f(x(s), @) — 0:U(x(s), 2(s)) - U(x(s), @) +Iny - U(z(s), 2(s)) < 0.

Since V' — U has a local maximum at (xq, 29), we can have that

min [Y'V (z(to + h), 2(to + h)) — V (0, 20)]
Sglelll} [Y"U(2(to + h), 2(to + h)) — Ul(zo, 20)]
=min[(V,U((to), 2(t0)) - f(2(to), u) = 8:U((to), (t0)) - U (to), u) +Iny - U(x(to), 2(to)))h]
<—6h
We know that Lemma 2 implies

V (o, z0) = min max{ max  c(x(s)), v"V(z(to + h), z(to + h))}
ueU sTE[to,to+h]
By subtracting U (g, zo) on both side, we have
(V = U)o, 20) = minmax{e(w(s)) ~ Ulzo, z0), 1"V ((to + h), 2(to + h)) = U(wo, 20) }.
Since (V' — U)(xo, z9) = 0 holds such that V (g, z0) = U(x0, 20), then we will have that

melg{l max{c(x(s)) —~V (20, 20), Y"V (x(to +h), 2(to + h)) — V (o, zo)} = melg max{6,0h} > 0,
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which has a contradiction with (V' — U)(zo, z9) = 0. Thus we prove that
maX{C(CCo)—U(CEO»ZO)v Lnei{,l[va(xo,Zo)'f(xoyuo)—azU(mo,Zo)'l(x(),U(J)+IHW'U($0720)]} > 0.

Second, for U € C°°(X x R) such that V' — U has local minimum at (xg,2p) € X x R and
(V = U)(x0,20) = 0, we will prove

max{c(fﬂo)—U(xo,Zo)7 gleial[VzU(ﬂfo,Zo)'f(l’mUo)—azU(ﬂfo,Zo)'l(iﬁoaUo)‘HDV'U(ﬂUoJo)]} <0.

The definition of auxiliary value V (x, z) shows that

V(. 2) = min max{ max c(x(r), /t (), u(r) ) — z}

ueU TE[t,00]

> min max {c(xo), /toc ATz (r), u(r))dr — z}

ueU

for all u € U. By subtracting U (z¢, z9) on both sides, we have
(o)
0=(V =U)(=g, 20) > max{c(zg) — U(xo, zo),/ AT (@, u)dT — 29 — U, 20) }-
t

The rest of the proof is to show

Hleial[VmU(ﬂfmzo) - fxo,u) — DU (w0, 20) - (o, u) + Iny - U(xo, 20)] <O.
Suppose the above inequality is not correct. We consider that there exists 6 > 0 such that

meial[Vl.U(x, z) - f(@,u) — 0.U(x,2) - l(z,u) + Invy - Uz, 2)| >0,

for all points (x, z) sufficiently close to (o, 20): || — %ol| + |2 — 20| < h for small enough h > 0,
where s € [tg, Lo + h]. Given state trajectories 2 and z that evolve from the initial conditions x = x
and z = z( under the corresponding dynamics with any control @ € U/, where

i(s) =argmin { V.U (2(5), 2(5)) - £ (2(5),8) = 0-U(w(5), 2(5) - 1(a(s), )
+Iny - Ula(s), 2(s))}-

Then we have the following condition that holds

V.U (x(s),2(8)) - f(z(s),a) — 0, U(x(s),2(s)) - lx(s),a) + Invy - U(x(s), 2(s)) > 6.

Consider V' — U has a local minimum at (o, o), we will have that

1}161151 [Y"V (z(to + h), 2(to + h)) — V (20, 20)]

>meln[ YU (x(to + h), 2(to + h)) xo,zo]

ﬂeln[(VxU(I(to)aZ(to))'f(ff( 0),@) — 8:U(x(to), 2(to)) - l(x(to), @) + Iny - Ux(to), 2(t0)))h]
>6h

Based on this derivation, we finally have that

%IglI}VhV(x(to + h),z(to + h)) > V(zg, z0) + 0h > V (x0, 20).
However, we know that Lemma 3.2 implies that
Iz_iﬂei{{l’yh‘/(l‘(to + h),z(to + h)) < V(zo, 20),
which is a contradiction. Thus, we prove that

maX{C(xo)—U(xo,Zo)’ Igleiél[VwU(xo,Zo)'f($07uo)—5zU(xo,Zo)'l(fmU0)+1DV'U($07ZO)]} <O0.

Hence, we prove that V' (z, z) is the viscosity solution to the epigraph-based HIB PDE. The unique-
ness follows Theorem 1 of Chapter 10 in Evans (2022). ]
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A.4 ADVANTAGE FUNCTION

We define the Q(z, 2, us) = max{c(xs), 7"V (241, 241} over a short time interval 2 > 0 and
compute

Q(xt, ze,ut) — V(xg, 2¢) :max{c(xt),rhV(xt+h, ze4n)} — V(g 2t)
=max{c(zt) — V(xt, 2), (1 + Inyh)(V(ag, 2¢) + ViV - f(ae,up)h
— 0.V - Uz, ur)h — V(xg,2¢) + o(h)}
=max{c(z;) — V(xy, 2¢), (Vi V - flag,ug) — 0,V - l(xg,ug) + Iny - V)h}

We divide % on both sides of the above equation and let h — 0 to compute the advantage function
as

. T, Zg,Ut) — Vix ,Z
Az, 2, up) :%135 Qe 2 t;l (¢, 2¢)
= max{c(xy) — V(xe,2), VoV - flae,ur) — 0.V - 1wy, ug) +Iny -V}

A.5 CONVERGENCE OF EPIGRAPH VALUE FUNCTION

Consider the augmented state (z, z) with state constraint ¢(x) and non-negative cost {(z, u). Define
the discounted epigraph-Bellman operator over a short step At > 0:

(TV) (e, 2e) = (1 = ’YAt)C(xt) + VM LHEI{{I { max {C(xt), V(zeyat, Zt+At)}}a

for V. : X x R — R bounded. Then the value iteration Vj, 1 = 7TV} converges uniformly to the
unique fixed point of 7.

Proof. (i) Contraction. For any c(z;) and bounded functions V, W, we have the following condition
satisfying the contraction.

| max{c(xt), V($t+At, Zt+At)} - max{c(mt), W(l‘t-s-At, Zt+At)}|
S|V (@igat, ze4at) — W(Tirats Zeat)|

(ii) Existence and uniqueness. By Banach’s fixed-point theorem, 7 admits a unique fixed point V/,
and for value iteration Vi1 = TV}, we have that

Vi = Vlloo < 7*IIVo = V| — 0,

(iii) Approximate evaluation. If each iteration uses an approximate operator T satisfying H7~'V —
TV]leo < e, then

€
limsup ||Vi, =V < —F.
meup [Vi = Vs € 1=

B TRAINING ALGORITHMS

In this part, we provide additional details on the overall algorithmic pipeline and clarify the key
implementation choices.
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Algorithm 1 Epigraph-Based Continuous-Time MARL

1: Initialize actor 7y, return critic Vif’t, constraint critic Vdf"ns, dynamics network f¢, reward net-
work [, and local rollout R.

2: fori=1,...,Tdo

3: > Collect one rollout:

4: x + env.reset()

5: fork=1,..., K do

6: sample arbitrary decision time ¢ ~ T

7 for each agenti =1,..., N do

8: u; ~ mo, (u; | )

9: end for

10: set joint action u = (uy,...,uN)

11: (2',7) + env.step(u)

12: append (z, u,r,z") to local rollout R

13: x

14: end for

15: > Outer optimization: epigraph update

16: find 2* = inf{z € R : max{V°" (), V**(z, 2) — 2} < 0}

17: > Dynamics and Cost Model learning on R

18: update &, @ as per the Eq. 16.

19: > Inner optimization given z*: Critic update on X

20: update 1, ¢ by losses Lcons, Lret, Lryp and Ly gy as per the Eq. 11, Eq. 10 and Eq. 12.
21: > Actor update for each agent

22: fori=1,...,Ndo

23: compute A(x,u, z*) for all (x,u, z*) € Xr and update the 6 as the Eq. 17.
24: end for

25: end for

C ENVIRONMENTAL SETTINGS

We provide detailed descriptions of all benchmark environments used in our experiments. For each
scenario, we list the number of agents, the number of obstacles, the safety constraints imposed, and
the specific task objective with metrics.

Metrics. We report two primary metrics—one reward-style training score that aggregates task cost
and constraint penalty, and one violation rate measured over held-out rollouts.

(1) Cumulative penalty / reward-style training score. Let /; > 0 denote the task cost at step
t (e.g., distance-to-goal, control effort), and let x; > 0 denote the state-constraint penalty (e.g.,
indicator or hinge on constraint violation). Define the per-step penalty v; := ¢; + ;. For an episode
(trajectory) 7 of length T'(7),

(2) Violation rate (evaluation). Given Ny, episodes (we use Ngy, = 100 by default), define the
episode-level violation indicator

(1) == 1{Jtst.ky >0},

i.e., an episode is counted as violating if it ever incurs a positive state-constraint penalty.! The
violation rate is then
Neva

Viol. Rate = v(T).

eval i—1

'If k, is an indicator of hard violations, this coincides with “any violation.” If x; is a continuous hinge, we
use the same criterion k¢ > 0.
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C.1 SAFE MPE

In the MPE, we setup the details as follows: Action. Continuous 2-D acceleration for x and y axis.
Reward and costs. Each agent is assigned a per-agent target g;. The dense goal reward is

1
i (t) = —lli(t) — gill2-
A discrete collision cost with obstacles or other agents applies:

(disc (1) = 10, if agent—obstacle overlap
¢ 0, otherwise.

We also record a continuous proximity/penetration cost (not added into the dense goal reward):

= 206, >0 (overl
M (t) = §Z¢((m + 7o) = llzi — @), (6) = {0.5 (’;’ ; z . (overlap)

0cO

where r;, 1, are radius (sizes).

Corridor. This scenario contains 3 agents with 2 large corridor walls. Agents must avoid collisions
with the corridor walls and with each other while navigating from their starting positions to reach
the assigned target locations on the opposite side.

Formation. This scenario also involves 3 agents and 2 obstacles. The agents are required to bypass
obstacles and then coordinate to form a triangular formation at the designated region, under the
constraint of avoiding collisions with both obstacles and other agents.

Line. In this task, 3 agents operate in an environment with 2 obstacles. After avoiding the obstacles,
the agents must position themselves to form a straight line. The safety constraints enforce that no
agent collides with obstacles or with other agents during navigation.

Target. This scenario uses 2 agents with 1 obstacle placed in the environment. Each agent is
assigned a fixed target position, and the agents must navigate to their respective goals while avoiding
collisions with the obstacle and with each other.

Cooperative Navigation. This is a cooperative navigation task with 3 agents and no obstacles.
The agents must spread out to cover multiple target landmarks while avoiding collisions among
themselves. Specifically, the agents’ goals are the one closest to them rather than fixed ones.

Cooperative Predator-Prey. This task includes 3 controllable predator agents and 1 prey that
moves randomly. There are no obstacles, but predators must avoid colliding with each other. The
predators’ objective is to coordinate their movements to capture the prey.

C.2 SAFE MULTI-AGENT MUJOCoO

Half Cheetah. We adapt the Half Cheetah environment into three multi-agent variants: Half
Cheetah-2x3, Half Cheetah-3x2, and Half Cheetah-6x1. In each case, the body is partitioned into
joints agents with different grouping configurations. For example, Half Cheetah-3x2 is three agents
with 2 moving joints for each agent. Randomly placed walls are introduced into the environment,
requiring the agents not only to coordinate efficient forward locomotion but also to avoid collisions
with obstacles.

Tt41—Tt

Reward. r = 1y, = =5

Safety cost. A binary proximity cost to the wall:
Ct = 1{ |'Twall - l'agent| < 9} S {0, 1}

Observation augments the usual state with wall velocity, wall force proxy, and clipped distance to
the wall; the environment also recolors the wall when unsafe.

Ant. We construct four multi-agent variants of the Ant: Ant-2x4, Ant-4x2, Ant-8x1, and Ant-2x4d.
In all cases, the body is controlled by joints agents arranged in different groupings across the legs.
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As with Half Cheetah, walls are introduced as obstacles, and the agents must coordinate locomotion
while ensuring safety by avoiding collisions with these obstacles. The reward is set same as the Half
Cheetah

Safety shaping. Identical piecewise-slant corridor: compute yof from (2, y) and define

A = 1{|yoe| < 1.8}.

C.3 CONSTRAINED COUPLED OSCILLATOR ENVIRONMENT
We consider a two—agent coupled spring—damper system. The state and control are
T T
x=[z; v1 X2 V2| , u=[ur us]
Each agent ¢ € {1, 2} controls one mass with continuous—time dynamics
& = Vi,
v; = —kx; —bv; + uy,

with spring constant £ = 1.0 and damping coefficient b = 0.5. Stacking the states gives & =
Ax + Bu with

0 1 0 o0 0 0
&k b 0 0 10
A=109 0o o 1] B=1o o
0 0 —k —b 0 1

Control limits and discretization.

Actions are normalized @; € [—1, 1] and mapped to physical inputs by w; = Umax@; With tax = 10
(component-wise box constraint).

vf"'l = vf + ( - kxf - bvf + uﬁ)At,
:cf“ =l + foAt,
for a horizon of N = 30 steps.
Stage cost. The per—step quadratic cost is
((x,u) = 23 4+ 22 + X (11 — 22)* + B (u? +u3),

with coupling strength A\, = 2.0 and control penalty 3 = 0.01. Equivalently, /(z,u) = z ' Qz +
u' Ru where

1+X. 0 =X O
_ 0 0 0 0 o
@=1-x 0 1+A o> R=PL
0 0 0 0
For training we use a shaped reward
1
Ty = —% Z(CEt,Ut).

Hard state constraint. We impose an ordering constraint between the two positions,
r1 < a9+ 0.02,
and record an additional penalty
pr=—10-1{z1,; > x2, +0.02},
returned alongside r;.

Smooth violation signal (for logging). We also log a smooth surrogate of the constraint violation,

1

P(x) = 20(s(x1 — 324+ 0.02)) — 1, o(z) = Toes

s = 20,

which maps to (—1, 1) and grows monotonically with the amount of violation.
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Unconstrained LQR. The continuous-time algebraic Riccati equation (CARE)
A"P+PA-PBR 'B'P+Q=0

is solved for the unique positive semidefinite matrix P. The unconstrained optimal linear feedback

18
K = R'B'P,  wupqr(r) = —Kuz.

Hard state constraint and CBF condition. We impose the safety constraint
1 —22—0.02 <0 <= h(z) = 002— (1 —x2) > 0.

Let Vh(z) = [-1 0 1 O]T. A (first-order) control barrier function (CBF) condition enforces
forward invariance of the safe set C = {x : h(z) > 0} by requiring

h(z,u) = Vh(z)" (Az + Bu) > —ah(z),
with a user-chosen class-KC parameter > 0. Defining
a(z) = Vh(z)'B€R?  b(z) = —Vh(z)" Az — ah(z) € R,
the CBF condition Eq. C.3 is the single affine-in-u half-space constraint
a(z)"u > b(z).

Closed-form safety projection. To obtain a safe control with minimal distortion from ur,qr, we
solve the weighted projection

m]iRg 2 (u—urqr) W (u—uLqr) st a(z) u>b(z),

ue
with W = R (“R-metric”; Euclidean W = I is also possible). Because Eq. C.3 has a single linear
constraint, it admits a closed form:

ULQR(J}), if CLTULQR > b,

u(z) = b—a'u
- . . LQR
u x) +7W™la, otherwise, withT = ————=—
LQR( ) aTW-1q4

Finally we saturate to the actuator limits %y, > O:

UgT(ZL') = Chp(U*(x)a —Umax umax) .

D ADDITIONAL ENVIRONMENTAL RESULTS

D.1 VISIUAL TRAJECTORIES

The trajectory demonstrations in Fig. 7 highlight clear behavioral differences across algorithms in
Formation scenario. Our proposed method EPI learns smooth trajectories that avoid obstacles while
consistently reaching the target, demonstrating both constraint satisfaction and goal achievement.
In contrast, EPPO occasionally captures the avoidance behavior but often gets stuck at suboptimal
solutions. This is because during training, its randomized sampling of the auxiliary state z prevents
stable policy convergence in continuous-time settings; even if outer optimization is applied at execu-
tion, the learned policy lacks accurate control signals. On the other hand, MACPO, which enforces
hard constraints via a trust-region style update, tends to overestimate the obstacle region. As a re-
sult, agents often exhibit overly conservative behaviors—such as retreating toward corners to avoid
violations—rather than efficiently pursuing their targets. Together, these comparisons confirm that
EPI achieves the most balanced and effective behavior among the three approaches.

D.2 COMPREHENSIVE PERFORMANCE FOR MPE

As discussed in the main text, this Fig. 8 summarizes overall learning curves across the six adapted
MPE tasks (Cooperative Navigation, Predator—Prey, Corridor, Formation, Line, Target). EPI attains
the best cumulative reward in all cases, converging faster and with lower variance than the baselines;
EPPO often plateaus at suboptimal levels, SAC-Lag/PPO-Lag underperform, and MACPO trades
reward for stricter constraint handling. Shaded regions indicate variability across random seeds.
Owing to page limits, we place the full multi-plot figure in the appendix and refer readers to the
main text for detailed interpretation.
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Figure 7: Trajectory demonstrations (key frames) across methods in Formation. Row 1: EPI results,
Row 2: EPPO results, Row 3: MACPO results.
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Figure 8: Overall results for adapted MPE environments.

D.3 ABLATION STUDY
The grouped bars in Fig. 9 report the average distance to the target (lower is better) for three MPE

tasks—Formation, Line, and Target—under different loss weightings. The balanced setting (EPI)
attains the smallest distance in all tasks and shows the tightest variability. Over-emphasizing any
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Figure 9: Weighted loss performance.

single component degrades performance: increasing the target loss weight is particularly harmful on
Line (large increase in distance), while overweighting the residual or the VGI loss also worsens re-
sults relative to EPI, though to a lesser extent. These ablations support using the balanced weighting
adopted by EPI.

E HYPERPARAMETERS AND NEURAL NETWORK STRUCTURES

Experiments were conducted on hardware comprising an Intel(R) Xeon(R) Gold 6254 CPU @
3.10GHz, four NVIDIA A5000 GPUs and eight NVIDIA A6000 GPUs. This setup ensures the
computational efficiency and precision required for the demanding simulations involved in multi-
agent reinforcement learning and safety evaluations.

Table 1: Hyperparameter settings used.

Parameter Value
Episode length for MPE 50
Episode length for MuJoCo 100
Episode length for Didactic 50

Total number of episode for MPE 30000
Total number of episode for MuJoCo 30000
Total number of episode for Didactic 3000

z range for MPE 0-10

z range for MuJoCo 0-5

z range for Didactic 0-2
Discount factor ~y 0.99
Actor learning rate 0.0001
Critic (Return) learning rate 0.001
Critic (Constraint)learning rate 0.001
Dynamics model learning rate 0.001
Reward model learning rate 0.001
Exploration steps 1000
Model save interval 1000
Random seed 113-120

Table 1 lists the defaults used in all experiments. Episode lengths are chosen so that a single rollout
covers a full interaction cycle (50 steps for MPE and the didactic environment, 100 for MuJoCo).
We train for 30000 episodes in MPE and MuJoCo and for 3000 episodes in the didactic setting,
reflecting simulator cost and convergence speed. The z range controls epigraph sampling for the
VGI updates and is set wider in MPE (0-10), moderate in MuJoCo (0-5), and narrow in the didactic
task (0-2). The actor uses a conservative learning rate (le-4) for stable policy updates; the critics
and the dynamics/reward models use 1e-3 to accelerate value/model fitting. Training is warm-started
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with 1000 exploration steps, checkpoints are saved every 1000 episodes, and reported results are
averaged over seeds 113-120.

Table 2: Summary of neural network architectures used in our framework.

Network Input Dimension Architecture and Activation

Return Value Network State (d) FC(128) — FC(128) — FC(1), ReLLU or Tanh
Constraint Value Network State (d) FC(128) — FC(128) — FC(1), ReLU or Tanh
Dynamics Network State + Joint Action (d + na) FC(128) — FC(128) — FC(d), ReLU

Reward Network State + Joint Action (d + na) FC(128) — FC(128) — FC(1), ReLU

PolicyNet Observation + Time Interval (o + 1) FC(128) — FC(128) — FC(64) — FC(a), ReLU

Table 2 summarizes the five multilayer perceptrons used in our framework. Two scalar critics
map the state x € R? to the return value and the constraint value, each with two hidden layers
of width 128 and ReLU or Tanh activations. The dynamics and reward models take the concate-
nated state-action input (x,u) € R?"? and output, respectively, a d-dimensional state deriva-
tive/increment and a scalar reward; both use two 128-width hidden layers with ReLLU. The policy
network consumes the observation o € R° augmented with a scalar time-interval feature At to
condition actions on continuous-time step size, and produces an a-dimensional action through a
128-128-64 hidden stack with ReLU.

Notation: d = state dimension, o = observation dimension, a = per-agent action dimension, n =
number of agents, so the joint action has dimension na. The value heads output scalars; the dynamics
head outputs R¢; the policy head outputs R%. Action squashing or clipping to environment bounds
(if used) is applied after the final linear layer.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs as a writing assistant to polish the paper.
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