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ABSTRACT

Multi-agent reinforcement learning (MARL) has made significant progress in re-
cent years, but most algorithms still rely on a discrete-time Markov Decision Pro-
cess (MDP) with fixed decision intervals. This formulation is often ill-suited
for complex multi-agent dynamics, particularly in high-frequency or irregular
time-interval settings, leading to degraded performance and motivating the de-
velopment of continuous-time MARL (CT-MARL). Existing CT-MARL methods
are mainly built on Hamilton–Jacobi–Bellman (HJB) equations. However, they
rarely account for safety constraints such as collision penalties, since these intro-
duce discontinuities that make HJB-based learning difficult. To address this chal-
lenge, we propose a continuous-time constrained MDP (CT-CMDP) formulation
and a novel MARL framework that transforms discrete MDPs into CT-CMDPs
via an epigraph-based reformulation. We then solve this by proposing a novel
Physics-Informed Neural Network (PINN)-based actor–critic method that enables
stable and efficient optimization in continuous time. We evaluate our approach
on continuous-time safe multi-particle environments (MPE) and safe multi-agent
MuJoCo benchmarks. Results demonstrate smoother value approximations, more
stable training, and improved performance over safe MARL baselines, validating
the effectiveness and robustness of our method.

1 INTRODUCTION

MARL has achieved remarkable success in diverse domains, ranging from strategic games
(Samvelyan et al., 2019; Vinyals et al., 2019a;b), multi-robot coordination (Haydari & Yılmaz, 2020;
Kuyer et al., 2008), and wireless communication (Wang et al., 2023). These advances demonstrate
the potential of MARL as a powerful framework for solving complex cooperative and competitive
decision-making problems. Despite these successes, most existing MARL algorithms are formulated
in discrete time and fundamentally rely on the Bellman equation (Bellman, 1966). This formulation
often assumes fixed time intervals between decision steps, which is adequate in settings where the
decisions naturally occur at uniform time intervals. However, this assumption is not well-suited
for complex high-frequency domains such as autonomous driving (Kiran et al., 2021; Chen et al.,
2021), financial trading (Shavandi & Khedmati, 2022), where decision-making requires continuous-
time control. In such cases, discrete-time RL often struggles to provide accurate policy (Doya,
2000b; Mukherjee & Liu, 2023), as fixed-step discretization fails to represent non-uniform temporal
dynamics, resulting in degraded performance and unstable learning (Tallec et al., 2019b; Park et al.,
2021b; De Asis & Sutton, 2024b). These limitations highlight the necessity of developing an alter-
native framework beyond discrete-time Bellman equations, which is compatible with CT-MARL.

Recent studies (Wang et al., 2025) have explored the HJB equations to solve CT-MARL problems.
The HJB can be viewed as the continuous-time analogue of the Bellman recursion, where the value
function is characterized as the viscosity solution of a nonlinear Partial Differential Equation (PDE)
(Shilova et al., 2024). In practice, PINNs have emerged as a common approach to approximate
HJB solutions: they train neural networks to minimize HJB PDE residuals and leverage gradient-
consistent signals for policy improvement (Mukherjee & Liu, 2023; Meng et al., 2024). This formu-
lation eliminates the need for fixed time discretization and enables MARL to operate in continuous-
time domains. However, in safety CT-MARL settings, state constraints (e.g., when they are treated
as collision penalties) introduce value discontinuities, making it difficult for HJB-based PINNs to
approximate the value functions accurately (Zhang et al., 2024).
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To address these challenges, we first cast safe CT-MARL as a CT-CMDP with explicit state con-
straints. We then introduce a revised epigraph reformulation that augments the system with an aux-
iliary state z, transforming the discontinuous constrained values into a continuous form suitable for
PDE-based learning. On top of this reformulation, we adopt an actor–critic framework to learn val-
ues and policies under continuous-time state constraints. Specifically, we improve epigraph-based
training by integrating the inner and outer optimization into a unified scheme. At each rollout, we
compute the optimal auxiliary state z∗ and uses it directly for training, while keeping all networks
z-independent. This design avoids the noise of random z sampling, yields more accurate policy
updates, and eliminates costly root-finding at execution.

Our main contributions are summarized as follows: (1) To the best of our knowledge, this is the first
work to explicitly incorporate state constraints into the formulation of CT-MARL. We introduce an
epigraph-based reformulation to bounds discounted cumulative cost and state constraints within a
unified objective, effectively transforming discontinuous values into continuous ones. (2) We design
an improved epigraph training scheme that integrates inner and outer optimization, providing more
stable learning signals and removing the need for costly root-finding algorithms. (3) We prove the
existence and uniqueness of viscosity solutions for epigraph-based HJB PDEs, providing theoretical
support for our method. Extensive experiments on adapted continuous-time safe MPE and multi-
agent MuJoCo benchmarks further demonstrate that our approach consistently outperforms current
safe MARL methods.

2 RELATED WORK

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

Discrete-time reinforcement learning (DTRL) often performs poorly in continuous-time environ-
ments, particularly when decision intervals are irregular (Tallec et al., 2019a; Park et al., 2021a;
De Asis & Sutton, 2024a). Consequently, continuous-time reinforcement learning (CTRL) has re-
ceived growing attention as a more suitable framework for such problems (Doya, 2000a; Yildiz
et al., 2021; Wang et al., 2020; Bradtke & Duff, 1994; Jia & Zhou, 2022a;b). Most existing studies
focus on the single-agent setting, proposing various approaches for value function approximation
(Mukherjee & Liu, 2023; Wallace & Si, 2023; Lee & Sutton, 2021). For example, Mukherjee &
Liu (2023) employ PINNs to approximate the value function and guide a PPO-based policy up-
date, while Jia & Zhou (2022b) address stochastic dynamics through a Martingale loss designed for
stochastic differential equations. In contrast, research on CT-MARL remains limited. Prior works
(Luviano & Yu, 2017; Jiang et al., 2023) have considered multi-agent problems in continuous time,
but largely in application-specific contexts rather than as general-purpose algorithms. The study in
Wang et al. (2025) represents the first systematic attempt to design CT-MARL methods, combining
PINNs with value gradient iteration to improve value approximation and performance. However,
these approaches still inherit the limitations of PINNs that they can only approximate smooth value
functions and therefore neglect safety constraints.

2.2 MULTI-AGENT SYSTEMS WITH SAFETY CONCERNS

Multi-agent scenarios often raise critical safety concerns, and directly learning under combined
reward and safety signals poses significant challenges. A number of studies have explored safe
MARL frameworks to address these issues (Gu et al., 2023b; ElSayed-Aly et al., 2021; Gu et al.,
2024; Shalev-Shwartz et al., 2016). For instance, Chow et al. (2018) employ primal–dual methods
to enforce safety constraints, while Althoff et al. (2019) adopt a trust-region approach. Gu et al.
(2021) introduce MACPO and MAPPO-Lagrange, which provide theoretical guarantees for both
monotonic reward improvement and safety constraint satisfaction. In addition, Zhang et al. (2025b)
leverage epigraph forms to formulate multi-agent safe optimal control problems, improving stability
during training. However, these approaches are primarily developed in discrete-time settings, which
limits their ability to capture continuous-time dynamics. Some efforts have incorporated safety into
continuous-time multi-agent systems (e.g., Tayal et al. (2025)), but they assume fully known system
dynamics and rely on optimal control algorithms, significantly restricting applicability. In more
realistic scenarios, where dynamics are only partially known or highly complex, such methods fail
to provide practical solutions.
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Existing methods remain limited in handling discontinuities and safety constraints in CT-MARL.
Discrete-time safe MARL algorithms provide theoretical guarantees but do not naturally extend to
continuous dynamics, while continuous-time approaches struggle with discontinuous value func-
tions. To address these challenges, we propose an epigraph-based reformulation that unifies safety
constraints and standard cost functions within a single objective, enabling principled and stable
learning in CT-MARL.

3 METHODOLOGY

In this section, we present our epigraph-based PINN actor–critic iteration (EPI) for solving CT-
MARL with state constraints. 1) We first formalize the learning problem as CT-CMDP. Sec-
ondly, 2) we reformulate the CT-CMDP using an epigraph form. By introducing an auxiliary
state z to augment system states, this reformulation converts discontinuous value functions into con-
tinuous ones. Building on this reformulation, 3) we develop an actor-critic learning architecture
that aligns with the epigraph inner-outer optimization scheme. Specifically, the outer optimiza-
tion computes the optimal auxiliary state z∗ along the rollout, ensuring that the critic captures the
tightest feasible trade-off between return and safety. Based on this, the inner optimization trains
the critic using PINNs, which jointly update the return and constraint networks together with z∗ to
approximate the epigraph-based value function. This stabilized critic then serves as the foundation
for actor training: we derive an advantage function consistent with the epigraph-based HJB PDEs,
which provides the key learning signal for policy improvement.

3.1 PROBLEM FORMULATION

3.1.1 CONTINUOUS-TIME CONSTRAINED MARKOV DECISION PROCESS

We consider a CT-CMDP problem, formally defined by the tuple

M =
〈
X , {Ui}Ni=1, N, f, {li}Ni=1, c, {tk}k≥0, γ

〉
, (1)

where X ⊆ Rn is the global state space, and U = U1 × · · · × UN ⊆ Rm is the joint control
space for N agents. The system evolves according to time-invariant nonlinear dynamics ẋ(t) =
f(x(t), u(t)) with x(0) = x0, where f : X × U → X . Each agent i applies a decentralized policy
πi : X × [0,∞) → Ui, and the joint policy is denoted as π = (π1, . . . , πN ). All agents share the
non-negative cost function l =

∑N
i=1 li, where li : X × Ui → R is the independent cost function of

agent i. The system is further subject to state-dependent safety constraints specified by a function
c : X → R, with the feasible set defined as F = {x ∈ X | c(x) ≤ 0}. Control actions are updated
at irregular decision times {tk}k≥0, with strictly positive intervals τk = tk+1 − tk. γ ∈ (0, 1] is
the discount factor. Throughout the paper, we assume that Ui is compact and convex, f and c are
Lipschitz continuous, and li is Lipschitz continuous and bounded. The joint objective is to minimize
the cumulative cost under joint control input u = (u1, . . . , uN ) subject to state constraints c(x):

v(x) = min
u∈U

∫ ∞

t

γτ−t l(x(τ), u(τ)) dτ

s.t. c(x(τ)) ≤ 0, ∀τ ≥ t.
(2)

3.1.2 EPIGRAPH REFORMULATION

The value becomes discontinuous (Altarovici et al., 2013) when state constraints are violated in
Eq. 2, which hinders the convergence of HJB-based PINN training. To address this, we leverage an
epigraph reformulation that converts value in Eq. 2 into a continuous representation.

Definition 1 (Epigraph Reformulation). We introduce an auxiliary state variable z(t) ∈ R to refor-
mulate Eq. 2 using the epigraph forms. Here, z follows the dynamic ż(t) = −l(x(t), u(t))− ln γ ·
z(t). Therefore, the auxiliary value function is defined as

V (x, z) = min
u∈U

max

{
max
τ∈[t,∞]

c(x(τ)),

∫ ∞

t

γτ−tl(x(τ), u(τ))dτ − z
}
, (3)

3
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Lemma 3.1 (Value Equivalence). Suppose the assumptions in Sec. 3.1.1 hold. For all (t, x, z) ∈
[0,∞)×X × R, the constrained value v and auxiliary value V are related by

v(x) = min{z ∈ R | V (x, z) ≤ 0}. (4)

Here, the sub-zero level set of auxiliary value V becomes the epigraph of the constrained value v.
The proof is listed at Appendix A.1.

Lemma 3.2 (Optimality Condition). For all (t, x, z) ∈ [0,∞) × X × R, consider a small enough
h > 0, the auxiliary value function V satisfies

V (x, z) = min
u∈U

max

{
max

τ∈[t,t+h]
c(x(τ)), γhV (x(t+ h), z(t+ h))

}
. (5)

The proof is listed at Appendix A.2.

Theorem 3.3 (Epigraph-based HJB PDE). Let V : X × R→ R be the auxiliary value function
defined in Eq. 3. Then V is the unique viscosity solution of the following HJB PDE for all (t, x, z) ∈
[0,∞)×X × R.

max

{
max
τ∈[t,∞]

c(x)− V (x, z), min
u∈U
H(x, z,∇xV, ∂zV )

}
= 0, (6)

whereH(x, z,∇xV, ∂zV ) is Hamiltonian and satisfiesH = ∇xV ·f(x, u)−∂zV · l(x, u)+ ln γ ·V
and optimal control u∗ = argminu∈U H. The derivation proof is provided in Appendix A.3.

3.2 EPIGRAPH LEARNING FRAMEWORK

Outer Optimization

Inner Optimization

Data Collection

Critic Learning

 

Actor Learning

Figure 1: Overview of the proposed epigraph-based CT-MARL framework. The pipeline begins
with data collection, where individual agent rollouts are aggregated into a centralized rollout XR
for the training; the outer optimization computes optimal z∗ to balance discounted cumulative cost
and safety constraints; the inner optimization corresponds to critic learning, where return networks
V ret
ψ (x) and constraint value networks V cons

ϕ (x) are optimized jointly with the optimal auxiliary state
z∗; and actor learning leverages the advantage function to improve policies.

‘

As illustrated in Fig. 1, our framework integrates the epigraph-based inner-outer optimization
(Zhang et al., 2025b) into the actor-critic paradigm. The outer loop updates z∗ along the rollout
by solving Eq. 7, ensuring that the critic is trained with the minimal z that simultaneously satisfies
both costs and safety constraints.

min
z∈R

z s.t. min
π

max
{
sup
τ≥t

c(x(τ)),

∫ ∞

t

γτ−t l(x(τ), π(τ)) dτ − z
}
≤ 0. (7)

In the inner loop, the critic is trained as follows: the return and constraint value networks (V ret
ψ (x)

and V cons
ϕ (x)) are optimized using z∗ to approximate the auxiliary value function Ṽ (x, z∗). This

stabilized critic subsequently supplies the learning signals for decentralized actors, which map lo-
cal observations to continuous-time policies under the standard centralized training decentralized
execution setup (Foerster et al., 2018; Lowe et al., 2017). We next describe the revised outer opti-
mization in detail, focusing on solving the optimal auxiliary state z∗ that trades off discounted cost
against safety violations without costly root-finding algorithms (So & Fan, 2023; So et al., 2024;
Zhang et al., 2025b).
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3.2.1 REVISED OUTER OPTIMIZATION

We seek the minimal z such that the epigraph-based value V remains non-positive, as defined in
Eq. 4. Using the return and constraint value network learned by the critic, the optimal auxiliary state
z∗ can be found by solving for the minimal feasible solution:

z∗ = min
{
z ∈ R | max{V cons

ϕ (x), V ret
ψ (x)− z} ≤ 0

}
, (8)

where return value network V ret
ψ (x) that approximates the discounted cumulative cost∫∞

t
γτ−t l(x(τ), π(τ)) dτ , and constraint value network V cons

ϕ (x) represents the violation for worst-
case future constraints supτ≥t c(x(τ)).

In previous epigraph formulations (Tayal et al., 2025; Zhang et al., 2025b), the outer problem is
solved during the execution phase: z is sampled along the rollouts during training, and z∗ is com-
puted at execution time via root-finding (Stoer et al., 1980). This design has two drawbacks in
CT-MARL: (1) the random sampling of z introduces nonstationary noise that destabilizes the up-
dates of actor and critic and further leads to poor convergence; (2) at execution, root-finding must be
performed at every step, which is computationally expensive and often incompatible with real-time
requirements. In contrast, we design the return and constraint value networks as functions of the
states x solely. We then integrate the outer optimization into actor-critic training: for each episode,
z∗ is computed using the current learned value Ṽ along the predicted rollout. The actor is then
trained against a z-independent critic, producing a z-independent policy π(x). This design ensures
stable actor training, and enables real-time deployment by eliminating the need for root-finding
during execution. Since the critic’s value networks are z-independent, the outer optimization is
simplified to a scalar search for z∗, which adds negligible cost to model training.

3.2.2 INNER OPTIMIZATION WITH CRITIC LEARNING

The inner optimization is responsible for updating the PINN-based critic networks. Given a task-
dependent range [zmin, zmax], the outer optimization computes z∗, which is then clipped to this
range (i.e., z∗ ← min{max{z∗, zmin}, zmax}) before being used to train the critic module. The
critic consists of two value networks: a return value network V ret

ψ (x), and a constraint value network
V cons
ϕ (x). Together with the computed z∗ from Eq. 8, these define the composite epigraph-based

value function:
Ṽ (x, z∗) = max

{
V cons
ϕ (x), V ret

ψ (x)− z∗
}
. (9)

To ensure stable and accurate training, we employ three complementary losses:

(i) Residual Loss. We use PINN architecture (Mukherjee & Liu, 2023) to approximate the value
function governed by epigraph-based HJB PDEs, and introduce a residual loss that penalizes viola-
tions of the corresponding PDEs:

LResidual =
(
max

{
c(x)− Ṽ , min

u∈U

[
∇xṼ · f(x, u)− ∂zṼ · l(x, u) + ln γ · Ṽ

]})2

. (10)

(ii) Target Loss. In standard PINNs, a boundary loss is combined with the PDE residual to ap-
proximate PDE solutions (Cai et al., 2021; Raissi et al., 2019). In the infinite-horizon setting,
however, no boundary condition is available, and training the critic only on residuals is insuffi-
cient: optimization may converge, but to incorrect PDE solutions (Wang et al., 2022). To address
this, we add a rollout-based target loss that measures the discrepancy between the epigraph-based
value approximation with a numerical target defined by Eq. 3. For each episode, the current value
Ṽ generates a closed-loop trajectory {x(τ), u(τ)}∞τ=t; from this trajectory we construct the tar-
get Vtgt(x, z) = max

{
maxτ∈[t,∞] c(x(τ)),

∫∞
t
γτ−t l(x(τ), u(τ)) dτ − z∗

}
and minimize the

squared error:

LTarget =
(
Vtgt(x, z

∗) − max{V cons
ϕ (x), V ret

ψ (x)− z∗ }
)2

. (11)

(iii) Value Gradient Iterations. Standard PINN training in multi-agent settings often struggles to
approximate accurate value functions, primarily because the learned value gradients are inaccurate
or unstable (Wang et al., 2025; Zhang et al., 2024). The VGI techniques (Eberhard et al., 2024;
Wang et al., 2025) are designed to enhance the quality of learned value gradients. In our frame-
work, accurate gradients ∇xV (x) are crucial for precise value approximations, which in turn affect

5
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actor learning and ultimately determine the quality of the resulting policies. To establish the the-
oretical basis of this module, we follow Theorem 3.4 in Bokanowski et al. (2021) and Theorem 2
in Hermosilla & Zidani (2023):

∇xṼ (xt) = ∇x(χ(xt)l(xt, ut) + (1− χ(xt))c(xt))∆t+ γ∆t∇xṼ (xt+∆t) · ∇xf(xt, ut), (12)

where the χ(xt) := 1{V ret
ψ (xt) − zt ≥ V cons

ϕ (xt)}. As shown in Eq. 12, the value gradient
satisfies a recursive relation coupling the local cost gradient with the backpropagated dynamics term.
The overall critic objective is a weighted sum of the three losses as:

LCritic = λresLResidual + λtgtLTarget + λvgiLVGI, (13)

where the weights (λres, λtgt, λvgi) are selected to keep the losses on comparable scales and are
determined via grid search.

3.2.3 ACTOR LEARNING

After introducing the inner-outer optimization for critic learning, we turn to the actor learning. We
first define the epigraph-based Q-function, which is used for deriving policy update rules.
Definition 2 (Epigraph-based Q-function). Following the definition in (So & Fan, 2023), for any
state-action pair (xt, ut) and auxiliary state zt, the epigraph-based Q-function is defined

Q(xt, z
∗
t , ut) = max

{
c(xt) , γ

hV (xt+h, z
∗
t+h)

}
. (14)

where xt+h and z∗t+h are the states and optimal auxiliary state at t + h, respectively. h is a short
time interval.
Lemma 3.4 (Epigraph-based advantage function). The epigraph-based advantage function

A(xt, z
∗
t , ut) = Q(xt, z

∗
t , ut)− V (xt, z

∗
t ) (15)

is equivalent to epigraph-based HJB PDE when h→ 0

A(xt, z
∗
t , ut) = max{c(xt)− V (xt, z

∗
t ),∇xV · f(xt, ut)− ∂zV · l(xt, ut) + ln γ · V }. (16)

In practice, evaluating the epigraph-based advantage in Eq. 16 requires knowledge of the true dy-
namics f(x, u) and cost function l(x, u). Since these quantities are generally unknown in model-free
reinforcement learning, we replace them with neural networks that are jointly trained alongside the
actor. The derivation of the epigraph-based advantage function is listed at Appendix A.4.

Dynamics and Cost Networks. To assist with the policy training, we employ two neural networks:
a dynamics network fξ(x, u,∆t) that predicts the next state x′ given the current state–action pair,
and a cost network lϕ(x, u,∆t) that estimates the instantaneous stage cost. Both models are trained
via supervised regression using observed transitions (x, u, x′, l) from the environment. Specifically,
the training losses are

Ldyn(ξ) =
∥∥fξ(x, u,∆t)− x′

∥∥2, Lrew(ϕ) =
(
lϕ(x, u,∆t)− l(x, u)

)2
, (17)

where x′ is the observed next state and l(x, u) is the empirical cost signal. Equivalently, the
dynamics learning can be interpreted as approximating the continuous-time derivative dynamics
(fξ(x, u,∆t)− x)/∆t.

Actor Update with Learned Models. By substituting Ṽ (x, z∗), fξ and lϕ into the epigraph advan-
tage expression Eq. 16, we obtain a differentiable surrogate

Aθ(x, z
∗, u) = max{c(x)− Ṽ ,∇xṼ · fξ − ∂zṼ · lϕ + ln γ · Ṽ }. (18)

The actor πθ(u | x) is updated by minimizing the expected surrogate advantage:

Lactor(θ) = Ex∼XR,u∼πθ(·|x)
[
Aθ(x, z

∗, u)
]
, (19)

where XR is the sampled data along the rollout.

Specifically, we adopt a centralized-training decentralized-execution structure: each agent’s actor
πi(oi,∆t) takes its local observation oi as input, while the training signal is derived from the state
x. The overall training pipeline is summarized in Algorithm 1 in Appendix.
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Figure 2: Overall results for adapted multi-agent MuJoCo environments.

4 EXPERIMENTAL RESULTS

We organize our empirical study around the following research questions: Q1. How well does our
method balance discounted cumulative cost and constraint satisfaction compared to state-of-the-
art baselines? Q2. How does the different loss component in critic learning contribute to stable
training and accurate value approximations? Q3. How does performance change when training with
versus without the epigraph reformulation? Q4. How sensitive is the epigraph formulation to the
choice of the auxiliary variable z during training? Q5. How robust is the method under stochastic
disturbances, and how does performance degrade under model-mismatch noise? Q6. How does the
performance change under different discretization resolutions ∆t?

4.1 BENCHMARKS AND BASELINES.

To evaluate our approach under continuous-time environments with safety constraints, we con-
sider two adapted benchmarks: the safe continuous-time MPE (Lowe et al., 2017; Wang et al.,
2025) and continuous-time Safe MA-MuJoCo (Gu et al., 2023a; Wang et al., 2025). In MPE,
we design several scenarios including Corridor, Formation, Line, Target, Simple Spread, and
Cooperative Predator–Prey. These tasks typically place agents in environments with obsta-
cles and require them to avoid both collisions with obstacles and collisions with other agents
while navigating or pursuing their objectives. In MuJoCo, we adapt several scenarios such as
Half Cheetah and Ant into continuous-time versions and introduce randomly placed walls as ob-
stacles. The agents must coordinate to move forward efficiently while avoiding crashing into
walls, ensuring that the learned policies account for both locomotion and safety considerations.
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Figure 3: Performance of constraints and cost over MuJoCo settings.

Lastly, we design a di-
dactic example based on a
constrained coupled oscilla-
tor, which admits an analyt-
ical ground-truth solution for
both value functions and ac-
tions. This example provides
a transparent testbed to di-
rectly validate the correctness
of our learned critics against
exact solutions. Full details
of the agent setups, metrics,
state and action spaces, and
cost specifications are provided in the Appendix C.
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We compare our approach EPI with MACPO (Gu et al., 2021), MAPPO-Lag (Gu et al., 2021), SAC-
Lag (Haarnoja et al., 2018), EPPO (Zhang et al., 2025b) and CBF (Zhang et al., 2025a). The first
three represent the most widely used families of safe MARL algorithms: trust-region based methods
(MACPO) and Lagrangian based methods (MAPPO-Lag, SAC-Lag), covering both on-policy and
off-policy learning. We also include EPPO as an epigraph-based baseline that follows the traditional
epigraph optimization framework. We additionally include a control barrier function (CBF) baseline,
which enforces safety through model-based barrier certificates and is commonly used in safe multi-
agent control. Although these algorithms were originally developed in the discrete-time setting, we
adapt them to continuous time by equipping their critics with the same PDE residual loss used in
our method. Since the performance gap between discrete-time and continuous-time algorithms has
already been well studied (Tallec et al., 2019a; De Asis & Sutton, 2024a), our baselines focus only
on isolating the effect of different safety mechanisms (trust-region, Lagrangian, or epigraph).

4.2 RESULTS ANALYSIS

In this section, we present a systematic analysis of the results, addressing each research question in
turn. Q1. Our method consistently outperforms all baselines across both adapted MPE and MuJoCo
environments in Fig. 2 and Fig. 4. We adopt the same reward design commonly used in prior safe
MARL works such as MACPO (Gu et al., 2021). Specifically, the reward is the combination of the
environment-provided task cost (e.g., distance to the target in MPE) and the environment-provided
safety penalty (e.g., collision penalty between agents or with obstacles), as detailed in Appendix C,
which directly reflects performance under both objectives. In Fig. 6, each point corresponds to the
average performance of one algorithm, with horizontal and vertical bars denoting standard devia-
tions. Since the goal is to minimize both cost and constraint violations, the lower-left corner of each
panel represents the desirable region. These results show that our algorithm EPI achieves nearly the
lowest cost and constraint violation in every scenarios. Specifically, EPPO often remains stuck at
suboptimal solutions because it randomly samples the auxiliary state z instead of using z∗ for model
training, introducing noise that disrupts policy updates and prevents stable convergence.
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Figure 4: Overall results for adapted MPE environments.

MACPO enforces constraints through a hard trust-region style update, which yields strong viola-
tion rejection but tends to be overly conservative. SAC-Lag and MAPPO-Lag rely on Lagrangian
relaxation, which is known to suffer from instability when balancing objectives under tight safety
requirements (Zhang et al., 2025b). CBF achieves reasonable constraint-violation levels but tends
to be conservative. The CBF condition relies on the gradient of a learned barrier function ∇B(x),
approximation errors in this component can distort the effective safe set and degrade the overall
performance.
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Figure 5: Ablation study of different loss terms in critic network over MPE.
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Figure 6: Performance of constraints and cost over MPE settings.

Q2. The ablation results in
Fig. 5 clearly demonstrate
the importance of each loss
component in critic learning.
It presents the cumulative re-
ward performance of our full
method compared with its
ablation variants across rep-
resentative continuous-time
MPE tasks.

Removing the target loss or the VGI loss significantly degrades performance, whereas remov-
ing the residual loss has only a minor effect. This difference stems from the fact that, un-
like existing HJ-based PINN methods (Zhang et al., 2024; Tayal et al., 2025; Cai et al.,
2021) that address finite-horizon problems with boundary conditions, our framework targets the
infinite-horizon setting where no such boundary conditions are available. In this case, the
target loss serves as an anchor to stabilize value approximations, ensuring that value func-
tion V (x) does not drift arbitrarily, while the VGI loss enforces consistency of the learned
value gradients, which are crucial for both accurate value approximations and policy improve-
ment. In contrast, the HJB residual loss mainly regularizes the PDE structure, but its role be-
comes less critical once the value gradients are optimized by VGI. As a result, the removal of
VGI has a severe impact, since inaccurate value gradients directly harm both critic accuracy
and actor updates, while the residual loss contributes less critically to overall training stability.
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Figure 7: Weighted loss performance.

The grouped bars in Fig. 7 report the average distance to
the target (lower is better) for three MPE tasks—Formation,
Line, and Target—under different loss weightings. The bal-
anced setting (EPI) attains the smallest distance in all tasks
and shows the tightest variability. Over-emphasizing any
single component degrades performance: increasing the tar-
get loss weight is particularly harmful on Line (large in-
crease in distance), while overweighting (×20) the residual
or the VGI loss also worsens results relative to EPI, though
to a lesser extent. These ablations support using the bal-
anced weighting adopted by EPI.

Q3. We generate one trajectory using EPI and collect the visited states. On these same states, we
compare the value and policy from three methods: EPI, Ground Truth via the LQR method (details
in the Appendix C), and an ablation without the epigraph reformulation, where the state constraint is
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treated as a collision penalty added to the cost function l, making the value function discontinuous.
For Ground Truth, the value is computed as the discounted cumulative cost. While for the EPI
and ablation without the epigraph form, the value is predicted through the trained value network.
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Figure 8: Performance with and without epigraph reformulation.

EPI closely tracks the
Ground Truth in both
value and actions for
both agents, indicating
accurate value approxi-
mation and stable con-
trol policies. In contrast,
the ablation without the
epigraph form exhibits
severely mis-scaled value
predictions (we plot it after a × 1

20 scaling to share the same y-axis) and noticeably unstable actions,
which in practice are more likely to violate constraints because the discontinuous value function
is not addressed by the epigraph form. The poor performance of the ablation without epigraph
stems from the discontinuity of the value function when state constraints are directly encoded as
hard penalties. Such discontinuities are notoriously difficult to approximate with neural networks,
leading to severely mis-scaled value predictions and unstable gradients for policy updates. By con-
trast, the epigraph reformulation converts the discontinuous penalty into a continuous and smooth
upper-bound optimization, which stabilizes critic learning and yields reliable policies.

Q4. To better understand how model performance depends on z, we test two MPE tasks
(Formation and Line) under different values of z. Specifically, we train the EPI model with
z ∈ {z∗ − 0.5zmax, z

∗ − 0.2zmax, z
∗, z∗ + 0.2zmax, z

∗ + 0.5zmax}. Fig. 9 reports the re-
sults, where the x-axis indicates cost and the y-axis denotes the constraint violation rate.
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Figure 9: Sensitivity test of different z choices.

Compared with the optimal
auxiliary state z∗, using
a suboptimal z shifts the
trade-off between cost and
constraint satisfaction, often
resulting in either much
higher violation rates or
larger costs. Specifically, a
smaller z (e.g., z∗−0.2zmax,
z∗ − 0.5zmax) significantly
increases the violation rate
while only slightly reducing
cost. Getting back to the epigraph form max{V cons

ϕ (x), V ret
ψ (x, z) − z}, a smaller z makes

V ret(x, z)− z lager than V cons
ϕ (x), so the return term dominates in the epigraph form. As a result,

the optimization prioritizes reward improvement while neglecting constraint satisfaction, leading
to frequent violations. In constrast, when z is larger than z∗ (e.g., z∗ + 0.2zmax, z∗ + 0.5zmax),
the term V ret(x, z) − z becomes smaller than V cons

ϕ (x), making constraint value dominate in the
epigraph form. This forces the critic and actor to emphasize constraint satisfaction, which reduces
violations but increases cost.

5 CONCLUSION

In this paper, we propose an epigraph-based framework for CT-MARL that addresses the chal-
lenges of balancing reward maximization with constraint satisfaction. By reformulating the prob-
lem through the epigraph forms, we introduced an inner–outer optimization procedure that enables
stable critic learning and effective policy updates. Our design further integrates different losses
in critic learning, including target, residual, and VGI losses, to anchor value approximations and
improve gradient accuracy in the infinite-horizon setting. Through extensive experiments in both
adapted MPE and MuJoCo benchmarks, we demonstrated that our method consistently outperforms
state-of-the-art baselines in terms of both cost reduction and constraint satisfaction.
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Safe multi-agent reinforcement learning via shielding. arXiv preprint arXiv:2101.11196, 2021.

Lawrence C Evans. Partial differential equations, volume 19. American mathematical society, 2022.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian,
Jun Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained policy optimisation. arXiv
preprint arXiv:2110.02793, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. Artificial In-
telligence, pp. 103905, 2023a.

Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. Artificial In-
telligence, 319:103905, 2023b.

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
review of safe reinforcement learning: Methods, theories and applications. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018.

Ammar Haydari and Yasin Yılmaz. Deep reinforcement learning for intelligent transportation sys-
tems: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(1):11–32, 2020.

Cristopher Hermosilla and Hasnaa Zidani. Relationship between the maximum principle and dy-
namic programming for minimax problems. Applied Mathematics & Optimization, 87(2):34,
2023.

Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and space:
Theory and algorithms. Journal of Machine Learning Research, 23(275):1–50, 2022a.

Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous
time and space: A martingale approach. Journal of Machine Learning Research, 23(154):1–55,
2022b.

Yi Jiang, Weinan Gao, Jin Wu, Tianyou Chai, and Frank L Lewis. Reinforcement learning and
cooperative h∞ output regulation of linear continuous-time multi-agent systems. Automatica,
148:110768, 2023.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
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A MATHEMATICAL PROOF

A.1 LEMMA 3.1: EQUIVALENCE OF TWO VALUE FUNCTIONS

Proof. Following proofs in (Lee, 2022; Zhang et al., 2024)), Eq. 4 implies the following equivalence

v(x)− z ≤ 0 ⇐⇒ V (x, z) ≤ 0

To prove the above relation, we first start from v(x)− z ≤ 0, which implies that there exists a joint
control input u ∈ U such that ∫ ∞

t

γτ−tl(x(τ), u(τ))dτ − z ≤ 0,

with c(x(τ)) ≤ 0 for ∀τ ≥ t. Thus, there will exist a joint control u such that V (x, z) ≤ 0.

Second, when V (x, z) ≤ 0 and c(x(τ)) ≤ 0 for ∀τ ≥ t hold, it implies that there exists u ∈ U such
that ∫ ∞

t

γτ−tl(x(τ), u(τ))dτ − z ≤ 0,

which concludes v(x)− z ≤ 0. Therefore, the Lemma 3.1 is proved.

A.2 LEMMA 3.2: OPTIMALITY CONDITION

Proof. Following proofs in (Lee, 2022; Zhang et al., 2024; Evans, 2022), given all (t, x, z) ∈
[0,∞) × X × R and select a enough small h > 0. There exist two different joint control inputs
(u1(·), u2(·)) ∈ U such that

u(τ) =

{
u1(τ), τ ∈ [t, t+ h],

u2(τ), τ ∈ (t+ h,∞).

Then we have the following transformation for Eq. 3

V (x, z) = min
u1∈U,u2∈U

max
{

max
τ∈[t,t+h]

c(x(τ)), max
τ∈[t+h,∞)

c(x(τ)),∫ ∞

t

γτ−tl(x(τ), u(τ))dτ − z(t)
}

= min
u1∈U

max
{

max
τ∈[t,t+h]

c
(
x(τ)

)
, min
u2∈U

max
{

max
τ∈[t+h,∞)

c
(
x(τ)

)
,

∫ t+h

t

γτ−tl(x(τ), u(τ))dτ

+

∫ ∞

t+h

γτ−tl(x(τ), u(τ))dτ −
(
z(t+ h) +

∫ t+h

t

γτ−tl(x(τ), u(τ))dτ
)}}

= min
u1∈U

max
{

max
τ∈[t,t+h]

c(x(τ)), min
u2∈U

max
{

max
τ∈[t+h,∞)

c
(
x(τ)

)
,∫ ∞

t+h

γτ−tl(x(τ), u(τ)) dτ − z(t+ h)
}}

≈ min
u1∈U

max
{

max
τ∈[t,t+h]

c(x(τ)), min
u2∈U

max
{

max
τ∈[t+h,∞)

c
(
x(τ)

)
,

γh
(∫ ∞

t+h

γτ−(t+h)l(x(τ), u(τ)) dτ − z(t+ h)
)}}

= min
u1∈U

max
{

max
τ∈[t,t+h]

c(x(τ)), γhV (x(t+ h), z(t+ h))
}

=min
u∈U

max
{

max
τ∈[t,t+h]

c(x(τ)), γhV (x(t+ h), z(t+ h))
}

Therefore, the Lemma 3.2 is proved.
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A.3 THEOREM 3.3: EPIGRAPH-BASED HJB PDE

Proof. Following proofs in (Lee, 2022; Zhang et al., 2024; Evans, 2022), given all all (t, x, z) ∈
[0,∞)×X ×R with a small horizon ∆t > 0, we apply Lemma 3.2 and Taylor expansion to derive
the epigraph-based HJB PDE as follows

V (x, z) = min
u∈U

max
{

max
τ∈[t,t+∆t]

c(x(τ)), γhV (x(t+∆t), z(t+∆t))
}

≈ min
u∈U

max
{
c(x), (1 + ln γ∆t)(V (x, z) +∇xV · f(x, u)∆t− ∂zV · l(x, u)∆t+ o(∆t))

}
= max

{
c(x), (1 + ln γ∆t)min

u∈U
(V (x, z) +∇xV · f(x, u)∆t− ∂zV · l(x, u)∆t+ o(∆t))

}
Subtracting V (x, z) from both sides of above equality, dividing by ∆t, and letting ∆t → 0 yields
the following HJB PDE, where V (x, z) is the optimal solution to such PDE.

max
{
c(x)− V (x, z),min

u∈U

[
∇xV · f(x, u)− ∂zV · l(x, u) + ln γ · V

]}
= 0.

Here H = ∇xV · f(x, u) − ∂zV · l(x, u) + ln γ · V is Hamiltonian and optimal control u∗ =
argminu∈U H.

Next we prove that V (x, z) is the unique viscosity solution to the epigraph-based HJB PDE using
the contradiction technique. First, for U ∈ C∞(X × R) such that V − U has local maximum at
(x0, z0) ∈ X × R and (V − U)(x0, z0) = 0, we will prove

max
{
c(x0)−U(x0, z0), min

u∈U

[
∇xU(x0, z0)·f(x0, u)−∂zU(x0, z0)·l(x0, u)+ln γ·U(x0, z0)

]}
≥ 0.

Suppose the above inequality is not correct. We consider that there exists θ > 0 and ũ ∈ U such that

c(x)− U(x0, z0) ≤ −θ,
∇xU · f(x, ũ)− ∂zU · l(x, ũ) + ln γ · U ≤ −θ.

for all points (x, z) sufficiently close to (x0, z0): ∥x(s) − x0∥ + |z(s) − z0| < h for small enough
h > 0, where s ∈ [t0, t0+h]. Under the assumptions in Sec. 3.1.1, and given state trajectories x and
z evolved from the initial conditions x = x0 and z = z0 according to the corresponding dynamics,
the following inequality holds

c(x(s))− U(x0, z0) ≤ −θ,
∇xU(x(s), z(s)) · f(x(s), ũ)− ∂zU(x(s), z(s)) · l(x(s), ũ) + ln γ · U(x(s), z(s)) ≤ −θ.

Since V − U has a local maximum at (x0, z0), we can have that

min
u∈U

[
γhV (x(t0 + h), z(t0 + h))− V (x0, z0)

]
≤min
u∈U

[
γhU(x(t0 + h), z(t0 + h))− U(x0, z0)

]
=min
u∈U

[
(∇xU(x(t0), z(t0)) · f(x(t0), u)− ∂zU(x(t0), z(t0)) · l(x(t0), u) + ln γ · U(x(t0), z(t0)))h

]
≤− θh

We know that Lemma 2 implies

V (x0, z0) = min
u∈U

max
{

max
sτ∈[t0,t0+h]

c(x(s)), γhV (x(t0 + h), z(t0 + h))
}
.

By subtracting U(x0, z0) on both side, we have

(V − U)(x0, z0) = min
u∈U

max
{
c(x(s))− U(x0, z0), γ

hV (x(t0 + h), z(t0 + h))− U(x0, z0)
}
.

Since (V − U)(x0, z0) = 0 holds such that V (x0, z0) = U(x0, z0), then we will have that

min
u∈U

max
{
c(x(s))−V (x0, z0), γ

hV (x(t0+h), z(t0+h))−V (x0, z0)
}
= min

u∈U
max{θ, θh} > 0,
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which has a contradiction with (V − U)(x0, z0) = 0. Thus we prove that

max
{
c(x0)−U(x0, z0), min

u∈U

[
∇xU(x0, z0)·f(x0, u0)−∂zU(x0, z0)·l(x0, u0)+ln γ·U(x0, z0)

]}
≥ 0.

Second, for U ∈ C∞(X × R) such that V − U has local minimum at (x0, z0) ∈ X × R and
(V − U)(x0, z0) = 0, we will prove

max
{
c(x0)−U(x0, z0), min

u∈U

[
∇xU(x0, z0)·f(x0, u0)−∂zU(x0, z0)·l(x0, u0)+ln γ·U(x0, z0)

]}
≤ 0.

The definition of auxiliary value V (x, z) shows that

V (x, z) = min
u∈U

max

{
max
τ∈[t,∞]

c(x(τ)),

∫ ∞

t

γτ−tl(x(τ), u(τ))dτ − z
}

≥ min
u∈U

max

{
c(x0),

∫ ∞

t

γτ−tl(x(τ), u(τ))dτ − z
}

for all u ∈ U . By subtracting U(x0, z0) on both sides, we have

0 = (V − U)(x0, z0) ≥ max{c(x0)− U(x0, z0),

∫ ∞

t

γτ−tl(x, u)dτ − z0 − U(x0, z0)}.

The rest of the proof is to show

min
u∈U

[
∇xU(x0, z0) · f(x0, u)− ∂zU(x0, z0) · l(x0, u) + ln γ · U(x0, z0)

]
≤ 0.

Suppose the above inequality is not correct. We consider that there exists θ > 0 such that

min
u∈U

[
∇xU(x, z) · f(x, u)− ∂zU(x, z) · l(x, u) + ln γ · U(x, z)

]
≥ θ,

for all points (x, z) sufficiently close to (x0, z0): ∥x− x0∥+ |z − z0| < h for small enough h > 0,
where s ∈ [t0, t0+h]. Given state trajectories x and z that evolve from the initial conditions x = x0
and z = z0 under the corresponding dynamics with any control ũ ∈ U , where

ũ(s) = argmin
ũ∈U

{
∇xU(x(s), z(s)) · f(x(s), ũ)− ∂zU(x(s), z(s)) · l(x(s), ũ)

+ ln γ · U(x(s), z(s))
}
.

Then we have the following condition that holds

∇xU(x(s), z(s)) · f(x(s), ũ)− ∂zU(x(s), z(s)) · l(x(s), ũ) + ln γ · U(x(s), z(s)) ≥ θ.
Consider V − U has a local minimum at (x0, z0), we will have that

min
ũ∈U

[
γhV (x(t0 + h), z(t0 + h))− V (x0, z0)

]
≥min
ũ∈U

[
γhU(x(t0 + h), z(t0 + h))− U(x0, z0)

]
=min
ũ∈U

[
(∇xU(x(t0), z(t0)) · f(x(t0), ũ)− ∂zU(x(t0), z(t0)) · l(x(t0), ũ) + ln γ · U(x(t0), z(t0)))h

]
≥θh

Based on this derivation, we finally have that

min
ũ∈U

γhV (x(t0 + h), z(t0 + h)) ≥ V (x0, z0) + θh > V (x0, z0).

However, we know that Lemma 3.2 implies that

min
ũ∈U

γhV (x(t0 + h), z(t0 + h)) ≤ V (x0, z0),

which is a contradiction. Thus, we prove that

max
{
c(x0)−U(x0, z0), min

u∈U

[
∇xU(x0, z0)·f(x0, u0)−∂zU(x0, z0)·l(x0, u0)+ln γ·U(x0, z0)

]}
≤ 0.

Hence, we prove that V (x, z) is the viscosity solution to the epigraph-based HJB PDE. The unique-
ness follows Theorem 1 of Chapter 10 in Evans (2022).
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A.4 ADVANTAGE FUNCTION

We define the Q(xt, zt, ut) = max{c(xt), rhV (xt+h, zt+h} over a short time interval h > 0 and
compute

Q(xt, zt, ut)− V (xt, zt) =max{c(xt), rhV (xt+h, zt+h)} − V (xt, zt)

=max{c(xt)− V (xt, zt), (1 + ln γh)(V (xt, zt) +∇xV · f(xt, ut)h
− ∂zV · l(xt, ut)h− V (xt, zt) + o(h)}

=max{c(xt)− V (xt, zt), (∇xV · f(xt, ut)− ∂zV · l(xt, ut) + ln γ · V )h}

We divide h on both sides of the above equation and let h → 0 to compute the advantage function
as

A(xt, zt, ut) = lim
h→0

Q(xt, zt, ut)− V (xt, zt)

h
= max{c(xt)− V (xt, zt),∇xV · f(xt, ut)− ∂zV · l(xt, ut) + ln γ · V }

A.5 CONVERGENCE OF EPIGRAPH VALUE FUNCTION

Consider the augmented state (x, z) with state constraint c(x) and non-negative cost l(x, u). Define
the discounted epigraph-Bellman operator over a short step ∆t > 0:

(T V )(xt, zt) := (1− γ∆t)c(xt) + γ∆tmin
u∈U

{
max

{
c(xt), V (xt+∆t, zt+∆t)

}}
,

for V : X × R → R bounded. Then the value iteration Vk+1 = T Vk converges uniformly to the
unique fixed point of T .

Proof. (i) Contraction. For any c(xt) and bounded functions V,W , we have the following condition
satisfying the contraction.

|max{c(xt), V (xt+∆t, zt+∆t)} −max{c(xt),W (xt+∆t, zt+∆t)}|
≤|V (xt+∆t, zt+∆t)−W (xt+∆t, zt+∆t)|
≤∥V −W∥∞

(ii) Existence and uniqueness. By Banach’s fixed-point theorem, T admits a unique fixed point V ,
and for value iteration Vk+1 = T Vk we have that

∥Vk − V ∥∞ ≤ γk∥V0 − V ∥∞ → 0,

(iii) Approximate evaluation. If each iteration uses an approximate operator T̃ satisfying ∥T̃ V −
T V ∥∞ ≤ ε, then

lim sup
k→∞

∥Vk − V ∥∞ ≤
ε

1− γ∆t
.

B TRAINING ALGORITHMS

In this part, we provide additional details on the overall algorithmic pipeline and clarify the key
implementation choices.
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Algorithm 1 Epigraph-Based Continuous-Time MARL

1: Initialize actor πθ, return critic V ret
ψ , constraint critic V cons

ϕ , dynamics network fξ, reward net-
work lφ, and local rolloutR.

2: for l = 1, . . . , T do
3: ▷ Collect one rollout:
4: x← env.reset()
5: for k = 1, . . . ,K do
6: sample arbitrary decision time t ∼ T
7: for each agent i = 1, . . . , N do
8: ui ∼ πθi(ui | x)
9: end for

10: set joint action u = (u1, . . . , uN )
11: (x′, r)← env.step(u)
12: append (x, u, r, x′) to local rolloutR
13: x← x′

14: end for
15: ▷ Outer optimization: epigraph update
16: find z∗ = inf{z ∈ R : max{V cons

ϕ (x), V ret
ψ (x, z)− z} ≤ 0}

17: ▷ Dynamics and Cost Model learning onR
18: update ξ, φ as per the Eq. 17.
19: ▷ Inner optimization given z∗: Critic update on XR
20: update ψ, ϕ by losses Lcons,Lret,LHJB and LVGI as per the Eq. 11, Eq. 10 and Eq. 12.
21: ▷ Actor update for each agent
22: for i = 1, . . . , N do
23: compute A(x, u, z∗) for all (x, u, z∗) ∈ XR and update the θ as the Eq. 18.
24: end for
25: end for

C ENVIRONMENTAL SETTINGS

We provide detailed descriptions of all benchmark environments used in our experiments. For each
scenario, we list the number of agents, the number of obstacles, the safety constraints imposed, and
the specific task objective with metrics.

Metrics. We report two primary metrics—one reward-style training score that aggregates task cost
and constraint penalty, and one violation rate measured over held-out rollouts. (1) Cumulative
penalty / reward-style training score. In many standard environments (e.g., MPE and multi-agent
MuJoCo), the task reward often consists of two independent components: (i) a task term such as
distance-to-target or velocity tracking, and (ii) a safety penalty that is activated only when constraint-
relevant events occur (e.g., collisions or proximity violations). This design is also used in prior safe
MARL methods such as MACPO and Lagrangian baselines (Gu et al., 2021). For clarity of notation,
we write the task cost as ℓt ≥ 0 (derived from the negative reward of the task term) and denote the
constraint penalty as κt ≥ 0. The environment therefore provides a composite instantaneous cost

ψt := ℓt + κt,

which simply aggregates the task objective and the constraint penalty already defined in the envi-
ronment. For a trajectory τ with horizon T (τ), we define the total episode cost as

J(τ) :=

T (τ)−1∑
t=0

ψt, S(τ) := −J(τ),

where S(τ) is the cumulative reward used for performance plots.

(2) Violation rate (evaluation). Given Neval episodes (we use Neval = 100 by default), define the
episode-level violation indicator

v(τ) := 1{ ∃ t s.t. κt > 0 } ,
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i.e., an episode is counted as violating if it ever incurs a positive state-constraint penalty.1 The
violation rate is then

Viol. Rate =
1

Neval

Neval∑
i=1

v(τi).

C.1 SAFE MPE

In the MPE, we setup the details as follows: Action. Continuous 2-D acceleration for x and y axis.
Reward and costs. Each agent is assigned a per-agent target gi. The dense goal reward is

rgoal
i (t) = −∥xi(t)− gi∥2.

A discrete collision cost with obstacles or other agents applies:

cdisc
i (t) =

{
10, if agent–obstacle overlap
0, otherwise.

We also record a continuous proximity/penetration cost (not added into the dense goal reward):

ccont
i (t) =

1

2

∑
o∈O

ϕ
(
(ri + ro)− ∥xi − xo∥

)
, ϕ(δ) =

{
20 δ, δ > 0 (overlap)
0.5 δ, δ ≤ 0

where ri, ro are radius (sizes).

Difference from the original discrete-time MPE. The standard MPE environment uses a fixed
and discrete integration step ∆t, where each simulation step updates the agent states according to
pt+1 = pt + vt∆t and vt+1 = vt + ft∆t with a fixed time increment. In contrast, our continuous-
time MPE adapts the physical integration step to an arbitrary ∆t provided by the learning algorithm.
The state evolution follows

ṗ(t) = v(t), v̇(t) =
f(t)

m
− damping · v(t),

and is numerically integrated via

p← p+ v ·∆t, v ← v +
f

m
∆t,

using the user-specified ∆t. For clarity, the update used in the original environment is:

step(F ) :

p = p+ v · 0.1 (fixed as 0.1),

v = v +
F

m
· 0.1 (fixed as 0.1).

Our continuous-time version introduces:

step continuous(F,∆t) :

p = p+ v ·∆t (depend on the input ∆t),

v = v +
F

m
·∆t (depend on the input ∆t).

so that the state update depends directly on the argument ∆t rather than a fixed constant.

Corridor. This scenario contains 3 agents with 2 large corridor walls. Agents must avoid collisions
with the corridor walls and with each other while navigating from their starting positions to reach
the assigned target locations on the opposite side.

1If κt is an indicator of hard violations, this coincides with “any violation.” If κt is a continuous hinge, we
use the same criterion κt > 0.
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Formation. This scenario also involves 3 agents and 2 obstacles. The agents are required to bypass
obstacles and then coordinate to form a triangular formation at the designated region, under the
constraint of avoiding collisions with both obstacles and other agents.

Line. In this task, 3 agents operate in an environment with 2 obstacles. After avoiding the obstacles,
the agents must position themselves to form a straight line. The safety constraints enforce that no
agent collides with obstacles or with other agents during navigation.

Target. This scenario uses 2 agents with 1 obstacle placed in the environment. Each agent is
assigned a fixed target position, and the agents must navigate to their respective goals while avoiding
collisions with the obstacle and with each other.

Cooperative Navigation. This is a cooperative navigation task with 3 agents and no obstacles.
The agents must spread out to cover multiple target landmarks while avoiding collisions among
themselves. Specifically, the agents’ goals are the one closest to them rather than fixed ones.

Cooperative Predator–Prey. This task includes 3 controllable predator agents and 1 prey that
moves randomly. There are no obstacles, but predators must avoid colliding with each other. The
predators’ objective is to coordinate their movements to capture the prey.

C.2 SAFE MULTI-AGENT MUJOCO

Half Cheetah. We adapt the Half Cheetah environment into three multi-agent variants: Half
Cheetah-2x3, Half Cheetah-3x2, and Half Cheetah-6x1. In each case, the body is partitioned into
joints agents with different grouping configurations. For example, Half Cheetah-3x2 is three agents
with 2 moving joints for each agent. Randomly placed walls are introduced into the environment,
requiring the agents not only to coordinate efficient forward locomotion but also to avoid collisions
with obstacles.

Reward. r = rrun = xt+1−xt

∆t .

Safety cost. A binary proximity cost to the wall:

ct = 1{ |xwall − xagent| < 9 } ∈ {0, 1}.

Observation augments the usual state with wall velocity, wall force proxy, and clipped distance to
the wall; the environment also recolors the wall when unsafe.

Difference from the original MuJoCo environment. In standard MuJoCo control tasks, the sim-
ulation uses a fixed micro time step 0.01 (each frame takes 0.01), and each environment step cor-
responds to a fixed number of internal physics frames (e.g., frame skip = 5), resulting in a
fixed control interval ∆t = 0.05. Our continuous-time MuJoCo variant removes this fixed control
interval. For any desired ∆t, we execute

do simulation(a, N), N =
∆t

0.01
,

i.e., the number of internal physics frames is chosen dynamically according to the requested in-
tegration step. Thus the effective control interval is no longer fixed but fully determined by ∆t,
enabling variable-resolution continuous-time rollouts. The reward terms (forward velocity, control
cost, contact cost) are normalized by the actual ∆t, ensuring consistency across different temporal
resolutions. The original update is:

step(u) : N = 5, do simulate(u,N).

Our continuous-time version becomes:

step continuous(u,∆t) : N = ∆t/0.01, do simulate(u,N).

Ant. We construct four multi-agent variants of the Ant: Ant-2x4, Ant-4x2, Ant-8x1, and Ant-2x4d.
In all cases, the body is controlled by joints agents arranged in different groupings across the legs.
As with Half Cheetah, walls are introduced as obstacles, and the agents must coordinate locomotion
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while ensuring safety by avoiding collisions with these obstacles. The reward is set same as the Half
Cheetah

Safety shaping. Identical piecewise-slant corridor: compute yoff from (x, y) and define

cobj
t = 1{|yoff| < 1.8}.

C.3 CONSTRAINED COUPLED OSCILLATOR ENVIRONMENT

We consider a two–agent coupled spring–damper system. The state and control are

x=[x1 v1 x2 v2]
⊤
, u=[u1 u2]

⊤
.

Each agent i ∈ {1, 2} controls one mass with continuous–time dynamics

ẋi = vi,

v̇i = −k xi − b vi + ui,

with spring constant k = 1.0 and damping coefficient b = 0.5. Stacking the states gives ẋ =
Ax+Bu with

A =

 0 1 0 0
−k −b 0 0
0 0 0 1
0 0 −k −b

 , B =

0 0
1 0
0 0
0 1

 .
Control limits and discretization.

Actions are normalized ũi ∈ [−1, 1] and mapped to physical inputs by ui = umaxũi with umax = 10
(component–wise box constraint).

vt+1
i = vti +

(
− k xti − b vti + uti

)
∆t,

xt+1
i = xti + vt+1

i ∆t,

for a horizon of N = 30 steps.

Stage cost. The per–step quadratic cost is

ℓ(x, u) = x21 + x22 + λc (x1 − x2)2 + β (u21 + u22),

with coupling strength λc = 2.0 and control penalty β = 0.01. Equivalently, ℓ(x, u) = x⊤Qx +
u⊤Ru where

Q =

1 + λc 0 −λc 0
0 0 0 0
−λc 0 1 + λc 0
0 0 0 0

 , R = βI2.

For training we use a shaped reward

rt = −
1

30
ℓ(xt, ut).

Hard state constraint. We impose an ordering constraint between the two positions,

x1 ≤ x2 + 0.02,

and record an additional penalty

pt = −10 · 1{x1,t > x2,t + 0.02 } ,

returned alongside rt.

Smooth violation signal (for logging). We also log a smooth surrogate of the constraint violation,

ϕ(x) = 2σ
(
s (x1 − x2 + 0.02)

)
− 1, σ(z) =

1

1 + e−z
, s = 20,

which maps to (−1, 1) and grows monotonically with the amount of violation.
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Unconstrained LQR. The continuous-time algebraic Riccati equation (CARE)

A⊤P + PA− PBR−1B⊤P +Q = 0

is solved for the unique positive semidefinite matrix P . The unconstrained optimal linear feedback
is

K = R−1B⊤P, uLQR(x) = −Kx.

Hard state constraint and CBF condition. We impose the safety constraint

x1 − x2 − 0.02 ≤ 0 ⇐⇒ h(x) := 0.02− (x1 − x2) ≥ 0.

Let ∇h(x) = [−1 0 1 0]
⊤. A (first-order) control barrier function (CBF) condition enforces

forward invariance of the safe set C = {x : h(x) ≥ 0} by requiring

ḣ(x, u) = ∇h(x)⊤(Ax+Bu) ≥ −αh(x),

with a user-chosen class-K parameter α > 0. Defining

a(x) := ∇h(x)⊤B ∈ R2, b(x) := −∇h(x)⊤Ax − αh(x) ∈ R,

the CBF condition Eq. C.3 is the single affine-in-u half-space constraint

a(x)⊤u ≥ b(x).

Closed-form safety projection. To obtain a safe control with minimal distortion from uLQR, we
solve the weighted projection

min
u∈R2

1
2 (u− uLQR)

⊤W (u− uLQR) s.t. a(x)⊤u ≥ b(x),

with W = R (“R-metric”; Euclidean W = I is also possible). Because Eq. C.3 has a single linear
constraint, it admits a closed form:

u⋆(x) =

uLQR(x), if a⊤uLQR ≥ b,

uLQR(x) + τ W−1a, otherwise, with τ =
b− a⊤uLQR

a⊤W−1a
.

Finally we saturate to the actuator limits umax > 0:

uGT(x) = clip(u⋆(x), −umax, umax) .

D ADDITIONAL ENVIRONMENTAL RESULTS

D.1 VISIUAL TRAJECTORIES

The trajectory demonstrations in Fig. 10 highlight clear behavioral differences across algorithms in
Formation scenario. Our proposed method EPI learns smooth trajectories that avoid obstacles while
consistently reaching the target, demonstrating both constraint satisfaction and goal achievement.
In contrast, EPPO occasionally captures the avoidance behavior but often gets stuck at suboptimal
solutions. This is because during training, its randomized sampling of the auxiliary state z prevents
stable policy convergence in continuous-time settings; even if outer optimization is applied at execu-
tion, the learned policy lacks accurate control signals. On the other hand, MACPO, which enforces
hard constraints via a trust-region style update, tends to overestimate the obstacle region. As a re-
sult, agents often exhibit overly conservative behaviors—such as retreating toward corners to avoid
violations—rather than efficiently pursuing their targets. Together, these comparisons confirm that
EPI achieves the most balanced and effective behavior among the three approaches.

D.2 PERFORMANCE UNDER STOCHASTIC SETTINGS

To evaluate robustness under stochastic dynamics, we perturb the continuous-time transition model
as xt+∆t = f(xt, ut)∆t + εt, εt ∼ N (0, σ2I). in Fig.11. We consider three noise magnitudes:
Low Noise: σ2 = 0.1 Mid Noise: σ2 = 0.5 and High Noise: σ2 = 1.0. We observe that No Noise
and Low Noise yield similar identical cost and constraint-violation behavior across all three tasks.
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(a) EPI-1 (b) EPI-2 (c) EPI-3 (d) EPI-4 (e) EPI-5

(f) EPPO-1 (g) EPPO-2 (h) EPPO-3 (i) EPPO-4 (j) EPPO-5

(k) MACPO-1 (l) MACPO-2 (m) MACPO-3 (n) MACPO-4 (o) MACPO-5

Figure 10: Trajectory demonstrations (key frames) across methods in Formation. Row 1: EPI re-
sults, Row 2: EPPO results, Row 3: MACPO results.
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Figure 11: Performance under Different Noise Levels.

Because the PINN-based value approximation are inherently robust to small local perturbations, as
long as the injected disturbance is within a moderate range, the learned dynamics model, cost model,
and value gradients remain accurate. In contrast, Mid Noise and High Noise introduce much larger
deviations in the state propagation. These disturbances accumulate over time, causing the PINN
to receive significantly deviated training signals. Since our method does not incorporate explicit
uncertainty modeling or stochastic HJB formulations, the serious noise directly degrades the learned
critic and value gradients, eventually leading to unstable or even failed policies.

D.3 EFFECT OF THE DISCRETIZATION INTERVAL.

Figure 12 evaluates how the choice of discretization interval ∆t affects the performance of EPI. For
each fixed ∆t, we roll out complete trajectories using the learned policy and measure the average
distance to the target over the entire trajectory. Across all three scenarios, we observe a consistent
trend: the average distance to the target increases as ∆t becomes larger. This behavior is expected
in continuous-time control. When ∆t is small, the temporal resolution is high and the policy is up-
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Figure 12: Average Distance to the Target under Different ∆t.

dated frequently, allowing the learned value gradients to provide fine-grained control corrections. In
contrast, larger ∆t leads to coarser control updates, reducing the precision of the policy’s response
to the evolving system dynamics. Moreover, both the HJB residual and the VGI update rely on local
differential information. As ∆t grows, the mismatch between the continuous-time formulation and
the discrete rollout increases, which in turn amplifies approximation errors in the learned value gra-
dients. These errors accumulate along the trajectory and result in the observed degradation in task
accuracy.

D.4 TRAJECTORY OF z∗ THROUGH THE TRAINING

Figure 13 illustrates the evolution of the optimal epigraph variable z∗t and the active branch

Figure 13: z∗ Trajectory through the Training in Target.

(return vs. constraint) at three representative stages of training. In early training
(Episode 1000), the policy frequently visits infeasible states, causing Vcons(xt) > 0 and forcing
the epigraph to select the constraint branch; consequently z∗t remains at the clipped upper bound
zmax. By mid training (Episode 12000), the critic starts to maintain Vcons(xt) ≤ 0 for part of the
trajectory, producing intermittent switching and a decreasing z∗t . In late training (Episode 23000),
the trajectory remains feasible, the return branch is consistently selected, and z∗t decreases smoothly
along the rollout. These behaviors align with the expected epigraph semantics: infeasible states
produce zmax, while improved policies yield stable return-dominated gradually decreasing z∗t .
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D.5 COMPARE EPI WITH TRADITIONAL EPIGRAPH METHOD
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Figure 14: Performance of EPI and Traditional Epigraph under MPE settings.

Figure 14 compares our z-independent epigraph formulation (EPI) with the traditional z-dependent
epigraph used in EPPO-like methods on the FORMATION, LINE, and TARGET tasks. In the tradi-
tional design, a scalar z is randomly sampled at the initial state of each episode and then propagated
through its auxiliary dynamics, so that both critic and actor are conditioned on this randomly chosen
epigraph level. As shown in Fig. 14, converges to a lower cumulative reward, and exhibits substan-
tially larger variance across seeds. In contrast, EPI learns z-independent critics

(
V cons(x), V ret(x)

)
and computes z∗ via a one-dimensional search during training, while the actor depends only on the
physical state x. This removes the nonstationary noise introduced by random z sampling: for a fixed
x, the policy gradient under EPI is unique, whereas in the traditional epigraph it fluctuates with the
sampled z even when the critic has already converged. In continuous-time settings this issue is am-
plified, since small changes in z shift the switching time between the constraint and return branches
and thereby alter the entire rollout.

D.6 COMPARISON BETWEEN EPI AND DISCRETE-TIME BASELINES
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Figure 15: Performance of EPI and Discrete-time Baselines under MPE settings.

To validate the performance of traditional discrete-time based methods in continuous-time settings,
the Fig 15 compares EPI with two discrete-time baselines (DT-CBF and DT-MAPPO-LAG) on the
Line and Target tasks in the continuous-time MPE environment. All baselines are adapted to the
discrete-time setting by removing their residual-loss components. Apart from this modification, all
implementation details follow their original published versions (Zhang et al., 2025a). Across both
tasks, EPI consistently achieves lower mean distance to the target and smaller variance, demonstrat-
ing the performance gain from the modules that designed for the continuous-time settings.

E HYPERPARAMETERS AND NEURAL NETWORK STRUCTURES

Experiments were conducted on hardware comprising an Intel(R) Xeon(R) Gold 6254 CPU @
3.10GHz, four NVIDIA A5000 GPUs and eight NVIDIA A6000 GPUs. This setup ensures the
computational efficiency and precision required for the demanding simulations involved in multi-
agent reinforcement learning and safety evaluations.

Table 1 lists the defaults used in all experiments. Episode lengths are chosen so that a single rollout
covers a full interaction cycle (50 steps for MPE and the didactic environment, 100 for MuJoCo).
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Table 1: Hyperparameter settings used.

Parameter Value
Episode length for MPE 50
Episode length for MuJoCo 100
Episode length for Didactic 50
Total number of episode for MPE 30000
Total number of episode for MuJoCo 30000
Total number of episode for Didactic 3000
z range for MPE 0-10
z range for MuJoCo 0-5
z range for Didactic 0-2
Discount factor γ 0.99
Actor learning rate 0.0001
Critic (Return) learning rate 0.001
Critic (Constraint)learning rate 0.001
Dynamics model learning rate 0.001
Reward model learning rate 0.001
Exploration steps 1000
Model save interval 1000
Random seed 113-120

We train for 30000 episodes in MPE and MuJoCo and for 3000 episodes in the didactic setting,
reflecting simulator cost and convergence speed. The z range controls epigraph sampling for the
VGI updates and is set wider in MPE (0–10), moderate in MuJoCo (0–5), and narrow in the didactic
task (0–2). The actor uses a conservative learning rate (1e-4) for stable policy updates; the critics
and the dynamics/reward models use 1e-3 to accelerate value/model fitting. Training is warm-started
with 1000 exploration steps, checkpoints are saved every 1000 episodes, and reported results are
averaged over seeds 113–120.

Table 2: Summary of neural network architectures used in our framework.

Network Input Dimension Architecture and Activation
Return Value Network State (d) FC(128) → FC(128) → FC(1), ReLU or Tanh
Constraint Value Network State (d) FC(128) → FC(128) → FC(1), ReLU or Tanh
Dynamics Network State + Joint Action (d+ na) FC(128) → FC(128) → FC(d), ReLU
Reward Network State + Joint Action (d+ na) FC(128) → FC(128) → FC(1), ReLU
PolicyNet Observation + Time Interval (o+ 1) FC(128) → FC(128) → FC(64) → FC(a), ReLU

Table 2 summarizes the five multilayer perceptrons used in our framework. Two scalar critics
map the state x ∈ Rd to the return value and the constraint value, each with two hidden layers
of width 128 and ReLU or Tanh activations. The dynamics and reward models take the concate-
nated state–action input (x, u) ∈ Rd+na and output, respectively, a d-dimensional state deriva-
tive/increment and a scalar reward; both use two 128-width hidden layers with ReLU. The policy
network consumes the observation o ∈ R o augmented with a scalar time-interval feature ∆t to
condition actions on continuous-time step size, and produces an a-dimensional action through a
128–128–64 hidden stack with ReLU.

Notation: d = state dimension, o = observation dimension, a = per-agent action dimension, n =
number of agents, so the joint action has dimension na. The value heads output scalars; the dynamics
head outputs Rd; the policy head outputs Ra. Action squashing or clipping to environment bounds
(if used) is applied after the final linear layer.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs as a writing assistant to polish the paper.
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