

SAFE CONTINUOUS-TIME MULTI-AGENT REINFORCEMENT LEARNING VIA EPIGRAPH FORM

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Multi-agent reinforcement learning (MARL) has made significant progress in re-
 012 cent years, but most algorithms still rely on a discrete-time Markov Decision Pro-
 013 cess (MDP) with fixed decision intervals. This formulation is often ill-suited
 014 for complex multi-agent dynamics, particularly in high-frequency or irregular
 015 time-interval settings, leading to degraded performance and motivating the de-
 016 velopment of continuous-time MARL (CT-MARL). Existing CT-MARL methods
 017 are mainly built on Hamilton–Jacobi–Bellman (HJB) equations. However, they
 018 rarely account for safety constraints such as collision penalties, since these intro-
 019 duce discontinuities that make HJB-based learning difficult. To address this chal-
 020 lenge, we propose a continuous-time constrained MDP (CT-CMDP) formulation
 021 and a novel MARL framework that transforms discrete MDPs into CT-CMDPs
 022 via an epigraph-based reformulation. We then solve this by proposing a novel
 023 [Physics-Informed Neural Network \(PINN\)](#)-based actor–critic method that enables
 024 stable and efficient optimization in continuous time. We evaluate our approach
 025 on continuous-time safe multi-particle environments (MPE) and safe multi-agent
 026 MuJoCo benchmarks. Results demonstrate smoother value approximations, more
 027 stable training, and improved performance over safe MARL baselines, validating
 028 the effectiveness and robustness of our method.

1 INTRODUCTION

031 MARL has achieved remarkable success in diverse domains, ranging from strategic games
 032 (Samvelyan et al., 2019; Vinyals et al., 2019a;b), multi-robot coordination (Haydari & Yilmaz, 2020;
 033 Kuyer et al., 2008), and wireless communication (Wang et al., 2023). These advances demonstrate
 034 the potential of MARL as a powerful framework for solving complex cooperative and competitive
 035 decision-making problems. Despite these successes, most existing MARL algorithms are formulated
 036 in discrete time and fundamentally rely on the Bellman equation (Bellman, 1966). This formulation
 037 often assumes fixed time intervals between decision steps, which is adequate in settings where the
 038 decisions naturally occur at uniform time intervals. However, this assumption is not well-suited
 039 for complex high-frequency domains such as autonomous driving (Kiran et al., 2021; Chen et al.,
 040 2021), financial trading (Shavandi & Khedmati, 2022), where decision-making requires continuous-
 041 time control. In such cases, discrete-time RL often struggles to provide accurate policy (Doya,
 042 2000b; Mukherjee & Liu, 2023), as fixed-step discretization fails to represent non-uniform temporal
 043 dynamics, resulting in degraded performance and unstable learning (Tallec et al., 2019b; Park et al.,
 044 2021b; De Asis & Sutton, 2024b). These limitations highlight the necessity of developing an alter-
 045 native framework beyond discrete-time Bellman equations, which is compatible with CT-MARL.

046 Recent studies (Wang et al., 2025) have explored the HJB equations to solve CT-MARL problems.
 047 The HJB can be viewed as the continuous-time analogue of the Bellman recursion, where the value
 048 function is characterized as the viscosity solution of a nonlinear [Partial Differential Equation \(PDE\)](#)
 049 (Shilova et al., 2024). In practice, PINNs have emerged as a common approach to approximate
 050 HJB solutions: they train neural networks to minimize HJB PDE residuals and leverage gradient-
 051 consistent signals for policy improvement (Mukherjee & Liu, 2023; Meng et al., 2024). This formu-
 052 lation eliminates the need for fixed time discretization and enables MARL to operate in continuous-
 053 time domains. However, in safety CT-MARL settings, state constraints (e.g., when they are treated
 as collision penalties) introduce value discontinuities, making it difficult for HJB-based PINNs to
 054 approximate the value functions accurately (Zhang et al., 2024).

To address these challenges, we first cast safe CT-MARL as a CT-CMDP with explicit state constraints. We then introduce a revised epigraph reformulation that augments the system with an auxiliary state z , transforming the discontinuous constrained values into a continuous form suitable for PDE-based learning. On top of this reformulation, we adopt an actor-critic framework to learn values and policies under continuous-time state constraints. Specifically, we improve epigraph-based training by integrating the inner and outer optimization into a unified scheme. At each rollout, we compute the optimal auxiliary state z^* and uses it directly for training, while keeping all networks z -independent. This design avoids the noise of random z sampling, yields more accurate policy updates, and eliminates costly root-finding at execution.

Our main contributions are summarized as follows: **(1)** To the best of our knowledge, this is the first work to explicitly incorporate state constraints into the formulation of CT-MARL. We introduce an epigraph-based reformulation to bounds **discounted cumulative cost** and state constraints within a unified objective, effectively transforming discontinuous values into continuous ones. **(2)** We design an improved epigraph training scheme that integrates inner and outer optimization, providing more stable learning signals and removing the need for costly root-finding algorithms. **(3)** We prove the existence and uniqueness of viscosity solutions for epigraph-based HJB PDEs, providing theoretical support for our method. Extensive experiments on adapted continuous-time safe MPE and multi-agent MuJoCo benchmarks further demonstrate that our approach consistently outperforms current safe MARL methods.

2 RELATED WORK

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

Discrete-time reinforcement learning (DTRL) often performs poorly in continuous-time environments, particularly when decision intervals are irregular (Tallec et al., 2019a; Park et al., 2021a; De Asis & Sutton, 2024a). Consequently, continuous-time reinforcement learning (CTRL) has received growing attention as a more suitable framework for such problems (Doya, 2000a; Yildiz et al., 2021; Wang et al., 2020; Bradtke & Duff, 1994; Jia & Zhou, 2022a;b). Most existing studies focus on the single-agent setting, proposing various approaches for value function approximation (Mukherjee & Liu, 2023; Wallace & Si, 2023; Lee & Sutton, 2021). For example, Mukherjee & Liu (2023) employ PINNs to approximate the value function and guide a PPO-based policy update, while Jia & Zhou (2022b) address stochastic dynamics through a Martingale loss designed for stochastic differential equations. In contrast, research on CT-MARL remains limited. Prior works (Luviano & Yu, 2017; Jiang et al., 2023) have considered multi-agent problems in continuous time, but largely in application-specific contexts rather than as general-purpose algorithms. The study in Wang et al. (2025) represents the first systematic attempt to design CT-MARL methods, combining PINNs with value gradient iteration to improve value approximation and performance. However, these approaches still inherit the limitations of PINNs that they can only approximate smooth value functions and therefore neglect safety constraints.

2.2 MULTI-AGENT SYSTEMS WITH SAFETY CONCERN

Multi-agent scenarios often raise critical safety concerns, and directly learning under combined reward and safety signals poses significant challenges. A number of studies have explored safe MARL frameworks to address these issues (Gu et al., 2023b; ElSayed-Aly et al., 2021; Gu et al., 2024; Shalev-Shwartz et al., 2016). For instance, Chow et al. (2018) employ primal-dual methods to enforce safety constraints, while Althoff et al. (2019) adopt a trust-region approach. Gu et al. (2021) introduce MACPO and MAPPO-Lagrange, which provide theoretical guarantees for both monotonic reward improvement and safety constraint satisfaction. In addition, Zhang et al. (2025b) leverage epigraph forms to formulate multi-agent safe optimal control problems, improving stability during training. However, these approaches are primarily developed in discrete-time settings, which limits their ability to capture continuous-time dynamics. Some efforts have incorporated safety into continuous-time multi-agent systems (e.g., Tayal et al. (2025)), but they assume fully known system dynamics and rely on optimal control algorithms, significantly restricting applicability. In more realistic scenarios, where dynamics are only partially known or highly complex, such methods fail to provide practical solutions.

108 Existing methods remain limited in handling discontinuities and safety constraints in CT-MARL.
 109 Discrete-time safe MARL algorithms provide theoretical guarantees but do not naturally extend to
 110 continuous dynamics, while continuous-time approaches struggle with discontinuous value func-
 111 tions. To address these challenges, we propose an epigraph-based reformulation that unifies safety
 112 constraints and standard cost functions within a single objective, enabling principled and stable
 113 learning in CT-MARL.

114

115

3 METHODOLOGY

116

117

In this section, we present our epigraph-based PINN actor-critic iteration (EPI) for solving CT-
 118 MARL with state constraints. **1) We first formalize the learning problem as CT-CMDP.** Sec-
 119 **2) we reformulate the CT-CMDP using an epigraph form.** By introducing an auxiliary
 120 state z to augment system states, this reformulation converts discontinuous value functions into con-
 121 tinuous ones. Building on this reformulation, **3) we develop an actor-critic learning architecture**
 122 **that aligns with the epigraph inner-outer optimization scheme.** Specifically, the outer optimiza-
 123 tion computes the optimal auxiliary state z^* along the rollout, ensuring that the critic captures the
 124 tightest feasible trade-off between return and safety. Based on this, the inner optimization trains
 125 the critic using PINNs, which jointly update the return and constraint networks together with z^* to
 126 approximate the epigraph-based value function. This stabilized critic then serves as the foundation
 127 for actor training: we derive an advantage function consistent with the epigraph-based HJB PDEs,
 128 which provides the key learning signal for policy improvement.

129

130

3.1 PROBLEM FORMULATION

131

132

3.1.1 CONTINUOUS-TIME CONSTRAINED MARKOV DECISION PROCESS

133

134

We consider a CT-CMDP problem, formally defined by the tuple

135

136

$$\mathcal{M} = \langle \mathcal{X}, \{\mathcal{U}_i\}_{i=1}^N, N, f, \{l_i\}_{i=1}^N, c, \{t_k\}_{k \geq 0}, \gamma \rangle, \quad (1)$$

137

where $\mathcal{X} \subseteq \mathbb{R}^n$ is the global state space, and $\mathcal{U} = \mathcal{U}_1 \times \dots \times \mathcal{U}_N \subseteq \mathbb{R}^m$ is the joint control
 138 space for N agents. The system evolves according to time-invariant nonlinear dynamics $\dot{x}(t) =$
 139 $f(x(t), u(t))$ with $x(0) = x_0$, where $f : \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{X}$. Each agent i applies a decentralized policy
 140 $\pi_i : \mathcal{X} \times [0, \infty) \rightarrow \mathcal{U}_i$, and the joint policy is denoted as $\pi = (\pi_1, \dots, \pi_N)$. All agents share the
 141 non-negative cost function $l = \sum_{i=1}^N l_i$, where $l_i : \mathcal{X} \times \mathcal{U}_i \rightarrow \mathbb{R}$ is the independent cost function of
 142 agent i . The system is further subject to state-dependent safety constraints specified by a function
 143 $c : \mathcal{X} \rightarrow \mathbb{R}$, with the feasible set defined as $\mathcal{F} = \{x \in \mathcal{X} \mid c(x) \leq 0\}$. Control actions are updated
 144 at irregular decision times $\{t_k\}_{k \geq 0}$, with strictly positive intervals $\tau_k = t_{k+1} - t_k$. $\gamma \in (0, 1]$ is
 145 the discount factor. Throughout the paper, we assume that \mathcal{U}_i is compact and convex, f and c are
 146 Lipschitz continuous, and l_i is Lipschitz continuous and bounded. The joint objective is to minimize
 147 the cumulative cost under joint control input $u = (u_1, \dots, u_N)$ subject to state constraints $c(x)$:

148

149

150

151

$$\begin{aligned} v(x) &= \min_{u \in \mathcal{U}} \int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau \\ \text{s.t. } & c(x(\tau)) \leq 0, \quad \forall \tau \geq t. \end{aligned} \quad (2)$$

152

153

3.1.2 EPIGRAPH REFORMULATION

154

155

156

The value becomes discontinuous (Altarovici et al., 2013) when state constraints are violated in
 157 Eq. 2, which hinders the convergence of HJB-based PINN training. To address this, we leverage an
 158 epigraph reformulation that converts value in Eq. 2 into a continuous representation.

159

160

Definition 1 (Epigraph Reformulation). We introduce an auxiliary state variable $z(t) \in \mathbb{R}$ to refor-
 161 mulate Eq. 2 using the epigraph forms. Here, z follows the dynamic $\dot{z}(t) = -l(x(t), u(t)) - \ln \gamma \cdot$
 $z(t)$. Therefore, the auxiliary value function is defined as

162

163

$$V(x, z) = \min_{u \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, \infty]} c(x(\tau)), \int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z \right\}, \quad (3)$$

162 **Lemma 3.1** (Value Equivalence). Suppose the assumptions in Sec. 3.1.1 hold. For all $(t, x, z) \in$
 163 $[0, \infty) \times \mathcal{X} \times \mathbb{R}$, the constrained value v and auxiliary value V are related by
 164

$$165 \quad v(x) = \min\{z \in \mathbb{R} \mid V(x, z) \leq 0\}. \quad (4)$$

166 Here, the sub-zero level set of auxiliary value V becomes the epigraph of the constrained value v .
 167 The proof is listed at Appendix A.1.

168 **Lemma 3.2** (Optimality Condition). For all $(t, x, z) \in [0, \infty) \times \mathcal{X} \times \mathbb{R}$, consider a small enough
 169 $h > 0$, the auxiliary value function V satisfies
 170

$$171 \quad V(x, z) = \min_{u \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \gamma^h V(x(t+h), z(t+h)) \right\}. \quad (5)$$

174 The proof is listed at Appendix A.2.

175 **Theorem 3.3** (Epigraph-based HJB PDE). Let $V : \mathcal{X} \times \mathbb{R} \rightarrow \mathbb{R}$ be the auxiliary value function
 176 defined in Eq. 3. Then V is the unique viscosity solution of the following HJB PDE for all $(t, x, z) \in$
 177 $[0, \infty) \times \mathcal{X} \times \mathbb{R}$.

$$178 \quad \max \left\{ \max_{\tau \in [t, \infty]} c(x) - V(x, z), \min_{u \in \mathcal{U}} \mathcal{H}(x, z, \nabla_x V, \partial_z V) \right\} = 0, \quad (6)$$

181 where $\mathcal{H}(x, z, \nabla_x V, \partial_z V)$ is Hamiltonian and satisfies $\mathcal{H} = \nabla_x V \cdot f(x, u) - \partial_z V \cdot l(x, u) + \ln \gamma \cdot V$
 182 and optimal control $u^* = \arg \min_{u \in \mathcal{U}} \mathcal{H}$. The derivation proof is provided in Appendix A.3.

3.2 EPIGRAPH LEARNING FRAMEWORK

196 Figure 1: Overview of the proposed epigraph-based CT-MARL framework. The pipeline begins
 197 with data collection, where individual agent rollouts are aggregated into a centralized rollout \mathcal{X}_R
 198 for the training; the outer optimization computes optimal z^* to balance **discounted cumulative cost**
 199 and safety constraints; the inner optimization corresponds to critic learning, where return networks
 200 $V_\psi^{\text{ret}}(x)$ and constraint value networks $V_\phi^{\text{cons}}(x)$ are optimized jointly with the optimal auxiliary state
 201 z^* ; and actor learning leverages the advantage function to improve policies.

202 As illustrated in Fig. 1, our framework integrates the epigraph-based inner-outer optimization
 203 (Zhang et al., 2025b) into the actor-critic paradigm. The outer loop updates z^* along the rollout
 204 by solving Eq. 7, ensuring that the critic is trained with the minimal z that simultaneously satisfies
 205 both costs and safety constraints.

$$206 \quad \min_{z \in \mathbb{R}} z \quad \text{s.t.} \quad \min_{\pi} \max \left\{ \sup_{\tau \geq t} c(x(\tau)), \int_t^\infty \gamma^{\tau-t} l(x(\tau), \pi(\tau)) d\tau - z \right\} \leq 0. \quad (7)$$

209 In the inner loop, the critic is trained as follows: the return and constraint value networks ($V_\psi^{\text{ret}}(x)$
 210 and $V_\phi^{\text{cons}}(x)$) are optimized using z^* to approximate the auxiliary value function $\tilde{V}(x, z^*)$. This
 211 stabilized critic subsequently supplies the learning signals for decentralized actors, which map lo-
 212 cal observations to continuous-time policies under the standard centralized training decentralized
 213 execution setup (Foerster et al., 2018; Lowe et al., 2017). We next describe the revised outer opti-
 214 mization in detail, focusing on solving the optimal auxiliary state z^* that trades off discounted cost
 215 against safety violations without costly root-finding algorithms (So & Fan, 2023; So et al., 2024;
 Zhang et al., 2025b).

216 3.2.1 REVISED OUTER OPTIMIZATION
217

218 We seek the minimal z such that the epigraph-based value V remains non-positive, as defined in
219 Eq. 4. Using the return and constraint value network learned by the critic, the optimal auxiliary state
220 z^* can be found by solving for the minimal feasible solution:

$$221 z^* = \min \left\{ z \in \mathbb{R} \mid \max \{ V_\phi^{\text{cons}}(x), V_\psi^{\text{ret}}(x) - z \} \leq 0 \right\}, \quad (8)$$

223 where return value network $V_\psi^{\text{ret}}(x)$ that approximates the discounted cumulative cost
224 $\int_t^\infty \gamma^{\tau-t} l(x(\tau), \pi(\tau)) d\tau$, and constraint value network $V_\phi^{\text{cons}}(x)$ represents the violation for worst-
225 case future constraints $\sup_{\tau \geq t} c(x(\tau))$.

226 In previous epigraph formulations (Tayal et al., 2025; Zhang et al., 2025b), the outer problem is
227 solved during the execution phase: z is sampled along the rollouts during training, and z^* is computed
228 at execution time via root-finding (Stoer et al., 1980). This design has two drawbacks in
229 CT-MARL: (1) the random sampling of z introduces nonstationary noise that destabilizes the
230 updates of actor and critic and further leads to poor convergence; (2) at execution, root-finding must be
231 performed at every step, which is computationally expensive and often incompatible with real-time
232 requirements. In contrast, we design the return and constraint value networks as functions of the
233 states x solely. We then integrate the outer optimization into actor-critic training: for each episode,
234 z^* is computed using the current learned value \tilde{V} along the predicted rollout. The actor is then
235 trained against a z -independent critic, producing a z -independent policy $\pi(x)$. This design ensures
236 stable actor training, and enables real-time deployment by eliminating the need for root-finding
237 during execution. Since the critic’s value networks are z -independent, the outer optimization is
238 simplified to a scalar search for z^* , which adds negligible cost to model training.

239 3.2.2 INNER OPTIMIZATION WITH CRITIC LEARNING
240

241 The inner optimization is responsible for updating the PINN-based critic networks. Given a task-
242 dependent range $[z_{\min}, z_{\max}]$, the outer optimization computes z^* , which is then clipped to this
243 range (i.e., $z^* \leftarrow \min \{ \max \{ z^*, z_{\min} \}, z_{\max} \}$) before being used to train the critic module. The
244 critic consists of two value networks: a return value network $V_\psi^{\text{ret}}(x)$, and a constraint value network
245 $V_\phi^{\text{cons}}(x)$. Together with the computed z^* from Eq. 8, these define the composite epigraph-based
246 value function:

$$247 \tilde{V}(x, z^*) = \max \left\{ V_\phi^{\text{cons}}(x), V_\psi^{\text{ret}}(x) - z^* \right\}. \quad (9)$$

248 To ensure stable and accurate training, we employ three complementary losses:

249 **(i) Residual Loss.** We use PINN architecture (Mukherjee & Liu, 2023) to approximate the value
250 function governed by epigraph-based HJB PDEs, and introduce a residual loss that penalizes violations
251 of the corresponding PDEs:

$$253 \mathcal{L}_{\text{Residual}} = \left(\max \left\{ c(x) - \tilde{V}, \min_{u \in \mathcal{U}} [\nabla_x \tilde{V} \cdot f(x, u) - \partial_z \tilde{V} \cdot l(x, u) + \ln \gamma \cdot \tilde{V}] \right\} \right)^2. \quad (10)$$

255 **(ii) Target Loss.** In standard PINNs, a boundary loss is combined with the PDE residual to ap-
256 proximate PDE solutions (Cai et al., 2021; Raissi et al., 2019). In the infinite-horizon setting,
257 however, no boundary condition is available, and training the critic only on residuals is insuffi-
258 cient: optimization may converge, but to incorrect PDE solutions (Wang et al., 2022). To address
259 this, we add a rollout-based *target loss* that measures the discrepancy between the epigraph-based
260 value approximation with a numerical target defined by Eq. 3. For each episode, the current value
261 \tilde{V} generates a closed-loop trajectory $\{x(\tau), u(\tau)\}_{\tau=t}^\infty$; from this trajectory we construct the tar-
262 get $V_{\text{tgt}}(x, z) = \max \{ \max_{\tau \in [t, \infty)} c(x(\tau)), \int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z^* \}$ and minimize the
263 squared error:

$$264 \mathcal{L}_{\text{Target}} = \left(V_{\text{tgt}}(x, z^*) - \max \{ V_\phi^{\text{cons}}(x), V_\psi^{\text{ret}}(x) - z^* \} \right)^2. \quad (11)$$

266 **(iii) Value Gradient Iterations.** Standard PINN training in multi-agent settings often struggles to
267 approximate accurate value functions, primarily because the learned value gradients are inaccurate
268 or unstable (Wang et al., 2025; Zhang et al., 2024). The VGI techniques (Eberhard et al., 2024;
269 Wang et al., 2025) are designed to enhance the quality of learned value gradients. In our frame-
270 work, accurate gradients $\nabla_x V(x)$ are crucial for precise value approximations, which in turn affect

270 actor learning and ultimately determine the quality of the resulting policies. To establish the theoretical basis of this module, we follow Theorem 3.4 in Bokanowski et al. (2021) and Theorem 2
 271 in Hermosilla & Zidani (2023):
 272

$$273 \nabla_x \tilde{V}(x_t) = \nabla_x(\chi(x_t)l(x_t, u_t) + (1 - \chi(x_t))c(x_t))\Delta t + \gamma^{\Delta t} \nabla_x \tilde{V}(x_{t+\Delta t}) \cdot \nabla_x f(x_t, u_t), \quad (12)$$

274 where the $\chi(x_t) := \mathbf{1}\{V_\psi^{\text{ret}}(x_t) - z_t \geq V_\phi^{\text{cons}}(x_t)\}$. As shown in Eq. 12, the value gradient
 275 satisfies a recursive relation coupling the local cost gradient with the backpropagated dynamics term.
 276 The overall critic objective is a weighted sum of the three losses as:
 277

$$278 \mathcal{L}_{\text{Critic}} = \lambda_{\text{res}} \mathcal{L}_{\text{Residual}} + \lambda_{\text{tgt}} \mathcal{L}_{\text{Target}} + \lambda_{\text{vgi}} \mathcal{L}_{\text{VGI}}, \quad (13)$$

280 where the weights $(\lambda_{\text{res}}, \lambda_{\text{tgt}}, \lambda_{\text{vgi}})$ are selected to keep the losses on comparable scales and are
 281 determined via grid search.

282 3.2.3 ACTOR LEARNING

284 After introducing the inner-outer optimization for critic learning, we turn to the actor learning. We
 285 first define the epigraph-based Q-function, which is used for deriving policy update rules.

286 **Definition 2** (Epigraph-based Q-function). Following the definition in (So & Fan, 2023), for any
 287 state-action pair (x_t, u_t) and auxiliary state z_t , the epigraph-based Q-function is defined
 288

$$289 Q(x_t, z_t^*, u_t) = \max \left\{ c(x_t), \gamma^h V(x_{t+h}, z_{t+h}^*) \right\}. \quad (14)$$

291 where x_{t+h} and z_{t+h}^* are the states and optimal auxiliary state at $t+h$, respectively. h is a short
 292 time interval.

293 **Lemma 3.4** (Epigraph-based advantage function). The epigraph-based advantage function

$$294 A(x_t, z_t^*, u_t) = Q(x_t, z_t^*, u_t) - V(x_t, z_t^*) \quad (15)$$

296 is equivalent to epigraph-based HJB PDE when $h \rightarrow 0$

$$297 A(x_t, z_t^*, u_t) = \max \{c(x_t) - V(x_t, z_t^*), \nabla_x V \cdot f(x_t, u_t) - \partial_z V \cdot l(x_t, u_t) + \ln \gamma \cdot V\}. \quad (16)$$

299 In practice, evaluating the epigraph-based advantage in Eq. 16 requires knowledge of the true dynamics
 300 $f(x, u)$ and cost function $l(x, u)$. Since these quantities are generally unknown in model-free
 301 reinforcement learning, we replace them with neural networks that are jointly trained alongside the
 302 actor. The derivation of the epigraph-based advantage function is listed at Appendix A.4.

303 **Dynamics and Cost Networks.** To assist with the policy training, we employ two neural networks:
 304 a dynamics network $f_\xi(x, u, \Delta_t)$ that predicts the next state x' given the current state-action pair,
 305 and a cost network $l_\phi(x, u, \Delta_t)$ that estimates the instantaneous stage cost. Both models are trained
 306 via supervised regression using observed transitions (x, u, x', l) from the environment. Specifically,
 307 the training losses are

$$308 \mathcal{L}_{\text{dyn}}(\xi) = \|f_\xi(x, u, \Delta_t) - x'\|^2, \quad \mathcal{L}_{\text{rew}}(\phi) = (l_\phi(x, u, \Delta_t) - l(x, u))^2, \quad (17)$$

310 where x' is the observed next state and $l(x, u)$ is the empirical cost signal. Equivalently, the
 311 dynamics learning can be interpreted as approximating the continuous-time derivative dynamics
 312 $(f_\xi(x, u, \Delta_t) - x)/\Delta t$.

313 **Actor Update with Learned Models.** By substituting $\tilde{V}(x, z^*)$, f_ξ and l_ϕ into the epigraph advan-
 314 tage expression Eq. 16, we obtain a differentiable surrogate
 315

$$316 A_\theta(x, z^*, u) = \max \{c(x) - \tilde{V}, \nabla_x \tilde{V} \cdot f_\xi - \partial_z \tilde{V} \cdot l_\phi + \ln \gamma \cdot \tilde{V}\}. \quad (18)$$

317 The actor $\pi_\theta(u | x)$ is updated by minimizing the expected surrogate advantage:
 318

$$319 \mathcal{L}_{\text{actor}}(\theta) = \mathbb{E}_{x \sim \mathcal{X}_R, u \sim \pi_\theta(\cdot | x)} [A_\theta(x, z^*, u)], \quad (19)$$

320 where \mathcal{X}_R is the sampled data along the rollout.
 321

322 Specifically, we adopt a centralized-training decentralized-execution structure: each agent's actor
 323 $\pi_i(o_i, \Delta t)$ takes its local observation o_i as input, while the training signal is derived from the state
 324 x . The overall training pipeline is summarized in Algorithm 1 in Appendix.

341 Figure 2: Overall results for adapted multi-agent MuJoCo environments.
342
343

4 EXPERIMENTAL RESULTS

346 We organize our empirical study around the following research questions: **Q1**. How well does our
347 method balance **discounted cumulative cost** and constraint satisfaction compared to state-of-the-
348 art baselines? **Q2**. How does the different loss component in critic learning contribute to stable
349 training and accurate value approximations? **Q3**. How does performance change when training with
350 versus without the epigraph reformulation? **Q4**. How sensitive is the epigraph formulation to the
351 choice of the auxiliary variable z during training? **Q5**. How robust is the method under stochastic
352 disturbances, and how does performance degrade under model-mismatch noise? **Q6**. How does the
353 performance change under different discretization resolutions Δt ?

4.1 BENCHMARKS AND BASELINES.

354 To evaluate our approach under continuous-time environments with safety constraints, we con-
355 sider two adapted benchmarks: the safe continuous-time MPE (Lowe et al., 2017; Wang et al.,
356 2025) and continuous-time Safe MA-MuJoCo (Gu et al., 2023a; Wang et al., 2025). In MPE,
357 we design several scenarios including *Corridor*, *Formation*, *Line*, *Target*, *Simple Spread*, and
358 *Cooperative Predator–Prey*. These tasks typically place agents in environments with ob-
359 stacles and require them to avoid both collisions with obstacles and collisions with other agents
360 while navigating or pursuing their objectives. In MuJoCo, we adapt several scenarios such as
361 Half Cheetah and Ant into continuous-time versions and introduce randomly placed walls as ob-
362 stacles. The agents must coordinate to move forward efficiently while avoiding crashing into
363 walls, ensuring that the learned policies account for both locomotion and safety considera-
364 tions. Lastly, we design a di-
365 dactic example based on a
366 constrained coupled oscillator,
367 which admits an analytical
368 ground-truth solution for
369 both value functions and ac-
370 tions. This example provides
371 a transparent testbed to di-
372 rectly validate the correctness
373 of our learned critics against
374 exact solutions. Full details
375 of the agent setups, metrics,
376 state and action spaces, and
377 cost specifications are provided in the Appendix C.

378 Figure 3: Performance of constraints and cost over MuJoCo settings.
379
380

378 We compare our approach EPI with MACPO (Gu et al., 2021), MAPPO-Lag (Gu et al., 2021), SAC-
 379 Lag (Haarnoja et al., 2018), EPPO (Zhang et al., 2025b) and CBF (Zhang et al., 2025a). The first
 380 three represent the most widely used families of safe MARL algorithms: trust-region based methods
 381 (MACPO) and Lagrangian based methods (MAPPO-Lag, SAC-Lag), covering both on-policy and
 382 off-policy learning. We also include EPPO as an epigraph-based baseline that follows the traditional
 383 epigraph optimization framework. We additionally include a control barrier function (CBF) baseline,
 384 which enforces safety through model-based barrier certificates and is commonly used in safe
 385 multi-agent control. Although these algorithms were originally developed in the discrete-time setting, we
 386 adapt them to continuous time by equipping their critics with the same PDE residual loss used in
 387 our method. Since the performance gap between discrete-time and continuous-time algorithms has
 388 already been well studied (Tallec et al., 2019a; De Asis & Sutton, 2024a), our baselines focus only
 389 on isolating the effect of different safety mechanisms (trust-region, Lagrangian, or epigraph).
 390

4.2 RESULTS ANALYSIS

392 In this section, we present a systematic analysis of the results, addressing each research question in
 393 turn. **Q1.** Our method consistently outperforms all baselines across both adapted MPE and MuJoCo
 394 environments in Fig. 2 and Fig. 4. We adopt the same reward design commonly used in prior safe
 395 MARL works such as MACPO (Gu et al., 2021). Specifically, the reward is the combination of the
 396 environment-provided task cost (e.g., distance to the target in MPE) and the environment-provided
 397 safety penalty (e.g., collision penalty between agents or with obstacles), as detailed in Appendix C,
 398 which directly reflects performance under both objectives. In Fig. 6, each point corresponds to the
 399 average performance of one algorithm, with horizontal and vertical bars denoting standard deviations.
 400 Since the goal is to minimize both cost and constraint violations, the lower-left corner of each
 401 panel represents the desirable region. These results show that our algorithm EPI achieves nearly the
 402 lowest cost and constraint violation in every scenarios. Specifically, EPPO often remains stuck at
 403 suboptimal solutions because it randomly samples the auxiliary state z instead of using z^* for model
 404 training, introducing noise that disrupts policy updates and prevents stable convergence.
 405

424 Figure 4: Overall results for adapted MPE environments.
 425

426 MACPO enforces constraints through a hard trust-region style update, which yields strong violation
 427 rejection but tends to be overly conservative. SAC-Lag and MAPPO-Lag rely on Lagrangian
 428 relaxation, which is known to suffer from instability when balancing objectives under tight safety
 429 requirements (Zhang et al., 2025b). CBF achieves reasonable constraint-violation levels but tends
 430 to be conservative. The CBF condition relies on the gradient of a learned barrier function $\nabla B(x)$,
 431 approximation errors in this component can distort the effective safe set and degrade the overall
 432 performance.
 433

Figure 5: Ablation study of different loss terms in critic network over MPE.

Q2. The ablation results in Fig. 5 clearly demonstrate the importance of each loss component in critic learning. It presents the cumulative reward performance of our full method compared with its ablation variants across representative continuous-time MPE tasks.

Figure 6: Performance of constraints and cost over MPE settings.

Removing the target loss or the VGI loss significantly degrades performance, whereas removing the residual loss has only a minor effect. This difference stems from the fact that, unlike existing HJ-based PINN methods (Zhang et al., 2024; Tayal et al., 2025; Cai et al., 2021) that address finite-horizon problems with boundary conditions, our framework targets the infinite-horizon setting where no such boundary conditions are available. In this case, the target loss serves as an anchor to stabilize value approximations, ensuring that value function $V(x)$ does not drift arbitrarily, while the VGI loss enforces consistency of the learned value gradients, which are crucial for both accurate value approximations and policy improvement. In contrast, the HJB residual loss mainly regularizes the PDE structure, but its role becomes less critical once the value gradients are optimized by VGI. As a result, the removal of VGI has a severe impact, since inaccurate value gradients directly harm both critic accuracy and actor updates, while the residual loss contributes less critically to overall training stability.

The grouped bars in Fig. 7 report the average distance to the target (lower is better) for three MPE tasks—Formation, Line, and Target—under different loss weightings. The balanced setting (EPI) attains the smallest distance in all tasks and shows the tightest variability. Over-emphasizing any single component degrades performance: increasing the target loss weight is particularly harmful on Line (large increase in distance), while overweighting ($\times 20$) the residual or the VGI loss also worsens results relative to EPI, though to a lesser extent. These ablations support using the balanced weighting adopted by EPI.

Q3. We generate one trajectory using EPI and collect the visited states. On these same states, we compare the value and policy from three methods: EPI, Ground Truth via the LQR method (details in the Appendix C), and an ablation without the epigraph reformulation, where the state constraint is

Figure 7: Weighted loss performance.

treated as a collision penalty added to the cost function l , making the value function discontinuous. For Ground Truth, the value is computed as the discounted cumulative cost. While for the EPI and ablation without the epigraph form, the value is predicted through the trained value network.

EPI closely tracks the Ground Truth in both value and actions for both agents, indicating accurate value approximation and stable control policies. In contrast, the ablation without the epigraph form exhibits severely mis-scaled value

predictions (we plot it after a $\times \frac{1}{20}$ scaling to share the same y-axis) and noticeably unstable actions, which in practice are more likely to violate constraints because the discontinuous value function is not addressed by the epigraph form. The poor performance of the ablation without epigraph stems from the discontinuity of the value function when state constraints are directly encoded as hard penalties. Such discontinuities are notoriously difficult to approximate with neural networks, leading to severely mis-scaled value predictions and unstable gradients for policy updates. By contrast, the epigraph reformulation converts the discontinuous penalty into a continuous and smooth upper-bound optimization, which stabilizes critic learning and yields reliable policies.

Q4. To better understand how model performance depends on z , we test two MPE tasks (Formation and Line) under different values of z . Specifically, we train the EPI model with $z \in \{z^* - 0.5z_{\max}, z^* - 0.2z_{\max}, z^*, z^* + 0.2z_{\max}, z^* + 0.5z_{\max}\}$. Fig. 9 reports the results, where the x -axis indicates cost and the y -axis denotes the constraint violation rate. Compared with the optimal auxiliary state z^* , using a suboptimal z shifts the trade-off between cost and constraint satisfaction, often resulting in either much higher violation rates or larger costs. Specifically, a smaller z (e.g., $z^* - 0.2z_{\max}, z^* - 0.5z_{\max}$) significantly increases the violation rate while only slightly reducing cost. Getting back to the epigraph form $\max\{V_\phi^{\text{cons}}(x), V_\psi^{\text{ret}}(x, z) - z\}$, a smaller z makes $V^{\text{ret}}(x, z) - z$ larger than $V_\phi^{\text{cons}}(x)$, so the return term dominates in the epigraph form. As a result, the optimization prioritizes reward improvement while neglecting constraint satisfaction, leading to frequent violations. In contrast, when z is larger than z^* (e.g., $z^* + 0.2z_{\max}, z^* + 0.5z_{\max}$), the term $V^{\text{ret}}(x, z) - z$ becomes smaller than $V_\phi^{\text{cons}}(x)$, making constraint value dominate in the epigraph form. This forces the critic and actor to emphasize constraint satisfaction, which reduces violations but increases cost.

Figure 8: Performance with and without epigraph reformulation.

Figure 9: Sensitivity test of different z choices.

5 CONCLUSION

In this paper, we propose an epigraph-based framework for CT-MARL that addresses the challenges of balancing reward maximization with constraint satisfaction. By reformulating the problem through the epigraph forms, we introduced an inner–outer optimization procedure that enables stable critic learning and effective policy updates. Our design further integrates different losses in critic learning, including target, residual, and VGI losses, to anchor value approximations and improve gradient accuracy in the infinite-horizon setting. Through extensive experiments in both adapted MPE and MuJoCo benchmarks, we demonstrated that our method consistently outperforms state-of-the-art baselines in terms of both cost reduction and constraint satisfaction.

540
541 ETHICS STATEMENT542
543 This work focuses on decision-making for the continuous-time constrained MDP problems. All
544 experiments are conducted entirely in simulation and do not involve human subjects or personal
545 data.546
547 REFERENCES548
549 Albert Altarovici, Olivier Bokanowski, and Hasnaa Zidani. A general hamilton-jacobi framework
550 for non-linear state-constrained control problems. *ESAIM: Control, Optimisation and Calculus
of Variations*, 19(2):337–357, 2013.551
552 Matthias Althoff, Andrea Giusti, Stefan B Liu, and Aaron Pereira. Effortless creation of safe
553 robots from modules through self-programming and self-verification. *Science Robotics*, 4(31):
554 eaaw1924, 2019.555
556 Richard Bellman. Dynamic programming. *science*, 153(3731):34–37, 1966.557
558 Olivier Bokanowski, Anya Désilles, and Hasnaa Zidani. Relationship between maximum principle
559 and dynamic programming in presence of intermediate and final state constraints. *ESAIM:
Control, Optimisation and Calculus of Variations*, 27:91, 2021.560
561 Steven Bradtke and Michael Duff. Reinforcement learning methods for continuous-time markov
562 decision problems. *Advances in neural information processing systems*, 7, 1994.563
564 Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
565 informed neural networks (pinns) for fluid mechanics: A review. *Acta Mechanica Sinica*, 37(12):
566 1727–1738, 2021.567
568 Jianyu Chen, Shengbo Eben Li, and Masayoshi Tomizuka. Interpretable end-to-end urban au-
569 tonomous driving with latent deep reinforcement learning. *IEEE Transactions on Intelligent
570 Transportation Systems*, 23(6):5068–5078, 2021.571
572 Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
573 forcement learning with percentile risk criteria. *Journal of Machine Learning Research*, 18(167):
574 1–51, 2018.575
576 Kris De Asis and Richard S Sutton. An idiosyncrasy of time-discretization in reinforcement learning.
577 *arXiv preprint arXiv:2406.14951*, 2024a.578
579 Kris De Asis and Richard S Sutton. An idiosyncrasy of time-discretization in reinforcement learning.
580 *arXiv preprint arXiv:2406.14951*, 2024b.581
582 Kenji Doya. Reinforcement learning in continuous time and space. *Neural computation*, 12(1):
583 219–245, 2000a.584
585 Kenji Doya. Reinforcement learning in continuous time and space. *Neural computation*, 12(1):
586 219–245, 2000b.587
588 Onno Eberhard, Claire Vernade, and Michael Muehlebach. A pontryagin perspective on reinfor-
589 cement learning. *arXiv preprint arXiv:2405.18100*, 2024.590
591 Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and Lu Feng.
592 Safe multi-agent reinforcement learning via shielding. *arXiv preprint arXiv:2101.11196*, 2021.593
594 Lawrence C Evans. *Partial differential equations*, volume 19. American mathematical society, 2022.595
596 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
597 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI conference on artificial
598 intelligence*, volume 32, 2018.599
600 Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian,
601 Jun Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained policy optimisation. *arXiv
602 preprint arXiv:2110.02793*, 2021.

594 Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
 595 Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. *Artificial In-*
 596 *telligence*, pp. 103905, 2023a.

597 Shangding Gu, Jakub Grudzien Kuba, Yuanpei Chen, Yali Du, Long Yang, Alois Knoll, and
 598 Yaodong Yang. Safe multi-agent reinforcement learning for multi-robot control. *Artificial In-*
 599 *telligence*, 319:103905, 2023b.

600 Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, and Alois Knoll. A
 601 review of safe reinforcement learning: Methods, theories and applications. *IEEE Transactions on*
 602 *Pattern Analysis and Machine Intelligence*, 2024.

603 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 604 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-*
 605 *ence on machine learning*, pp. 1861–1870. Pmlr, 2018.

606 Ammar Haydari and Yasin Yilmaz. Deep reinforcement learning for intelligent transportation sys-
 607 tems: A survey. *IEEE Transactions on Intelligent Transportation Systems*, 23(1):11–32, 2020.

608 Christopher Hermosilla and Hasnaa Zidani. Relationship between the maximum principle and dy-
 609 namic programming for minimax problems. *Applied Mathematics & Optimization*, 87(2):34,
 610 2023.

611 Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and space:
 612 Theory and algorithms. *Journal of Machine Learning Research*, 23(275):1–50, 2022a.

613 Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous
 614 time and space: A martingale approach. *Journal of Machine Learning Research*, 23(154):1–55,
 615 2022b.

616 Yi Jiang, Weinan Gao, Jin Wu, Tianyou Chai, and Frank L Lewis. Reinforcement learning and
 617 cooperative $h\infty$ output regulation of linear continuous-time multi-agent systems. *Automatica*,
 618 148:110768, 2023.

619 B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
 620 mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. *IEEE*
 621 *transactions on intelligent transportation systems*, 23(6):4909–4926, 2021.

622 Lior Kuyer, Shimon Whiteson, Bram Bakker, and Nikos Vlassis. Multiagent reinforcement learning
 623 for urban traffic control using coordination graphs. In *Machine Learning and Knowledge Dis-*
 624 *covery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, September*
 625 *15–19, 2008, Proceedings, Part I 19*, pp. 656–671. Springer, 2008.

626 Donggun Lee. *Safety-guaranteed autonomy under uncertainty*. PhD thesis, University of California,
 627 Berkeley, 2022.

628 Jaeyoung Lee and Richard S Sutton. Policy iterations for reinforcement learning problems in con-
 629 tinuous time and space—fundamental theory and methods. *Automatica*, 126:109421, 2021.

630 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
 631 agent actor-critic for mixed cooperative-competitive environments. *Advances in neural informa-*
 632 *tion processing systems*, 30, 2017.

633 David Luviano and Wen Yu. Continuous-time path planning for multi-agents with fuzzy reinforce-
 634 ment learning. *Journal of Intelligent & Fuzzy Systems*, 33(1):491–501, 2017.

635 Yiming Meng, Ruikun Zhou, Amartya Mukherjee, Maxwell Fitzsimmons, Christopher Song, and
 636 Jun Liu. Physics-informed neural network policy iteration: Algorithms, convergence, and verifi-
 637 cation. *arXiv preprint arXiv:2402.10119*, 2024.

638 Amartya Mukherjee and Jun Liu. Bridging physics-informed neural networks with reinforce-
 639 ment learning: Hamilton-jacobi-bellman proximal policy optimization (hjbppo). *arXiv preprint*
 640 *arXiv:2302.00237*, 2023.

648 Seohong Park, Jaekyeom Kim, and Gunhee Kim. Time discretization-invariant safe action repetition
 649 for policy gradient methods. *Advances in Neural Information Processing Systems*, 34:267–279,
 650 2021a.

651 Seohong Park, Jaekyeom Kim, and Gunhee Kim. Time discretization-invariant safe action repetition
 652 for policy gradient methods. *Advances in Neural Information Processing Systems*, 34:267–279,
 653 2021b.

654 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 655 deep learning framework for solving forward and inverse problems involving nonlinear partial
 656 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

657 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
 658 Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
 659 The starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.

660 Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
 661 learning for autonomous driving. *arXiv preprint arXiv:1610.03295*, 2016.

662 Ali Shavandi and Majid Khedmati. A multi-agent deep reinforcement learning framework for algo-
 663 rithmic trading in financial markets. *Expert Systems with Applications*, 208:118124, 2022.

664 Alena Shilova, Thomas Delliaux, Philippe Preux, and Bruno Raffin. *Learning HJB Viscosity So-
 665 lutions with PINNs for Continuous-Time Reinforcement Learning*. PhD thesis, Inria Lille-Nord
 666 Europe, CRIStAL-Centre de Recherche en Informatique, Signal . . . , 2024.

667 Oswin So and Chuchu Fan. Solving stabilize-avoid optimal control via epigraph form and deep
 668 reinforcement learning. *arXiv preprint arXiv:2305.14154*, 2023.

669 Oswin So, Cheng Ge, and Chuchu Fan. Solving minimum-cost reach avoid using reinforcement
 670 learning. *Advances in Neural Information Processing Systems*, 37:30951–30984, 2024.

671 Josef Stoer, Roland Bulirsch, R Bartels, Walter Gautschi, and Christoph Witzgall. *Introduction to
 672 numerical analysis*, volume 1993. Springer, 1980.

673 Corentin Tallec, Léonard Blier, and Yann Ollivier. Making deep q-learning methods robust to time
 674 discretization. In *International Conference on Machine Learning*, pp. 6096–6104. PMLR, 2019a.

675 Corentin Tallec, Léonard Blier, and Yann Ollivier. Making deep q-learning methods robust to time
 676 discretization. In *International Conference on Machine Learning*, pp. 6096–6104. PMLR, 2019b.

677 Manan Tayal, Aditya Singh, Shishir Kolathaya, and Somil Bansal. A physics-informed ma-
 678 chine learning framework for safe and optimal control of autonomous systems. *arXiv preprint
 679 arXiv:2502.11057*, 2025.

680 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
 681 oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
 682 level in starcraft ii using multi-agent reinforcement learning. *nature*, 575(7782):350–354, 2019a.

683 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
 684 oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
 685 level in starcraft ii using multi-agent reinforcement learning. *nature*, 575(7782):350–354, 2019b.

686 Brent A Wallace and Jennie Si. Continuous-time reinforcement learning control: A review of theo-
 687 retical results, insights on performance, and needs for new designs. *IEEE Transactions on Neural
 688 Networks and Learning Systems*, 2023.

689 Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous
 690 time and space: A stochastic control approach. *Journal of Machine Learning Research*, 21(198):
 691 1–34, 2020.

692 Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
 693 kernel perspective. *Journal of Computational Physics*, 449:110768, 2022.

702 Xuefeng Wang, Xinran Li, Jiawei Shao, and Jun Zhang. Ac2c: Adaptively controlled two-hop
703 communication for multi-agent reinforcement learning. *arXiv preprint arXiv:2302.12515*, 2023.
704

705 Xuefeng Wang, Lei Zhang, Henglin Pu, Ahmed H Qureshi, and Husheng Li. Continuous-time value
706 iteration for multi-agent reinforcement learning. *arXiv preprint arXiv:2509.09135*, 2025.

707 Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Continuous-time model-based reinforce-
708 ment learning. In *International Conference on Machine Learning*, pp. 12009–12018. PMLR,
709 2021.

710 Lei Zhang, Mukesh Ghimire, Wenlong Zhang, Zhe Xu, and Yi Ren. Value approximation for two-
711 player general-sum differential games with state constraints. *IEEE Transactions on Robotics*, 40:
712 4631–4649, 2024.

713 Songyuan Zhang, Oswin So, Mitchell Black, and Chuchu Fan. Discrete gcbf proximal policy opti-
714 mization for multi-agent safe optimal control. *arXiv preprint arXiv:2502.03640*, 2025a.

715 Songyuan Zhang, Oswin So, Mitchell Black, Zachary Serlin, and Chuchu Fan. Solving multi-
716 agent safe optimal control with distributed epigraph form marl. *arXiv preprint arXiv:2504.15425*,
717 2025b.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A MATHEMATICAL PROOF
757758 A.1 LEMMA 3.1: EQUIVALENCE OF TWO VALUE FUNCTIONS
759760 *Proof.* Following proofs in (Lee, 2022; Zhang et al., 2024)), Eq. 4 implies the following equivalence
761

762
$$v(x) - z \leq 0 \iff V(x, z) \leq 0$$

763

764 To prove the above relation, we first start from $v(x) - z \leq 0$, which implies that there exists a joint
765 control input $u \in \mathcal{U}$ such that
766

767
$$\int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z \leq 0,$$

768

769 with $c(x(\tau)) \leq 0$ for $\forall \tau \geq t$. Thus, there will exist a joint control u such that $V(x, z) \leq 0$.
770771 Second, when $V(x, z) \leq 0$ and $c(x(\tau)) \leq 0$ for $\forall \tau \geq t$ hold, it implies that there exists $u \in \mathcal{U}$ such
772 that
773

774
$$\int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z \leq 0,$$

775

776 which concludes $v(x) - z \leq 0$. Therefore, the Lemma 3.1 is proved. \square
777778 A.2 LEMMA 3.2: OPTIMALITY CONDITION
779780 *Proof.* Following proofs in (Lee, 2022; Zhang et al., 2024; Evans, 2022), given all $(t, x, z) \in$
781 $[0, \infty) \times \mathcal{X} \times \mathbb{R}$ and select a enough small $h > 0$. There exist two different joint control inputs
782 $(u_1(\cdot), u_2(\cdot)) \in \mathcal{U}$ such that
783

784
$$u(\tau) = \begin{cases} u_1(\tau), & \tau \in [t, t+h], \\ u_2(\tau), & \tau \in (t+h, \infty). \end{cases}$$

785 Then we have the following transformation for Eq. 3
786

787
$$\begin{aligned} V(x, z) &= \min_{u_1 \in \mathcal{U}, u_2 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \max_{\tau \in [t+h, \infty)} c(x(\tau)), \right. \\ 788 &\quad \left. \int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z(t) \right\} \\ 789 &= \min_{u_1 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \min_{u_2 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t+h, \infty)} c(x(\tau)), \int_t^{t+h} \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau \right. \right. \\ 790 &\quad \left. \left. + \int_{t+h}^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - (z(t+h) + \int_t^{t+h} \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau) \right\} \right\} \\ 791 &= \min_{u_1 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \min_{u_2 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t+h, \infty)} c(x(\tau)), \right. \right. \\ 792 &\quad \left. \left. \int_{t+h}^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z(t+h) \right\} \right\} \\ 793 &\approx \min_{u_1 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \min_{u_2 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t+h, \infty)} c(x(\tau)), \right. \right. \\ 794 &\quad \left. \left. \gamma^h \left(\int_{t+h}^\infty \gamma^{\tau-(t+h)} l(x(\tau), u(\tau)) d\tau - z(t+h) \right) \right\} \right\} \\ 795 &= \min_{u_1 \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \gamma^h V(x(t+h), z(t+h)) \right\} \\ 796 &= \min_{u \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \gamma^h V(x(t+h), z(t+h)) \right\} \\ 797 &= \min_{u \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+h]} c(x(\tau)), \gamma^h V(x(t+h), z(t+h)) \right\} \end{aligned}$$

800 Therefore, the Lemma 3.2 is proved. \square
801

810 A.3 THEOREM 3.3: EPIGRAPH-BASED HJB PDE
811

812 *Proof.* Following proofs in (Lee, 2022; Zhang et al., 2024; Evans, 2022), given all all $(t, x, z) \in$
813 $[0, \infty) \times \mathcal{X} \times \mathbb{R}$ with a small horizon $\Delta t > 0$, we apply Lemma 3.2 and Taylor expansion to derive
814 the epigraph-based HJB PDE as follows

$$\begin{aligned} 815 \quad V(x, z) &= \min_{u \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, t+\Delta t]} c(x(\tau)), \gamma^h V(x(t+\Delta t), z(t+\Delta t)) \right\} \\ 816 \\ 817 \quad &\approx \min_{u \in \mathcal{U}} \max \left\{ c(x), (1 + \ln \gamma \Delta t)(V(x, z) + \nabla_x V \cdot f(x, u) \Delta t - \partial_z V \cdot l(x, u) \Delta t + o(\Delta t)) \right\} \\ 818 \\ 819 \quad &= \max \left\{ c(x), (1 + \ln \gamma \Delta t) \min_{u \in \mathcal{U}} (V(x, z) + \nabla_x V \cdot f(x, u) \Delta t - \partial_z V \cdot l(x, u) \Delta t + o(\Delta t)) \right\} \\ 820 \\ 821 \end{aligned}$$

822 Subtracting $V(x, z)$ from both sides of above equality, dividing by Δt , and letting $\Delta t \rightarrow 0$ yields
823 the following HJB PDE, where $V(x, z)$ is the optimal solution to such PDE.

$$824 \quad \max \left\{ c(x) - V(x, z), \min_{u \in \mathcal{U}} [\nabla_x V \cdot f(x, u) - \partial_z V \cdot l(x, u) + \ln \gamma \cdot V] \right\} = 0. \\ 825$$

826 Here $\mathcal{H} = \nabla_x V \cdot f(x, u) - \partial_z V \cdot l(x, u) + \ln \gamma \cdot V$ is Hamiltonian and optimal control $u^* =$
827 $\arg \min_{u \in \mathcal{U}} \mathcal{H}$.

828 Next we prove that $V(x, z)$ is the unique viscosity solution to the epigraph-based HJB PDE using
829 the contradiction technique. First, for $U \in C^\infty(\mathcal{X} \times \mathbb{R})$ such that $V - U$ has local maximum at
830 $(x_0, z_0) \in \mathcal{X} \times \mathbb{R}$ and $(V - U)(x_0, z_0) = 0$, we will prove

$$832 \quad \max \left\{ c(x_0) - U(x_0, z_0), \min_{u \in \mathcal{U}} [\nabla_x U(x_0, z_0) \cdot f(x_0, u) - \partial_z U(x_0, z_0) \cdot l(x_0, u) + \ln \gamma \cdot U(x_0, z_0)] \right\} \geq 0. \\ 833$$

834 Suppose the above inequality is not correct. We consider that there exists $\theta > 0$ and $\tilde{u} \in \mathcal{U}$ such that

$$\begin{aligned} 835 \quad c(x) - U(x_0, z_0) &\leq -\theta, \\ 836 \quad \nabla_x U \cdot f(x, \tilde{u}) - \partial_z U \cdot l(x, \tilde{u}) + \ln \gamma \cdot U &\leq -\theta. \\ 837 \end{aligned}$$

838 for all points (x, z) sufficiently close to (x_0, z_0) : $\|x(s) - x_0\| + |z(s) - z_0| < h$ for small enough
839 $h > 0$, where $s \in [t_0, t_0 + h]$. Under the assumptions in Sec. 3.1.1, and given state trajectories x and
840 z evolved from the initial conditions $x = x_0$ and $z = z_0$ according to the corresponding dynamics,
841 the following inequality holds

$$\begin{aligned} 843 \quad c(x(s)) - U(x_0, z_0) &\leq -\theta, \\ 844 \quad \nabla_x U(x(s), z(s)) \cdot f(x(s), \tilde{u}) - \partial_z U(x(s), z(s)) \cdot l(x(s), \tilde{u}) + \ln \gamma \cdot U(x(s), z(s)) &\leq -\theta. \\ 845 \end{aligned}$$

846 Since $V - U$ has a local maximum at (x_0, z_0) , we can have that

$$\begin{aligned} 847 \quad \min_{u \in \mathcal{U}} [\gamma^h V(x(t_0 + h), z(t_0 + h)) - V(x_0, z_0)] \\ 848 \\ 849 \quad \leq \min_{u \in \mathcal{U}} [\gamma^h U(x(t_0 + h), z(t_0 + h)) - U(x_0, z_0)] \\ 850 \\ 851 \quad = \min_{u \in \mathcal{U}} [(\nabla_x U(x(t_0), z(t_0)) \cdot f(x(t_0), u) - \partial_z U(x(t_0), z(t_0)) \cdot l(x(t_0), u) + \ln \gamma \cdot U(x(t_0), z(t_0)))h] \\ 852 \\ 853 \quad \leq -\theta h \end{aligned}$$

854 We know that Lemma 2 implies

$$855 \quad V(x_0, z_0) = \min_{u \in \mathcal{U}} \max \left\{ \max_{s \in [t_0, t_0 + h]} c(x(s)), \gamma^h V(x(t_0 + h), z(t_0 + h)) \right\}. \\ 856$$

857 By subtracting $U(x_0, z_0)$ on both side, we have

$$858 \quad (V - U)(x_0, z_0) = \min_{u \in \mathcal{U}} \max \left\{ c(x(s)) - U(x_0, z_0), \gamma^h V(x(t_0 + h), z(t_0 + h)) - U(x_0, z_0) \right\}. \\ 859$$

860 Since $(V - U)(x_0, z_0) = 0$ holds such that $V(x_0, z_0) = U(x_0, z_0)$, then we will have that

$$861 \quad \min_{u \in \mathcal{U}} \max \left\{ c(x(s)) - V(x_0, z_0), \gamma^h V(x(t_0 + h), z(t_0 + h)) - V(x_0, z_0) \right\} = \min_{u \in \mathcal{U}} \max \{ \theta, \theta h \} > 0, \\ 862$$

864 which has a contradiction with $(V - U)(x_0, z_0) = 0$. Thus we prove that
 865

$$866 \max \left\{ c(x_0) - U(x_0, z_0), \min_{u \in \mathcal{U}} [\nabla_x U(x_0, z_0) \cdot f(x_0, u_0) - \partial_z U(x_0, z_0) \cdot l(x_0, u_0) + \ln \gamma \cdot U(x_0, z_0)] \right\} \geq 0. \\ 867$$

868 Second, for $U \in C^\infty(\mathcal{X} \times \mathbb{R})$ such that $V - U$ has local minimum at $(x_0, z_0) \in \mathcal{X} \times \mathbb{R}$ and
 869 $(V - U)(x_0, z_0) = 0$, we will prove

$$870 \max \left\{ c(x_0) - U(x_0, z_0), \min_{u \in \mathcal{U}} [\nabla_x U(x_0, z_0) \cdot f(x_0, u_0) - \partial_z U(x_0, z_0) \cdot l(x_0, u_0) + \ln \gamma \cdot U(x_0, z_0)] \right\} \leq 0. \\ 871$$

872 The definition of auxiliary value $V(x, z)$ shows that
 873

$$874 V(x, z) = \min_{u \in \mathcal{U}} \max \left\{ \max_{\tau \in [t, \infty]} c(x(\tau)), \int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z \right\} \\ 875 \\ 876 \geq \min_{u \in \mathcal{U}} \max \left\{ c(x_0), \int_t^\infty \gamma^{\tau-t} l(x(\tau), u(\tau)) d\tau - z \right\} \\ 877$$

878 for all $u \in \mathcal{U}$. By subtracting $U(x_0, z_0)$ on both sides, we have
 879

$$880 0 = (V - U)(x_0, z_0) \geq \max \{ c(x_0) - U(x_0, z_0), \int_t^\infty \gamma^{\tau-t} l(x, u) d\tau - z_0 - U(x_0, z_0) \}. \\ 881 \\ 882$$

883 The rest of the proof is to show

$$884 \min_{u \in \mathcal{U}} [\nabla_x U(x_0, z_0) \cdot f(x_0, u) - \partial_z U(x_0, z_0) \cdot l(x_0, u) + \ln \gamma \cdot U(x_0, z_0)] \leq 0. \\ 885$$

886 Suppose the above inequality is not correct. We consider that there exists $\theta > 0$ such that

$$887 \min_{u \in \mathcal{U}} [\nabla_x U(x, z) \cdot f(x, u) - \partial_z U(x, z) \cdot l(x, u) + \ln \gamma \cdot U(x, z)] \geq \theta, \\ 888$$

889 for all points (x, z) sufficiently close to (x_0, z_0) : $\|x - x_0\| + |z - z_0| < h$ for small enough $h > 0$,
 890 where $s \in [t_0, t_0 + h]$. Given state trajectories x and z that evolve from the initial conditions $x = x_0$
 891 and $z = z_0$ under the corresponding dynamics with any control $\tilde{u} \in \mathcal{U}$, where

$$892 \tilde{u}(s) = \arg \min_{\tilde{u} \in \mathcal{U}} \{ \nabla_x U(x(s), z(s)) \cdot f(x(s), \tilde{u}) - \partial_z U(x(s), z(s)) \cdot l(x(s), \tilde{u}) \\ 893 \\ 894 + \ln \gamma \cdot U(x(s), z(s)) \}. \\ 895$$

896 Then we have the following condition that holds

$$897 \nabla_x U(x(s), z(s)) \cdot f(x(s), \tilde{u}) - \partial_z U(x(s), z(s)) \cdot l(x(s), \tilde{u}) + \ln \gamma \cdot U(x(s), z(s)) \geq \theta. \\ 898$$

899 Consider $V - U$ has a local minimum at (x_0, z_0) , we will have that
 900

$$900 \min_{\tilde{u} \in \mathcal{U}} [\gamma^h V(x(t_0 + h), z(t_0 + h)) - V(x_0, z_0)] \\ 901 \\ 902 \geq \min_{\tilde{u} \in \mathcal{U}} [\gamma^h U(x(t_0 + h), z(t_0 + h)) - U(x_0, z_0)] \\ 903 \\ 904 = \min_{\tilde{u} \in \mathcal{U}} [(\nabla_x U(x(t_0), z(t_0)) \cdot f(x(t_0), \tilde{u}) - \partial_z U(x(t_0), z(t_0)) \cdot l(x(t_0), \tilde{u}) + \ln \gamma \cdot U(x(t_0), z(t_0)))h] \\ 905 \\ 906 \geq \theta h$$

907 Based on this derivation, we finally have that
 908

$$908 \min_{\tilde{u} \in \mathcal{U}} \gamma^h V(x(t_0 + h), z(t_0 + h)) \geq V(x_0, z_0) + \theta h > V(x_0, z_0). \\ 909$$

910 However, we know that Lemma 3.2 implies that

$$911 \min_{\tilde{u} \in \mathcal{U}} \gamma^h V(x(t_0 + h), z(t_0 + h)) \leq V(x_0, z_0), \\ 912$$

913 which is a contradiction. Thus, we prove that
 914

$$915 \max \left\{ c(x_0) - U(x_0, z_0), \min_{u \in \mathcal{U}} [\nabla_x U(x_0, z_0) \cdot f(x_0, u_0) - \partial_z U(x_0, z_0) \cdot l(x_0, u_0) + \ln \gamma \cdot U(x_0, z_0)] \right\} \leq 0. \\ 916$$

917 Hence, we prove that $V(x, z)$ is the viscosity solution to the epigraph-based HJB PDE. The uniqueness
 918 follows Theorem 1 of Chapter 10 in Evans (2022). \square

918 A.4 ADVANTAGE FUNCTION
919920 We define the $Q(x_t, z_t, u_t) = \max\{c(x_t), r^h V(x_{t+h}, z_{t+h})\}$ over a short time interval $h > 0$ and
921 compute
922

923
$$\begin{aligned} Q(x_t, z_t, u_t) - V(x_t, z_t) &= \max\{c(x_t), r^h V(x_{t+h}, z_{t+h})\} - V(x_t, z_t) \\ 924 &= \max\{c(x_t) - V(x_t, z_t), (1 + \ln \gamma h)(V(x_t, z_t) + \nabla_x V \cdot f(x_t, u_t)h \\ 925 &\quad - \partial_z V \cdot l(x_t, u_t)h - V(x_t, z_t) + o(h)\} \\ 926 &= \max\{c(x_t) - V(x_t, z_t), (\nabla_x V \cdot f(x_t, u_t) - \partial_z V \cdot l(x_t, u_t) + \ln \gamma \cdot V)h\} \\ 927 \end{aligned}$$

928 We divide h on both sides of the above equation and let $h \rightarrow 0$ to compute the advantage function
929 as
930

931
$$\begin{aligned} A(x_t, z_t, u_t) &= \lim_{h \rightarrow 0} \frac{Q(x_t, z_t, u_t) - V(x_t, z_t)}{h} \\ 932 &= \max\{c(x_t) - V(x_t, z_t), \nabla_x V \cdot f(x_t, u_t) - \partial_z V \cdot l(x_t, u_t) + \ln \gamma \cdot V\} \\ 933 \end{aligned}$$

935 A.5 CONVERGENCE OF EPIGRAPH VALUE FUNCTION
936938 Consider the augmented state (x, z) with state constraint $c(x)$ and non-negative cost $l(x, u)$. Define
939 the discounted epigraph-Bellman operator over a short step $\Delta t > 0$:
940

941
$$(\mathcal{T}V)(x_t, z_t) := (1 - \gamma^{\Delta t})c(x_t) + \gamma^{\Delta t} \min_{u \in \mathcal{U}} \left\{ \max \{c(x_t), V(x_{t+\Delta t}, z_{t+\Delta t})\} \right\},$$

942

943 for $V : \mathcal{X} \times \mathbb{R} \rightarrow \mathbb{R}$ bounded. Then the value iteration $V_{k+1} = \mathcal{T}V_k$ converges uniformly to the
944 unique fixed point of \mathcal{T} .
945946
947 *Proof.* (i) Contraction. For any $c(x_t)$ and bounded functions V, W , we have the following condition
948 satisfying the contraction.
949

950
$$\begin{aligned} &|\max\{c(x_t), V(x_{t+\Delta t}, z_{t+\Delta t})\} - \max\{c(x_t), W(x_{t+\Delta t}, z_{t+\Delta t})\}| \\ 951 &\leq |V(x_{t+\Delta t}, z_{t+\Delta t}) - W(x_{t+\Delta t}, z_{t+\Delta t})| \\ 952 &\leq \|V - W\|_\infty \\ 953 \end{aligned}$$

954 (ii) Existence and uniqueness. By Banach's fixed-point theorem, \mathcal{T} admits a unique fixed point V ,
955 and for value iteration $V_{k+1} = \mathcal{T}V_k$ we have that
956

957
$$\|V_k - V\|_\infty \leq \gamma^k \|V_0 - V\|_\infty \rightarrow 0,$$

958

959
960 (iii) Approximate evaluation. If each iteration uses an approximate operator $\tilde{\mathcal{T}}$ satisfying $\|\tilde{\mathcal{T}}V -$
961 $\mathcal{T}V\|_\infty \leq \varepsilon$, then
962

963
$$\limsup_{k \rightarrow \infty} \|V_k - V\|_\infty \leq \frac{\varepsilon}{1 - \gamma^{\Delta t}}.$$

964

965 \square
966967
968 B TRAINING ALGORITHMS
969970 In this part, we provide additional details on the overall algorithmic pipeline and clarify the key
971 implementation choices.
972

972 **Algorithm 1** Epigraph-Based Continuous-Time MARL

973
974 1: Initialize actor π_θ , return critic V_ψ^{ret} , constraint critic V_ϕ^{cons} , dynamics network f_ξ , reward net-
975 work l_φ , and local rollout \mathcal{R} .
976 2: **for** $l = 1, \dots, T$ **do**
977 3: ▷ **Collect one rollout:**
978 4: $x \leftarrow \text{env.reset}()$
979 5: **for** $k = 1, \dots, K$ **do**
980 6: sample arbitrary decision time $t \sim \mathcal{T}$
981 7: **for** each agent $i = 1, \dots, N$ **do**
982 8: $u_i \sim \pi_{\theta_i}(u_i \mid x)$
983 9: **end for**
984 10: set joint action $u = (u_1, \dots, u_N)$
985 11: $(x', r) \leftarrow \text{env.step}(u)$
986 12: append (x, u, r, x') to local rollout \mathcal{R}
987 13: $x \leftarrow x'$
988 14: **end for**
989 15: ▷ **Outer optimization: epigraph update**
990 16: find $z^* = \inf\{z \in \mathbb{R} : \max\{V_\phi^{\text{cons}}(x), V_\psi^{\text{ret}}(x, z) - z\} \leq 0\}$
991 17: ▷ **Dynamics and Cost Model learning on \mathcal{R}**
992 18: update ξ, φ as per the Eq. 17.
993 19: ▷ **Inner optimization given z^* : Critic update on \mathcal{X}_R**
994 20: update ψ, ϕ by losses $\mathcal{L}_{\text{cons}}$, \mathcal{L}_{ret} , \mathcal{L}_{HJB} and \mathcal{L}_{VGI} as per the Eq. 11, Eq. 10 and Eq. 12.
995 21: ▷ **Actor update for each agent**
996 22: **for** $i = 1, \dots, N$ **do**
997 23: compute $A(x, u, z^*)$ for all $(x, u, z^*) \in \mathcal{X}_R$ and update the θ as the Eq. 18.
998
999
1000 **C ENVIRONMENTAL SETTINGS**

1001
1002 We provide detailed descriptions of all benchmark environments used in our experiments. For each
1003 scenario, we list the number of agents, the number of obstacles, the safety constraints imposed, and
1004 the specific task objective with metrics.

1005 **Metrics.** We report two primary metrics—one reward-style *training score* that aggregates task cost
1006 and constraint penalty, and one *violation rate* measured over held-out rollouts. **(1) Cumulative**
1007 **penalty / reward-style training score.** In many standard environments (e.g., MPE and multi-agent
1008 MuJoCo), the task reward often consists of two independent components: (i) a *task term* such as
1009 distance-to-target or velocity tracking, and (ii) a safety penalty that is activated only when constraint-
1010 relevant events occur (e.g., collisions or proximity violations). This design is also used in prior safe
1011 MARL methods such as MACPO and Lagrangian baselines (Gu et al., 2021). For clarity of notation,
1012 we write the task cost as $\ell_t \geq 0$ (derived from the negative reward of the task term) and denote the
1013 constraint penalty as $\kappa_t \geq 0$. The environment therefore provides a composite instantaneous cost

$$\psi_t := \ell_t + \kappa_t,$$

1014
1015 which simply aggregates the task objective and the constraint penalty already defined in the envi-
1016 ronment. For a trajectory τ with horizon $T(\tau)$, we define the total episode cost as

$$1018 \quad J(\tau) := \sum_{t=0}^{T(\tau)-1} \psi_t, \quad S(\tau) := -J(\tau),$$

1019 where $S(\tau)$ is the cumulative reward used for performance plots.

1020 **(2) Violation rate (evaluation).** Given N_{eval} episodes (we use $N_{\text{eval}} = 100$ by default), define the
1021 episode-level violation indicator

$$1022 \quad v(\tau) := \mathbf{1}\{\exists t \text{ s.t. } \kappa_t > 0\},$$

1026 i.e., an episode is counted as violating if it ever incurs a positive state-constraint penalty.¹ The
 1027 violation rate is then

$$1028 \text{Viol. Rate} = \frac{1}{N_{\text{eval}}} \sum_{i=1}^{N_{\text{eval}}} v(\tau_i).$$

1031 **C.1 SAFE MPE**

1033 In the MPE, we setup the details as follows: **Action.** Continuous 2-D acceleration for x and y axis.
 1034 **Reward and costs.** Each agent is assigned a per-agent target g_i . The dense goal reward is
 1035

$$1036 r_i^{\text{goal}}(t) = -\|x_i(t) - g_i\|_2.$$

1038 A discrete collision cost with obstacles or other agents applies:

$$1039 c_i^{\text{disc}}(t) = \begin{cases} 10, & \text{if agent–obstacle overlap} \\ 1040 0, & \text{otherwise.} \end{cases}$$

1042 We also record a continuous proximity/penetration cost (not added into the dense goal reward):
 1043

$$1044 c_i^{\text{cont}}(t) = \frac{1}{2} \sum_{o \in \mathcal{O}} \phi((r_i + r_o) - \|x_i - x_o\|), \quad \phi(\delta) = \begin{cases} 20\delta, & \delta > 0 \text{ (overlap)} \\ 1045 0.5\delta, & \delta \leq 0 \end{cases}$$

1046 where r_i, r_o are radius (sizes).

1049 **Difference from the original discrete-time MPE.** The standard MPE environment uses a fixed
 1050 and discrete integration step Δt , where each simulation step updates the agent states according to
 1051 $p_{t+1} = p_t + v_t \Delta t$ and $v_{t+1} = v_t + f_t \Delta t$ with a fixed time increment. In contrast, our continuous-
 1052 time MPE adapts the physical integration step to an arbitrary Δt provided by the learning algorithm.
 1053 The state evolution follows

$$1054 \dot{p}(t) = v(t), \quad \dot{v}(t) = \frac{f(t)}{m} - \text{damping} \cdot v(t),$$

1057 and is numerically integrated via

$$1058 p \leftarrow p + v \cdot \Delta t, \quad v \leftarrow v + \frac{f}{m} \Delta t,$$

1061 using the user-specified Δt . For clarity, the update used in the original environment is:

$$1062 \text{step}(F) : \\ 1063 \quad p = p + v \cdot 0.1 \quad (\text{fixed as } 0.1), \\ 1064 \quad v = v + \frac{F}{m} \cdot 0.1 \quad (\text{fixed as } 0.1).$$

1067 Our continuous-time version introduces:

$$1069 \text{step_continuous}(F, \Delta t) : \\ 1070 \quad p = p + v \cdot \Delta t \quad (\text{depend on the input } \Delta t), \\ 1071 \quad v = v + \frac{F}{m} \cdot \Delta t \quad (\text{depend on the input } \Delta t).$$

1074 so that the state update depends directly on the argument Δt rather than a fixed constant.

1075 **Corridor.** This scenario contains 3 agents with 2 large corridor walls. Agents must avoid collisions
 1076 with the corridor walls and with each other while navigating from their starting positions to reach
 1077 the assigned target locations on the opposite side.

1078
 1079 ¹If κ_t is an indicator of hard violations, this coincides with “any violation.” If κ_t is a continuous hinge, we
 use the same criterion $\kappa_t > 0$.

1080
 1081 **Formation.** This scenario also involves 3 agents and 2 obstacles. The agents are required to bypass
 1082 obstacles and then coordinate to form a triangular formation at the designated region, under the
 1083 constraint of avoiding collisions with both obstacles and other agents.

1084 **Line.** In this task, 3 agents operate in an environment with 2 obstacles. After avoiding the obstacles,
 1085 the agents must position themselves to form a straight line. The safety constraints enforce that no
 1086 agent collides with obstacles or with other agents during navigation.

1087 **Target.** This scenario uses 2 agents with 1 obstacle placed in the environment. Each agent is
 1088 assigned a fixed target position, and the agents must navigate to their respective goals while avoiding
 1089 collisions with the obstacle and with each other.

1090 **Cooperative Navigation.** This is a cooperative navigation task with 3 agents and no obstacles.
 1091 The agents must spread out to cover multiple target landmarks while avoiding collisions among
 1092 themselves. Specifically, the agents' goals are the one closest to them rather than fixed ones.

1093 **Cooperative Predator–Prey.** This task includes 3 controllable predator agents and 1 prey that
 1094 moves randomly. There are no obstacles, but predators must avoid colliding with each other. The
 1095 predators' objective is to coordinate their movements to capture the prey.

1097 C.2 SAFE MULTI-AGENT MUJoCo

1099 **Half Cheetah.** We adapt the Half Cheetah environment into three multi-agent variants: Half
 1100 Cheetah-2x3, Half Cheetah-3x2, and Half Cheetah-6x1. In each case, the body is partitioned into
 1101 joints agents with different grouping configurations. For example, Half Cheetah-3x2 is three agents
 1102 with 2 moving joints for each agent. Randomly placed walls are introduced into the environment,
 1103 requiring the agents not only to coordinate efficient forward locomotion but also to avoid collisions
 1104 with obstacles.

1105 **Reward.** $r = r_{\text{run}} = \frac{x_{t+1} - x_t}{\Delta t}$.

1106 **Safety cost.** A binary proximity cost to the wall:

$$1108 c_t = \mathbf{1}\{ |x_{\text{wall}} - x_{\text{agent}}| < 9 \} \in \{0, 1\}.$$

1109 Observation augments the usual state with wall velocity, wall force proxy, and clipped distance to
 1110 the wall; the environment also recolors the wall when unsafe.

1112 **Difference from the original MuJoCo environment.** In standard MuJoCo control tasks, the sim-
 1113 ulation uses a fixed micro time step 0.01 (each frame takes 0.01), and each environment step cor-
 1114 responds to a fixed number of internal physics frames (e.g., `frame_skip` = 5), resulting in a
 1115 fixed control interval $\Delta t = 0.05$. Our continuous-time MuJoCo variant removes this fixed control
 1116 interval. For any desired Δt , we execute

$$1118 \text{do_simulation}(a, N), \quad N = \frac{\Delta t}{0.01},$$

1119 i.e., the number of internal physics frames is chosen dynamically according to the requested in-
 1120 tegration step. Thus the effective control interval is no longer fixed but fully determined by Δt ,
 1121 enabling variable-resolution continuous-time rollouts. The reward terms (forward velocity, control
 1122 cost, contact cost) are normalized by the actual Δt , ensuring consistency across different temporal
 1123 resolutions. The original update is:

$$1126 \text{step}(u) : \quad N = 5, \quad \text{do_simulate}(u, N).$$

1127 Our continuous-time version becomes:

$$1129 \text{step_continuous}(u, \Delta t) : \quad N = \Delta t / 0.01, \quad \text{do_simulate}(u, N).$$

1132 **Ant.** We construct four multi-agent variants of the Ant: Ant-2x4, Ant-4x2, Ant-8x1, and Ant-2x4d.
 1133 In all cases, the body is controlled by joints agents arranged in different groupings across the legs.
 As with Half Cheetah, walls are introduced as obstacles, and the agents must coordinate locomotion

1134 while ensuring safety by avoiding collisions with these obstacles. The reward is set same as the Half
 1135 Cheetah

1136 **Safety shaping.** Identical piecewise-slant corridor: compute y_{off} from (x, y) and define

1138 $c_t^{\text{obj}} = \mathbf{1}\{|y_{\text{off}}| < 1.8\}.$

1140 **C.3 CONSTRAINED COUPLED OSCILLATOR ENVIRONMENT**

1142 We consider a two-agent coupled spring-damper system. The state and control are

1144 $x = [x_1 \quad v_1 \quad x_2 \quad v_2]^{\top}, \quad u = [u_1 \quad u_2]^{\top}.$

1145 Each agent $i \in \{1, 2\}$ controls one mass with continuous-time dynamics

1147
$$\begin{aligned} \dot{x}_i &= v_i, \\ \dot{v}_i &= -k x_i - b v_i + u_i, \end{aligned}$$

1149 with spring constant $k = 1.0$ and damping coefficient $b = 0.5$. Stacking the states gives $\dot{x} =$
 1150 $Ax + Bu$ with

1151
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -k & -b & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -k & -b \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

1155 **Control limits and discretization.**

1157 Actions are normalized $\tilde{u}_i \in [-1, 1]$ and mapped to physical inputs by $u_i = u_{\max} \tilde{u}_i$ with $u_{\max} = 10$
 1158 (component-wise box constraint).

1159
$$\begin{aligned} v_i^{t+1} &= v_i^t + (-k x_i^t - b v_i^t + u_i^t) \Delta t, \\ x_i^{t+1} &= x_i^t + v_i^{t+1} \Delta t, \end{aligned}$$

1162 for a horizon of $N = 30$ steps.

1163 **Stage cost.** The per-step quadratic cost is

1165
$$\ell(x, u) = x_1^2 + x_2^2 + \lambda_c (x_1 - x_2)^2 + \beta (u_1^2 + u_2^2),$$

1166 with coupling strength $\lambda_c = 2.0$ and control penalty $\beta = 0.01$. Equivalently, $\ell(x, u) = x^{\top} Q x +$
 1167 $u^{\top} R u$ where

1169
$$Q = \begin{bmatrix} 1 + \lambda_c & 0 & -\lambda_c & 0 \\ 0 & 0 & 0 & 0 \\ -\lambda_c & 0 & 1 + \lambda_c & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad R = \beta I_2.$$

1172 For training we use a shaped reward

1174
$$r_t = -\frac{1}{30} \ell(x_t, u_t).$$

1176 **Hard state constraint.** We impose an ordering constraint between the two positions,

1178
$$x_1 \leq x_2 + 0.02,$$

1179 and record an additional penalty

1181
$$p_t = -10 \cdot \mathbf{1}\{x_{1,t} > x_{2,t} + 0.02\},$$

1182 returned alongside r_t .

1184 **Smooth violation signal (for logging).** We also log a smooth surrogate of the constraint violation,

1185
$$\phi(x) = 2 \sigma(s(x_1 - x_2 + 0.02)) - 1, \quad \sigma(z) = \frac{1}{1 + e^{-z}}, \quad s = 20,$$

1187 which maps to $(-1, 1)$ and grows monotonically with the amount of violation.

1188 **Unconstrained LQR.** The continuous-time algebraic Riccati equation (CARE)
 1189

$$1190 \quad A^\top P + PA - PBR^{-1}B^\top P + Q = 0$$

1191 is solved for the unique positive semidefinite matrix P . The unconstrained optimal linear feedback
 1192 is

$$1193 \quad K = R^{-1}B^\top P, \quad u_{\text{LQR}}(x) = -Kx.$$

1194 **Hard state constraint and CBF condition.** We impose the safety constraint

$$1196 \quad x_1 - x_2 - 0.02 \leq 0 \iff h(x) := 0.02 - (x_1 - x_2) \geq 0.$$

1198 Let $\nabla h(x) = [-1 \ 0 \ 1 \ 0]^\top$. A (first-order) control barrier function (CBF) condition enforces
 1199 forward invariance of the safe set $\mathcal{C} = \{x : h(x) \geq 0\}$ by requiring

$$1200 \quad \dot{h}(x, u) = \nabla h(x)^\top (Ax + Bu) \geq -\alpha h(x),$$

1202 with a user-chosen class- \mathcal{K} parameter $\alpha > 0$. Defining

$$1203 \quad a(x) := \nabla h(x)^\top B \in \mathbb{R}^2, \quad b(x) := -\nabla h(x)^\top Ax - \alpha h(x) \in \mathbb{R},$$

1205 the CBF condition Eq. C.3 is the single affine-in- u half-space constraint

$$1206 \quad a(x)^\top u \geq b(x).$$

1208 **Closed-form safety projection.** To obtain a safe control with minimal distortion from u_{LQR} , we
 1209 solve the weighted projection

$$1210 \quad \min_{u \in \mathbb{R}^2} \frac{1}{2} (u - u_{\text{LQR}})^\top W (u - u_{\text{LQR}}) \quad \text{s.t.} \quad a(x)^\top u \geq b(x),$$

1212 with $W = R$ (“ R -metric”; Euclidean $W = I$ is also possible). Because Eq. C.3 has a single linear
 1213 constraint, it admits a closed form:

$$1215 \quad u^*(x) = \begin{cases} u_{\text{LQR}}(x), & \text{if } a^\top u_{\text{LQR}} \geq b, \\ u_{\text{LQR}}(x) + \tau W^{-1}a, & \text{otherwise, with } \tau = \frac{b - a^\top u_{\text{LQR}}}{a^\top W^{-1}a}. \end{cases}$$

1218 Finally we saturate to the actuator limits $u_{\text{max}} > 0$:

$$1220 \quad u_{\text{GT}}(x) = \text{clip}(u^*(x), -u_{\text{max}}, u_{\text{max}}).$$

1222 D ADDITIONAL ENVIRONMENTAL RESULTS

1224 D.1 VISUAL TRAJECTORIES

1226 The trajectory demonstrations in Fig. 10 highlight clear behavioral differences across algorithms in
 1227 Formation scenario. Our proposed method EPI learns smooth trajectories that avoid obstacles while
 1228 consistently reaching the target, demonstrating both constraint satisfaction and goal achievement.
 1229 In contrast, EPPO occasionally captures the avoidance behavior but often gets stuck at suboptimal
 1230 solutions. This is because during training, its randomized sampling of the auxiliary state z prevents
 1231 stable policy convergence in continuous-time settings; even if outer optimization is applied at execu-
 1232 tion, the learned policy lacks accurate control signals. On the other hand, MACPO, which enforces
 1233 hard constraints via a trust-region style update, tends to overestimate the obstacle region. As a re-
 1234 sult, agents often exhibit overly conservative behaviors—such as retreating toward corners to avoid
 1235 violations—rather than efficiently pursuing their targets. Together, these comparisons confirm that
 1236 EPI achieves the most balanced and effective behavior among the three approaches.

1237 D.2 PERFORMANCE UNDER STOCHASTIC SETTINGS

1239 To evaluate robustness under stochastic dynamics, we perturb the continuous-time transition model
 1240 as $x_{t+\Delta t} = f(x_t, u_t) \Delta t + \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, \sigma^2 I)$, in Fig. 11. We consider three noise magnitudes:
 1241 **Low Noise:** $\sigma^2 = 0.1$ **Mid Noise:** $\sigma^2 = 0.5$ and **High Noise:** $\sigma^2 = 1.0$. We observe that No Noise
 1242 and Low Noise yield similar identical cost and constraint-violation behavior across all three tasks.

1267 Figure 10: Trajectory demonstrations (key frames) across methods in Formation. Row 1: EPI re-
1268 sults, Row 2: EPPO results, Row 3: MACPO results.

1280 Figure 11: Performance under Different Noise Levels.

1281
1282 Because the PINN-based value approximation are inherently robust to small local perturbations, as
1283 long as the injected disturbance is within a moderate range, the learned dynamics model, cost model,
1284 and value gradients remain accurate. In contrast, Mid Noise and High Noise introduce much larger
1285 deviations in the state propagation. These disturbances accumulate over time, causing the PINN
1286 to receive significantly deviated training signals. Since our method does not incorporate explicit
1287 uncertainty modeling or stochastic HJB formulations, the serious noise directly degrades the learned
1288 critic and value gradients, eventually leading to unstable or even failed policies.

D.3 EFFECT OF THE DISCRETIZATION INTERVAL.

1292 Figure 12 evaluates how the choice of discretization interval Δt affects the performance of EPI. For
1293 each fixed Δt , we roll out complete trajectories using the learned policy and measure the average
1294 distance to the target over the entire trajectory. Across all three scenarios, we observe a consistent
1295 trend: the *average distance to the target increases as Δt becomes larger*. This behavior is expected
in continuous-time control. When Δt is small, the temporal resolution is high and the policy is up-

Figure 12: Average Distance to the Target under Different Δt .

dated frequently, allowing the learned value gradients to provide fine-grained control corrections. In contrast, larger Δt leads to *coarser control updates*, reducing the precision of the policy’s response to the evolving system dynamics. Moreover, both the HJB residual and the VGI update rely on local differential information. As Δt grows, the mismatch between the continuous-time formulation and the discrete rollout increases, which in turn amplifies approximation errors in the learned value gradients. These errors accumulate along the trajectory and result in the observed degradation in task accuracy.

D.4 TRAJECTORY OF z^* THROUGH THE TRAINING

Figure 13 illustrates the evolution of the optimal epigraph variable z_t^* and the active branch

Figure 13: z^* Trajectory through the Training in Target.

(return vs. constraint) at three representative stages of training. In early training (Episode 1000), the policy frequently visits infeasible states, causing $V_{\text{cons}}(x_t) > 0$ and forcing the epigraph to select the constraint branch; consequently z_t^* remains at the clipped upper bound z_{\max} . By mid training (Episode 12000), the critic starts to maintain $V_{\text{cons}}(x_t) \leq 0$ for part of the trajectory, producing intermittent switching and a decreasing z_t^* . In late training (Episode 23000), the trajectory remains feasible, the return branch is consistently selected, and z_t^* decreases smoothly along the rollout. These behaviors align with the expected epigraph semantics: infeasible states produce z_{\max} , while improved policies yield stable return-dominated gradually decreasing z_t^* .

1350
1351 D.5 COMPARE EPI WITH TRADITIONAL EPIGRAPH METHOD
13521353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
Figure 14: Performance of EPI and Traditional Epigraph under MPE settings.

1364 Figure 14 compares our z -independent epigraph formulation (EPI) with the traditional z -dependent
1365 epigraph used in EPPO-like methods on the FORMATION, LINE, and TARGET tasks. In the tradi-
1366 tional design, a scalar z is randomly sampled at the initial state of each episode and then propa-
1367 gated through its auxiliary dynamics, so that both critic and actor are conditioned on this randomly chosen
1368 epigraph level. As shown in Fig. 14, converges to a lower cumulative reward, and exhibits substan-
1369 tially larger variance across seeds. In contrast, EPI learns z -independent critics ($V^{\text{cons}}(x), V^{\text{ret}}(x)$)
1370 and computes z^* via a one-dimensional search during training, while the actor depends only on the
1371 physical state x . This removes the nonstationary noise introduced by random z sampling: for a fixed
1372 x , the policy gradient under EPI is unique, whereas in the traditional epigraph it fluctuates with the
1373 sampled z even when the critic has already converged. In continuous-time settings this issue is am-
1374 plified, since small changes in z shift the switching time between the constraint and return branches
1375 and thereby alter the entire rollout.

1376 D.6 COMPARISON BETWEEN EPI AND DISCRETE-TIME BASELINES
13771378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
Figure 15: Performance of EPI and Discrete-time Baselines under MPE settings.

1389 To validate the performance of traditional discrete-time based methods in continuous-time settings,
1390 the Fig 15 compares EPI with two discrete-time baselines (DT-CBF and DT-MAPPO-LAG) on the
1391 *Line* and *Target* tasks in the continuous-time MPE environment. All baselines are adapted to the
1392 discrete-time setting by removing their residual-loss components. Apart from this modification, all
1393 implementation details follow their original published versions (Zhang et al., 2025a). Across both
1394 tasks, EPI consistently achieves lower mean distance to the target and smaller variance, demon-
1395 strating the performance gain from the modules that designed for the continuous-time settings.

1396 E HYPERPARAMETERS AND NEURAL NETWORK STRUCTURES
1397

1398 Experiments were conducted on hardware comprising an Intel(R) Xeon(R) Gold 6254 CPU @
1399 3.10GHz, four NVIDIA A5000 GPUs and eight NVIDIA A6000 GPUs. This setup ensures the
1400 computational efficiency and precision required for the demanding simulations involved in multi-
1401 agent reinforcement learning and safety evaluations.

1402 Table 1 lists the defaults used in all experiments. Episode lengths are chosen so that a single rollout
1403 covers a full interaction cycle (50 steps for MPE and the didactic environment, 100 for MuJoCo).

Table 1: Hyperparameter settings used.

Parameter	Value
Episode length for MPE	50
Episode length for MuJoCo	100
Episode length for Didactic	50
Total number of episode for MPE	30000
Total number of episode for MuJoCo	30000
Total number of episode for Didactic	3000
z range for MPE	0-10
z range for MuJoCo	0-5
z range for Didactic	0-2
Discount factor γ	0.99
Actor learning rate	0.0001
Critic (Return) learning rate	0.001
Critic (Constraint)learning rate	0.001
Dynamics model learning rate	0.001
Reward model learning rate	0.001
Exploration steps	1000
Model save interval	1000
Random seed	113-120

We train for 30000 episodes in MPE and MuJoCo and for 3000 episodes in the didactic setting, reflecting simulator cost and convergence speed. The z range controls epigraph sampling for the VGI updates and is set wider in MPE (0-10), moderate in MuJoCo (0-5), and narrow in the didactic task (0-2). The actor uses a conservative learning rate (1e-4) for stable policy updates; the critics and the dynamics/reward models use 1e-3 to accelerate value/model fitting. Training is warm-started with 1000 exploration steps, checkpoints are saved every 1000 episodes, and reported results are averaged over seeds 113–120.

Table 2: Summary of neural network architectures used in our framework.

Network	Input Dimension	Architecture and Activation
Return Value Network	State (d)	FC(128) \rightarrow FC(128) \rightarrow FC(1), ReLU or Tanh
Constraint Value Network	State (d)	FC(128) \rightarrow FC(128) \rightarrow FC(1), ReLU or Tanh
Dynamics Network	State + Joint Action ($d + na$)	FC(128) \rightarrow FC(128) \rightarrow FC(d), ReLU
Reward Network	State + Joint Action ($d + na$)	FC(128) \rightarrow FC(128) \rightarrow FC(1), ReLU
PolicyNet	Observation + Time Interval ($o + 1$)	FC(128) \rightarrow FC(128) \rightarrow FC(64) \rightarrow FC(a), ReLU

Table 2 summarizes the five multilayer perceptrons used in our framework. Two scalar critics map the state $x \in \mathbb{R}^d$ to the return value and the constraint value, each with two hidden layers of width 128 and ReLU or Tanh activations. The dynamics and reward models take the concatenated state–action input $(x, u) \in \mathbb{R}^{d+na}$ and output, respectively, a d -dimensional state derivative/increment and a scalar reward; both use two 128-width hidden layers with ReLU. The policy network consumes the observation $o \in \mathbb{R}^o$ augmented with a scalar time-interval feature Δt to condition actions on continuous-time step size, and produces an a -dimensional action through a 128–128–64 hidden stack with ReLU.

Notation: d = state dimension, o = observation dimension, a = per-agent action dimension, n = number of agents, so the joint action has dimension na . The value heads output scalars; the dynamics head outputs \mathbb{R}^d ; the policy head outputs \mathbb{R}^a . Action squashing or clipping to environment bounds (if used) is applied after the final linear layer.

F THE USE OF LARGE LANGUAGE MODELS (LLMs)

We employed LLMs as a writing assistant to polish the paper.