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ABSTRACT

Classic decision tree learning is a binary classification algorithm that constructs
models with first-class transparency - every classification has a directly derivable
explanation. However, learning decision trees on modern datasets generates large
trees, which in turn generate decision paths of excessive depth, obscuring the ex-
planation of classifications. To improve the comprehensibility of classifications,
we propose a new decision tree model that we call Cascading Decision Trees.
Cascading Decision Trees shorten the size of explanations of classifications, with-
out sacrificing model performance overall. Our key insight is to separate the no-
tion of a decision path and an explanation path. Utilizing this insight, instead of
having one monolithic decision tree, we build several smaller decision subtrees
and cascade them in sequence. Our cascading decision subtrees are designed to
specifically target explanations for positive classifications. This way each subtree
identifies the smallest set of features that can classify as many positive samples
as possible, without misclassifying any negative samples. Applying cascading
decision trees to new samples results in a significantly shorter and succinct ex-
planation, if one of the subtrees detects a positive classification. In that case, we
immediately stop and report the decision path of only the current subtree to the
user as an explanation for the classification. We evaluate our algorithm on standard
datasets, as well as new real-world applications and find that our model shortens
the explanation depth by over 40.8% for positive classifications compared to the
classic decision tree model.

1 INTRODUCTION

Binary classification is the process of classifying the given input set into two classes based on some
classification criteria. Binary classification is widely used in everyday life: for example, a typical
application for binary classification is determining whether a patient has some disease by analyzing
their comprehensive medical record. Existing work on binary classification mainly uses the accuracy
of prediction as the main criterion for evaluating model performance. However, in order for a model
to be useful in real-world applications, it is imperative that users are able to understand and explain
the logic underlying model predictions. Model comprehensibility1 in some real-world applications,
especially in the medical and scientific domains, is of the utmost importance. In these cases, users
need to understand the classification model to scientifically explain the reasons behind the classifi-
cation or even rely on the model itself to discover the possible solution to the target problem.

It is difficult to provide explainability without sacrificing classification accuracy using current mod-
els. “Black-box” models such as deep neural network, random forests, and ensembles of classifiers
tend to have the highest accuracy in binary classification Freitas (2014); Doilovi et al. (2018). How-
ever, their opaque structure hinders understandability, making the logic behind the predictions diffi-
cult to trace. This lack of transparency may further discourage users from using the model Augasta
& Kathirvalavakumar (2012); Van Assche & Blockeel (2007).

Decision tree models, on the other hand, have transparent decision making steps. A traversal of
features on the decision path from the root to the leaf node is presented to users as a rule. Therefore,
compared to other models, the decision tree model has historically been characterized as having

1In this paper, comprehensibility and interpretability are used interchangeably.
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high comprehensibility Freitas (2014); Doilovi et al. (2018). However, whether models generated
by classic decision trees provide enough comprehensibility has been challenged: “decision trees
[...] can grow so large that no human can understand them or verify their correctness“ Caruana
et al. (1999), or they may contain subtrees with redundant attribute conditions, resulting in potential
misinterpretation of the root cause for model predictions Freitas (2014).

The work presented in this paper introduces an algorithm for deriving succinct explanations for
positive classifications, while maintaining the overall prediction accuracy. To this end, we introduce
a novel cascading decision tree model. A cascading decision tree is a sequence of several smaller
decision trees (subtrees) with the predefined tree depth. After every subtree sequentially follows
another subtree, mimicking in this way a cascading waterfall, thus the name. The sequence ends
when the subtree does not contain any leaves describing positively classified samples. Fig. 2 depicts
one such cascading decision tree.

The main idea behind cascading decision trees is that, while most algorithms for constructing deci-
sion trees are greedy and they try to classify as many samples as soon as possible, such classification
results in large explanation paths for the samples in the lower levels of the tree. Instead, we construct
a subtree of the predefined depth. That subtree contains a short explanation for the samples it man-
aged to classify. However, the subtree with a short depth will misclassify samples. We next repeat
the process on the training set with the samples that were previously classified positively removed.
This way, the samples classified as positive in the second subtree will have a much shorter expla-
nation path than they would in the original decision tree. In the cascading decision tree model, an
explanation path for positively classified sample is the path that starts in the root of the corresponding
subtree.

We target explanations for only positive classifications, based on real-world motivation. In the
medical domain, a positive classification result indicates that a person has the disease for which the
test is being done NIH (2020). The positive classification is also combined with additional testings
needed for a full diagnosis CDC (2020). Note that, if a practical application arises, our cascading
decision trees model could easily be changed to target the negative classifications.

Reducing the size and the depth of a decision tree to improve comprehensibility has been studied,
both from a theoretical and a practical perspective. However, constructing such optimally small
decision trees is an NP-complete problem Hyafil & Rivest (1976), and the main drawback of these
approaches is that the model is computationally too expensive to train. Even when using the state-
of-the-art libraries Aglin et al. (2020); Verwer & Zhang (2019), we observed that complexity. To
illustrate this on an example, to learn a model on the Ionosphere dataset (from the UCI Machine
Learning Repository), the BinOCT tool needs approximately 10 minutes, while our approach com-
pletes this task in 1.1 seconds.

We demonstrate the applicability of the cascading decision tree model in two ways. First, we use our
model to perform standard binary classification on three numerical datasets from the UCI Machine
Learning Repository. Second, we apply our model to a new application of binary classification,
namely continuous integration (CI) build status prediction Santolucito et al. (2018). Overall, we
report that compared to the classical decision tree algorithm, our approach shortens the explanation
depth for positive classifications by more than 40.8% while maintaining the prediction accuracy.

2 MOTIVATING EXAMPLES

In this section we demonstrate how cascading decision trees can generate a shorter and more succinct
explanation.

The following simple synthetic example is contrived to illustrate our tool’s basic functionality. Given
the dataset in Table1, a classical decision tree will construct a model shown in Fig. 1. Using the same
dataset, our cascading decision trees algorithm generates a model with three subtrees in shown in
Fig. 2. Let’s assume that there is a new sample ,“Sample11”, with the feature vector (F, F, F, T ).
Both models classify “Sample11” with the same prediction result, “Positive”. However, the expla-
nations extracted from these two models are different.

In the classic decision tree model (Fig. 1), “Sample11” falls into node (9). Thus, the explanation
path here is “Feature1 = F”, “Feature2 = F” and “Feature3 = F”, with the explanation depth of three.
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Table 1: Synthetic Dataset for Binary Classification.

Feature1 Feature2 Feature3 Feature4 Label
Sample1 T T T F Positive
Sample2 T T F F Positive
Sample3 T T T F Positive
Sample4 T T T F Positive
Sample5 F F F T Positive
Sample6 F T F F Positive
Sample7 T F F F Negative
Sample8 F T T F Negative
Sample9 F F T F Negative
Sample10 F T F F Negative

(1) Feature1

(2) Feature2 (3) Feature3

(4) Feature2(5) S1,S2,S3,S4 (6) S7 (7) S8,S9

(8) S6,S10 (9) S5

True False

True
False

True False

True False

Figure 1: An example of a full classic decision tree on dataset given in Table 1 with green boxes as
Positive nodes, red boxes as Negative nodes, and gray boxes as Mixed nodes.

(1) Feature1

(2) Feature2 (3) Feature3

(4) S1,S2,S3,S4 (5) S7 (6) S8,S9 (7) S5,S6,S10

True False

True
False

True False

(8) Feature4

(9) Feature3(10) S5

(11) S8,S9 (12) S6,S7,S10

True False

True False

(13) Feature3

(14) Feature1(15) S8,S9

(16) S7 (17) S6,S10

True False

True False

Figure 2: An example of Cascading Decision Trees on dataset given in Table1, with maximum depth
of three in each subtree.

Using the cascading decision tree model (Fig. 2), “Sample11” first falls into node (7) in the first
subtree. Node (7) is not classifying positive samples, so “Sample11” is passed to the second subtree
and eventually falls into node (10). This way, the explanation path for“Sample11” is “Feature4 =
T”, with an explanation depth of only one.
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3 RELATED WORK

Ensemble Methods. The cascading decision trees algorithm pursues a different goal than existing
ensemble methods, such as Bagging Breiman (1996) and Boosting Schapire (1990). Ensemble
methods for decision trees combine multiple weaker classifiers into a larger classifier with the goal
of increasing overall accuracy, while cascading decision trees focus on shortening explanations.
Bagging divides the dataset into multiple, smaller datasets, generates the classifier for each dataset
and produces the final classification via a voting process. Boosting algorithms iteratively learn weak
classifiers, gives them weights, and adds them one after another to generate a final strong classifier.
The combination strategies of these ensemble methods obfuscate the traceability of a classic decision
tree, which is the source of simple explanations for classifications Zhao & Sudha Ram (2004). The
limited model comprehensibility of Bagging and Boosting is also shared by other ensemble methods,
which makes their output difficult to interpret.

Oblique Decision Trees. Oblique decision trees Murthy et al. (1994) extend the classic decision tree
model by allowing each decision node to combine checks against multiple features. This series of
work contains a rich family of models such as multivariate decision trees Brodley & Utgoff (1995),
loose and tight coupling Gama & Brazdil (2000), and constrained cascade generalization of decision
trees Zhao & Sudha Ram (2004). However, compared to cascading decision trees, this oblique
design is not only the training stage computationally expensive Lee & Jaakkola (2020), but also
makes the explaining a classification in the decision-making stage opaque and hard to interpret Zhao
& Sudha Ram (2004).

Optimal Decision Trees. Optimal decision tree algorithms learn models with the optimal prediction
accuracy under the constraints of the predefined depth of the tree. However, learning an fixed depth
optimal decision tree without heuristics is an NP-complete problem Hyafil & Rivest (1976). The
main drawback of using this approach in practice is that the model is too computationally expensive
to train. For example, the state-of-the-art optimal decision trees implementations Aglin et al. (2020);
Verwer & Zhang (2019) need ten minutes to train the ionosphere dataset2. On the same dataset, we
show in our evaluation (Sec. 5) that our cascading decision trees learning process terminated in
seconds with competitive accuracy (cf. Verwer & Zhang (2019)). In addition, instead of being a
direct competitor, an optimal decision tree learner could be used as the base decision tree inducer in
our algorithm to potentially improve the prediction accuracy, though at the cost of training time.

Model Interpretability. The comprehensibility of classification models, including decision tree
models, has been extensively explored Doilovi et al. (2018). Specifically, Quinlan (1987) demon-
strated that small models are more interpretable than larger ones in the decision tree. Similarly,
Huysmans et al. (2011) ran a user study to illustrate that larger representations result in a decrease
in both the accuracy of user’s answers and users confidence in the model itself. This work supports
the motivation that minimizing explanations is a valuable direction to explore.

4 METHODOLOGY

Formalism. For interpretability, we take inspiration from the LIME system Ribeiro et al. (2016),
which states that interpretable explanations should “provide qualitative understanding between joint
values of input variables and the resulting predicted response value”. In our work, we specifically
focus on binary classification, and only target explanations for positive classifications. An explana-
tion in our system should capture the essence of the positive classification. That is, the explanation
identifies the key input values that contributed to the positive classification. The classification should
still be the same, no matter the state of the input values not included in the explanation. It is possi-
ble the sample will be classified positively in a different way, but as long as the input values in the
explanation are unchanged, the classification will still be positive.

To define a valid explanation, we consider a dataset of samples with binary labels. Without loss
of generality (as we consider only the decision tree setting), let (x, y) : (2n, C) denote a sample
as an n-dimensional Boolean vector and its ground-truth classification respectively. The number of
classes is |C| - in our application we consider only binary classification, where |C| = 2, though

2https://archive.ics.uci.edu/ml/datasets/Ionosphere
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the definition of valid explanations generalizes to larger |C|. Given a test set T : {(x, y)}, we can
learn a model M : 2n → C which maps input vectors of samples to a classification. An explanatory
model, M+ : 2n → E expands upon the modelM to additionally map input vectors to explanations,
E . An explantation E : 2n is a Boolean vector, where every true element means that the feature at
the corresponding index in the input vector is a necessary part of the classification result. The size
of an explanation, |E| =

∑
i∈n E [i], is the number of true elements in the explanation vector.

We define the validity of an explanation via array multiplication. An explanation, E , is valid over
an input vector x, when any part of the input vector not captured by the explanation may be modified
without changing the classification result of the model.

isV alid(E , x) ⇐⇒ ∀z ∈ 2n. M(x) =M(E ∗ x+ z ∗ ¬ E)
Example 1 A trivial explanation is always available for any sample - the explanation that every ele-
ment of the sample vector is important. From Fig. 1, for input vector “Sample5”, a valid explanation
is E = [1, 1, 1, 1]. This means that as long as no features change, the classification remains the same.

Example 2 In general, a shorter explanation can be extracted from classic decision trees. As an
example, the explanation of “Sample5” from the decision tree in Fig. 1 is the explanation that keeps
only the elements in the decision path of the tree: E = [1, 1, 1, 0]. This is the commonly accepted
approach to explanations of decision tree classifications.

Example 3 An even shorter explanation is possible with cascading decision trees. Looking again
to “Sample5” as classified by the cascading decision tree in Fig. 2, a valid explanation keeps only
“Feature 4” - E = [0, 0, 0, 1]. Although changes to “Feature 1-3” may change the decision path, the
classification remains the same as long as “Feature 4” is unchanged.

A explanatory model is valid if and only if the provided explanation is valid for all possible inputs,
that is: ∀x ∈ 2n. isV alid(M+(x), x). We note that a valid explanatory model only needs to
correctly explain its classifications for all inputs - not correctly classify all inputs.

The above definition of a valid explanation is always true of the decision path of a classic decision
tree. This aligns with the notion that the decision path of a classification in a classic decision tree
is a valid explanation for the resultant classification of a sample. As we will show, this definition
of a valid explanation is also always true of the shortened “explanation path” we propose with our
cascading decision trees. Cascading decision trees provide explanations only over samples classified
as positive, though the definition is more general.

Building Cascading Decision Trees. The cascading decision trees algorithm is described through
pseudocode in Algorithm 1. Our insight is in the training process - it is the goal of each cascading
decision subtree to identify the smallest set of features that can classify as many Positive samples
as possible, without misclassifying any Negative samples. Specifically, the procedure Fit builds
a classic decision tree, clf, on our training set, T R and adds it to the cascading tree list - initially
this list is empty. For every leaf node we compute the mixed value, which is the percentage of
samples from T R classified by this leaf node that are also Positive samples. Positive nodes
are leaf nodes with a mixed value greater than the threshold (we use 80% in this paper). If clf has
no Positive nodes, it means we have learned a sufficiently good classifier and we stop (Line 11).
Otherwise, we first remove samples truly classified by Positive nodes in this clf from T R, and
then obtain a new T R to use in the next iteration of the loop (Line 14).

Our cascading decision trees algorithm1 presented here has no pruning phase. However, our al-
gorithm is generic enough to be combined with any pruning techniques Esposito et al. (1997) and
different goodness measurement for decision nodes split, such as entropy Shannon (1948) and gini
impurity Havrda et al. (1967).

The time complexity of cascading decision tree algorithm is bounded by the size of the training
set. Suppose the training time for building classic decision trees is a function of the number of the
training samples, n and the number of features k. We use the decision tree module in scikit-learn3 as
our base classic decision tree inducer, which is built upon the CART Breiman et al. (1984) method.
Since features are recursively reused in every decision node based on a numerical splitting criterion,

3https://scikit-learn.org/stable/
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Algorithm 1 Build Cascading Decision Trees Classifier
Input: T R :Labelled Training Set
Input: θ :Threshold
Input: depth :Maximum depth of each decision subtree
Output: cascadingTree :A list of cascading decision subtrees

1: procedure FIT(T R, θ, depth)
2: done = False
3: cascadingTree = []
4: while done = False do
5: clf = classicDecisionTree.fit(T R, depth)
6: cascadingTree.append(clf )
7: done = True
8: for leafNode in clf do
9: if (mixed(leafNode) >= θ) then

10: done = False
11: if (done = True) then
12: Break
13: else
14: T R = filter (clf .predict(sample, θ) = Positive, T R)

return cascadingTree

the depth of the decision tree is bounded by the number of the training samples n in our model.
Therefore, the time complexity for building one base decision tree is bounded by O(n2k).
According to our cascading decision trees algorithm1, after building one decision subtree, sam-
ples that are classified as True Positive are removed from the next round of decision sub-
tree construction. In the worst case, every time, only one True Positive is classified in the
current decision tree. The time complexity for building the next cascading decision subtree is
in O((n−)2k). Therefore, the overall cascading decision trees training time T is bounded by:
O(

∑n
m=1m

2k) = O(n(n+1)(2n+1)
6 k) = O(n3k).

Testing Cascading Decision Trees. Our cascading decision trees testing process is described in
Algorithm 2. In the procedure Test, we run all decision trees sequentially, and we report the decision
path of that tree only as our explanation path.

Algorithm 2 Test Cascading Decision Trees Classifier
Input: cascadingTree :A list of cascading decision tree classfier
Input: θ :Threshold
Output: Prediction Result: A boolean variable, Postive or Negative.
Output: Explanation Paths: A conjunction of boolean statements to explain the decisions.

1: procedure TEST(cascadingTree, θ)
2: for clf in cascadingTree do
3: if clf.predict(sample, θ) = Positive then
4: return (Postive, clf .path(sample))

return (Negative)

5 EVALUATION

This section aims to evaluate the cascading decision trees algorithm by answering the following
questions: (1) compared to the classic decision trees algorithm, what is the percentage of explanation
depth for positive classifications that has been shortened by using cascading decision trees? (2) what
is the prediction accuracy and the turn-around efficiency of cascading decision trees algorithm? (3)
how well does cascading decision trees algorithm perform in real-world edge application such as
continuous integration (CI) build status prediction? All experiments were conducted on a MacBook
Pro with a 2.5 GHz Intel i7 processor with 16GB of RAM.
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5.1 EMPIRICAL EVALUATION

To empirically evaluate the explainability and accuracy of the cascading decision trees algorithm, we
collect three datasets from UCI machine learning repositories4 as our benchmark set. The UCI ma-
chine learning datasets are standard benchmarks for comparing the performance of tree-based classi-
fication methods. We select these three binary classification datasets out of the 32 UCI datasets Zhao
& Sudha Ram (2004). We select only the binary classification tasks, as our method provides expla-
nations for positive classifications. While our method could be applied to multiclass classification,
the user must pick a class to focus on creating succinct explanations, which is not clear from the
UCI datasets. Additionally, we select only the datasets with exclusively numeric features, as the
underlying library, sccikit-learn5, of our implementation is limited in this respect.

Each of the three UCI datasets reflect tasks clearly benefit from more succinct explanations for
positive predictions. They are:

1. Classification of breast cancer. “Positive” samples mean the tumor turns out to be malig-
nant, while “Negative” samples are benign.

2. Detection of free electrons in the ionosphere. “Positive” samples show the detecting signals
fail to detect the free electrons; the signals just pass through the ionosphere. “Negative”
samples show some evidence of the stucture in the ionosphere.

3. Discrimination of objects. This dataset includes bouncing sonar signals off a mine (metal
cylinder) at various angles and under various conditions. “Positive” samples indicate the
object is indeed a rock not a mine, while “Negative” samples indicate the object is a mine.

We compare the performance of the proposed cascading decision trees algorithm to the performance
of the classic decision trees algorithm with various bounds on the depth of the learned tree. We
quantify algorithm performance using five-fold cross validation, and randomly shuffle the datasets.
The maximum depth of the cascading decision trees algorithm is uniformly set to three in all tests.
The threshold in cascading decision trees algorithm is set to a fixed number 0.8.

Explainability. The shorter an explanation, the more comprehensible that explanation is to
users Quinlan (1987); Huysmans et al. (2011); Pazzani (2000). The ability to clearly explain the
output of machine learning models is critical to their acceptance and use in practice, an idea sum-
marize by Huysmans et al. (2011) - “Larger representations result in a decrease in user’s answer
accuracy and a decrease in user’s confidence to the model.”

Table 2: Average Explanation Depth of Postive Classifications from Cascading Decision Trees and
Classical Decision Trees.

Dataset Classical Decision Trees Cascading Decision Trees Improvement
Breast cancer 2.658 1.991 25.1%
Ionosphere 2.694 1.418 47.4%
Sonar 3.813 1.943 49.0%

Table 2 shows the comparison of the average explanation depth of model generated by cascading
decision trees and classic decision trees. Our cascading decision trees algorithm shortens the ex-
plainable paths to users by 40.8% on average among three datasets. The average representation size
of our cascading decision trees model is 1.78 among three datasets. We specifically focus on the
explanations for positive classifications. This means on average, only 1.78 features are necessary
for the classification of a positive sample in cascading decision trees. However, for classical decision
trees, 3.06 features are necessary for the classification of a positive sample. This succinctness of the
explanation of positive predictions enhances qualitative understanding to users, which could be used
to diagnose the medical causals and back up the scientific hypothesis.

Accuracy. Table 3 shows the breakdown empirical evaluation of cascading decision trees. In two
out of three datasets, our cascading decision tree surprisingly outperforms the base classic decision
trees in prediction accuracy.

4http://archive.ics.uci.edu/ml/index.php/
5The decision trees module in scikit-learn is also used as the implementation for the classic decision trees

algorithm in our evaluation.
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Table 3: Breakdown Evaluation of Cascading Decision Trees on Three Classic UCI datasets.

Dataset Cascading Explanation Depth Accuracy Runtime (s) TP TN FP FN Precision Recall F-1 Score

Breast cancer
On 1.991 93.51% 1.039 36.8 69.8 1.8 5.6 95.42% 86.57% 90.54%
Off 2.658 93.16% 0.068 38.4 67.8 3.8 4.0 91.38% 90.47% 90.80%
Off (max depth = 3) 2.311 91.40% 0.062 34.8 69.4 2.2 7.6 93.88% 82.07% 87.53%

Ionosphere
On 1.418 88.73% 1.108 20.4 42.6 3.0 5.0 88.28% 80.89% 84.37%
Off 2.694 85.92% 0.060 20.0 41.0 4.6 5.4 81.77% 80.16% 80.68%
Off (max depth = 3) 1.483 84.23% 0.051 15.8 44.0 1.6 9.6 92.42% 61.57% 73.60%

Sonar
On 1.943 66.19% 0.467 12.2 15.6 4.2 10.0 78.63% 55.92% 62.46%
Off 3.813 74.29% 0.055 17.4 13.8 6.0 4.8 74.45% 78.29% 76.06%
Off (max depth = 3) 2.658 65.71% 0.049 11.0 16.6 3.2 11.2 79.75% 50.42% 60.32%

To lower the explanation path of the decision trees model, one common technique is to set the
maximum depth to a classic decision trees classifier. However, compared with the cascading decision
trees, setting the maximum depth to three incurs a decrease in average prediction accuracy by around
4.0%. Even with this max depth and lower accuracy, in all three datasets, the average explanation
path is still longer than cascading decision trees algorithm.

In conclusion, compared with the classical decision trees model both with and without a fixed depth,
our cascading decision trees algorithm delivers better model comprehensibility via significantly
shorter explanation depth while maintaining high prediction accuracy.

Low False-positive Rate. In addition to better model comprehensibility, the cascading decision
trees model has another key advantage, which is the low false-positive rate in prediction. In medical
and scientific domains, explanations behind positive classification results are often more useful than
explanations behind the negatives. For example, in the medical domain if the prediction result is
positive, the doctor needs to justify the accurate reasons behind the diagnosis of the disease and then
report them to patients. A high false-positive rate not only greatly reduces physicians’ confidence
in adopting the prediction result but also leads to unnecessary and invasive follow-up tests on pa-
tients HNR (2020). Therefore, it is crucial to have a competitive accuracy prediction model with very
low false-positive rate. As shown in Table 3, the cascading decision trees algorithm has the lowest
false positive (FP) rate for all three datasets compared to the classical decision trees algorithm.

Turn-around Efficiency. Although this paper does not focus on building fast classifier, the turn-
around efficiency of our cascading decision trees algorithm turns out to be great in practice. The
training process finishes in seconds in all three real-world UCI datasets. Taking the ionosphere
dataset as an example, our cascading decision trees learning process terminates in 1.1 seconds with
accuracy of 88.7%. This is comparable to accuracy of 87.0% of the state-of-the-art optimal decision
trees algorithm BioOCT when depth of the tree are three (cf. Verwer & Zhang (2019)). However,
BioOCT takes around ten minutes to train.

Real-world Application. The second part of our evaluation was to apply the cascading decision
trees for predicting the build status in the continuous integration (CI) environment Gousios et al.
(2014). Notifying that the attempt to build the project might fail, could save software engineers
countless hours. We ran a study (link omitted for anonymity) where we learn how to classify po-
tential build failures. The evaluation results demonstrate that cascading decision trees provides a
shorter explanation, with a competitive prediction accuracy of 90.55%. Moreover, the ratio of the
average number of false positives reports to the average number of correct classifications is only
1.8% . Our study shows that the use of cascading decision trees provides developers with a more
succinct but comprehensible set of rules that are responsible for positive classifications.

6 CONCLUSIONS

Learning decision trees on modern datasets generates large trees, which in turn produce decision
paths of excessive depth, obscuring the explanation of classifications. This paper intends to maxi-
mize model comprehensibility while maintaining prediction accuracy in binary classification. The
cascading decision trees algorithm has been proposed to provide more succinct explanations in bi-
nary decision trees. We evaluated our algorithm in real-world medical, scientific and program anal-
ysis datasets, where the explainability of the positive test result is of the utmost importance. Our
cascading decision trees algorithm shortens the explanation depth by over 40.8% for positive classi-
fications compared to the classic decision trees algorithm.
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A APPENDIX

Real-world Application. Encouraged by the prior results from our empirical study, we conduct our
second part of our evaluation by using our cascading decision trees algorithm in a novel real-world
application, continuous integration (CI) build status prediction.

In CI environment, developers upload their code as one commit, and CI starts to build and tests users’
code when they finish their uploading. Feedback from the positive CI build status enables developers
to quickly locate and troubleshoot errors in the code, expediting the software development cycle.
However, one major drawback of CI is that a CI build attempt can be extremely time consuming,
and can even take longer than a day Santolucito et al. (2018), discouraging the usage of CI itself.
Previous work Santolucito et al. (2018) used the historical data stored in the CI environment to
predict the CI build status and report the root causes behind the failures to users.

We choose this dataset because it is an ideal testbed for our cascading decision trees algorithm, bi-
nary classification task on all numerical features. As opposed to other common source of program-
ming error such as buffer overflow, divide by zero and so on Wang et al. (2013), CI build failure is
mainly caused by library version inconsistency. Therefore, all features extracted in this dataset are
numerical, and as a result, is amenable to analysis by our algorithm. Moreover, in program analysis
domain, a very low false-positive rate is crucial for user acceptance of the tool Junker et al. (2012).

Table 4: Breakdown Evaluation of Cascading Decision Trees on CI Build Status Prediction.

Cascading Explanation Depth Accuracy Runtime (s) TP TN FP FN Precision Recall F-1 Score
ON 2.18 90.55% 249.43 68 95 135 1428 66.50% 58.70% 62.36%
OFF 2.31 90.50% 277.95 69 95 135 1427 66.18% 58.70% 62.21%

Table 4 shows the breakdown evaluation of using cascading decision trees on CI build status pre-
diction. The strategy we employ in the evaluation is the following; for a repository with n total
historical commits, we build our model with n/2 commits, and use that model to evaluate commit
(n/2) + 1. We then rebuild the model with a training set of (n/2) + 1 commits and used that
incremental model to predict the status of the next coming commit. Using this approach, we find
that cascading decision tree classifier can predict build status with an overall accuracy of 90.55%,
which is almost the same as the accuracy of 90.50% if using only classic decision tree classifier.
However, in addition to competitive prediction accuracy, cascading decision tree shortens the ex-
planation depth for failed builds by 5.6%. This could help developers identify error locations more
quickly and shorten the software development cycle.

In addition, our evaluation results show that the ratio of the average number of false positive reports
to the average number of correct classifications is only 1.8% (FP/TP+TN). In conclusion, the use
of cascading decision trees provides developers with a more succinct but comprehensible set of
rules that are responsible for positive classifications. This allows developers to more accurately and
confidently troubleshoot the CI build failure.
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