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Abstract

Recently, the automated translation of source code
from one programming language to another by
using automatic approaches inspired by Neural
Machine Translation (NMT) methods for natu-
ral languages has come under study. However,
such approaches suffer from the same problem as
previous NMT approaches on natural languages,
viz. the lack of an ability to estimate and evaluate
the quality of the translations; and consequently
ascribe some measure of interpretability to the
model’s choices. In this paper, we attempt to esti-
mate the quality of source code translations built
on top of the TransCoder (Roziere et al., 2020)
model. We consider the code translation task as
an analog of machine translation (MT) for nat-
ural languages, with some added caveats. We
present our main motivation from a user study
built around code translation; and present a tech-
nique that correlates the confidences generated
by that model to lint errors in the translated code.
We conclude with some observations on these
correlations, and some ideas for future work.

1. Introduction

The emergence of large-scale, automatically-trained models
in Natural Language Processing (NLP) has enabled many in-
teresting and novel applications. Of particular interest to us
in this work is the area of Machine Translation (MT), where
translations from one (natural) language to the other are
produced automatically. Neural techniques applied to the
machine translation task (Garg & Agarwal, 2018) have previ-
ously produced state-of-the-art (SoTA) results. As machine
translation systems improved the fluency of translations be-
tween (human) natural languages, a pressing imperative that
came to the fore was Quality Estimation (QFE) of these MT
systems in an automated manner. While most previous work
in this area (Kim et al., 2017; Wang et al., 2018; Kepler
et al., 2019) models QE as a supervised machine learning
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task, the work of Fomicheva et al. (2020) treats the NMT
model as a glassbox, and proposes various unsupervised
QE measures that correlate to various degrees of human
judgment of the translations.

Code translation from one programming language to an-
other can be viewed as a special case of machine translation
on natural languages, albeit with rigorous grammar rules
and a stricter notion of correctness as compared to trans-
lation between natural languages (Allamanis et al., 2018).
Several studies have investigated the application of machine
translation to the problem of code translation (Nguyen et al.,
2013; Karaivanov et al., 2014; Oda et al., 2015); and more
recently, deep neural networks (Chen et al., 2018) and unsu-
pervised neural machine translation (NMT) techniques have
been applied (Roziere et al., 2020) to this task as well.

Inspired by this progress, we present a study of translations
from the TransCoder (Roziere et al., 2020) system. We
extract the confidences produced by the system while trans-
lating 400 source code programs from Java to Python;
and seek to correlate these confidences to lint errors in the
automatically-produced Python code snippets. In doing
this, we rely on insights gleaned from a user study of soft-
ware engineering professionals engaged in an application
modernization task at a major information technology com-
pany. We intend for this report to: (i) spur further work on
creating and studying metrics for the automatic estimation
of code translation quality; and (ii) provide interpretations
to these metrics that can be understood in the context of rep-
resentations that software professionals are familiar with.

2. User Study

As the first step towards measuring the quality of transla-
tions produced by TransCoder, we conducted an interview
study of 11 software engineering professionals — the most
likely target group for the source code translation use case.
This user study — conducted at a major multinational infor-
mation technology company — provided some insights and
motivation for our work, which we detail in this section.

The goal of our user study was to learn how programmers re-
spond to a utility that helps them translate code from Java
to Python, potentially with imperfections ' . In addition,

'This kind of task has practical value to organizations as they
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we examined whether and how indicators of translator con-
fidence and pop-up menus showing different translation
options were perceived as useful. The recruiting profile
included the requirement that participants be programmers
who were familiar with both Java and Python (our lan-
guages of focus in this paper). We spent hour-long sessions
with the 11 software engineers, showing them design proto-
types and getting feedback — one configuration is shown in
Figure 3 (Appendix). Tokens that the TransCoder model is
less confident about are highlighted in red.

2.1. Preliminary Insights

The user study produced numerous qualitative insights?. In
this section, we focus only on those aspects that related
to participants’ understanding — or lack thereof — of what
the translator model was doing; and their suggestions on
improving the interpretability of the translation process.

2.1.1. SYNTAX & STYLING

“In groups that try to adhere to the style guides
produced by language creators...better to train
the Al with code that adhered to a style guide
than not...reading other people’s code easier if
everyone adheres to the same style.” - P5

One of the main high-level insights — exemplified by the
quote above from a participant — concerned the styling and
syntax issues that are inherent in code. When code is being
translated into a new language, it is not sufficient merely to
produce something that can execute: the translation must
also adhere to the conventions — written and unwritten — of
the target language (Allamanis et al., 2014). This impor-
tance is reflected in various lint-like tools that are used to
enforce constraints on and optimize code. This issue also
has a distinct connection to neural style transfer (Jing et al.,
2020); where the style of the target language can be seen as
conventions that surround syntax and styling issues.

2.1.2. CONFIDENCE OF THE MODEL

“That just confuses me because this line of code
is syntactically correct. I would write that line of
code with 100% confidence. I'm confused about
why the translator would be confused about that
assignment.” - PO

Another common theme was that participants were often
left confused by the model’s confidence — or more often,
the lack thereof — in specific tokens in the translation. This
confusion is best exemplified in the quote above, where par-
ticipant PO confirmed that the translated line of code was
syntactically correct; yet noted with surprise the model’s
lack of confidence in the translation. Similar comments on

modernize legacy applications (Khadka et al., 2012).
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the punctuation tokens in translations came from participant
P1: “Why is the left bracket after the return... why is that not
so confident... it’s not even an identifier... the double quote
in that string there, that’s a funny one too.” Participant P 3
expected that the “translator would be able to define this
def function signature line with the function name correct”,
but expressed confusion when the translator wasn’t “as con-
fident as it could be”. Participant P5 questioned: “Why is it
highlighting so many of these comments?” in reference to
the model’s uncertainly in code comments.

All of these quotes point to a central shortcoming with mod-
els like TransCoder: human users do not have a very good
understanding of how the model performs the translation;
and hence have very little idea about when and why it has
confidence (or not) in a particular token. An important rea-
son for this shortcoming is the difference in the way that
humans generate translations versus neural models.

2.1.3. MAPPING TO INTERMEDIATE REPRESENTATIONS

The fundamental observation above transfers from the realm
of MT for natural languages to the code domain. Toral et al.
(2018) have examined this issue — and its implications for
the evaluation of human parity in MT systems — in detail
for the natural languages Chinese (ZH) and English (EN).
Our user study gives us some preliminary indications that
something similar happens when it comes to source code;
where a human programmer who is proficient in Java and
Python would translate (and check translations) different
from the way an NMT model (like TransCoder) might do
so. Specifically, human translations tend to: (i) consider a
much larger and more global context when evaluating and
producing translations; and (ii) map both the source and
target (if available) material on to some common interme-
diate representation (for e.g., the concept of a loop). NMT
models, on the other hand, often maximize the probability
of the next token given the evidence of some restricted set
of tokens in the neighborhood of that next token; and show
no evidence of being able to map on to any representation
that is in common with humans (programmers).

This insight motivates our study of the interpretability of the
output of NMT models in this paper. Specifically, in the fol-
lowing sections, we seek to use lint errors as an intermediate
representation that is already familiar to human users; and
try to correlate the NMT model’s confidence values with
errors and warnings produced by the linter.

3. Experiments

We set up our experiments to translate a complete source
code program (as against a function level translation) to help
us understand the effect of auxiliary code blocks — such as
import statements, class definitions, and multiple function
definitions — on the translation quality.
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Code | E0602 | E0O001 | E0102 | E1101 | E1102 | E0601 | RO903 | R1705 | R0205 | R1716
n 218 74 42 34 24 18 70 67 55 14
;th 0.112 0.053 0.089 0.044 0.007 0.013 0.053 -0.032 0.058 -0.005
Tob 0.100 0.052 0.091 0.038 0.005 0.013 0.043 -0.026 0.047 -0.005
Code C0103 | C0301 | C0200 | C0304 | C0325
n 128 104 58 14 12 277 70 35 20 15
r;‘b’mt 0.069 -0.001 0.073 0.012 0.056 0.083 0.085 0.006 0.012 0.006
Tob 0.064 0.001 0.061 0.013 0.055 0.071 0.077 0.004 0.014 0.009

Table 1. PBCC values and sample sizes for Pylint error (E), refactor (R), warning (W), and convention (C) messages. ”Code” indicates the
Pylint error code (refer Appendix A.2 for details) for which the correlation metric is computed. n indicates the number of translations (out

joint

of 400) in which the particular error code is observed, and 7
uncertainty values.

3.1. Method

One of the primary aims of this work is to show that there
is very little correlation between the confidence measures
output by a code translation model (like TransCoder) and
traditional methods used by software engineers to check
their code (like lint). Since we are interested in evaluating
this correlation, we must first determine the two variables
being correlated. The first such variable is continuous, and
is simply the output from the TransCoder model for each
token in the translated source code: p(y; | y<¢, x, ). The
second variable is discrete/categorical; and takes the form of
the error category that is flagged for a given line by running
the translated source code through a linter.

and rp;

min

correspond to PBCC metrics using Y as token

joint and T

min

dichotomous — that is, it can be partitioned into two mutu-
ally exclusive sets that are jointly exhaustive — and the other
variable is continuous. The biserial correlation is when the
variable is artificially dichotomized over some underlying
continuity. In the case of our investigation, the dichotomous
variable is whether a particular line of source code throws a
linter error (of a specific category) or not. The continuous
variable is taken to be an estimate of the model’s uncertainty
for the corresponding source code line. We consider two
specific uncertainty metrics: Tjoint computing the uncer-
tainty based on the joint distribution over the 7" tokens in
the line; and Tmin using the minimum token confidence
value as an estimate of the line uncertainty:

T

3.1.1. DATA Yioint = 1 = [ [ P(wely<t, 2. 0) (1)
aqe . . . . . t:1

We utilize 400 common algor1thm1.c 1mplemeptat10ns in Yrin=1- min __ p(yly<i,,6) 2)

Java downloaded from a popular Github repository (Prad- vie{l,--,T}

han & Pop, 2017), and produce a Python3 translation
for each of these instances using a pre-trained TransCoder
model with a beam size of 5. For each translation, we also
record the output probabilities associated with each token.

3.1.2. LINT ERRORS

We ran each of the 400 Python3 translations produced by
TransCoder through the static code analysis tool Pylint
to look for programming errors, coding standard violations,
and simple refactoring suggestions. We execute Pylint
to validate for all but three of the 311 violations included in
the Pylint default configuration . Please refer to Appendix
A.2 for Pylint related details. Some of these validations
are checks for proper syntax, package import errors, unde-
fined variable access or usage before assignment, redefining
Python builtin functions or variable; among others.

3.2. Calculating Correlation

For our correlation analysis, we use the Point Biserial Cor-
relation Coefficient (PBCC) (Tate, 1954), and its imple-
mentation in SciPy (Virtanen et al., 2020). The PBCC
metric is typically used in scenarios where one variable is

4. Results & Discussion

We focus on 3 main results: (1) a translation error analysis
that offers a profile of the kinds of lint errors that occur in
code translated by TransCoder; (2) a quantitative study of
the correlation (or lack thereof) between model confidence
values and lint errors; and (3) a qualitative example that
drills deeper into one specific translation, and the correla-
tions between TransCoder’s confidence values and the lint
errors for that translation.

4.1. Translation Error Analysis

To understand how TransCoder handles the syntactic dif-
ferences between two programming languages — Java
and Python3 in our case — we identify the differ-
ent kinds of lint violations that occur in the translated
code. Figure 1 shows the top lint violations (out of
the 66 observed) and the frequency with which they oc-
cur in the generated translations. The most frequently-
occurring violation was invalid-name, where the model
did not comply with the naming convention of a func-
tion or a variable name. Similarly, 1ine-too-long
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invalid-name
undefined-variable
unused-variable
redefined-builtin

line-too-long 1
too-few-public-methods 1]
no-else-return I
syntax-error ]
unused-argument
useless-object-inheritance [
 function-redefined L]
consider-using-enumerate | = Error
no-member | .
not-callable mmm Convention
missing-final-newline mmm Refactor
used-before-assignment Warning
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Percentage of translations

Figure 1. Lint violations and the percentage of translations in
which they occur. We display violations that occur for more than
5% of the translations.

occurred in about 20% of the translations, where the
model violated the recommended 80 character line
length. Other violations that occurred frequently were
undefined-variable (67%), unused-variable
(39%), and redefined-builtin (32%); indicating that
common programming conventions — to either not define an
unused variable, or where built-ins could be overridden but
were advised not to — were violated by the model.

These violations tie back to our user insight in Section 2.1.1,
where participants expected the translated code to adhere
to the conventions of the target language; and are in-line
with the insights of Toral et al. (2018) in MT for natural
languages, where the authors suggest document level trans-
lations to account for the intersentential phenomenon. Sim-
ilarly, in the case of code translation, while function-level
translation through TransCoder achieves around 60% ac-
curacy (with a beam size of 5), translating whole classes
requires models to account for auxiliary code and inter-
function dependencies.

4.2. Quantitative Analysis

Another key insight that emerged from our user study was
the need for interpretable model confidence values (see
Section 2.1.2), to better help users focus on syntactical or
conventional issues. To study the correlation between model
confidences and lint violations through Pylint, we com-
pute PBCC values for the two uncertainty metrics defined
in Equations 1 and 2. Table 1 summarizes these results for
the most commonly observed lint violations. We observe no
correlation between model confidence: p(y:|y<+, x,6), and
tokens which resulted in lint violations. This miscalibration
between model confidence and model interpretability has
been studied in Guo et al. (2017), and was also pointed
out by multiple users in our user study. In this work, we
utilize only the decoder output probabilities to identify low
confidence tokens, while Fomicheva et al. (2020) propose
multiple metrics utilizing decoder output probabilities and
attention weights for unsupervised quality estimation. Addi-
tionally, Guo et al. (2017) propose a calibration scheme to
produce calibrated probabilities from deep neural networks.

Our results underline the need for further work on metrics
that better align with human perception of code translation.

Figure 2. A code snippet translated from Java to Python3 with
the corresponding Pylint errors and model confidences for each
line. The max variable is used by the TransCoder output both as a
variable and as the maximum operator. As we frequently found,
little correlation is visible between model confidences (right) and
lint violations (left). See Appendix A.3 for the Java source code,
and Figure 5 in the Appendix for an enlarged image.

4.3. Qualitative Example

We also present a specific translation instance along with
lint violations and model confidences (Figure 2) to serve as
an illustrative example of the nature of lint violations that
occur in translated code, and how the model confidences
values vary across the translation. While TransCoder cor-
rectly translates most of the code, including an interesting
translation of 1>=0 in Java to -1 in Python3 in the
for loop condition, it is unable to distinguish between the
Math.max operator and max variable in Java — both of
which have the same name but are different entities — and
translates them over to the same variable but performing
both functions in Python3 (see violations W0622 and
E1102 in Figure 2). The corresponding model confidences
show some correlation with the lint violations with low con-
fidences for EO602 and E1102 violations; but also show
high confidences for W0602 and the second E1102 viola-
tion. This illustrates that model confidences do not correlate
with associated programming errors or standards violations.

5. Conclusion & Future Work

In this work, we looked at automated code translation from
the perspective of a programmer. From our user study, we
found that the syntax and styling of the translation also mat-
ters to the users along with the code’s executability and cor-
rectness; and an analysis of translations from the TransCoder
model underscored the need for incorporating coding stan-
dards in the translation process. Additionally, users also de-
sired some form of interpretability of the model’s confidence
in certain tokens. To quantitatively assess any correlation,
we utilized the token probability values as a measure of the
model’s confidence, and lint violations as a surrogate metric
for code interpretability We found no significant correlation.
We are currently working on metrics that correlate better
with a programmer’s perception of code interpretability.
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A. Appendix
A.1. User Study
See Figure 3 for the code translation design prototype.

Code Translator

Source Language [EREVE] v Result Language: WEMGLI v _

def two_sum ( nums ,
From Leet

e two numbers

m nums

target) {

hMap<> () ;
for i in nums :
complement = tar |
if d.has_k ( complement ) :
eturn [ d [ complement ] , i ]
d[1] i
map.put(nums[i], 1); ais eError ( "No two sum solutio

w I[1legalArgumentException ("N

Figure 3. Design prototype for a code translation user interface. Participants in the user study were shown this interface to demonstrate
operation of the NMT model. Left: Input Java source code. Right: Python source code output, as translated by TransCoder (Roziere
et al., 2020). Tokens in which the model was less than 95% confident are highlighted in red, with a tooltip displaying the model’s
confidence level.

A.2. Pylint Details

1. Pylint URL: http://pylint.pycga.org/en/latest/

2. For a full list of Pyl int validations, please see: http://pylint-messages.wikidot.com/all-codes
3. Human readable messages for Pylint codes can be found at https://git.i0/JTIma
4

. Ignored Pylint checks:

e C0111 (missing-docstring): we ignore comments during the translation process
e C0326 (bad-whitespace): the detokenizer inserts spaces between all tokens

e R0201 (no-self-use): the dataset corresponds to algorithmic problems which do not require the use of self
variable.


http://pylint.pycqa.org/en/latest/
http://pylint-messages.wikidot.com/all-codes
https://git.io/JTIma
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A.3. Qualitative Example Source and Target Code
See Figure 4 for the qualitative example with the Java source and Python target code.

Refer to Figure 5 for an enlarged version of Figure 2.

public 5 MaximumSubarray {

lic ti id main(Stri
int[] nu 1,
rray(nums));

return max;
}
}

Figure 4. Java source code (left) and the translated Python target code by TransCoder example used as a Qualitative Example in the
Results section of the main paper.

Lint violations Model confidences

66.1%
B5.7%
0%
0%
B5.6%
94.2%
B5.3%
28.7%
B7.9%
66.22

Figure 5. A code snippet translated from Java to Python3 with the corresponding Pylint errors and model confidences for each
line. The max variable is used by the TransCoder output both as a variable and as the maximum operator. As we frequently found, little
correlation is visible between model confidences (right) and lint violations (left). See Appendix A.3 for the Java source code.



