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Abstract

Understanding user intent during magnified reading is critical for accessible in-
terface design. Yet magnification collapses visual context and forces continual
viewport dragging, producing fragmented, noisy gaze and obscuring reading in-
tent. We present a semi-supervised framework that learns intention-aware gaze
representations by leveraging mouse trajectories as weak supervision. The model
is first pretrained to predict mouse velocity from unlabeled gaze, then fine-tuned
to classify reading versus scanning. To address magnification-induced distortions,
we jointly model raw gaze within the magnified viewport and a compensated view
remapped to the original screen, which restores spatial continuity across lines and
paragraphs. Across text and webpage datasets, our approach consistently outper-
forms supervised baselines, with semi-supervised pretraining yielding up to 7.5%
F1 improvement in challenging settings. These findings highlight the value of
behavior-driven pretraining for robust, gaze-only interaction, paving the way for
adaptive, hands-free accessibility tools.

1 Introduction

Modeling human behavior from multimodal signals is a central goal in human-computer interaction.
Among such signals, eye movements play a critical role in understanding how users engage with text
[14, 21, 22]. In screen magnification environments, the visible area is restricted to only a few words
or lines at a time [2]. To follow the text, users continuously drag the viewport with the mouse, moving
horizontally to keep the current line in view and vertically to reach the next line. As a result, the
mouse becomes indispensable yet taxing, especially for people with low vision who rely on screen
magnifiers [16, 17]. This burden motivates automatic scroll control to reduce effort and preserve
reading flow.

Intuitive and precise automatic scroll control requires accurate, low-latency inference of user intent. A
key step is distinguishing focused reading from exploratory scanning. This distinction helps systems
determine when and how to scroll based on the user’s reading state, enabling more structured control
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Figure 1: Five second segment from our dataset that spans a transition from reading to scanning
(marked by a vertical dashed line). (a) Gaze position. Top panel shows X, bottom panel shows Y.
Raw gaze is plotted with a solid line and the compensated gaze with a dashed line; “Comp” denotes
compensated. (b) Mouse cursor position. Top panel shows X, bottom panel shows Y, with motion
increases during scanning.

policies that adapt to behavioral context [25]. Although several gaze-based automatic scroll control
systems have been proposed, most rely on handcrafted heuristics that generalize poorly across users
and content types [18, 23]. To address these limitations, we propose a behavior classification model
that robustly separates reading from scanning using gaze signals.

Distinguishing between reading and scanning from gaze alone is challenging, especially under screen
magnification. In such settings, gaze trajectories are often fragmented and noisy due to limited visual
context, viewport shifts, and disrupted eye movement patterns [6, 18, 20]. Fig. 1 (a) illustrates an
example segment of gaze and compensated gaze. Gaze captures local eye movements relative to the
magnified viewport, while compensated gaze remaps these coordinates back to the original screen
space using the magnification factor[6, 19]. As shown, raw gaze appears irregular and noisy, while
the compensated trace forms smoother, line-aligned trajectories, underscoring the difficulty of the
task and the need for robust modeling.

To improve robustness, we use two complementary views of gaze. We jointly model raw and
compensated gaze for behavior classification, capturing fine-grained movements while maintaining
global spatial consistency in magnified settings. To our knowledge, this is the first approach to fuse
these two streams for this task.

In addition, we introduce a semi-supervised learning framework that leverages mouse input only
during training to guide the learning of gaze representations. As shown in Fig. 1 (b), mouse
activity tends to increase during scanning episodes, reflecting users’ need to reorient or reposition
the viewport. Because mouse trajectories reflect deliberate, task-driven actions [9], they provide
informative supervision even when gaze is noisy. Concretely, we pretrain the model to predict
mouse velocity from unlabeled gaze and then fine-tune it for intent classification on a labeled set. At
inference, it operates solely on gaze, enabling real-time, hands-free classification for accessibility.

2 Related Work

2.1 Gaze Remapping under Screen Magnification

Screen magnification restricts the visible area and induces systematic shifts in gaze coordinates. We
adopt a prior remapping algorithm [6] to project gaze to unmagnified screen coordinates, yielding a
consistent representation across magnification settings. This remapping recovers the global layout and
preserves line and paragraph continuity that would otherwise be broken. We feed the compensated
gaze to the model alongside raw gaze to capture complementary information: raw gaze preserves
local oculomotor dynamics tied to the current viewport, whereas the compensated stream stabilizes
trajectories in the screen reference frame.
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Figure 2: Examples of the two reading tasks (text document and webpage) under the full-lens
magnification condition [24]. In this modality, the entire screen is uniformly enlarged, and only a
portion of the content is visible at a time, requiring users to continuously scroll to follow the text.

2.2 Models for Reading Strategy Classification

Prior work on reading strategy classification has largely relied on hand-crafted features and pre-
segmented text. For instance, baselines from ZuCo [8] required predefined sentence boundaries
and computed aggregate gaze features over entire passages. While effective for post-hoc analysis,
these approaches are not suited for consequent prediction or interaction. Our method avoids task-
specific structure and learns temporal representations that enable fine-grained classification under
naturalistic conditions. Statistical analyses of gaze metrics have also been used to compare reading
strategies [5, 26], but these provide descriptive insights rather than trainable, generalizable models.

More recently, transformer-based models have been applied to classify reading-related behaviors
such as reading, non-reading, and skimming from gaze and additional modalities, including head
pose and RGB video [28]. These approaches demonstrate the promise of end-to-end sequence models
for behavior classification, but they focus on normally sighted populations and do not consider the
challenges introduced by screen magnification.

2.3 Self-supervised Learning for Gaze and Behavior

Recent advances in self-supervised learning have led to progress in gaze estimation from eye im-
ages [13, 27] and in coarse behavior recognition from signals like EOG [1, 11]. However, little work
has been done on learning representations from continuous, high-resolution gaze trajectories. To
our knowledge, no prior work has applied self- or semi-supervised learning to frame-level reading
behavior classification from dense gaze sequences, particularly in accessibility contexts.

2.4 Mouse as Supervisory Signal during Reading

Mouse behavior has been shown to correlate strongly with gaze during reading, especially in screen-
based environments. Cursor movements often reflect user attention and intent, making them a valuable
implicit signal. Prior work has aligned mouse and gaze trajectories to analyze attention [12, 15]
and incorporated cursor features into multimodal pipelines for predicting engagement and reading
depth [3, 4, 10]. These studies highlight the potential of mouse input for reading behavior analysis,
but they primarily focus on alignment or descriptive analysis.

3 Method

3.1 Dataset

We build on the dataset introduced by Tang et al.[24], which includes synchronized recordings of
eye gaze and mouse trajectories from individuals with low vision during screen-based reading. In
this work, we focus exclusively on the full-lens magnification condition, where the entire screen is
magnified isotropically. Under this setting, users scroll right-to-left (often via left-to-right mouse
movements), to keep the line being read within their preferred visual region. Participants read both
text documents and webpages, as shown in Fig. 2 recorded with a Tobii Spectrum eye tracker (120Hz)
and mouse logs (10Hz). Reading and scanning annotations were produced by trained annotators
following a two-pass protocol under expert supervision.
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Figure 3: Overview of the framework. Top: pretraining (pretext). Bottom: fine-tuning & inference
(downstream). “Comp.” = compensated gaze; g = raw gaze, c = compensated. Both stages share the
same backbone: g and c are fused via two cross-attention blocks (Q=g, K/V=c; Q=c, K/V=g) and
processed by a Transformer. In pretraining, mouse movements serve only as targets to predict 2-D
velocity from gaze; in downstream, the model classifies each sequence as reading or scanning.

3.2 Model

An overview of the supervised and semi-supervised frameworks is shown in Fig. 3. We adopted and
extended the encoder and Transformer configuration from [28] and [7] to suit our task.

3.2.1 Supervised Classification

We first train a reading classifier on labeled gaze data. Input sequences are constructed using
overlapping 0.2-second windows (24 steps at 120 Hz), where each window is labeled as reading or
scanning based on its final time point. Each window contains two gaze streams: (1) raw gaze in
magnified coordinates and (2) compensated gaze remapped to original screen space. Missing values
are linearly interpolated, and windows with more than 50% missing samples are excluded.

Both gaze streams are independently encoded with a three-layer 1D CNN (kernel size 3, 64 dims)
followed by cross-attention to capture complementary information. The fused representation is fed to
a three-layer Transformer encoder(64 dims, 4 heads) to model temporal dependencies, and a linear
classifier outputs the final label. Weighted cross-entropy is applied to address class imbalance.

3.2.2 Semi-Supervised Pretraining with Mouse Guidance

To enrich the gaze encoder with intention-aware features, we add a pretraining stage where the
model learns to predict mouse velocity from gaze input. Mouse movements during magnified reading
provide a weak supervisory signal that does not require manual behavior labels. The backbone
encoder and Transformer are identical across pretraining and fine tuning. Only the task head and loss
change: during pretraining, a linear regression head is trained with mean squared error to predict
two-dimensional mouse velocity from unlabeled gaze, and during fine-tuning, the head is replaced
with a classifier trained with cross entropy on intent labels.

4 Experiments and Results

To ensure subject-independent evaluation, we adopt a leave-one-subject-out cross-validation scheme,
holding out each participant in turn for testing while training on the remaining subjects. All models
were trained with the Adam optimizer (lr = 3e-4, weight decay = 0.01).
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Table 1: F1 scores on the text dataset for different input configurations. "Comp." denotes compensated
gaze. "Random" uses permuted labels with gaze-only input while preserving the original class
distribution, serving as a sanity check. Bold indicates the best performance among gaze-only inputs.

Metric Gaze-Only Inputs With Mouse Inputs
Gaze + Comp. Gaze Comp. Random Mouse Mouse + Gaze + Comp.

Overall F1 80.02 75.06 67.22 40.91 52.85 83.64
Reading F1 91.27 89.31 87.69 56.04 70.29 91.17
Scanning F1 68.78 60.81 46.75 25.79 35.41 76.10

Table 2: F1 scores of supervised and semi-supervised under two strategies (partial vs. full). ’Partial’
updates only the last three Transformer layers, while "Full" fine-tunes the entire model. Bold indicates
the best performance.

Input Type Text Webpage
Overall Reading Scanning Overall Reading Scanning

Semi-supervised (Partial) 81.93 91.56 72.29 64.51 62.59 66.42
Semi-supervised (Full) 85.97 93.13 78.80 70.01 68.39 71.62
Supervised 80.02 91.27 68.78 62.49 60.27 64.59

4.1 Supervised Ablation on Gaze and Mouse Inputs

Supervised Learning with Gaze Input Table 1 compares three input configurations. Raw gaze and
compensated gaze provide complementary views: raw captures fine-grained oculomotor dynamics
within the magnified viewport, while compensated gaze restores global spatial consistency. Their
fusion achieves the best gaze-only performance (80.02 F1), substantially higher than raw-only (75.06)
or compensated-only (67.22). We select the eye (left or right) with the lowest NaN ratio in the first
10% of the session as a lightweight calibration heuristic. The random-label baseline (40.91 F1)
confirms non-trivial of the task.

Supervised Learning with Mouse Input We first verify that mouse trajectories themselves
provide meaningful behavioral signals. Mouse-only input is weaker than gaze (52.85 F1), yet
combining it with gaze and compensated gaze improves performance to 83.64 F1. This shows mouse
trajectories carry useful behavioral cues. Scanning F1 in particular improves markedly (68.78 →
76.10), indicating that mouse trajectories provide strong cues for exploratory behavior such as line
skipping or reorientation. Since our target is hands-free interaction, however, mouse input is not
available at inference. This motivates a semi-supervised approach in which mouse data serves only
as auxiliary supervision during pretraining.

4.2 Semi-Supervised Gaze Representation Learning under Mouse Supervision

We pretrain with a mouse-guided gaze reconstruction objective and fine-tune on labeled data using
two strategies: partial, which updates only the top three Transformer layers, and full, which updates
all parameters. Both variants outperform the supervised baseline, demonstrating the utility of mouse
signals as weak supervision. Even partial adaptation exceeds supervised training, underscoring the
quality of the learned representations.

On text documents, full fine-tuning improves overall F1 by 6.0% (80.02 → 85.97). On the more
challenging webpage setting, gains are larger: 7.5% (62.49 → 70.01). These results show that
mouse-guided pretraining yields transferable gaze encoders, with benefits amplified under complex,
variable environments.

5 Conclusion

We introduced a semi-supervised learning framework that uses mouse behavior to guide the learning of
gaze representations for reading behavior classification under screen magnification. By pretraining on
mouse-guided prediction and fine-tuning on labeled gaze, our method substantially improves over fully
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supervised baselines. The joint modeling of raw and compensated gaze further enhances robustness,
capturing both fine-grained oculomotor signals and consistent global patterns. Experiments on both
text and webpage tasks demonstrate that mouse-guided pretraining is especially beneficial in noisy,
complex environments. Importantly, inference remains gaze-only, making the approach practical for
real-world, hands-free accessibility applications.

For future work, we plan to translate our intent classifier into a real-time, fully automatic scroll
controller that interprets reading and scanning probabilities to generate smooth, safe viewport
movements, leveraging hysteresis and uncertainty-aware mechanisms to enable robust hands-free
accessibility on standard devices.
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